
Computational Finance using GPUs
Mike Giles

mike.giles@maths.ox.ac.uk

Oxford-Man Institute of Quantitative Finance

Oxford e-Research Centre

NVIDIA CUDA Fellow for Computational Finance

Workshop at Stefan Banach International Mathematical Center

Warsaw, August 18, 2010

GPUs for Finance – p. 1/32



CPUs and GPUs

Typically, a PCIe graphics card with a many-core GPU sits
inside a PC/server with one or two multicore CPUs:

DDR3 GDDR5

motherboard graphics card

GPUs for Finance – p. 2/32



CPUs and GPUs

CPUs have up to 12 cores (each with a SSE vector unit)
and up to 30 GB/s bandwidth to main system memory

NVIDIA Fermi GPUs have up to 14 × 32 = 448 cores on
a single chip and up to 150 GB/s bandwidth to graphics
memory

offer 100× speedup relative to a single CPU core

roughly 10× speedup relative to two Xeons

also 10× improvement in price/performance and
energy efficiency

How is this possible? Much simpler cores (SIMD units,
no out-of-order execution or branch prediction) designed
for vector computing, not general purpose

GPUs for Finance – p. 3/32



CPUs and GPUs

Is this GPU advantage sustainable? Yes!

AMD producing similar GPUs too, and Intel designing
similar new chips (Knights Ferry)

NVIDIA has a good headstart on software side with
CUDA environment

new OpenCL software standard (based on CUDA and
pushed by Apple) will probably run on all platforms

driving applications are:
computer games “physics”
video (e.g. HD video decoding)
computational science
computational finance
oil and gas

GPUs for Finance – p. 4/32



Why GPUs will stay ahead

Technical reasons:

SIMD units means larger proportion of chip devoted to
floating point computation (but CPUs will respond with
longer vector units – AVX)

tightly-coupled fast graphics memory means much
higher bandwidth

Commercial reasons:

CPUs driven by price-sensitive office/home computing;
not clear these need vastly more speed

CPU direction may be towards low cost, low power
chips for mobile and embedded applications

GPUs driven by high-end applications – prepared to
pay a premium for high performance

GPUs for Finance – p. 5/32



Use in computational finance

Bloomberg has a large cluster:
48 NVIDIA Tesla units, each with 4 GPUs
alternative to buying 2000 CPUs

BNP Paribas has a small cluster:
2 NVIDIA Tesla units
replacing 250 dual-core CPUs
factor 10x savings in power (2kW vs. 25kW)

lots of other banks doing proof-of-concept studies
my impression is that IT groups are keen, but
quants are concerned about effort involved
some were waiting for new NVIDIA Fermi GPUs with
ECC memory and faster double precision

Several ISV’s now offer software based on CUDA
GPUs for Finance – p. 6/32



Programming

Big breakthrough in GPU computing has been NVIDIA’s
development of CUDA programming environment

C plus some extensions and some C++ features

host code runs on CPU, CUDA code runs on GPU

explicit movement of data across the PCIe connection

very straightforward for Monte Carlo applications,
once you have a random number generator

was harder for finite difference applications but now a
lot easier because of caches on Fermi GPUs

see example codes on my website

GPUs for Finance – p. 7/32



My experience

Random number generation (mrg32k3a/Normal):
2500M values/sec on GTX 280
70M values/sec/core on Xeon using Intel’s VSL

LIBOR Monte Carlo testcase:
100x speedup on GTX 280 compared to single
thread on Xeon

3D PDE application:
factor 50x speedup on GTX 280 compared to
single thread on Xeon
factor 10x speedup compared to two quad-core
Xeons

GPU results are all single precision – double precision is
half the speed, as with CPU SSE instructions

GPUs for Finance – p. 8/32



Random number generation

Main challenge for Monte Carlo simulation is parallel
random number generation

want to generate same random numbers as in
sequential single-thread implementation

two key steps:
generation of [0, 1] uniform random number
conversion to other output distributions
(e.g. unit Normal)

many of these problems are already faced with
multi-core CPUs and cluster computing

NVIDIA does not provide a RNG library, so I have
developed one with NAG – freely available to academics

GPUs for Finance – p. 9/32



Random number generation

Key issue in uniform random number generation:

when generating 10M random numbers, might have
5000 threads and want each one to compute 2000
random numbers

need a “skip-ahead” capability so that thread n can
jump to the start of its “block” efficiently
(usually log N cost to jump N elements)

s

s

s

s

? ? ? ?

�

 

$

$

threads

seeds

GPUs for Finance – p. 10/32



Random number generation

mrg32k3a (Pierre l’Ecuyer, ’99, ’02)

popular generator in Intel MKL and ACML libraries

pseudo-uniform (0, 1) output is

(xn,1−xn,2 mod m1) /m1

where integers xn,1, xn,2 are defined by recurrences

xn,1 = a1 xn−2,1 − b1 xn−3,1 mod m1

xn,2 = a2 xn−1,2 − b2 xn−3,2 mod m2

a1 =1403580, b1 =810728, m1 =232
−209,

a2 =527612, b2 =1370589, m2 =232
− 22853.

