
OP2 – an open-source library for
unstructured grid applications

Mike Giles

mike.giles@maths.ox.ac.uk

Oxford University Mathematical Institute

Oxford e-Research Centre

OP2 – p. 1

Outline

structured and unstructured grids

software challenge

user perspective (i.e. application developer)
API
build process

implementation issues
code generation
hierarchical parallelism on GPUs
data dependency
auto-tuning

some performance results

OP2 – p. 2

Structured grids

s s s s s s s s s

s s s s s s s s s

s s s s s s s s s

s s s s s s s s s

logical (i, j) indexing in 2d; (i, j, k) in 3D

implicit connectivity – neighbours of node (i, j, k) are
(i± 1, j ± 1, k ± 1)

fairly easy to parallelised – see laplace3d and adi3d
examples

OP2 – p. 3

Unstructured grids

������

A
A
A
A

�
�
�
�
��

������

@
@
@
@
A
A
A
A

�
�
�
�
PPPPPP
A
A
A
A

�
�
�
�A
A
A
A

����

�
�
�
�
��

s

s

s

s

s

s

s

s

s

a collection of nodes, edges, faces, cells, etc., each
addressed by a 1D index

explicit connectivity – mapping tables define
connections from edges to nodes, or faces to cells, etc.

much harder to parallelise (not in concept so much as in
practice) but a lot of existing literature on the subject

used a lot because of geometric flexibility
OP2 – p. 4

Software Challenge

Application developers want the benefits of the latest
hardware but are very worried about the software
development effort, and the expertise required

Status quo is not really an option – running lots of
single-thread MPI processes on multiple CPUs won’t
give great performance

Want to exploit GPUs using CUDA, and CPUs using
OpenMP/AVX

However, hardware is likely to change rapidly in next
few years, and developers can not afford to keep
changing their software implementation

OP2 – p. 5

Software Abstraction

To address this challenge, need to move to a suitable level
of abstraction:

separate the user’s specification of the application from
the details of the parallel implementation

aim to achieve application level longevity with the user
specification not changing for perhaps 10 years

aim to achieve near-optimal performance through
re-targetting the back-end implementation to different
hardware and low-level software platforms

OP2 – p. 6

History

OPlus (Oxford Parallel Library for Unstructured Solvers)

developed for Rolls-Royce 10 years ago

MPI-based library for HYDRA CFD code on clusters
with up to 200 nodes

OP2:

open source project

keeps OPlus abstraction, but slightly modifies API

an “active library” approach with code transformation to
generate CUDA for GPUs and OpenMP/AVX for CPUs

OP2 – p. 7

OP2 Abstraction

sets (e.g. nodes, edges, faces)

datasets (e.g. flow variables)

mappings (e.g. from edges to nodes)

parallel loops
operate over all members of one set
datasets have at most one level of indirection
user specifies how data is used
(e.g. read-only, write-only, increment)

OP2 – p. 8

OP2 Restrictions

set elements can be processed in any order, doesn’t
affect result to machine precision

explicit time-marching, or multigrid with an explicit
smoother is OK
Gauss-Seidel or ILU preconditioning is not

static sets and mappings (no dynamic grid adaptation)

OP2 – p. 9

OP2 API

void op init(int argc, char **argv)

op set op decl set(int size, char *name)

op map op decl map(op set from, op set to,
int dim, int *imap, char *name)

op dat op decl dat(op set set, int dim,
char *type, T *dat, char *name)

void op decl const(int dim, char *type,
T *dat)

void op exit()

OP2 – p. 10

OP2 API

Example of parallel loop syntax for a sparse matrix-vector
product:

op par loop(res,"res", edges,
op arg dat(A,-1,OP ID,1,"float",OP READ),
op arg dat(u, 1,pedge,1,"float",OP READ),
op arg dat(du,0,pedge,1,"float",OP INC));

This is equivalent to the C code:

for (e=0; e<nedges; e++)
du[pedge[2*e]] += A[e] * u[pedge[1+2*e]];

where each “edge” corresponds to a non-zero element in
the matrix A, and pedge gives the corresponding row and
column indices.

OP2 – p. 11

User build processes

Using the same source code, the user can build different
executables for different target platforms:

sequential single-thread CPU execution
purely for program development and debugging
very poor performance

CUDA for single GPU

OpenMP/AVX for multicore CPU systems

MPI plus any of the above for clusters

OP2 – p. 12

Sequential build process

Traditional build process, linking to a conventional library
in which many of the routines do little but error-checking:

op seq.h jac.cpp- op seq.c

? ?'

