
GPU computing for real-time
de-dispersion in astrophysics

Wes Armour, Mike Giles

mike.giles@maths.ox.ac.uk

Oxford e-Research Centre

Institute for the Future of Computing, Oxford Martin School

Oxford-Man Institute of Quantitative Finance

De-dispersion – p. 1



Overview

GPUs

radio-astronomy dataflow

physics and maths

software design

performance

De-dispersion – p. 2



GPUs

The latest NVIDIA Fermi GPUs have:

up to 16 SMs (“Streaming Multiprocessors”) each with
32 cores, 48kB shared memory, 16kB L1 cache

Up to 6GB of attached graphics memory

De-dispersion – p. 3



GPUs

Key performance figures for C2070:

1 TFlops in single precision, half that in double precision

120 GB/s bandwidth from graphics memory to GPU

5 GB/s bandwidth across PCIe bus from CPU to GPU

typically about 10,000 threads executing in parallel

De-dispersion – p. 4



LOFAR dataflow

400MB/s input split into 4 streams of 100MB/s:

100MB/s

25MB/s

25MB/s

CPU: time-frequency conversion (PPF)

CPU: data cleaning (RFI)

GPU: de-dispersion (MDSM)

?

?

?

?

De-dispersion – p. 5



Physics

Pulsars produce a narrow beam of electromagnetic
radiation which rotates like a lighthouse beam, so
a pulse is seen as it sweeps over a radiotelescope

The signal is spread over a wide frequency range.
If space was an empty vacuum, all the signals would
travel at the same speed, but due to free electrons
different frequencies travel at slightly different speeds
(dispersion)

The difference in travel time is proportional to distance,
so the distance can be deduced from the relative time
lag between different frequencies

De-dispersion – p. 6



Physics

The time delay depends on frequency f , and is proportional
to the dispersion measure m which corresponds (roughly)
to distance:

τ = m d(f)

Since d(f) is known, can work out m from signal data:

-

6

frequency f

time t

A
A
A
A
A
A

A
A
AA

A
A
A
A
A

A
A
A
AA

A
A
A
A

A
A
A
A
AA

A
A
A

A
A
A
A
A
AA

A
A

A
A
A
A
A
A
AA

A
A
A
A
A
A
A
A
AA

A
A
A
A
A
A
A
A
AA

A
A
A
A
A
A
A
A
AA

A
A
A
A
A
A
A
A

AA

A
A
A
A
A
A
A

A
AA

De-dispersion – p. 7



Physics

Problem: the signal is often very weak, barely
distinguishable from the background noise

-

6

f

t

De-dispersion – p. 8



Physics

Solution: if we know the right value for m, then we can
time-shift the data to correct for the dispersion (i.e. we can
de-disperse the signal) then sum over the frequencies

This reinforces the signal relative to the background noise

De-dispersion – p. 9



Physics

New problem: we don’t know the right value for m

Solution: try lots of different values for m; the right one is
the one that gives a clear signal!

This needs lots of computation – that’s why we are
interested in using GPUs

De-dispersion – p. 10



Maths

Let

f be integer frequency index, 0 ≤ f < F

t be integer time index

m be integer dispersion measure index, 0 ≤ m < M

Given input data u(f, t), the objective is to compute the
output

w(m, t) =
∑

f

u
(

f, t− s(m, f)
)

,

for an integer shift function s(m, f) which is approximately
linear in m, and varies little from m to m+1:

max
m,f

∣

∣s(m+1, f)− s(m, f)
∣

∣ ≤ 5 (for our testcase)
De-dispersion – p. 11



Back-of-envelope assessment

For each time slice t:

F inputs

M outputs

M F floating point operations

Typically F, M ≃ 1000− 2000, so enough computation to
hide communication cost of PCIe bus

GPU memory bandwidth also not a problem, provided each
input data item isn’t transferred too many times

De-dispersion – p. 12



Software design

-

6

m

t

19

100

Rectangular region in dispersion space worked on by a
block of 10×19 threads, each handling 10 points using
24 registers

7 thread blocks run simultaneously on each SM – 1330
threads on each SM, almost 20,000 on whole GPU

De-dispersion – p. 13



Software design

Implementation:

1. load f -line into shared memory

2. sync threads

3. each thread adds shifted values to 10 accumulators

4. sync threads

5. go back to step 1 and repeat for next f -line

use of shared memory gives data reuse – most data is
used 19 times, once for each m-line

this implementation alternates communication and
computation – relies on multiple blocks for overlapping

De-dispersion – p. 14



Software design

Implementation:

each m-line needs 100 values

at most a 5-shift between one m-line and the next

at most a 90-shift for set of 19 m-lines, so at most
100+90 values required (1 per thread)

cache-aligned device memory

f -line data

�
�
�

�
�
�

shared memory

De-dispersion – p. 15



Performance

Static testcase:

2 mins of test data: 3GB

0.6s transfer time to GPU: 5GB/s

15s processing time
approx 500 Gops, roughly evenly split between SP
floating point, integer and shared memory reads
approx 40 GB/s bandwidth from graphics memory

overall: achieving 40–50% of peak compute capability
and communication

I’m very satisfied with performance, not much scope for
improvement – 1 GPU could handle all 4 data streams in
real-time

De-dispersion – p. 16



Two lessons learned

Auto-tuning is important:

needs a lot of fiddling around to determine optimum
parameters – not obvious even to an expert

undergraduate student has developed an open-source
flexible auto-tuning package: Flamingo

Optimising data movement is key to performance:

bandwidth struggling to match huge compute capability

need to minimise the number of times data is moved

applies also to CPU code – need good cache behaviour

can cause problems in the most innocuous of
circumstances, e.g. matrix transpose

De-dispersion – p. 17



Final comments

I remain keen on GPUs, but not the only game in town:

AVX vectors in latest Intel Sandy Bridge CPUs
– we will start code optimisation for this very soon since
CPU code is currently limiting overall performance

even longer vector units in new Intel MIC “GPU”
(successor to Larrabee, going into new 10 petaflop
supercomputer in Texas)

I think a lot of our GPU experience will carry over to
these architectures – need to minimise data movement

Acknowledgements: funded by the Oxford Martin School
http://www.futurecomputing.ox.ac.uk/

De-dispersion – p. 18


	Overview
	GPUs
	GPUs
	LOFAR dataflow
	Physics
	Physics
	Physics
	Physics
	Physics
	Maths
	Back-of-envelope assessment
	Software design
	Software design
	Software design
	Performance
	Two lessons learned
	Final comments

