
OP2: an active library
for unstructured grid
applications on GPUs

Mike Giles

mike.giles@maths.ox.ac.uk

Oxford University Mathematical Institute

Oxford eResearch Centre

Seminar at Warwick University, May 7th, 2010

OP2 – p. 1/34

Outline

programming on GPUs

PDE applications – opportunity, challenges, context

user perspective (i.e. application developer)
API
build process

implementation issues
hierarchical parallelism on GPUs
data dependency
code generation

current status

lessons learned so far

OP2 – p. 2/34

GPU hardware

Typically, a PCIe graphics card with a many-core GPU sits
inside a PC/server with one or two multicore CPUs:

DDR3 GDDR3/5

motherboard graphics card

OP2 – p. 3/34

GPU hardware

CPUs have up to 6 cores (each with a SSE vector unit)
and 10-30 GB/s bandwidth to main system memory

current NVIDIA GPUs have up to 30×8 cores on a single
chip and 100+ GB/s bandwidth to graphics memory

offer 50–100× speedup relative to a single CPU core

roughly 10× speedup relative to two quad-core Xeons

also 10× improvement in price/performance and
energy efficiency

How is this possible? Much simpler cores (SIMD units,
no out-of-order execution or branch prediction) designed
for vector computing, not general purpose

OP2 – p. 4/34

Emergence of GPUs

AMD, IBM (Cell) and Intel (Larrabee) all producing or
developing GPUs too

NVIDIA has a good headstart on software side with
CUDA environment

new OpenCL software standard (based on CUDA and
pushed by Apple) will probably run on all platforms

driving applications are:
computer games “physics”
video (e.g. HD video decoding)
computational science
computational finance
oil and gas

OP2 – p. 5/34

Why GPUs will stay ahead?

Technical reasons:

SIMD units means larger proportion of chip devoted to
floating point computation (but CPUs will respond with
longer vector units – AVX)

tightly-coupled fast graphics memory means much
higher bandwidth

Commercial reasons:

CPUs driven by price-sensitive office/home computing;
not clear these need vastly more speed

CPU direction may be towards low cost, low power
chips for mobile and embedded applications

GPUs driven by high-end applications – prepared to
pay a premium for high performance

OP2 – p. 6/34

Programming

Big breakthrough in GPU computing has been NVIDIA’s
development of CUDA programming environment

C plus some extensions and an increasing number of
C++ features

host code runs on CPU, CUDA code runs on GPU

explicit movement of data across the PCIe connection

difficulty of programming is comparable to OpenMP
plus MPI; fairly short learning curve for those with
experience with both

future hardware will make the programming easier by
providing L1/L2 caches

OP2 – p. 7/34

Opportunity and Challenge

PDE applications are of major importance in both
academia and industry

new HPC hardware (GPUs, AVX, etc.) offers 10×
improvement in performance of affordable HPC
but greatly increased programming complexity

want a suitable level of abstraction to separate the
user’s specification of the application from the details
of the parallel implementation

aim to achieve code longevity and near-optimal
performance through re-targetting the back-end to
different hardware

OP2 – p. 8/34

Context

Unstructured grid methods are one of Phil Colella’s seven
dwarfs (Parallel Computing: A View from Berkeley)

dense linear algebra

sparse linear algebra

spectral methods

N-body methods

structured grids

unstructured grids

Monte Carlo

Extensive GPU work for the other dwarfs, except perhaps
for direct sparse linear algebra.

OP2 – p. 9/34

Context

Part of a larger project led by Paul Kelly at Imperial College

FE applications

?

?

FD/FV applications

mathematical abstraction (UFL)

computational abstraction (OP2)

MPI MPI MPI MPI MPI MPI MPI MPI MPI

CUDA OpenCL OpenMP/AVX

? ?

H
H

H
H

HHj

�
�

�
�

��� ?

NVIDIA AMD Intel

OP2 – p. 10/34

History

OPlus (Oxford Parallel Library for Unstructured Solvers)

developed for Rolls-Royce 10 years ago

MPI-based library for HYDRA CFD code on clusters
with up to 200 nodes

OP2:

open source project

keeps OPlus abstraction, but slightly modifies API

an “active library” approach with code transformation to
generate CUDA, OpenCL and OpenMP/AVX code
for GPUs and CPUs

OP2 – p. 11/34

OP2 Abstraction

sets (e.g. nodes, edges, faces)

datasets (e.g. flow variables)

pointers (e.g. from edges to nodes)

parallel loops
operate over all members of one set
datasets have at most one level of indirection
user specifies how data is used
(e.g. read-only, write-only, increment)

OP2 – p. 12/34

OP2 Restrictions

set elements can be processed in any order, doesn’t
affect result to machine precision

explicit time-marching, or multigrid with an explicit
smoother is OK
Gauss-Seidel or ILU preconditioning in not

static sets and pointers (no dynamic grid adaptation)

OP2 – p. 13/34

OP2 API

op init(int argc, char **argv)

op decl set(int size, op set *set, char *name)

op decl ptr(op set from, op set to, int dim,
int *iptr, op ptr *ptr, char *name)

op decl const(int dim, char *type,
T *dat, char *name)

op decl dat(op set set, int dim, char *type,
T *dat, op dat *data, char *name)

op exit()

