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Objectives

In presenting the multilevel Monte Carlo method, I hope to
emphasise:

the simplicity of the idea

its flexibility

that it’s not prescriptive, more an approach

scope for improved performance through being creative

a growing number of people working on a variety of
applications

I will focus on ideas rather than lots of numerical results.
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Control variate

Classic approach to variance reduction: approximate E[f ]
using

N−1
N∑

n=1

{
f (n) − λ

(
g(n) − E[g]

)}

where

control variate g has known expectation E[g]

g is well correlated with f , and optimal value for λ can
be estimated by a few samples
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Two-level Monte Carlo

If we want to estimate E[f1] but it is much cheaper to
simulate f0 ≈ f1, then since

E[f1] = E[f0] + E[f1 − f0]

we can use the estimator

N−1
0

N0∑

n=1

f
(n)
0 + N−1

1

N1∑

n=1

(
f
(n)
1 − f

(n)
0

)

Two differences from standard control variate method:

E[f0] is not known, has to be estimated

λ = 1
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Two-level Monte Carlo

If we define

C0, V0 to be cost and variance of f0
C1, V1 to be cost and variance of f1−f0

then the total cost is

N0 C0 +N1 C1

and the variance (assuming independent estimators) is

N−1
0 V0 +N−1

1 V1

so for a fixed cost the variance is minimised by choosing

N1

N0
=

√
V1/C1√
V0/C0
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Trivial example

f1 comes from double precision calculation

f0 comes from single precision calculation
(often twice as fast on latest CPUs/GPUs)

use the same random number generator for both
calculations

estimating V0 and V1 will give an optimal allocation of
computational effort between single precision and
double precision computations
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Multilevel Monte Carlo

Natural generalisation: given a sequence f0, f1, . . . , fL

E[fL] = E[f0] +

L∑

ℓ=1

E[fℓ − fℓ−1]

we can use the estimator

N−1
0

N0∑

n=1

f
(n)
0 +

L∑

ℓ=1

{
N−1

ℓ

Nℓ∑

n=1

(
f
(n)
ℓ − f

(n)
ℓ−1

)}

with independent estimation for each level
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Multilevel Monte Carlo

If we define

C0, V0 to be cost and variance of f0
Cℓ, Vℓ to be cost and variance of fℓ−fℓ−1

then the total cost is
L∑

ℓ=0

Nℓ Cℓ

and the variance is
L∑

ℓ=0

N−1
ℓ Vℓ

so for a fixed cost the variance is minimised by choosing

Nℓ ∝
√

Vℓ/Cℓ =⇒ NℓCℓ ∝
√

VℓCℓ
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Parametric Integration

Stefan Heinrich introduced multilevel ideas in 1999 for
parametric integration, in which x is a finite-dimensional
random variable, and want to estimate E[f(x, λ)] for a range
of values of the parameter λ.

In the simplest case, suppose λ is a scalar, and the
parameter range is 0 ≤ λ ≤ 1.

If we have already estimated E[f(x, 0)] and E[f(x, 1)] then

E[f(x, 12)] = 1
2

(
E[f(x, 0)] + E[f(x, 1)]

)

+ E
[
f(x, 12)− 1

2(f(x, 0) + f(x, 1))
]
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Parametric Integration

This can be repeated on multiple levels (perhaps using
higher order interpolation if f(x, λ) is sufficiently smooth)

r r

r r r

r r r r r

r r r r r r r r r

r r r r r r r r r r r r r r r r r?

ℓ

-

λ

This doesn’t quite fit into the multilevel framework I’ve
described, but the complexity analysis is very similar.
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Multilevel Path Simulation

In 2006, I introduced the multilevel approach for
infinite-dimensional integration arising from scalar SDE
driven by Brownian diffusion.

Level ℓ corresponds to approximation using 2ℓ timesteps,
giving approximate payoff P̂ℓ.

Choice of finest level L depends on weak error (bias).

