
Computing logarithms and other special functions

Mike Giles

University of Oxford

Mathematical Institute

Napier 400 – NAIS Symposium

April 2, 2014

Mike Giles (Oxford) Computing special functions April 2, 2014 1 / 28

Motivation & outline

Why is this not a solved problem? What’s new?

computer hardware continues to evolve:
◮ new IEEE fused multiply-add operation has improved accuracy
◮ vector computing is becoming important for both GPUs and CPUs

there are “new” special functions to approximate

It’s also interesting sometimes to see what goes on “under the bonnet”.

Outline:

reciprocal

exponential

logarithm

inverse error function

inverse Poisson CDF

Mike Giles (Oxford) Computing special functions April 2, 2014 2 / 28

Reciprocal

First task: computing x−1. Standard floating point representation is

x = ± r × 2n, n ∈ Z, 0.5≤ r<1,

and hence reciprocal is

x−1 = ± r−1 × 2−n.

How then to compute r−1?

Method 1 (expansion): putting r = 1− ε, then

r−1 = 1 + ε+ ε2 + ε3 + ε4 + ε5 + . . .

= (1+ε) (1+ε2) (1+ε4) . . .

Each term doubles the number of accurate bits, but it fails to give full
machine accuracy.

Mike Giles (Oxford) Computing special functions April 2, 2014 3 / 28

Reciprocal

Method 2 (refinement): if y ≈ x−1, let x y = 1−ε, |ε|≪1 and then

x−1 = y (1−ε)−1

= y (1 + ε+ ε2 + . . .)

NVIDIA uses this approach for double precision reciprocals.

y is a low accuracy (20-bit) polynomial approximation computed by a
special function unit (SFU), then full accuracy is achieved in 3 FMAs:

ε := 1− x y

ε := ε+ ε2

y := y + ε y

Mike Giles (Oxford) Computing special functions April 2, 2014 4 / 28

Exponential

To compute y = exp(x), let

x = n log 2 + r , n ∈ Z, |r |≤ 1
2
log 2,

Then
y = exp(r)× 2n

exp(r) can be computed using a standard expansion

exp(r) =
∞∑

n=0

anr
n

= 1 + a1 (r + a2 (r + a3 (r + a4 (r + a5 (r + a6 (

Instead of an = 1/n! can do slightly better using near-minimax polynomial
approximation, but main point is that rapid decay in an means only 12
terms are needed for double precision.

Mike Giles (Oxford) Computing special functions April 2, 2014 5 / 28

Exponential

Mathematical libraries usually contain a second function:

expm1(x) ≡ exp(x)− 1.

When |x |≪1

double precision error in exp(x) is O(10−16)

double precision error in expm1(x) is O(10−16x)

Mike Giles (Oxford) Computing special functions April 2, 2014 6 / 28

Logarithm

Similarly, to compute y = log(x), let

x = r × 2n, n ∈ Z, 2
3
< r≤ 4

3

Then
y = n log 2 + log r

How to compute log r?

Standard expansion gives:

log(1+ε) =
∞∑

n=1

(−1)n−1 1

n
εn

but this converges slowly – needs 30 terms for double precision accuracy.

Mike Giles (Oxford) Computing special functions April 2, 2014 7 / 28

Logarithm

Since

tanh z =
ez − e−z

ez + e−z
=

e2z − 1

e2z + 1

putting r = e2z gives

z = tanh−1

(
r − 1

r + 1

)
= 1

2
log r

so

log r = 2 tanh−1

(
r − 1

r + 1

)

The advantage of this transformation is that tanh−1(z) has a faster
converging expansion around z=0, with just 12 odd powers of z
required for double precision accuracy.

Mike Giles (Oxford) Computing special functions April 2, 2014 8 / 28

Logarithm

That is the algorithm currently used by NVIDIA, but an alternative idea
is to use refinement.

If y ≈ log(x), then let

x exp(−y) = 1 + ε, |ε|≪1

so that
log x = y + log(1+ε) ≈ y + ε− 1

2
ε2 + . . .

A 20-bit approximation to log(x) in the SFU could lead to an efficient
implementation, relying on the accuracy of expm1(x) when x ≈ 1.

ε = x exp(−y)− 1 = x expm1(−y) + (x−1)

Mike Giles (Oxford) Computing special functions April 2, 2014 9 / 28

Inverse error function

Most mathematical libraries have an implementation of the error function

erf(x) ≡ 2√
π

∫ x

0

e−t2 dt

and its inverse, erf−1(x).

