Multilevel Monte Carlo for multi-dimensional SDEs

Mike Giles

mike.giles@maths.ox.ac.uk

Oxford University Mathematical Institute
Oxford-Man Institute of Quantitative Finance

SIAM Conference on Financial Mathematics and Engineering
November 19-20, 2010

Multilevel approach

Given a scalar SDE driven by a Brownian diffusion

$$dS(t) = a(S, t) dt + b(S, t) dW(t),$$

to estimate $\mathbb{E}[P]$ where the path-dependent payoff P can be approximated by \widehat{P}_l using 2^l uniform timesteps, we use

$$\mathbb{E}[\widehat{P}_L] = \mathbb{E}[\widehat{P}_0] + \sum_{l=1}^L \mathbb{E}[\widehat{P}_l - \widehat{P}_{l-1}].$$

 $\mathbb{E}[\widehat{P}_l-\widehat{P}_{l-1}]$ is estimated using N_l simulations with same W(t) for both \widehat{P}_l and \widehat{P}_{l-1} ,

$$\widehat{Y}_{l} = N_{l}^{-1} \sum_{i=1}^{N_{l}} \left(\widehat{P}_{l}^{(i)} - \widehat{P}_{l-1}^{(i)} \right)$$

Multilevel approach

Using independent samples for each level, the variance of the combined estimator is

$$\mathbb{V}\left[\sum_{l=0}^{L} \widehat{Y}_{l}\right] = \sum_{l=0}^{L} N_{l}^{-1} V_{l}, \qquad V_{l} \equiv \begin{cases} \mathbb{V}[\widehat{P}_{l} - \widehat{P}_{l-1}], & l > 0 \\ \mathbb{V}[\widehat{P}_{0}], & l = 0 \end{cases}$$

and the computational cost is proportional to $\sum_{l=0}^{L} N_l h_l^{-1}$

Hence, the variance is minimised for a fixed computational cost by choosing N_l to be proportional to $\sqrt{V_l h_l}$.

MLMC Theorem

Theorem: Let P be a functional of the solution of a stochastic o.d.e., and \widehat{P}_l the discrete approximation using a timestep $h_l = 2^{-l} T$.

If there exist independent estimators \widehat{Y}_l based on N_l Monte Carlo samples, with computational complexity (cost) C_l , and positive constants $\alpha \geq \frac{1}{2}$, β , c_1 , c_2 , c_3 such that

i)
$$\left| \mathbb{E}[\widehat{P}_l - P] \right| \le c_1 h_l^{\alpha}$$

ii)
$$\mathbb{E}[\widehat{Y}_l] = \left\{ egin{array}{ll} \mathbb{E}[\widehat{P}_0], & l=0 \\ \mathbb{E}[\widehat{P}_l - \widehat{P}_{l-1}], & l>0 \end{array}
ight.$$

iii)
$$\mathbb{V}[\widehat{Y}_l] \leq c_2 N_l^{-1} h_l^{\beta}$$

iv)
$$C_l \le c_3 \, N_l \, h_l^{-1}$$

MLMC Theorem

then there exists a positive constant c_4 such that for any $\varepsilon < e^{-1}$ there are values L and N_l for which the multilevel estimator

$$\widehat{Y} = \sum_{l=0}^{L} \widehat{Y}_{l},$$

has Mean Square Error
$$MSE \equiv \mathbb{E}\left[\left(\widehat{Y} - \mathbb{E}[P]\right)^2\right] < \varepsilon^2$$

with a computational complexity C with bound

$$C \le \begin{cases} c_4 \varepsilon^{-2}, & \beta > 1, \\ c_4 \varepsilon^{-2} (\log \varepsilon)^2, & \beta = 1, \\ c_4 \varepsilon^{-2 - (1 - \beta)/\alpha}, & 0 < \beta < 1. \end{cases}$$

