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“Smoking Adjoints”

Paper with Paul Glasserman in Risk in 2006 on the use of
adjoints in computing pathwise sensitivities attracted a lot of
interest, and questions:

what is involved in practice in creating an adjoint code,
and can it be simplified?

what about barriers and American options?

do we really have to differentiate the payoff?

what about non-differentiable payoffs?
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Outline

standard and adjoint pathwise sensitivities

use of automatic differentiation ideas/tools

barriers and American options

“vibrato” Monte Carlo for non-differentiable payoffs
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Generic Problem

Stochastic differential equation with general drift and
volatility terms:

dS(t) = a(S, t) dt + b(S, t) dW (t)

For a simple European option we want to compute the
expected discounted payoff value dependent on the
terminal state:

V = E[f(S(T ))]

Note: the drift and volatility functions are almost always
differentiable, but the payoff f(S) is often not.
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Numerical discretisation

Euler discretisation with timestep h:

Ŝn+1 = Ŝn + a(Ŝn, tn) h + b(Ŝn, tn) ∆Wn

gives approximate expectation

V̂ = E

[
f(ŜN )

]
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Pathwise sensitivity

Differentiating with respect to an arbitrary parameter θ gives

∂Ŝn+1

∂θ
=

(
1 +

∂a

∂S
h +

∂b

∂S
∆Wn

)
∂Ŝn

∂θ
+

∂a

∂θ
h +

∂b

∂θ
∆Wn

leading to

∂V̂

∂θ
= E

[
∂f

∂S
(ŜN )

∂ŜN

∂θ

]

This is valid if a(S, θ) and b(S, θ) are differentiable, and
the payoff f(S) is continuous and piecewise differentiable.

Monte Carlo Greeks – p. 6/33



Adjoint sensitivity

The adjoint approach is an efficient implementation of
pathwise sensitivities – it gives exactly the same value.

Consider a process in which a vector input α leads to a final
state vector S which is used to compute a scalar payoff P

α −→ S −→ P

Taking α̇, Ṡ, Ṗ to be the derivatives w.r.t. jth component of α,
then

Ṡ =
∂S

∂α
α̇, Ṗ =

∂P

∂S
Ṡ,

and hence

Ṗ =
∂P

∂S

∂S

∂α
α̇.
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Adjoint sensitivity

Alternatively, defining α, S, P to be the derivatives of P with
respect to α, S, P , then

α
def
=

(
∂P

∂α

)T

=

(
∂P

∂S

∂S

∂α

)T

=

(
∂S

∂α

)T

S,

and similarly

S =

(
∂P

∂S

)T

P ,

giving

α =

(
∂S

∂α

)T (
∂P

∂S

)T

P.
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Adjoint sensitivity

The two are mathematically equivalent, since

Ṗ =
∂P

∂α
α̇ = αT α̇ = αj

but the adjoint approach is much cheaper because a single
calculation gives α, the sensitivity of P
to each one of the elements of α.

standard approach: cost proportional to the number
of Greeks

adjoint approach: cost independent

crossover point: 4 – 6 Greeks?
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Adjoint sensitivity

Note that the standard approach goes forward

α̇ −→ Ṡ −→ Ṗ

while the adjoint approach does the reverse

α ←− S ←− P.

These correspond to the forward and reverse modes of
Automatic Differentiation (AD).

“Smoking Adjoints” paper extended this to multiple
timesteps in the path calculation — instead, we’ll extend it
to the steps in a whole computer program.
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Automatic Differentiation

A computer instruction creates an additional new value:

u
n = f

n(un−1) ≡
(

u
n−1

fn(un−1)

)

,

A computer program is the composition of N such steps:

u
N = f

N ◦ f
N−1 ◦ . . . ◦ f

2 ◦ f
1(u0)

Differentiation w.r.t. one element of the input vector gives

u̇
N = DN DN−1 . . . D2 D1

u̇
0, Dn ≡

(
In−1

∂fn/∂u
n−1

)
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Automatic Differentiation

In reverse mode, we consider the sensitivity of one element
of the output vector, to get

(
u

n−1
)T ≡ ∂uN

i

∂un−1
=

∂uN
i

∂un

∂u
n

∂un−1
=
(
u

n
)T

Dn,

=⇒ u
n−1 =

(
Dn
)T

u
n.

and hence

u
0 =

(
D1
)T (

D2
)T

. . .
(
DN−1

)T (
DN
)T

u
N .