My interest in it is because of the relationship with Φ(x), the Normal
cumulative distribution function (CDF). For a standard Normal random
variable X ,

P(X <x) ≡ Φ(x) =
1√
2π

∫ x

−∞

e−t2/2 dt =
1

2
+

1

2
erf

(
x√
2

)

=⇒ Φ−1(x) =
√
2 erf−1(2x−1)

Mike Giles (Oxford) Computing special functions April 2, 2014 10 / 28

Inverse error function

One use is for converting uniformly distributed random variables on (0, 1)
to unit Normal random variables:

−3 −2 −1 0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

u

Mike Giles (Oxford) Computing special functions April 2, 2014 11 / 28

Inverse error function

Key properties of erf−1(x):

odd function of x√
log(1−|x |) singularity near x = ±1

Standard CPU approximations use

polynomial approximation in odd powers of x in a central region

polynomial function of
√

log(1−|x |) near either end

Great for CPU, but expensive for GPU because vector execution means
it effectively executes both pieces of code and just keeps the result of
the relevant one.

Mike Giles (Oxford) Computing special functions April 2, 2014 12 / 28

Inverse error function

Transformation: let erf−1(x) = x f (w), w = − log(1−x2)

0 5 10 15
0

1

2

3

4

5

6

w
2 3 4 5 6

0

1

2

3

4

5

6

s

erf−1(x) / x plotted versus w and s ≡ √
w .

Mike Giles (Oxford) Computing special functions April 2, 2014 13 / 28

Inverse error function

New single precision approximation is

erf−1(x) =

{
x p1(w), w ≤ w1 central region

x p2(
√
w), w1 < w tail region

Double precision approximation is similar but breaks tail region into
two parts.

The central region is chosen to cover 99.9% of the (−1, 1) x-interval,
so each 32-element vector only uses central region in most cases.

p1, p2 are generated to be near-minimax polynomials of degree 8
in single precision, 20 in double precision.

The implementations in NVIDIA’s maths library are now based on this.

Mike Giles (Oxford) Computing special functions April 2, 2014 14 / 28

Poisson CDF and inverse

A discrete Poisson random variable N with rate λ takes integer value n

with probability

e−λ λn

n!

Hence, the cumulative distribution function is

C (n) ≡ P(N ≤ n) = e−λ
n∑

m=0

λm

m!
.

To generate N, can take a uniform (0, 1) random variable U and then

compute N = C
−1

(U), where N is the smallest integer such that

U ≤ C (N)

Mike Giles (Oxford) Computing special functions April 2, 2014 15 / 28

Poisson CDF and inverse

Illustration of the inversion process

4 6 8 10 12 14 16 18
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

u

Mike Giles (Oxford) Computing special functions April 2, 2014 16 / 28

Poisson CDF and inverse

When λ is fixed and not too large (λ<104 ?) can pre-compute C (n)
and perform a table lookup.

When λ is variable but small (λ<10 ?) can use bottom-up/top-down
summation.

When λ is variable and large, then rejection methods can be used to
generate Poisson r.v.’s, but the inverse CDF is sometimes helpful:

stratified sampling

Latin hypercube

QMC

This is the problem I am concerned with, approximating C
−1

(u) at
a cost similar to the inverse Normal CDF, or inverse error function.

Mike Giles (Oxford) Computing special functions April 2, 2014 17 / 28

Poisson CDF and inverse

Illustration of the inversion process through rounding down of some

Q(u) ≡ C−1(u) to give C
−1

(u)

4 6 8 10 12 14 16 18
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

u

Mike Giles (Oxford) Computing special functions April 2, 2014 18 / 28

Poisson CDF and inverse

Errors in approximating Q(u) can only lead to errors in rounding down
if near an integer

4 6 8 10 12 14 16 18
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

u

Mike Giles (Oxford) Computing special functions April 2, 2014 19 / 28

Incomplete Gamma function

If X is a positive random variable with CDF

C (x) ≡ P(X < x) =
1

Γ(x)

∫
∞

λ
e−t tx−1 dt.

then integration by parts gives

P(⌊X ⌋ ≤ n) =
1

n!

∫
∞

λ
e−t tn dt = e−λ

n∑

m=0

λm

m!

