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SDEs in Finance

In computational finance, stochastic differential equations
are used to model the behaviour of

stocks

interest rates

exchange rates

weather

electricity/gas demand

crude oil prices

. . .

The stochastic term accounts for the uncertainty of
unpredictable day-to-day events.
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SDEs in Finance

These models are then used to calculate “fair” prices for a
huge range of financial options:

an option to sell a stock portfolio at a specific price in 2
years time

an option to buy aviation fuel at a specific price in 6
months time

an option to sell US dollars at a specific exchange rate
in 3 years time

In most cases, the buyer of the financial option is trying to
reduce their risk.
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SDEs in Finance

Examples:

Geometric Brownian motion (Black-Scholes model for
stock prices)

dS = r S dt + σ S dW

Cox-Ingersoll-Ross model (interest rates)

dr = α(b − r) dt + σ
√

r dW

Heston stochastic volatility model (stock prices)

dS = r S dt +
√

V S dW1

dV = λ (σ2−V ) dt + ξ
√

V dW2

with correlation ρ between dW1 and dW2
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Generic Problem

Stochastic differential equation with general drift and
volatility terms: SDE with general drift and volatility terms:

dS(t) = a(S, t) dt + b(S, t) dW (t)

W (t) is a Wiener variable with the properties that for any
q<r<s<t, W (t)−W (s) is Normally distributed with mean 0
and variance t−s, independent of W (r)−W (q).

In many finance applications, we want to compute the
expected value of an option dependent on the terminal state

P = f(S(T ))

with a uniform Lipschitz bound,

|f(U) − f(V )| ≤ c ‖U − V ‖ , ∀ U, V.
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Standard MC Approach

Euler discretisation with timestep h:

Ŝn+1 = Ŝn + a(Ŝn, tn)h + b(Ŝn, tn) ∆Wn

Simplest estimator for expected payoff is an average of N

independent path simulations:

Ŷ = N−1
N∑

i=1

f(Ŝ
(i)
T/h

)
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Standard MC Approach

Two kinds of errors:

statistical error, due to finite number of paths

V [Ŷ ] = N−1V [f(ŜT/h)]

so r.m.s. error = O(N−1/2).

discretisation bias, due to finite number of timesteps
weak convergence – O(h) error in expected payoff

strong convergence – O(h1/2) error in individual path
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Standard MC Approach

Mean Square Error is O
(
N−1 + h2

)

first term comes from variance of estimator

second term comes from bias due to weak convergence

To make this O(ε2) requires

N = O(ε−2), h = O(ε) =⇒ cost = O(N h−1) = O(ε−3)

Aim is to improve this cost to O
(
ε−2(log ε)2

)
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Multigrid

A powerful technique for solving PDE discretisations:

Fine grid
more accurate

more expensive

Coarse grid
less accurate

less expensive
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Multigrid

Multigrid combines calculations on a nested sequence of
grids to get the accuracy of the finest grid at a much lower
computational cost.

We will use a similar idea to achieve variance reduction in
Monte Carlo path calculations, combining simulations with
different numbers of timesteps – same accuracy as finest
calculations, but at a much lower computational cost.
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Other Research

In Dec. 2005, Ahmed Kebaier published an article in
Annals of Applied Probability describing a two-level method
which reduces the cost to O

(
ε−2.5

)
.

Also in Dec. 2005, Adam Speight wrote a working
paper describing a similar multilevel use of control
variates, but without an analysis of its complexity.

There are also close similarities to a multilevel
technique developed by Stefan Heinrich for parametric
integration (Journal of Complexity, 1998)
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Multilevel MC Approach

Consider multiple sets of simulations with different
timesteps hl = 2−l T, l = 0, 1, . . . , L, and payoff P̂l

E[P̂L] = E[P̂0] +
L∑

l=1

E[P̂l−P̂l−1]

Expected value is same – aim is to reduce variance of
estimator for a fixed computational cost.

Key point: approximate E[P̂l−P̂l−1] using Nl simulations
with P̂l and P̂l−1 obtained using same Brownian path.