&

$

%
make / g++

OP2 – p. 13

CUDA build process

Preprocessor parses user code and generates new code:

jac.cpp

?�
�

�
�op2.m preprocessor

? ? ?

jac op.cpp jac kernels.cu res kernel.cu
update kernel.cu

op lib.cu

? ? ?

�

�
�

�
�make / nvcc / g++

OP2 – p. 14

Code Generation

Initial prototype, with code parser/generator written in
MATLAB, can generate:

CUDA code for a single GPU

OpenMP code for multiple CPUs

The parallel loop API requires redundant information:

simplifies MATLAB program generation – just need to
parse loop arguments, not entire code

numeric values for dataset dimensions enable compiler
optimisation of CUDA code

“programming is easy; it’s debugging which is difficult”
– not time-consuming to specify redundant information
provided consistency is checked automatically

OP2 – p. 15

Code Generation

Paul Kelly’s group at Imperial College is developing a more
sophisticated parser/generator based on Rose:

analyses the user’s wntire code

can support a simpler API (e.g. doesn’t need datatypes
to be specified)

could check user’s access specifications

introduces dependency on Rose software (in addition to
dependencies on ParMetis or PT-Scotch for graph
partitioning)

OP2 – p. 16

Implementation Approach

The question now is how to deliver good performance on
multiple GPUs

Initial assessment:

lots of natural parallelism on grids with up to 109

nodes/edges

not a huge amount of compute per node/edge so
important to

avoid PCIe transfers as much as possible
achieve good data reuse to minimise GPU / global
memory transfers

have to be careful with data dependencies

OP2 – p. 17

GPU Parallelisation

Could have up to 106 threads in 3 levels of parallelism:

MPI distributed-memory parallelism (1-100)
one MPI process for each GPU
all sets partitioned across MPI processes, so each
MPI process only holds its data (and halo)
each partition sized to fit within global memory of
GPU (up to 6GB)
only halos need to be transferred from one GPU to
another, via the CPUs
hopefully, this will give a balanced implementation
– slight possibility that MPI networking will end up
being the primary bottleneck, so will work hard to
overlap computation and MPI communication

OP2 – p. 18

GPU Parallelisation

block parallelism (50-1000)
on each GPU, data is broken into mini-partitions,
worked on separately and in parallel by different SMs
within the GPU
each mini-partition is sized so that all of the indirect
data can be held in shared memory and re-used as
needed
implementation requires re-numbering from global
indices to local indices – tedious but not difficult
can use different mini-partitions for different parallel
loops – “execution plan” generated during startup

thread parallelism (32-128)
each mini-partition is worked on by a block of
threads in parallel OP2 – p. 19

Shared memory or L1 cache?

Caches:

easy to use, but hard to predict/understand
performance

good performance for structured grids where often all of
the cache line is used

not so good for unstructured grids with indirect
addressing

Shared memory:

full control means you understand performance

only store the data which is actually needed

tedious to implement, but that’s the point of a library,
to do the tedious things so users don’t have to

OP2 – p. 20

AoS or SoA?

One key implementation decision is how to store datasets in
which there are several data elements for each set element
(e.g. 4 flow variables at each grid point)

Array-of-Structs (AoS) approach views the 4 flow
variables as a contiguous item, and holds an array of
these

0 0 0 0 01 1 1 1 12 2 2 2 23 3 3 3 3

Struct-of-Arrays (SoA) approach has a separate array
for each one of the data elements

0 0 0 0 0 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3

OP2 – p. 21

AoS or SoA?

The SoA approach is natural for streaming hardware, like
old CRAY vector supercomputers

memory sub-system designed to stream long vectors of
data from memory to compute units and back again

very suitable for structured grid applications, but what
about unstructured grids?

The AoS approach is natural for conventional CPUs

cache utilisation is good, provided all of the local
elements are used

NVIDIA Fermi-based GPUs have L1 / L2 caches,
so AoS is good for unstructured grids

key is that it gives better cache utilisation
OP2 – p. 22

Data dependencies

Key technical issue is data dependency when incrementing
indirectly-referenced arrays.

e.g. potential problem when two edges update same node

���������

A
A
A
A
A
A

�
�
�
�
�
�
�
�
�

���������

@
@
@
@

@
@
A
A
A
A
A
A

�
�
�
�
�
�
PPPPPPPPP

A
A
A
A
A
A

�
�
�
�
�
�A
A
A
A
A
A

������

�
�
�
�
�
�
�
�
�

u

u

u

u

u

u

u

u

u

OP2 – p. 23

Data dependencies

Method 1: “owner” of nodal data does edge computation

drawback is redundant computation when the two
nodes have different “owners”

