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Outline

Long-term objective is faster Monte Carlo simulation of path
dependent options to estimate values and Greeks.

Several ingredients, not yet all combined:

multilevel method (new)

quasi-Monte Carlo (not new)

adjoint pathwise Greeks (newish)

highly-parallel processing (work-in-progress)
(e.g. 1024 threads on nVidia graphics card)

Emphasis in this presentation is on multilevel method
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Generic Problem

Stochastic differential equation with general drift and
volatility terms:

dS(t) = a(S, t) dt + b(S, t) dW (t)

We want to compute the expected value of an option
dependent on S(t). In the simplest case of European
options, it is a function of the terminal state

P = f(S(T ))

with a uniform Lipschitz bound,

|f(U) − f(V )| ≤ c ‖U − V ‖ , ∀ U, V.
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Simplest MC Approach

Euler discretisation with timestep h:

Ŝn+1 = Ŝn + a(Ŝn, tn)h + b(Ŝn, tn) ∆Wn

Estimator for expected payoff is an average of N

independent path simulations:

Ŷ = N−1
N∑

i=1

f(Ŝ
(i)
T/h

)

weak convergence – O(h) error in expected payoff

strong convergence – O(h1/2) error in individual path
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Simplest MC Approach

Mean Square Error is O
(
N−1 + h2

)

first term comes from variance of estimator

second term comes from bias due to weak convergence

To make this O(ε2) requires

N = O(ε−2), h = O(ε) =⇒ cost = O(N h−1) = O(ε−3)

Aim is to improve this cost to O
(
ε−p

)
, with p as small as

possible, ideally close to 1.

Note: for a relative error of ε = 0.001, the difference between
ε−3 and ε−1 is huge.
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Standard MC Improvements

variance reduction techniques (e.g. control variates,
stratified sampling) improve the constant factor in front
of ε−3, sometimes spectacularly

improved second order weak convergence (e.g. through
Richardson extrapolation) leads to h = O(

√
ε), giving

p=2.5

Quasi-Monte Carlo reduces the number of samples
required, at best leading to N ≈O(ε−1), giving p≈2 with
first order weak methods

Multilevel method gives p=2 without QMC, and at best
p ≈ 1 with QMC.
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Other Related Research

In Dec. 2005, Ahmed Kebaier published an article in
Annals of Applied Probability describing a two-level method
which reduces the cost to O

(
ε−2.5

)
.

Also in Dec. 2005, Adam Speight wrote a working
paper describing a very similar multilevel use of control
variates.

There are also close similarities to a multilevel
technique developed by Stefan Heinrich for parametric
integration (Journal of Complexity, 1998)
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Multilevel MC Approach

Consider multiple sets of simulations with different
timesteps hl = 2−l T, l = 0, 1, . . . , L, and payoff P̂l

E[P̂L] = E[P̂0] +
L∑

l=1

E[P̂l−P̂l−1]

Expected value is same – aim is to reduce variance of
estimator for a fixed computational cost.

Key point: approximate E[P̂l−P̂l−1] using Nl simulations
with P̂l and P̂l−1 obtained using same Brownian path.

Ŷl = N−1
l

Nl∑

i=1

(
P̂

(i)
l −P̂

(i)
l−1

)
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Multilevel MC Approach

Discrete Brownian path at different levels
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Multilevel MC Approach

Using independent paths for each level, the variance of the
combined estimator is

V

[
L∑

l=0

Ŷl

]
=

L∑

l=0

N−1
l Vl, Vl ≡ V [P̂l−P̂l−1],

and the computational cost is proportional to
L∑

l=0

Nl h
−1
l .

Hence, the variance is minimised for a fixed computational
cost by choosing Nl to be proportional to

√
Vl hl.

The constant of proportionality can be chosen so that the
combined variance is O(ε2).
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Multilevel MC Approach

For the Euler discretisation and a Lipschitz payoff function

V [P̂l−P ] = O(hl) =⇒ V [P̂l−P̂l−1] = O(hl)

and the optimal Nl is asymptotically proportional to hl.

To make the combined variance O(ε2) requires

Nl = O(ε−2Lhl).

To make the bias O(ε) requires

L = log2 ε−1 + O(1) =⇒ hL = O(ε).

Hence, we obtain an O(ε2) MSE for a computational cost
which is O(ε−2L2) = O(ε−2(log ε)2).
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Multilevel MC Approach

Theorem: Let P be a functional of the solution of a stochastic o.d.e.,

and P̂l the discrete approximation using a timestep hl = M−l T .