Multilevel decomposition gives

E[P̂L] = E[P̂0] +

L∑

ℓ=1

E[P̂ℓ−P̂ℓ−1]
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Multilevel Monte Carlo

Discrete Brownian path at different levels
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Multilevel Monte Carlo

Simplest estimator for E[P̂ℓ−P̂ℓ−1] for ℓ>0 is

Ŷℓ = N−1
ℓ

Nℓ∑

n=1

(
P̂

(n)
ℓ −P̂

(n)
ℓ−1

)

using same driving Brownian path for both levels

Variance is N−1
ℓ Vℓ where Vℓ = V[P̂ℓ−P̂ℓ−1] gets smaller as

ℓ increases because P̂ℓ, P̂ℓ−1 both approximate same P

To make RMS error less than ε

choose L so that
(
E[P̂L]−E[P ]

)2
< 1

2 ε
2

choose Nℓ ∝
√

Vℓ/Cℓ so total variance is less than 1
2 ε

2
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MLMC Theorem

(Slight generalisation of original version)

If there exist independent estimators Ŷℓ based on Nℓ Monte
Carlo samples, each costing Cℓ, and positive constants
α, β, γ, c1, c2, c3 such that α≥ 1

2 min(β, γ) and

i)
∣∣∣E[P̂ℓ−P ]

∣∣∣ ≤ c1 2
−α ℓ

ii) E[Ŷℓ] =

{
E[P̂0], l = 0

E[P̂ℓ−P̂ℓ−1], l > 0

iii) V[Ŷℓ] ≤ c2N
−1
ℓ 2−β ℓ

iv) Cℓ ≤ c3 2
γ ℓ
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MLMC Theorem

then there exists a positive constant c4 such that for any
ε<1 there exist L and Nℓ for which the multilevel estimator

Ŷ =

L∑

ℓ=0

Ŷℓ,

has a mean-square-error with bound E

[(
Ŷ − E[P ]

)2]
< ε2

with a computational cost C with bound

C ≤





c4 ε
−2, β > γ,

c4 ε
−2(log ε)2, β = γ,

c4 ε
−2−(γ−β)/α, 0 < β < γ.
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MLMC Theorem

Monte Carlo simulation requires O(ε−2) samples to achieve
RMS accuracy of ε.

MLMC theorem says that in the best case, in which the
variance decays with level faster than the cost increases,
the cost is optimal – O(1) cost per sample, on average

To further reduce the overall cost would require switching to
Multilevel QMC (more later on this)
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MLMC Theorem

MLMC Theorem allows a lot of freedom in constructing
the multilevel estimator. I sometimes use different
approximations on the coarse and fine levels:

Ŷℓ = N−1
ℓ

Nℓ∑

n=1

(
P̂ f
ℓ (ω

(n))−P̂ c
ℓ−1(ω

(n))
)

which is OK provided E[P̂ f
ℓ (ω

(n))] = E[P̂ c
ℓ (ω

(n))]

For example, could use P̂ f
ℓ (ω

(n)) = 1
2

(
P̂ c
ℓ (ω

(n)) + P̂ c
ℓ (ω

(n)
anti)

)

where ω
(n)
anti is an antithetic “twin” with the same distribution

as ω(n).
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MLMC Challenges

not always obvious how to couple coarse and fine levels
i.e. what does P̂ℓ(ω

(n))−P̂ℓ−1(ω
(n)) mean?

can the MLMC flexibility be exploited to improve the
variance decay?

particularly important for discontinuous “payoffs”, since
a small difference in the coarse and fine “paths” can
produce an O(1) difference in the “payoff”

numerical analysis – proving the rate at which Vℓ
decays can be tough
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Brownian Diffusion SDEs

Brownian increments for coarse path obtained by summing
increments for fine path – very simple and natural

I prefer to use the first order Milstein discretisation – for
simple put / call options (and more generally Lipschitz
functions of the final state) this leads to

P̂ℓ − P̂ℓ−1 = O(hℓ)

and hence Vℓ = O(h2ℓ).

However, it’s not so easy for lookback and digital options.

(And in multiple dimensions, Milstein requires Lévy areas,
but this can be avoided by an antithetic treatment, G &
Szpruch, 2011)
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Lookback options

Payoff depends on the minimum attained by the path S(t).