Multilevel Monte Carlo - p. 5

Previous Work

- First paper (Operations Research, 2006 2008) applied idea to SDE path simulation using Euler-Maruyama discretisation
- Second paper (MCQMC 2006 2007) used Milstein discretisation for scalar SDEs – improved strong convergence gives improved multilevel variance convergence
- Multilevel method is a generalisation of two-level control variate method of Kebaier (2005), and similar to ideas of Speight (2009) and also related to multilevel parametric integration by Heinrich (2001)

Numerical Analysis

If P is a Lipschitz function of S(T), the value of the underlying at maturity, the strong convergence property

$$\left(\mathbb{E}\left[(\widehat{S}_N - S(T))^2\right]\right)^{1/2} = O(h^{\gamma})$$

implies that $\mathbb{V}[\widehat{P}_l - P] = O(h_l^{2\gamma})$ and hence

$$V_l \equiv \mathbb{V}[\widehat{P}_l - \widehat{P}_{l-1}] = O(h_l^{2\gamma}).$$

Therefore $\beta = 1$ for Euler-Maruyama discretisation, and $\beta = 2$ for the Milstein discretisation.

However, in general, good strong convergence is neither necessary nor sufficient for good convergence for V_l .

Numerics and Analysis

	Euler		Milstein	
option	numerics	analysis	numerics	analysis
Lipschitz	O(h)	O(h)	$O(h^2)$	$O(h^2)$
Asian	O(h)	O(h)	$O(h^2)$	$O(h^2)$
lookback	O(h)	O(h)	$O(h^2)$	$o(h^{2-\delta})$
barrier	$O(h^{1/2})$	$o(h^{1/2-\delta})$	$O(h^{3/2})$	$o(h^{3/2-\delta})$
digital	$O(h^{1/2})$	$O(h^{1/2}\log h)$	$O(h^{3/2})$	$\left o(h^{3/2-\delta}) \right $

Table: V_l convergence observed numerically (for GBM) and proved analytically (for more general SDEs)

Euler analysis due to G, Higham & Mao (*Finance & Stochastics, 2009*) and Avikainen (*Finance & Stochastics, 2009*). Milstein analysis due to G, Debrabant & Rößler

Other work

- Yuan Xia, G jump-diffusion models
- Sylvestre Burgos, G Greeks
- Hoel, von Schwerin, Szepessy, Tempone adaptive discretisations
- Dereich, Heidenreich Lévy processes
- Hickernell, Müller-Gronbach, Niu, Ritter complexity analysis
- Müller-Gronbach, Ritter parabolic SPDEs
- G, Reisinger parabolic SPDEs
- Teckentrup, Scheichl, Cliffe, G elliptic SPDEs
- Barth, Schwab, Zollinger elliptic SPDEs

Multi-dimensional SDEs

The Milstein scheme for multi-dimensional SDEs is

$$\widehat{S}_{i,n+1} = \widehat{S}_{i,n} + a_i h + \sum_{j} b_{ij} \Delta W_{j,n}$$

$$+ \frac{1}{2} \sum_{j,k,l} \frac{\partial b_{ij}}{\partial S_l} b_{lk} \left(\Delta W_{j,n} \Delta W_{k,n} - \Omega_{jk} h - A_{jk,n} \right)$$

where Lévy areas are defined as

$$A_{jk,n} = \int_{t_n}^{t_{n+1}} (W_j(t) - W_j(t_n)) dW_k - (W_k(t) - W_k(t_n)) dW_j$$

- O(h) strong convergence, but hard to simulate A_{jk}
- ullet $O(h^{1/2})$ strong convergence in general if A_{jk} omitted

Discretisation error analysis

Suppose we ignore the Lévy area terms – what is the resulting difference between coarse and fine path approximations?