Note: need to go forward through original calculation to
compute/store the Dn, then go in reverse to compute u

n
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Automatic Differentiation

This gives a prescriptive algorithm for reverse mode
differentiation.

Again the reverse mode is much more efficient if we want
the sensitivity of a single output to multiple inputs.

Key result is that the cost of the reverse mode is at worst a
factor 4 greater than the cost of the original calculation,
regardless of how many sensitivities are being computed!

The storage of the Dn is minor for SDEs – much more of a
concern for PDEs.
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Automatic Differentiation

Manual implementation of the forward/reverse mode
algorithms is possible but a little tedious.

Fortunately, automated tools have been developed,
following one of two approaches:

operator overloading (ADOL-C, FADBAD++)
well developed, robust, not very efficient

source code transformation (Tapenade, TAC)
still under development for C, major challenges
posed by C++, often close to efficiency of
hand-coded adjoints
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LIBOR Application

testcase from “Smoking Adjoints” paper

test problem performs N timesteps with a vector of
N+40 forward rates, and computes the N+40 deltas
and vegas for a portfolio of swaptions

hand-coded using the ideas from automatic
differentiation
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LIBOR Application

Finite differences versus forward pathwise sensitivities:
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LIBOR Application

Hand-coded forward versus adjoint pathwise sensitivities:
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Barrier options

The big limitation of pathwise sensitivity calculations (and
their adjoint equivalent) is that the validity depends on the
payoff being continuous and piecewise differentiable.

What about a barrier option?

A simple implementation uses the Euler discretisation and
defines the numerical payoff of a down-and-out call as

P̂ = e−rT (ŜN−K)+ 1(min
n

Ŝn > B)

This is discontinuous when the smallest Ŝn crosses B.
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Barrier options

It is better to define the payoff as

P̂ = e−rT (ŜN−K)+
∏

n

(1− pn)

where

pn = exp

(
−2 (Ŝn−B)+(Ŝn+1−B)+

b2
n h

)

is the approximate probability that the path crosses the
barrier in time interval [tn, tn+1], conditional on Ŝn, Ŝn+1.

This is more accurate (bias is O(h) instead of O(h1/2)),
and continuous as Ŝn crosses the barrier.
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American options

Longstaff-Schwartz approach:

calculate a set of paths to maturity

step backwards in time from maturity
calculate least-squares approximation of
continuation value
if best to exercise, set value equal to exercise value
otherwise, discount existing path value
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American options

small discontinuity because of difference between
continuation value and discounted path value

suspect the error due to this is small (negligible?)
but haven’t yet investigated

pathwise sensitivity analysis is equivalent to fixing the
exercise boundary, which has zero effect in PDE
formulation

could be viewed as naive barrier option treatment;
use probabilistic treatment to regain continuity

alternatively, use Tsitsiklis & Van Roy treatment;
set path value to approximate continuation value
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Vibrato Monte Carlo

One remaining problem – what if payoff is not differentiable?

Likelihood Ratio Method (LRM)
estimator variance proportional to h−1

Malliavin calculus
recent paper by Glasserman and Chen shows it can
be viewed as a pathwise/LRM hybrid
might be good choice when few Greeks needed

new “vibrato” Monte Carlo idea
also a pathwise/LRM hybrid

variance proportional to h−1/2

efficient adjoint implementation
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Vibrato Monte Carlo

new idea, based on conditional expectation for a simple
digital option (Glasserman’s MC book)

output of each SDE path calculation becomes a narrow
(multivariate) Normal distribution

combine pathwise sensitivity for the differentiable SDE,
with LRM for the non-differentiable payoff

avoiding the differentiation of the payoff also simplifies
the implementation in real-world setting
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Vibrato Monte Carlo

Final timestep of Euler path discretisation is

ŜN = ŜN−1 + a(ŜN−1, tN−1) h + b(ŜN−1, tN−1) ∆WN−1

Instead of using random number generator to get a value
for ∆WN−1, consider the whole distribution of possible
values, so ŜN has a Normal distribution with mean

µ(W ) = ŜN−1 + a(ŜN−1, tN−1) h

and standard deviation

σ(W ) = b(ŜN−1, tN−1)
√

h

where W ≡ (∆W0,∆W1, . . . ∆WN−2).
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Vibrato Monte Carlo

For a particular path given by a particular vector W , the
expected payoff is

EZ [f(µ+σ Z)]

where Z is a Normal random variable with zero mean and
unit variance.