If the numerical approximation uses the minimum of the
values at the discrete simulation times

Ŝmin ≡ min
j

Ŝj

then we have two problems:

O(
√
h) weak convergence

Ŝℓ,min − Ŝℓ−1,min = O(
√
hℓ) which leads to Vℓ = O(hℓ)
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Lookback options

To fix this, define a Brownian Bridge interpolation
conditional on the endpoints for each timestep, and
approximating the drift and volatility as being constant.

For the fine path, we then use standard results for sampling
from the distribution of the minimum of a Brownian Bridge
to define

Ŝmin = min
j

1
2

(
Ŝj + Ŝj−1 −

√
(Ŝj − Ŝj−1)2 − 2h b2j logUj

)

where the Uj are independent U(0, 1) random variables.

This gives O(h) weak convergence, but if we do something
similar for the coarse path with a different set of U ′s the
variance will still be poor.
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Lookback options

Instead, do the following:

sample from the mid-point of the Brownian Bridge
interpolation for the coarse timestep, using the
Brownian path information from the fine path – this
mid-point value is within O(hℓ) of the fine path
simulation

sample from the minima of each half of the coarse
timestep using the same U ′s as fine path

take the minimum of the two minima, and then the
minimum over all coarse timesteps.

This leads to an O(hℓ) difference in the computed minima
for the coarse and fine paths, and is valid because the
distribution for the coarse path minimum has not been
altered.
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Digital options

Payoff is discontinuous function of the final state.

First order strong convergence means that O(hℓ) of the
simulations have coarse and fine paths on opposite
sides of a discontinuity.

Hence,

P̂ℓ − P̂ℓ−1 =

{
O(1), with probability O(hℓ)

O(hℓ), with probability O(1)

so Vℓ = O(hℓ), not O(h2ℓ)
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Digital options

Three fixes:

Splitting: split each path simulation into M paths by
trying M different values for the Brownian increment for
the last fine path timestep

Conditional expectation: using the Euler discretisation
instead of Milstein for the final timestep, conditional on
all but the final Brownian increment the final state has a
Gaussian distribution, with a known analytic conditional
expectation in simple cases

Change of measure: when the expectation is not
known, can use a change of measure so the coarse
path takes the same final state as the fine path –
difference in the “payoff” now comes from the
Radon-Nikodym derivative
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Numerical Analysis

Euler Milstein
option numerics analysis numerics analysis
Lipschitz O(h) O(h) O(h2) O(h2)

Asian O(h) O(h) O(h2) O(h2)

lookback O(h) O(h) O(h2) o(h2−δ)

barrier O(h1/2) o(h1/2−δ) O(h3/2) o(h3/2−δ)

digital O(h1/2) O(h1/2 log h) O(h3/2) o(h3/2−δ)

Table: Vl convergence observed numerically (for GBM) and
proved analytically (for more general SDEs)

Euler analysis due to G, Higham & Mao (2009) and
Avikainen (2009). Milstein analysis due to G, Debrabant &
Rößler (2012).
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Computing Greeks

(Sylvestre Burgos, 2011)

MLMC combines well with pathwise sensitivity analysis
for Greeks

Main concern is reduced regularity of “payoff”

Techniques are similar to handling digital options
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Jump diffusion

Finite activity rate Merton-style jump diffusion
(Yian Xia, 2011)

if fixed rate no problem, use jump-adapted discretisation
and coarse and fine paths jump at the same time

if path-dependent rate then it’s trickier
use jump-adapted discretisation plus thinning
(Glasserman & Merener)
could lead to fine and coarse paths jumping at
different times – poor variance
instead use a change of measure to force jumps to
be at the same time
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Lévy processes

Infinite activity rate general Lévy processes
(Dereich 2010; Marxen 2010; Dereich & Heidenreich 2011)

on level ℓ, simulate jumps bigger than δℓ
(δℓ → 0 as ℓ → ∞)

either neglect smaller jumps or use a Gaussian
approximation

multilevel problem: how to handle jumps which are
bigger than δℓ but smaller than δℓ−1?
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Lévy processes

Exact simulation (Cheng Zhu, Filippo Zinzani)

with some popular exponential-Lévy models
(variance-gamma, NIG) possible to directly simulate
increments over fine timesteps

just sum them pairwise to get corresponding increments
for coarse path

coarse and fine path simulations are both exact, so
what’s the point of multilevel simulation?