GPUs for Finance – p. 11/32



Random number generation

Both recurrences are of the form

yn = Ayn−1 mod m

where yn is a vector yn = (xn, xn−1, xn−2)
T and A is a

3×3 matrix. Hence

yn+2k = A2
k

yn mod m = Ak yn mod m

where Ak is defined by repeated squaring as

Ak+1 = Ak Ak mod m, A0 ≡ A.

Can generalise this to jump N places in O(log N)
operations.

GPUs for Finance – p. 12/32



Random number generation

output distributions:
uniform
exponential: trivial
Normal: Box-Muller or inverse CDF
Gamma: using “rejection” methods which require
a varying number of uniforms and Normals to
generate 1 Gamma variable

producing Normals with mrg32k3a:
2400M values/sec on a 216-core GTX260
70M values/sec on a Xeon using Intel’s VSL

GPUs for Finance – p. 13/32



Random number generation

Library provides routines at two levels:

host level
routine is called by a user’s code on the host, but
executes on the GPU and puts output into arrays in the
graphics memory

device level
routine is called by uesr’s code on the GPU, produce
number “on-the-fly” ready for immediate use

the device level is usually a little more efficient because
there’s no data transfer, but it uses up some registers
and that might be a prob;em in some cases

GPUs for Finance – p. 14/32



Random number generation

Sobol generator for quasi-random numbers:

same approach as mrg32k3a, very efficient skip-ahead

conversion of quasi-uniforms into quasi-Normals uses a
novel implementation of the inverse error function

also implemented Brownian Bridge construction

6500M Normals/sec on a 216-core GTX260

Mersenne twister:

very popular in the banks because of its extremely long
period

large “state” makes it more difficult to parallelise (not
many registers per thread in a GPU)

also, skip-ahead is O(log N) but much more expensive
GPUs for Finance – p. 15/32



Monte Carlo simulation

Given a library for parallel random number generation, the
rest of a Monte Carlo simulation is straightforward:

within the GPU, each thread performs one or more path
calculation

each thread works with a different set of random
numbers, so each path simulation is independent

results from different threads need to be averaged;
easiest way is to transfer the outputs back to the CPU

averaging on the GPU is trickier – needs cooperation /
communication between different threads

for an example, see practical 2 from my CUDA course

GPUs for Finance – p. 16/32



CUDA programming

At the top level, we have a master process which runs on
the CPU and performs the following steps:

1. initialises card

2. allocates memory in host and on device

3. copies data from host to device memory

4. launches multiple copies of execution “kernel” on device

5. copies data from device memory to host

6. repeats 3-5 as needed

7. de-allocates all memory and terminates

GPUs for Finance – p. 17/32



CUDA programming

At a lower level, within the GPU:

each copy of the execution kernel executes on an SM

if the number of copies exceeds the number of SMs,
then more than one will run at a time on each SM if
there are enough registers and shared memory, and the
others will wait in a queue and execute later

all threads within one copy can access local shared
memory but can’t see what the other copies are doing
(even if they are on the same SM)

there are no guarantees on the order in which the
copies will execute

GPUs for Finance – p. 18/32



Finite Difference Model Problem

Jacobi iteration to solve discretisation of Laplace equation

V n+1

i,j = 1

4

(

V n
i+1,j + V n

i−1,j + V n
i,j+1 + V n

i,j−1

)

v v v

v

v

v

How should this be programmed?

GPUs for Finance – p. 19/32



Finite Difference Model Problem

@@
��

Key idea: take ideas from distributed-memory parallel
computing and partition grid into pieces

GPUs for Finance – p. 20/32



Finite Difference Model Problem

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p p p p p p p p

p p p p p p p p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p p p p p p p p

p p p p p p p p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p p p p p p p p

p p p p p p p p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p p p p p p p p

p p p p p p p p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p p p p p p p p

p p p p p p p p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p p p p p p p p

p p p p p p p p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p p p p p p p p

p p p p p p p p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p p p p p p p p

p p p p p p p p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p p p p p p p p

p p p p p p p p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p p p p p p p p

p p p p p p p p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p p p p p p p p

p p p p p p p p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p p p p p p p p

p p p p p p p p

GPUs for Finance – p. 21/32



Finite Difference Model Problem

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r r r r r r r r

r r r r r r r r

Each block of threads will work with one of these grid
blocks, reading in old values (including the “halo nodes”
from adjacent partitions) then computing and writing out
new values