���������

A
A
A
A
A
A

�
�
�
�
�
�
�
�
�

���������

@
@
@
@

@
@
A
A
A
A
A
A

�
�
�

�
�
�

u

u

u

u

u

�
�
�

�
�
�

PPPPPPPPP

A
A
A
A
A
A
A
A
A
A
A
A

������

�
�
�
�
�
�
�
�
�

u

u

u

u

OP2 – p. 24

Data dependencies

Method 2: “color” edges so no two edges of the same color
update the same node

parallel execution for each color, then synchronize

possible loss of data reuse and some parallelism

u

u

u

u

u

u

u

u

u

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�

PPPPPPPPP

A
A
A
A
A
A

@
@
@
@

@
@

A
A
A
A
A
A

�
�
�
�
�
�
�
�
�

���������

���������

A
A
A
A
A
A

A
A
A
A
A
A

������

�
�
�
�
�
�

OP2 – p. 25

Data dependencies

Method 3: use “atomic” add which combines read/add/write
into a single operation

avoids the problem but needs hardware support

drawback is slow hardware implementation

?

time

without atomics with atomics
thread 0 thread 1

read

add

write

read

add

write

thread 0 thread 1

atomic add

atomic add

OP2 – p. 26

Data dependencies

Which is best for each level?

MPI level: method 1
each MPI process does calculation needed to
update its data
partitions are large, so relatively little redundant
computation

GPU level: method 2
plenty of blocks of each color so still good parallelism
data reuse within each block, not between blocks

block level: method 2
indirect data in local shared memory, so get reuse
individual threads are colored to avoid conflict when
incrementing shared memory

OP2 – p. 27

Auto-tuning

In the CUDA implementation there are various parameters
and settings which apply to the whole code:

compiler flags, such as whether to use L1 caching

(whether to use AoS or SoA storage for each dataset)

and others which can be different for each CUDA kernel:

number of threads in a thread block

size of each mini-partition

(whether to use a 16/48 or 48/16 split for the L1 cache /
shared memory)

OP2 – p. 28

Auto-tuning

In each case, the optimum choice / value is not obvious,
but it is possible to

give a small set of possible values for each
(usually two or three)

state which can be optimised independently
(e.g. the parameters for one kernel don’t affect
the execution of another kernel)

Developed a flexible Python package (Flamingo) to select
the optimum combination by exhaustive “brute force”
search, exploiting parameter independence.

OP2 – p. 29

Auto-tuning

Example configuration file:
#

parameters and values

#

PARAMS = { flag, {block0, part0}, {block1, part1} }

flag = {"-Xptxas -dlcm=ca", "-Xptxas -dlcm=cg" } # compiler flag

block0 = {64, 96, 128} # thread block size for loop 0

part0 = {128, 192, 256} # partition size for loop 0

block1 = {64, 96, 128} # thread block size for loop 1

part1 = {128, 192, 256} # partition size for loop 1

#

compilation and evaluation mechanisms

#

COMPILER = make -B flag=%flag% block0=%block0% part0=%part0%

block1=%block1% part1=%part1%

EVALUATION = ./executable

OP2 – p. 30

Airfoil test code

2D Euler equations, cell-centred finite volume method
with scalar dissipation (miminal compute per memory
reference – should consider switching to more
compute-intensive “characteristic” smoothing more
representative of real applications)

roughly 1.5M edges, 0.75M cells

5 parallel loops:
save soln (direct over cells)
adt calc (indirect over cells)
res calc (indirect over edges)
bres calc (indirect over boundary edges)
update (direct over cells with RMS reduction)

OP2 – p. 31

Airfoil test code

Library is instrumented to give lots of diagnostic info:
new execution plan #1 for kernel res_calc
number of blocks = 11240
number of block colors = 4
maximum block size = 128
average thread colors = 4.00
shared memory required = 3.72 KB
average data reuse = 3.20
data transfer (used) = 87.13 MB
data transfer (total) = 143.06 MB

factor 2-4 data reuse in indirect access, but up to 40%
of cache lines not used on average

OP2 – p. 32

Airfoil test code

Single precision performance for 1000 iterations on an
NVIDIA C2070 using auto-tuned values:

count time GB/s GB/s kernel name PS BS
1000 0.22 101.8 save_soln 512
2000 1.09 74.1 75.4 adt_calc 256 128
2000 4.95 36.9 60.6 res_calc 128 128
2000 0.10 5.3 20.0 bres_calc 64 128
2000 1.03 94.7 update 64