Asian options
lookback options
barrier options
other path-dependent options
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Heston stochastic volatility

Glasserman & Kim (2011) developed a series expansion for
sampling from the integrated variance:
(∫ T

0

Vs ds

∣∣∣∣∣ V0 = v0, Vt = vt

)
d
=

∞∑

n=1

xn +

∞∑

n=1

yn +

∞∑

n=1

zn

where xn, yn, zn are independent random variables.

Multilevel possibility:

truncate series at Kℓ (Kℓ → ∞ as ℓ → ∞)

should help for European options as well as
path-dependent options
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American options

Belomestny & Schoenmakers (2011) have developed a
multilevel implementation of upper bound dual pricing

based on nested simulation algorithm of Andersen and
Broadie (2004)

requires sub-sampling at each timestep to estimate a
conditional expectation (the continuation value)

multilevel treatment uses a different number of
sub-samples Mℓ on each level
(Mℓ → ∞ as ℓ → ∞)
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SPDEs

very natural straightforward application, with better
savings than SDEs due to higher dimensionality

big challenge is in numerical analysis – noteworthy
contribution by Charrier & Teckentrup (2010)

range of applications
Hou (2007?) – elliptic
Graubner & Ritter (2008) – parabolic
Giles, Reisinger (2009-11) – parabolic
Barth, Lang, Schwab, Zollinger (2010/11) – elliptic,
parabolic, hyperbolic
Cliffe, Giles, Scheichl, Teckentrup (2010/11) – elliptic
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Elliptic SPDE

Elliptic PDE with random coefficient k(x, ω):

−∇. (k(x, ω)∇p(x, ω)) = 0, x ∈ D,

Model k as a lognormal random field, i.e. log k is a
Gaussian field with mean 0 and covariance function

R(x,y) = σ2 exp
(
− ‖x−y‖1/λ

)

Samples of log k are provided by a Karhunen-Loève
expansion:

log k(x, ω) =

∞∑

n=0

√
θn ξn(ω) fn(x),

where ξn are iid unit Normal random variables.
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Elliptic SPDE

In multilevel treatment:

different spatial grid resolution on each level

truncate KL-expansion at different cutoffs Kℓ

some benefit from using antithetic treatment:

log kℓ−1(x, ω) =

Kℓ−1∑

n=0

√
θn ξn(ω) fn(x),

log k+ℓ (x, ω) = log kℓ−1(x, ω) +

Kℓ∑

n=Kℓ−1+1

√
θn ξn(ω) fn(x),

log k−ℓ (x, ω) = log kℓ−1(x, ω)−
Kℓ∑

n=Kℓ−1+1

√
θn ξn(ω) fn(x),
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Stochastic chemical reactions

In stochastic simulations, each reaction is a Poisson
process with a rate which depends on the current
concentrations.

In the “tau-leaping” method (Euler-Maruyama method)
the reaction rates are frozen at the start of the timestep,
then for each reaction sample from a Poisson process

P (λ∆t)

to determine the number of reactions in that timestep.

(As λ∆t → ∞, the standard deviation becomes smaller
relative to the mean, and it approaches the deterministic
limit.)
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Stochastic chemical reactions

Anderson & Higham (2011) have developed a very efficient
multilevel version of this algorithm – big savings because
finest level usually has 1000’s of timesteps.

Key challenge: how to couple coarse and fine path
simulations?

Crucial observation: P (t1) + P (t2)
d
= P (t1+t2)

Only requirement: t1, t2 ≥ 0
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Stochastic chemical reactions

Solution:

simulate the Poisson variable on the coarse timestep as
the sum of two fine timestep Poisson variables

couple the fine path and coarse path Poisson variables
by using common variable based on smaller of two rates

tn tn+1

λcn∆t/2 λcn∆t/2

λfn∆t/2 λf
n+1/2

∆t/2

If λfn < λcn, use P (λcn∆t/2) ∼ P (λfn∆t/2) + P ((λcn−λfn)∆t/2)
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Wasserstein Metric

Sub-division of coarse path random variable into sum of two
fine path random variables should work in many settings.