OP2 – p. 14/34

OP2 API

Parallel loop for user kernel with 3 arguments:
op par loop 3(void (*kernel)(T0*, T1*, T2*),

char *name, op set set,
op dat arg0, int idx0, op ptr ptr0,
int dim0, char *typ0, op access acc0,
op dat arg1, int idx1, op ptr ptr1,
int dim1, char *typ1, op access acc1,
op dat arg2, int idx2, op ptr ptr2,
int dim2, char *typ2, op access acc2)

Example for sparse matrix-vector product:
op par loop 3(res,"res", edges,

p A, -1,OP ID, 1,"float",OP READ,
p u, 0,pedge2,1,"float",OP READ,
p du, 0,pedge1,1,"float",OP INC);

OP2 – p. 15/34

User build processes

Using the same source code, the user can build different
executables for different target platforms:

sequential single-thread CPU execution
purely for program development and debugging
very poor performance

CUDA / OpenCL for single GPU

OpenMP/AVX for multicore CPU systems

MPI plus any of the above for clusters

OP2 – p. 16/34

Sequential build process

Traditional build process, linking to a conventional library
in which many of the routines do little but error-checking:

op seq.h jac.cpp- op seq.c

? ?'

&

$

%
make / g++

OP2 – p. 17/34

CUDA build process

Preprocessor parses user code and generates new code:

jac.cpp

?�
�

�
�op2.m preprocessor

? ? ?

jac op.cpp jac kernels.cu res kernel.cu
update kernel.cu

op lib.cu

? ? ?

�

�
�

�
�make / nvcc / g++

OP2 – p. 18/34

GPU Parallelisation

Could have up to 10
6 threads in 3 levels of parallelism:

MPI distributed-memory parallelism (1-100)
one MPI process for each GPU
all sets partitioned across MPI processes, so each
MPI process only holds its data (and halo)

block parallelism (50-1000)
on each GPU, data is broken into mini-partitions,
worked on separately and in parallel by different
functional units in the GPU

thread parallelism (32-128)
each mini-partition is worked on by a block of
threads in parallel

OP2 – p. 19/34

GPU Parallelisation

The 16 functional units in an NVIDIA Fermi GPU each have

32 cores

48kB of shared memory

16kB of L1 cache

Mini-partitions are sized so that all of the indirect data
can be held in shared memory and re-used as needed

reduces data transfer from/to main graphics memory

very similar to maximising cache hits on a CPU to
minimise data transfer from/to main system memory

implementation requires re-numbering from global
indices to local indices – tedious but not difficult

OP2 – p. 20/34

GPU Parallelisation

One important difference from MPI parallelisation

when using one GPU, all data is held in graphics
memory in between each parallel loop

each loop can use a different set of mini-partitions

current implementation constructs an “execution plan”
the first time the loop is encountered

auto-tuning will be used in the future to optimise the
plan, either statically based on profiling data, or
dynamically based on run-time timing

OP2 – p. 21/34

Data dependencies

Key technical issue is data dependency when incrementing
indirectly-referenced arrays.

e.g. potential problem when two edges update same node

���������

A
A
A
A
A
A

�
�
�
�
�
�
�
�
�

���������

@
@

@
@

@
@

A
A
A
A
A
A

�
�
�
�
�
�
PPPPPPPPP

A
A
A
A
A
A

�
�
�
�
�
�A

A
A
A
A
A

������

�
�
�
�
�
�
�
�
�

u

u

u

u

u

u

u

u

u

OP2 – p. 22/34

Data dependencies

Method 1: “owner” of nodal data does edge computation

drawback is redundant computation when the two
nodes have different “owners”

���������

A
A
A
A
A
A

�
�
�
�
�
�
�
�
�

���������

@
@

@
@

@
@

A
A
A
A
A
A

�
�
�

�
�
�

u

u

u

u

u

�
�
�

�
�
�

PPPPPPPPP

A
A
A
A
A
A
A
A
A
A
A
A

������

�
�
�
�
�
�
�
�
�

u

u

u

u

OP2 – p. 23/34

Data dependencies

Method 2: “color” edges so no two edges of the same color
update the same node

parallel execution for each color, then synchronize

possible loss of data reuse and some parallelism

u

u

u

u

u

u

u

u

u

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�

PPPPPPPPP

A
A
A
A
A
A

@
@

@
@

@
@

A
A
A
A
A
A

�
�
�
�
�
�
�
�
�

���������

���������

A
A
A
A
A
A

A
A
A
A
A
A

������

�
�
�
�
�
�

OP2 – p. 24/34

Data dependencies

Method 3: use “atomic” add which combines read/add/write
into a single operation

avoids the problem but needs hardware support

drawback is slow hardware implementation

?

time

without atomics with atomics
thread 0 thread 1

read

add

write

read

add

write

thread 0 thread 1

atomic add

atomic add

OP2 – p. 25/34

Data dependencies

Which is best for each level?