Let the coarse path approximation be

$$\widehat{S}_{n+1}^c = R(\widehat{S}_n^c)$$

and the fine path approximation be

$$\widehat{S}_{n+1}^f = R(\widehat{S}_n^f) + g_n$$

so to leading order the difference $\widehat{D}_n \equiv \widehat{S}_n^f - \widehat{S}_n^c$ satisfies

$$\widehat{D}_{n+1} = \frac{\partial R}{\partial S} \, \widehat{D}_n + g_n$$

Discretisation error analysis

Using a Brownian Bridge construction in which

$$W_{n+1/2} = \frac{1}{2} \left(W_n + W_{n+1} + Z \right)$$

where $Z \sim N(0, h_c)$, find that, to leading order,

$$g_{i,n} = \frac{1}{2} \sum_{j,k,l} \frac{\partial b_{ij}}{\partial S_l} b_{lk} \left(\Delta W_{j,n} Z_{k,n} - \Delta W_{k,n} Z_{j,n} \right)$$

Note: $g \equiv 0$ for scalar applications, and for vector applications satisfying the commutativity conditions

$$\sum_{l} \frac{b_{ij}}{\partial S_l} b_{lk} = \sum_{l} \frac{b_{ik}}{\partial S_l} b_{lj}, \quad \forall i, j, k$$

Discretisation error analysis

 ΔW and Z are $O(\sqrt{h})$ and independent

$$\implies g_n = O(h)$$
 but $\mathbb{E}[g_n] = 0$ (to leading order)

$$\implies \widehat{D}_n = O(\sqrt{h})$$
 but $\mathbb{E}[\widehat{D}_n] = 0$ (to leading order)

Haven't achieved anything yet – really just shown $O(\sqrt{h})$ strong convergence when Lévy area is neglected.

(Best that can be achieved knowing just the discrete ΔW – Clark & Cameron, 1980)

Now comes the new idea – use antithetic variates in Brownian Bridge construction.

i.e. construct a second fine path using $-Z_n$ instead of Z_n

Antithetic treatment

Since g_n is linear in Z_n , this implies that, to leading order,

$$\widehat{D}_n^{(2)} = -\widehat{D}_n^{(1)}$$

Higher order terms in asymptotic error analysis give

$$\widehat{D}_n^{(1)} + \widehat{D}_n^{(2)} = O(h)$$

If the payoff function $f(S_T)$ is twice differentiable then

$$\frac{1}{2} \left(f(\widehat{S}^{f(1)}) + f(\widehat{S}^{f(2)}) \right) - f(\widehat{S}^{c}) \approx \frac{1}{2} \left(\widehat{D}_{n}^{(1)} + \widehat{D}_{n}^{(2)} \right) f'(\widehat{S}^{c})
+ \frac{1}{4} \left((\widehat{D}_{n}^{(1)})^{2} + (\widehat{D}_{n}^{(2)})^{2} \right) f''(\widehat{S}^{c})
= O(h)$$

Antithetic treatment

Hence, for the multilevel estimator on level *l* we use

$$\widehat{Y}_{l} = N_{l}^{-1} \sum_{n=1}^{N_{l}} \frac{1}{2} \left(\widehat{P}_{l}^{(n1)} + \widehat{P}_{l}^{(n2)} \right) - \widehat{P}_{l-1}^{(n)}$$

and

$$\mathbb{V}[\widehat{Y}_l] = N_l^{-1} V_l$$

with

$$V_l = O(h^2).$$

This assumed the payoff function was twice differentiable. For a put or call option, more careful analysis near the strike gives $V_l = O(h^{3/2})$ – still enough to ensure the overall cost is $O(\varepsilon^{-2})$.

Heston stochastic volatility model:

$$dS = r S dt + \sqrt{v} S dW_1, \qquad 0 < t < T,$$

$$dv = \kappa(\theta - v) + \xi \sqrt{v} dW_2, \qquad 0 < t < T,$$

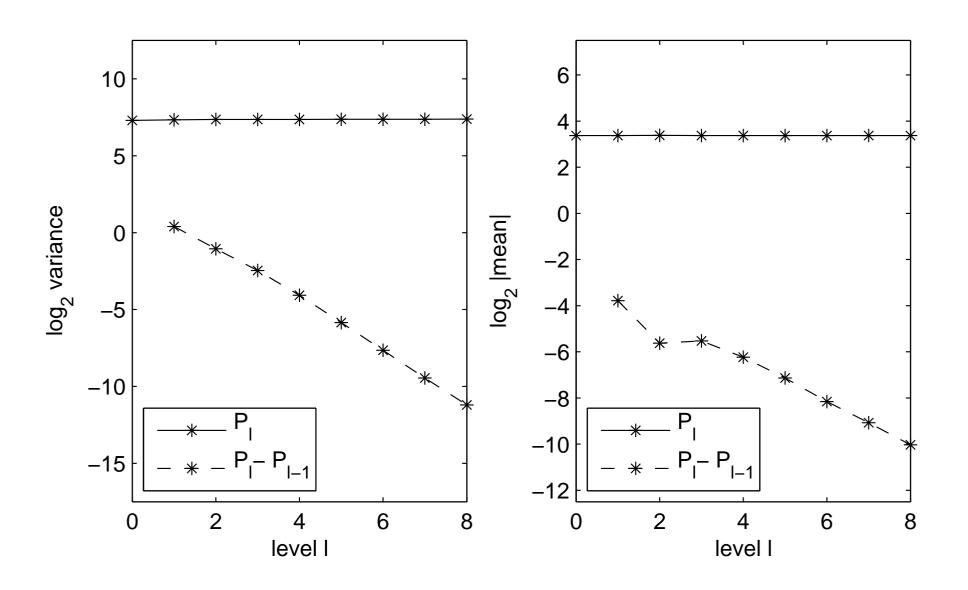
with $T=1, \ S(0)=100, \ r=0.05, \ \kappa=1, \ \theta=0.04, \ \xi=0.25$ and correlation $\rho=-0.5$.

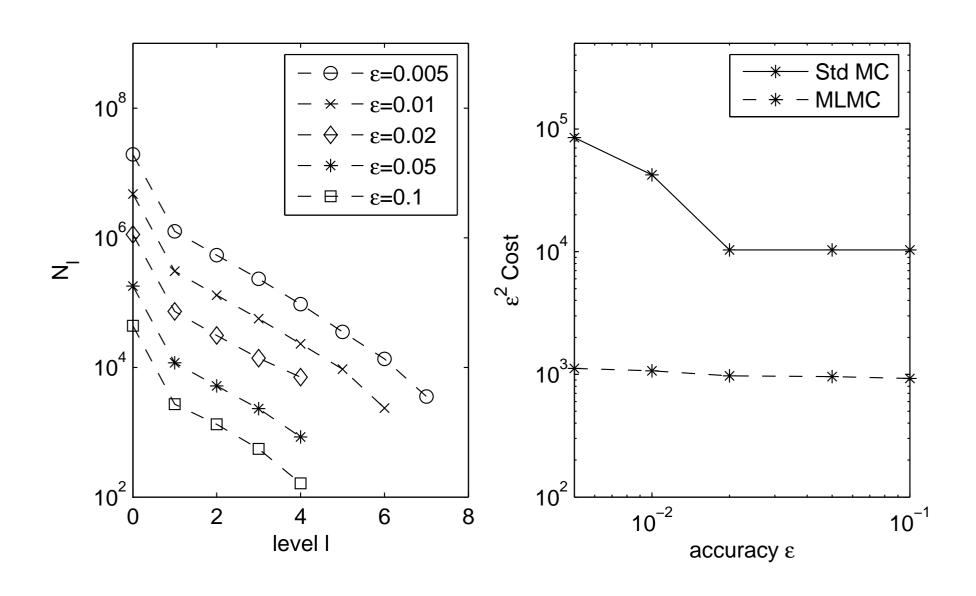
"Integrating factor" used for volatility discretisation to improve accuracy with large timesteps — Mark Broadie

European call option with discounted payoff

$$\exp(-rT) \max(S(T)-K,0)$$

with strike K = 100.