=⇒ C
−1

(u) = ⌊C−1(u)⌋

We approximate Q(u) ≡ C−1(u) so that |Q̃(u)−Q(u)| < δ ≪ 1

This will round down correctly except when Q(u) is within δ of an integer
– then we need to check some C (m)

Mike Giles (Oxford) Computing special functions April 2, 2014 20 / 28

Normal approximation

It is well known from the Central Limit Theorem that

C (x) ≈ Φ

(
x−λ√

λ

)

which motivates the following change of variables

x = λ+
√
λ y , t = λ+

√
λ (y−z)

giving

C (x) =
1√
2π

∫ y

−∞

I (y , z) dz

where

log I = 1
2
log(2π)− log Γ(x) − t + (x−1) log t − 1

2
log λ

Mike Giles (Oxford) Computing special functions April 2, 2014 21 / 28

Normal approximation

An asymptotic expansion in powers of ε ≡ λ−1/2 yields

I (y , z) = exp(−1
2
z2)

(
1 +

∞∑

n=1

εnpn(y , z)

)

where pn(y , z) are polynomial in y and z . Integrating by parts gives

C (x) ≈ Φ(y) + φ(y)
(
ε (−1

3
− 1

6
y2) + ε2(1

12
y + 1

72
y3 − 1

72
y5)

+ ε3(− 1
540

− 23
540

y2 + 7
2160

y4 + 5
648

y6 − 1
1296

y8)
)

and inverting this gives the asymptotic expansion

Q(u) = λ +
√
λ w + (1

3
+ 1

6
w2) + λ−1/2 (− 1

36
w − 1

72
w3)

+ λ−1(− 8
405

+ 7
810

w2 + 1
270

w4) + O(λ−3/2)

where w = Φ−1(u).

Mike Giles (Oxford) Computing special functions April 2, 2014 22 / 28

Normal approximation

All asymptotic expansions were performed using MATLAB’s Symbolic
Toolbox.

This gives three approximations:

Q̃N1(u) = λ+
√
λ w + (1

3
+ 1

6
w2)

Q̃N2(u) = Q̃N1(u) + λ−1/2 (− 1
36

w − 1
72

w3)

Q̃N3(u) = Q̃N2(u) + λ−1(− 8
405

+ 7
810

w2 + 1
270

w4)

and suggests an error bound for Q̃N2:

δ = λ−1(1
40

+ 1
80

w2 + 1
160

w4)

with E[δ] = 9
160

λ−1.

Mike Giles (Oxford) Computing special functions April 2, 2014 23 / 28

Normal approximation

Maximum error over range |w | ≤ 3:

10
1

10
2

10
3

10
−4

10
−3

10
−2

10
−1

10
0

x

m
ax

im
um

 e
rr

or

error 1
error 2
error 3

Mike Giles (Oxford) Computing special functions April 2, 2014 24 / 28

Alternative Temme approximation

The Normal approximation is quite cheap, but not sufficiently accurate
when |w | is large.

Also, even when |w | < 3, it is not accurate enough for GPU execution
because most vectors of length 32 will have one element with Q̃(u) close
to an integer.

Hence, I have derived a second approximation based on work by Temme
(1979). He developed a very accurate uniform asymptotic expansion for
C (x); I obtained the corresponding expansion for its inverse Q(u).

Mike Giles (Oxford) Computing special functions April 2, 2014 25 / 28

C (m) evaluation

When Q̃(u) is too close to an integer m+1, (i.e. within δ) we need to
evaluate C (m) to choose between m and m+1.

When 1
2
λ≤m≤2λ, this can be done very accurately using another

approximation due to Temme (1987).

Outside this range, a modified version of bottom-up / top-down
summation can be used, because successive terms decrease by factor
2 or more.

This correction determines the final accuracy of the inverse Poisson CDF
function.

Mike Giles (Oxford) Computing special functions April 2, 2014 26 / 28

Accuracy of approximations

10
0

10
2

10
4

10
6

10
−15

10
−10

10
−5

λ

L
1
e
r
r
o
r

poissinvf
poissinv

L1 errors of poissinvf and poissinv functions written in CUDA.

(It measures the fraction of the (0, 1) interval for which the error is ±1.)

Mike Giles (Oxford) Computing special functions April 2, 2014 27 / 28

Conclusions

hopefully an interesting insight into what goes on in mathematical
libraries

definitely not something that most people need to worry about,
but we need one or two people to work on such things

codes and papers are available from
http://people.maths.ox.ac.uk/gilesm/codes.html

Mike Giles (Oxford) Computing special functions April 2, 2014 28 / 28