MPI level: method 1
each MPI process does calculation needed to
update its data
partitions are large, so relatively little redundant
computation

GPU level: method 2
plenty of blocks of each color so still good parallelism
data reuse within each block, not between blocks

block level: method 2 or 3
indirect data in local shared memory, so get reuse
which costs more, local synchronization or atomic
updates?

OP2 – p. 26/34

Current status

working CUDA prototype for single GPU, with
preprocessor written in MATLAB

simple demo application working fine, but need to
debug new 2D airfoil application

key bit missing: global set renumbering to improve
mini-partitions (related to partitioning for MPI level)

plan to look PGI FORTRAN CUDA this summer, and
maybe OpenCL in the future

new PC with NVIDIA’s new Fermi GPU arriving today?
— expanded shared memory, L1/L2 caches and greatly
improved double precision performance are all vital

then performance testing will start!

OP2 – p. 27/34

Future plans

EPSRC project with Paul Kelly will fund 2 post-docs:
Oxford: 2 year position to work primarily on adding
MPI to OP2 for GPU clusters
Approach will probably follow OPlus treatment,
but I would like to have performance monitoring,
optimisation and prediction for new systems
Imperial: 3 year position to work primarily on
higher-level finite element abstraction, but also
responsible for OpenMP/AVX backend for OP2

Another post-doc at Imperial will be funded by
Rolls-Royce/TSB and will probably work on CUDA
FORTRAN side of OP2, and porting of HYDRA

OP2 – p. 28/34

Lessons learned so far

1) Code generation works, and it’s not too difficult!

in the past I’ve been scared of code generation since I
have no computer science background

key is the routine arguments have all of the information
required, so no need to parse the entire user code

now helping a student develop a code generator for
stochastic simulations in computational biology

a generic solver is inefficient – a “hand-coded”
specialised implementation for one specific model is
much faster
code generator takes in model specification and tries
to produce “hand-coded” custom implementation

I think this is an important trend for the future

OP2 – p. 29/34

Lessons learned so far

2) Working at the “bleeding edge” can have its difficulties:

an early programming error led to my windows
“dissolving” due to X-server corruption – no data
protection within graphics memory

porting from CUDA 2.2 to CUDA 3.0 hit problems with
new compiler bugs which needed worksarounds – I’m
told it’s fixed in CUDA 3.1.

have had some cases where the GPUs “lock-up” and
the system needs to be rebooted

in general though, I’m impressed by how far the
hardware and software has come in a relatively short
time

OP2 – p. 30/34

Lessons learned so far

3) The thing which is now causing me most difficulty /
concern is the limited number of registers per thread

limited to about 50 32-bit registers per thread

above this the data is spilled to L1 cache, but only 16kB
of this so when using 256 threads only an extra 16
32-bit variables

above this the data is spilled to L2 cache, which is
384kB but shared between all of the units in the GPU,
so only an extra 48 32-bit variables

the compiler can probably be improved, but also there
are tricks an expert programmer can use

points to the benefits of an expert framework which
does this for novice programmers

OP2 – p. 31/34

Lessons learned so far

4) Auto-tuning is going to be important

there are various places in the CUDA code where I
have a choice of parameter values (e.g. number of
threads, number of blocks, size of mini-partitions)

there are also places where I have a choice of
implementation strategy (e.g. thread coloring or atomic
updates?)

what I would like is a generic auto-tuning framework
which will optimise these choices for me, given a
reasonably small set of possible values

as a first step, a undergraduate CS student is going to
work with me on a 3rd year project on this

OP2 – p. 32/34

Lessons learned so far

5) This is fun and I think it will have impact!

speedup offered by GPUs is really impressive

intellectual challenge is in harnessing that potential,
and making it available to others in a much simpler form

OP2 – p. 33/34

Conclusions

have defined a high-level framework for parallel
execution of algorithms on unstructured grids

looks encouraging for providing ease-of-use, high
performance, and longevity through new back-ends

Acknowledgements:

Tobias Brandvik, Graham Pullan (Cambridge),
Paul Kelly, Graham Markall (Imperial College),
Nick Hills (Surrey)

Jamil Appa, Pierre Moinier (BAE Systems),
Leigh Lapworth (Rolls-Royce)

Tom Bradley, Jon Cohen and others (NVIDIA)

EPSRC, NVIDIA and Rolls-Royce for financial support

OP2 – p. 34/34

	Outline
	GPU hardware
	GPU hardware
	Emergence of GPUs
	Why GPUs will stay ahead?
	Programming
	Opportunity and Challenge
	Context
	Context
	History
	OP2 Abstraction
	OP2 Restrictions
	OP2 API
	OP2 API
	User build processes
	Sequential build process
	CUDA build process
	GPU Parallelisation
	GPU Parallelisation
	GPU Parallelisation
	Data dependencies
	Data dependencies
	Data dependencies
	Data dependencies
	Data dependencies
	Current status
	Future plans
	Lessons learned so far
	Lessons learned so far
	Lessons learned so far
	Lessons learned so far
	Lessons learned so far
	Conclusions