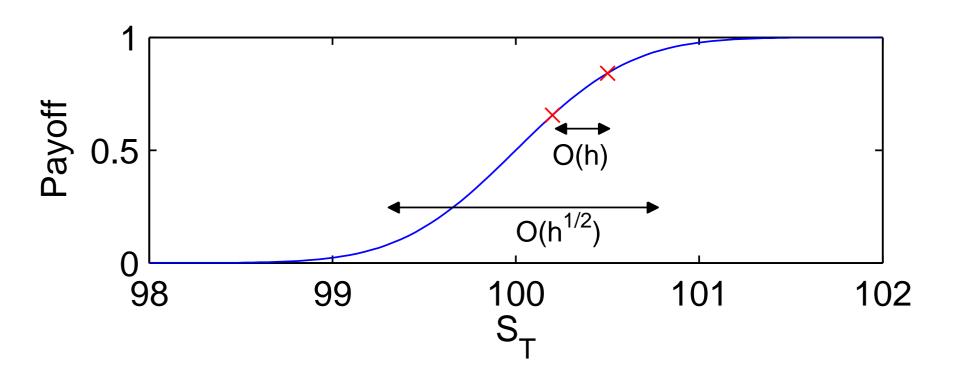
Antithetic treatment doesn't help with discontinuous payoffs:

- $O(\sqrt{h})$ paths near enough to strike for fine and coarse paths to be on opposite sides
- these have O(1) difference in payoffs, so

$$\mathbb{V}[\widehat{P}_l - \widehat{P}_{l-1}] \approx \mathbb{E}[(\widehat{P}_l - \widehat{P}_{l-1})^2] = O(\sqrt{h})$$

For scalar SDEs, use conditional expectation one timestep before maturity:

- effectively smooths payoff over $O(\sqrt{h})$
- very helpful when $\widehat{S}^f \widehat{S}^c = O(h)$
- minimal benefit when $\widehat{S}^f \widehat{S}^c = O(\sqrt{h})$



For paths in smoothed region, if $\widehat{S}_f - \widehat{S}_c = O(h)$ then

$$f'(S) = O(h^{-1/2}) \implies \widehat{P}_l - \widehat{P}_{l-1} = O(h^{1/2})$$

and hence
$$\mathbb{V}[\widehat{P}_l - \widehat{P}_{l-1}] = O(h^{3/2})$$

For multi-dimensional SDEs, approximate the Lévy areas by sub-sampling W(t) within each timestep

Question: how many sub-samples to use?

- too few and there's no significant benefit
- too many and the computational cost is excessive
- what is optimal?

If each timestep is divided into M sub-intervals, error in each Lévy area approximation is $O(h\,M^{-1/2})$

Hence, strong convergence error and $\widehat{S}_f - \widehat{S}_c$ are both $O(h^{1/2}M^{-1/2})$, assuming $M \ll h^{-1}$

Using antithetic treatment, for paths in smoothed region

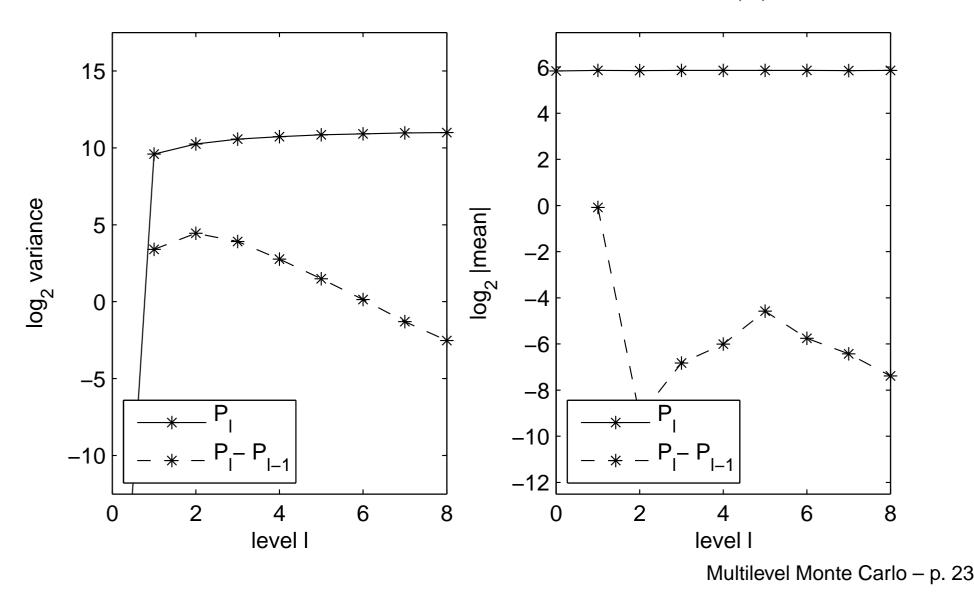
$$\frac{1}{2} \left(f(\widehat{S}^{f(1)}) + f(\widehat{S}^{f(2)}) \right) - f(\widehat{S}^{c}) \approx \frac{1}{2} \left(\widehat{D}_{n}^{(1)} + \widehat{D}_{n}^{(2)} \right) f'(\widehat{S}^{c})
+ \frac{1}{4} \left((\widehat{D}_{n}^{(1)})^{2} + (\widehat{D}_{n}^{(2)})^{2} \right) f''(\widehat{S}^{c})
= O(h^{1/2} + M^{-1})$$