What about second part? Given two very similar scalar
probability distributions, want to obtain samples Zf , Zc from
each in a way which minimises E[ |Zf−Zc|p].

This corresponds to 1D version of Wasserstein metric:

inf
γ

∫ ∥∥Zf−Zc
∥∥p dγ(Zf , Zc)

where minimum is over all joint distributions with correct
marginals.

Multilevel Monte Carlo – p. 38



Wasserstein Metric

In 1D, Wasserstein metric is equal to

∫ 1

0

∣∣∣Φ−1
f (u)− Φ−1

c (u)
∣∣∣
p
du

where Φf and Φc are the cumulative probability
distributions, and this minimum is achieved by choosing

Zf = Φ−1
f (U), Zc = Φ−1

c (U),

for same uniform [0, 1] random variable U .

This might be a good technique for future multilevel
applications?
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MLQMC

To further improve the multilevel complexity, can use
randomised QMC in place of MC.

G & Waterhouse (2008-9) used rank-1 lattice rules for
scalar SDE applications

far fewer samples required on coarsest levels

almost no difference on finest levels

overall, big savings when using Milstein discretisation
(so most work on coarsest levels)

in best case (GBM with European option) complexity
was approximately O(ε−1.5)
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MLQMC

Numerical algorithm:

1. start with L=0

2. get an initial estimate for VL using 32 random offsets
and NL = 1

3. while
L∑

ℓ=0

Vℓ > ε2/2, try to maximise variance reduction

per unit cost by doubling Nℓ on the level with largest
Vℓ / (Cℓ Nℓ)

4. if L<2 or the bias estimate is greater than ε/
√
2, set

L := L+1 and go back to step 2
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Complexity

There are several papers now on the complexity of
infinite-dimensional quadrature using multilevel approaches.

Paper by Müller-Gronbach & Ritter (2009) shows that under
certain conditions, for a certain class of problems, multilevel
methods are provably optimal, to within logarithmic terms.
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Conclusions

multilevel idea is very simple; key is thinking how to
apply it in new situations

lots of freedom to construct more efficient estimators
using various “tricks”:

change of measure
antithetic treatment
sub-division

being used for an increasingly wide range of
applications; biggest computational savings when
coarsest approximation is much cheaper than finest

Webpage for MLMC activity / papers:
people.maths.ox.ac.uk/gilesm/mlmc community.html
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MLMC Community
Abo Academi (Avikainen) – numerical analysis
Basel (Harbrecht) – elliptic SPDEs, sparse grid links
Bath (Scheichl, Teckentrup, Ullmann) – elliptic SPDEs
Christian-Albrechts University (Gnewuch) – multilevel QMC
Duisburg (Belomestny) – Bermudan and American options
ETH Zürich (Barth, Lang, Schwab) – SPDEs
Frankfurt (Gerstner, Kloeden) – numerical analysis, sparse grid links
IIT Chicago (Hickernell) – SDEs, infinite-dimensional integration, complexity analysis
Kaiserslautern (Heinrich, Korn, Neuenkirch, Ritter) – finance, SDEs, infinite-dimensional

integration, complexity analysis, parametric integration
KAUST (Tempone, von Schwerin) – adaptive time-stepping
KTH (Szepessy) – adaptive time-stepping
Marburg (Dereich) – Lévy-driven SDEs
Munich (Hutzenthaler) – numerical analysis
Nottingham (Cliffe, Park) – elliptic SPDEs
Oxford (Giles, Reisinger, Szpruch) – SDEs, jump-diffusion, SPDEs, numerical analysis
Passau (Müller-Gronbach) – infinite-dimensional integration, complexity analysis
Princeton (Jentzen) – numerical analysis
Strathclyde (Higham, Mao) – numerical analysis, exit times, stochastic chemical modelling
WIAS (Schoenmakers) – Bermudan and American options
Wisconsin (Anderson) – numerical analysis, stochastic chemical modelling
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