Averaging over all W then gives the same overall
expectation as before.

Note also that, for given W , ŜN has a Normal distribution
with

pS(ŜN ) =
1√
2π σ

exp

(
− (ŜN − µ)2

2σ2

)
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Vibrato Monte Carlo

In the case of a simple digital call with strike K, can use the
analytic solution

EZ [f(µ+σ Z)] = exp(−rT ) Φ

(
µ−K

σ

)
.

for each W , the payoff is now smooth, differentiable

derivative is O(h−1/2) near strike, near zero elsewhere
=⇒ variance is O(h−1/2)

Analytic evaluation of conditional expectation not possible
in general for multivariate cases, so use Monte Carlo
estimation!
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Vibrato Monte Carlo

Main novelty comes in calculating the sensitivity.

For a particular W , we have a Normal probability distribution
for ŜN and can apply the Likelihood Ratio method to get

∂

∂θ
EZ

[
f(ŜN )

]
= EZ

[
f(ŜN )

∂(log pS)

∂θ

]
,

where
∂(log pS)

∂θ
=

∂(log pS)

∂µ

∂µ

∂θ
+

∂(log pS)

∂σ

∂σ

∂θ

=
Z

σ

∂µ

∂θ
+

Z2−1

σ

∂σ

∂θ
.

Averaging over all W then gives the expected sensitivity.
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Vibrato Monte Carlo

To improve the variance, we note that

E[1] = 1 =⇒ EZ

[
∂(log pS)

∂θ

]
= 0

and hence

∂

∂θ
EZ

[
f(ŜN )

]
= EZ

[(
f(µ+σZ)−f(µ)

) ∂(log pS)

∂θ

]
.

The quantity

P̂ =
(
f(µ+σZ)−f(µ)

) ∂(log pS)

∂θ

has O(1) variance when f(S) is Lipschitz.
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Vibrato Monte Carlo

In the multivariate extension,

Ŝ(W,Z) = µ + C Z

where µ is the mean, Σ=C CT is the variance, and Z is a
vector of uncorrelated Normals. The joint p.d.f. is

log pS = −1
2 log |Σ| − 1

2(Ŝ−µ)T Σ−1(Ŝ−µ)− 1
2d log(2π).

=⇒ ∂ log pS

∂µ
= C−TZ,

∂ log pS

∂Σ
= 1

2 C−T
(
ZZT−I

)
C−1

Can also handle options dependent on values at
intermediate times by using Brownian interpolation between
simulation times on either side.
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Vibrato Monte Carlo

For each W , in forward mode we have

α, α̇ −→ µ, µ̇, Σ, Σ̇ −→ payoff + sensitivity

first bit – pathwise sensitivity calculation

second bit – Likelihood Ratio Method

For maximum efficiency can use adjoint/reverse mode

α −→ µ, Σ −→ payoff

α ←− µ, Σ ←− sensitivity

µ, Σ are coefficients multiplying µ̇, Σ̇ in forward mode
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Vibrato Monte Carlo

Test case: Geometric Brownian motion

dS
(1)
t = r S

(1)
t dt + σ(1) S

(1)
t dW

(1)
t

dS
(1)
t = r S

(2)
t dt + σ(2) S

(2)
t dW

(2)
t

with a simple digital call option based solely on S
(1)
T .

Parameters: r = 0.05, σ(1) = 0.2, σ(2) = 0.3, T = 1,
S

(1)
0 = S

(2)
0 = 100, K = 100, ρ = 0.5

Numerical results compare LRM, vibrato with one Z per W ,
and pathwise using conditional expectation.
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Vibrato Monte Carlo
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More Z samples per path would bring the vibrato results
closer to the pathwise results based on analytic expectation
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Conclusions

Adjoint implementation of pathwise sensitivities is
very efficient when multiple Greeks are needed

Automatic differentiation tools can aid software
development

Barrier and American options can be handled with care

New “vibrato” MC idea can handle discontinuous
payoffs and avoid the need to differentiate payoffs

Further information:

people.maths.ox.ac.uk/∼gilesm/
Email: mike.giles@maths.ox.ac.uk
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