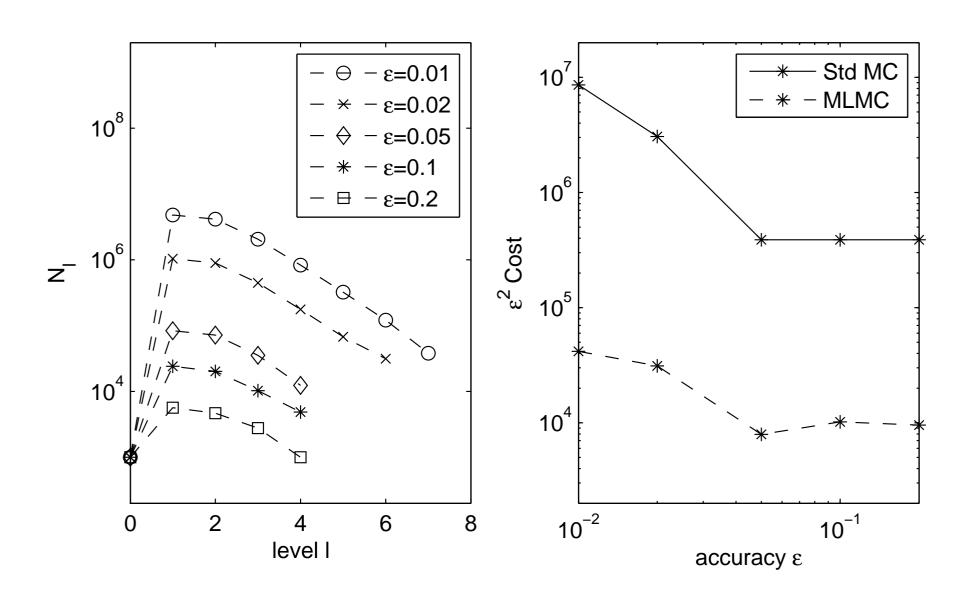
If $M^{-1} \gg h^{1/2}$, then doubling M doubles the cost per path, but reduces the variance by factor 4 — good!

Optimum is when $M = O(h^{-1/2})$

Multilevel variance is $O(h^{3/2})$ and cost is $O(h^{-1/2})$ per path; complexity analysis shows overall cost is $O(\varepsilon^{-2}(\log \varepsilon)^2)$.

Heston model for digital call $P = \exp(-rT) K \mathbf{1}_{S(T)>K}$





Conclusions

- multilevel method being adapted to increasingly more challenging applications
- for multi-dimensional SDEs with Lipschitz payoffs, neglecting the Lévy area terms in the Milstein scheme can still give good decay of the multilevel variance if antithetic variates are used
- for discontinuous payoffs, the Lévy areas need to be approximated but still get good decay of the variance

Papers are available from:

www.maths.ox.ac.uk/gilesm/finance.html