GPUs for Finance – p. 22/32



Finite Difference Model Problem

Implementation on old GPUs used local shared memory:

each thread loads in the data for its grid point and
maybe one halo point

data is then available for neighbouring threads when
they need it

each thread computes its new value and writes it to
graphics memory

this is slightly tedious, manually programming to
duplicate what is done in a cache in a CPU;
– much simpler on new Fermi GPUs with a cache

see code examples on my course webpage

GPUs for Finance – p. 23/32



Finite Difference Model Problem

2D finite difference implementation:

good news: 30× speedup relative to Xeon single core,
compared to 4.5× speedup using OpenMP with 8 cores

bad news: grid size has to be 10242 to have enough
parallel work to do to get this performance

in a real financial application, more sensible to do
several 2D calculations at the same time, perhaps with
different payoffs

(same comment would apply to 1D simulations – best to
do many at the same time)

GPUs for Finance – p. 24/32



Finite Difference Model Problem

3D finite difference implementation:

insufficient shared memory for whole 3D block, so hold
3 working planes at a time

key steps in kernel code:
load in k=0 z-plane (inc x and y-halos)
loop over all z-planes

load k+1 z-plane
process k z-plane
store new k z-plane

again much simpler on the new Fermi GPUs

50× speedup relative to Xeon single core, compared to
5× speedup using OpenMP with 8 cores.

GPUs for Finance – p. 25/32



More on Finite Differences

ADI implicit time-marching:

each thread handles tri-diagonal solution along a line in
one direction

again roughly 10× speedup compared to two quad-core
Xeons

Implicit time-marching with iterative solvers:

BiCGStab: each iteration similar to Jacobi iteration
except for need for global dot-product (see “reduction”
example in CUDA SDK)

ILU preconditioning could be tougher

GPUs for Finance – p. 26/32



More on Finite Differences

Generic 3D financial PDE solver:

available on my webpages

development funded by TCS/CRL
(leading Indian IT company)

uses ADI time-marching

designed for user to specify drift and volatility functions
as C code – no need for user to know anything about
CUDA programming

an example of what I think is needed to hide
complexities of GPU programing

GPUs for Finance – p. 27/32



Programming

Software alternatives:

OpenCL
no personal experience
looks similar to the lower-level CUDA device API
I’m waiting for

simpler higher-level layer
experience of others on pros/cons versus CUDA
competitive hardware from other vendors

GPUs for Finance – p. 28/32



Programming

Software alternatives:

Microsoft’s DX Compute
unlikely to be used for scientific computing, but
maybe for games and multimedia applications

Intel: Ct, TBB, SSE/AVX vectors, icc, OpenCL
I find range of alternatives confusing – look to Intel
for clear guidance on pros and cons
I think SSE/AVX vectors may offer best performance
but programming is tedious (worse than CUDA?)
I hope OpenCL support is good (should map very
naturally to SSE/AVX vectors)

GPUs for Finance – p. 29/32



Current developments

NVIDIA: new Fermi GPUs

448 SP cores (1.5 TFlops), 224 DP cores (750 GFlops)

3GB ECC memory

L1 / L2 cache

AMD: new GPUs out now with OpenCL support, but
focus is on consumer products

IBM: abandoned development of Cell GPU

Intel: abandoned development of Larrabee GPU, but
continuing with Knights Ferry chip for HPC; I’ve heard its
performance is comparable to Fermi

GPUs for Finance – p. 30/32



How to get started?

buy a 1GB GTX 460 graphics cards
about 200 euro + tax
needs a double-width PCIe slot (preferably 16×)
uses about 150W, needs two 6-pin power connectors
will fit in most big PC cases

read lecture notes and do practicals from online
courses:

Wen-mei Hwu (UIUC)
me

look through examples in CUDA SDK

start experimenting!

GPUs for Finance – p. 31/32



Further information

LIBOR and finite difference test codes
www.maths.ox.ac.uk/∼gilesm/hpc/

5 day CUDA course, and 1/2 day introduction
www.maths.ox.ac.uk/∼gilesm/cuda/
www.maths.ox.ac.uk/∼gilesm/pp10/

NAG numerical routines for GPUs
www.nag.co.uk/numeric/GPUs/

NVIDIA’s CUDA homepage
www.nvidia.com/object/cuda home.html

NVIDIA’s computational finance page
www.nvidia.com/object/computational finance.html

GPUs for Finance – p. 32/32


	CPUs and GPUs
	CPUs and GPUs
	CPUs and GPUs
	Why GPUs will stay ahead
	Use in computational finance
	Programming
	My experience
	Random number generation
	Random number generation
	Random number generation
	Random number generation
	Random number generation
	Random number generation
	Random number generation
	Monte Carlo simulation
	CUDA programming
	CUDA programming
	Finite Difference Model Problem
	Finite Difference Model Problem
	Finite Difference Model Problem
	Finite Difference Model Problem
	Finite Difference Model Problem
	Finite Difference Model Problem
	Finite Difference Model Problem
	More on Finite Differences
	More on Finite Differences
	Programming
	Programming
	Current developments
	How to get started?
	Further information