Ŷl = N−1
l

Nl∑

i=1

(
P̂

(i)
l −P̂

(i)
l−1

)
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Multilevel MC Approach

Discrete Brownian path at different levels
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Multilevel MC Approach

each level adds more detail to Brownian path

E[P̂l−P̂l−1] reflects impact of that extra detail on the
payoff

different timescales handled by different levels
– similar to different wavelengths being handled by
different grids in multigrid
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Multilevel MC Approach

Using independent paths for each level, the variance of the
combined estimator is

V

[
L∑

l=0

Ŷl

]
=

L∑

l=0

N−1
l Vl, Vl ≡ V [P̂l−P̂l−1],

and the computational cost is proportional to
L∑

l=0

Nl h
−1
l .

Hence, the variance is minimised for a fixed computational
cost by choosing Nl to be proportional to

√
Vl hl.

The constant of proportionality can be chosen so that the
combined variance is O(ε2).

Multilevel Monte Carlo – p. 15/34



Multilevel MC Approach

For the Euler discretisation and the Lipschitz payoff function

V [P̂l−P ] = O(hl) =⇒ V [P̂l−P̂l−1] = O(hl)

and the optimal Nl is asymptotically proportional to hl.

To make the combined variance O(ε2) requires

Nl = O(ε−2Lhl).

To make the bias O(ε) requires

L = log2 ε−1 + O(1) =⇒ hL = O(ε).

Hence, we obtain an O(ε2) MSE for a computational cost
which is O(ε−2L2) = O(ε−2(log ε)2).
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Multilevel MC Approach

Theorem: Let P be a functional of the solution of a stochastic o.d.e.,

and P̂l the discrete approximation using a timestep hl = M−l T .

If there exist independent estimators Ŷl based on Nl Monte Carlo

samples, and positive constants α≥ 1
2 , β, c1, c2, c3 such that

i) E[P̂l − P ] ≤ c1 hα
l

ii) E[Ŷl] =





E[P̂0], l = 0

E[P̂l − P̂l−1], l > 0

iii) V [Ŷl] ≤ c2 N−1
l h

β
l

iv) Cl, the computational complexity of Ŷl, is bounded by

Cl ≤ c3 Nl h
−1
l
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Multilevel MC Approach

then there exists a positive constant c4 such that for any ε<e−1 there
are values L and Nl for which the multi-level estimator

Ŷ =
L∑

l=0

Ŷl,

has Mean Square Error MSE ≡ E

[(
Ŷ − E[P ]

)2
]

< ε2

with a computational complexity C with bound

C ≤





c4 ε−2, β > 1,

c4 ε−2(log ε)2, β = 1,

c4 ε−2−(1−β)/α, 0 < β < 1.
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Results

Geometric Brownian motion:

dS = r S dt + σ S dW, 0 < t < 1,

S(0)=1, r=0.05, σ=0.2

Heston model:

dS = r S dt +
√

V S dW1, 0 < t < 1

dV = λ (σ2−V ) dt + ξ
√

V dW2,

S(0)=1, V (0)=0.04, r=0.05, σ=0.2, λ=5, ξ=0.25, ρ=−0.5

All calculations use M =4, more efficient than M =2.
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Results

GBM: European call, max(S(1)−1, 0)
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Results

GBM: European call, max(S(1)−1, 0)
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Results

GBM: lookback option, S(1) − min0<t<1 S(t)
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Results

GBM: lookback option, S(1) − min0<t<1 S(t)
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Results

Heston model: European call
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Results

Heston model: European call
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Conclusions

Results so far:

improved order of complexity

easy to implement

significant benefits for model problems

Current research:

use of Milstein method (and antithetic variables in
multi-dimensional case) to reduce complexity to O(ε−2)

adaptive sampling to treat discontinuous payoffs and
pathwise derivatives for Greeks

use of quasi-Monte Carlo methods, to reduce
complexity towards O(ε−1)
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Milstein Scheme

Generic SDE:

dS(t) = a(S, t) dt + b(S, t) dW (t), 0<t<T,

with correlation matrix Ω(S, t) between elements of dW (t).