If there exist independent estimators Ŷl based on Nl Monte Carlo

samples, and positive constants α≥ 1
2 , β, c1, c2, c3 such that

i) E[P̂l − P ] ≤ c1 hα
l

ii) E[Ŷl] =





E[P̂0], l = 0

E[P̂l − P̂l−1], l > 0

iii) V [Ŷl] ≤ c2 N−1
l h

β
l

iv) Cl, the computational complexity of Ŷl, is bounded by

Cl ≤ c3 Nl h
−1
l
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Multilevel MC Approach

then there exists a positive constant c4 such that for any ε<e−1 there
are values L and Nl for which the multi-level estimator

Ŷ =
L∑

l=0

Ŷl,

has Mean Square Error MSE ≡ E

[(
Ŷ − E[P ]

)2
]

< ε2

with a computational complexity C with bound

C ≤





c4 ε−2, β > 1,

c4 ε−2(log ε)2, β = 1,

c4 ε−2−(1−β)/α, 0 < β < 1.
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Milstein Scheme

The theorem suggests use of Milstein scheme —
better strong convergence, same weak convergence

Generic scalar SDE:

dS(t) = a(S, t) dt + b(S, t) dW (t), 0<t<T.

Milstein scheme:

Ŝn+1 = Ŝn + a h + b∆Wn + 1
2 b′ b

(
(∆Wn)2 − h

)
.
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Milstein Scheme

In scalar case:

O(h) strong convergence

O(ε−2) complexity for Lipschitz payoffs – trivial

O(ε−2) complexity for Asian, lookback, barrier and
digital options using carefully constructed estimators,
based on Brownian interpolation

key idea: within each timestep, model the behaviour as
simple Brownian motion conditional on the two
end-points – analytic results exist for distribution of
min/max/average
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Results

Geometric Brownian motion:

dS = r S dt + σ S dW, 0 < t < T,

T =1, S(0)=1, r=0.05, σ=0.2

European call option with discounted payoff (K =1)

exp(−rT ) max(S(T )−K, 0)

Down-and-out barrier option: same provided S(t) stays
above B=0.9
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MLMC Results

GBM: European call
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MLMC Results

GBM: European call
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MLMC Results

GBM: barrier option
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MLMC Results

GBM: barrier option
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Quasi-Monte Carlo

well-established technique for approximating
high-dimensional integrals

for finance applications see papers by l’Ecuyer and
book by Glasserman

Sobol sequences are perhaps most popular;
we use lattice rules (Sloan & Kuo)

two important ingredients for success:
randomized QMC for confidence intervals
good identification of “dominant dimensions”
(Brownian Bridge and/or PCA)
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Multilevel QMC

rank-1 lattice rule developed by Sloan, Kuo &
Waterhouse at UNSW

32 randomly-shifted sets of QMC points

number of points in each set increased as needed to
achieved desired accuracy, based on confidence
interval estimate

results show QMC to be particularly effective on lowest
levels with low dimensionality
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MLQMC Results

GBM: European call
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MLQMC Results

GBM: European call
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MLQMC Results

GBM: barrier option
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MLQMC Results

GBM: barrier option
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Milstein Scheme

In vector case:

O(h) strong convergence if Lévy areas are simulated
correctly – expensive

O(h1/2) strong convergence in general if Lévy areas are
omitted, except if a certain commutativity condition is
satisfied (useful for a number of real cases)

Lipschitz payoffs can be handled well using antithetic
variables

Other cases may require approximate simulation of
Lévy areas – future challenge
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Results

Heston model:

dS = r S dt +
√

V S dW1, 0 < t < T

dV = λ (σ2−V ) dt + ξ
√

V dW2,

T =1, S(0)=1, V (0)=0.04, r=0.05,

σ=0.2, λ=5, ξ=0.25, ρ=−0.5
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Results

Heston model: European call
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Results

Heston model: European call
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Greeks

combining adjoint Greeks with multilevel Monte Carlo is
fine in principle, but not yet tested

first order Greeks are one degree less smooth than
payoffs, so Delta of European call is similar to a digital
option, and can’t do second order Greeks without
smoothing

big challenge is the need for payoff differentiability —
new “vibrato” Monte Carlo idea combines adjoint
pathwise sensitivity for path calculation with LRM for
payoff evaluation, and eases implementation too
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Conclusions

Results so far:

(much) improved order of complexity

(fairly) easy to implement

significant benefits for model problems

However:

lots of scope for further development
multi-dimensional SDEs needing Lévy areas
combining adjoint Greeks and multilevel MC
“vibrato” Monte Carlo
numerical analysis of algorithms

need to test ideas on real finance applications
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Papers

M.B. Giles, “Multilevel Monte Carlo path simulation”,
to appear in Operations Research

M.B. Giles, “Improved multilevel convergence using the
Milstein scheme”, to appear in proceedings of MCQMC06
published by Springer-Verlag

M.B. Giles & P. Glasserman, “Smoking Adjoints: fast Monte
Carlo Greeks”, Risk, January 2006.

www.comlab.ox.ac.uk/mike.giles/finance.html

Email: giles@comlab.ox.ac.uk
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