TOTAL 7.40

This is a 5 % improvement relative to baseline calculation.
Switching from AoS to SoA storage would increase
res calc data transfer by approximately 120%. OP2 – p. 33

Airfoil test code

Double precision performance for 1000 iterations on an
NVIDIA C2070 using auto-tuned values:

count time GB/s GB/s kernel name PS BS
1000 0.44 104.9 save_soln 512
2000 2.62 52.9 53.8 adt_calc 256 128
2000 10.35 30.5 50.8 res_calc 128 128
2000 0.08 11.2 27.9 bres_calc 64 128
2000 1.87 104.5 update 64

TOTAL 15.36

This is a 7.5 % improvement relative to baseline calculation.
Switching from AoS to SoA storage would again increase
res calc data transfer by approximately 120%. OP2 – p. 34

Airfoil test code

Single precision performance on two Intel “Westmere”
6-core 2.67GHz X5650 CPUs using auto-tuned values:

Optimum number of OpenMP threads: 16

count time GB/s GB/s kernel name PS
1000 1.68 13.7 save_soln
2000 11.15 7.3 7.5 adt_calc 128
2000 16.57 10.3 11.2 res_calc 1024
2000 0.16 3.2 11.9 bres_calc 64
2000 4.67 20.9 update

TOTAL 34.25

Minimal gain relative to baseline calculation with 12 threads
and mini-partition sizes of 1024.

OP2 – p. 35

Airfoil test code

Double precision performance on two Intel “Westmere”
6-core 2.67GHz X5650 CPUs using auto-tuned values:

Optimum number of OpenMP threads: 12

count time GB/s GB/s kernel name PS
1000 2.51 18.3 save_soln
2000 11.68 11.8 11.9 adt_calc 1024
2000 20.99 12.8 13.5 res_calc 1024
2000 0.17 5.0 12.4 bres_calc 512
2000 9.29 21.1 update

TOTAL 44.64

Minimal gain relative to baseline calculation with 12 threads
and mini-partition sizes of 1024.

OP2 – p. 36

Conclusions

have created a high-level framework for parallel
execution of unstructured grid algorithms on GPUs
and other many-core architectures

looks encouraging for providing ease-of-use, high
performance and longevity through new back-ends

auto-tuning is useful for code optimisation, and a new
flexible auto-tuning system has been developed

C2070 GPU speedup versus two 6-core Westmere
CPUs is roughly 5× in single precision, 3× in double
precision

latest development is MPI layer for computing on CPU
and GPU clusters

key challenge now is to build user community

OP2 – p. 37

Development effort

Me (3-6 months spread over 2-3 years)
– core/GPU capabilities, MATLAB generator, docs

Gihan Mudalige (15 months)
– MPI, extensive testing, paper writing

Carlo Bertolli (15 months)
– FORTRAN capability and Rose generator

Lines of code/text:

C/C++ header files – 2200

C/C++ core/GPU libraries – 2200

C/C++ MPI libraries – 7000

MATLAB generator – 2200

documentation – 4000 OP2 – p. 38

Acknowledgements

Gihan Mudalige, István Reguly, Ben Spencer (Oxford)

Carlo Bertolli, David Ham, Paul Kelly, Graham Markall
and others (Imperial College)

Nick Hills (Surrey) and Paul Crumpton (original OPlus
development)

Yoon Ho, Leigh Lapworth, David Radford (Rolls-Royce)

Tom Bradley, Jon Cohen and others (NVIDIA)

EPSRC, TSB, NVIDIA and Rolls-Royce for financial
support

Oxford Supercomputing Centre

OP2 – p. 39

	Outline
	Structured grids
	Unstructured grids
	Software Challenge
	Software Abstraction
	History
	OP2 Abstraction
	OP2 Restrictions
	OP2 API
	OP2 API
	User build processes
	Sequential build process
	CUDA build process
	Code Generation
	Code Generation
	Implementation Approach
	GPU Parallelisation
	GPU Parallelisation
	Shared memory or L1 cache?
	AoS or SoA?
	AoS or SoA?
	Data dependencies
	Data dependencies
	Data dependencies
	Data dependencies
	Data dependencies
	Auto-tuning
	Auto-tuning
	Auto-tuning
	Airfoil test code
	Airfoil test code
	Airfoil test code
	Airfoil test code
	Airfoil test code
	Airfoil test code
	Conclusions
	Development effort
	Acknowledgements