Simplest Milstein scheme sets Lévy areas to zero to give

Ŝi,n+1 = Ŝi,n+ai h+bij ∆Wj,n+1
2

∂bij

∂Sl
blk

(
∆Wj,n ∆Wk,n − hΩjk

)

using implied summation convention.
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Milstein Scheme

In scalar case:

O(h) strong convergence

O(ε−2) complexity for Lipschitz payoffs

O(ε−2) complexity for lookback, barrier and digital
options using carefully constructed estimators

In multi-dimensional case:

still only O(h1/2) strong convergence

but Ŝn − E[S |Wn] = O(h)

Multilevel Monte Carlo – p. 29/34



Milstein Scheme

If a coarse path with timestep 2h is constructed using

∆W c
n =

√
2h Yn

where the Yn are N(0, 1) random variables, and the fine
path uses a Brownian Bridge construction with

∆W f
n = 1

2

√
2h (Yn+Zn), ∆W

f
n+ 1

2

= 1
2

√
2h (Yn−Zn).

where the Zn are also N(0, 1) random variables, then
perturbation analysis shows that the O(h1/2) difference
between the two paths comes from a sum of terms
proportional to

Yj,nZk,n − Yk,nZj,n.

Multilevel Monte Carlo – p. 30/34



Milstein Scheme

Using the idea of antithetic variables, we use the estimator

Ŷl = N−1
l

Nl∑

i=1

(
1
2

(
P̂

(i)
l +P̂

(i)∗
l

)
− P̂

(i)
l−1

)
,

where P̂
(i)∗
l is based on the same coarse path Yn, but with

Zn replaced by −Zn, which leads to the cancellation of the
leading order error proportional to Zn.

V [Ŷl] = O(h2) for smooth payoffs, O(h3/2) for Lipschitz

in both cases, gives O(ε−2) complexity for O(ε) accuracy
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Adaptive sampling

With digital options, the problem is that small path changes
can lead to an O(1) change in the payoff

For the Euler discretisation, O(h1/2) strong convergence
=⇒ O(h1/2) paths have an O(1) value for P̂l−P̂l−1

Hence,
Vl = O(h1/2).

For improved results, need more samples of paths near
payoff discontinuities.
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Adaptive sampling

Two ideas for adaptive sampling are both based on
Brownian Bridge constructions, using coarse timestep
realisations to decide which paths are important

idea 1: start with relatively few paths, and sub-divide
those which look interesting (splitting)

idea 2: start with lots of paths, and prune those which
are unimportant (Russian roulette)

use path weights to ensure estimator remains unbiased

initial results (combining 2 ideas to keep a fixed number
of paths) look good for a digital option, and it should
also handle barrier options
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Quasi-Monte Carlo

Quasi-Monte Carlo methods can offer greatly improved
convergence with respect to the number of samples N :

in the best case, O(N−1+δ) error for arbitrary δ > 0,
instead of O(N−1/2)

depends on knowledge/identification of “important
dimensions” in an application

Brownian Bridge
Principal Component Analysis

confidence intervals can be obtained by using
randomized QMC

working with Sloan, Kuo and Waterhouse, will try both
rank-1 lattice rules and Sobol sequences

Multilevel Monte Carlo – p. 34/34


	SDEs in Finance
	SDEs in Finance
	SDEs in Finance
	Generic Problem
	Standard MC Approach
	Standard MC Approach
	Standard MC Approach
	Multigrid
	Multigrid
	Other Research
	Multilevel MC Approach
	Multilevel MC Approach
	Multilevel MC Approach
	Multilevel MC Approach
	Multilevel MC Approach
	Multilevel MC Approach
	Multilevel MC Approach
	Results
	Results
	Results
	Results
	Results
	Results
	Results
	Conclusions
	Working Paper
	Milstein Scheme
	Milstein Scheme
	Milstein Scheme
	Milstein Scheme
	Adaptive sampling
	Adaptive sampling
	Quasi-Monte Carlo

