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We study theoretically and experimentally the propagation of two bubbles in a Hele-Shaw7
cell under a uniform background flow. We consider the regime where the bubbles are large8
enough to be flattened by the cell walls into a pancake-like shape, but small enough such that9
each bubble remains approximately circular when viewed from above. In a system of two10
bubbles of different radii, if the smaller bubble is in front, it will be overtaken by the larger11
bubble. Under certain circumstances, the bubbles may avoid collision by rolling over one12
another while passing. We find that, for a given ratio of the bubble radii, there exists a critical13
value of a dimensionless parameter (the Bretherton parameter) above which the two bubbles14
will never collide, regardless of their relative size and initial transverse offset, provided15
they are initially well separated in the direction of the background flow. Additionally, we16
determine the corrections to the bubble shape from circular for two bubbles aligned with17
the flow direction. We find that the front bubble flattens in the flow direction, while the rear18
bubble elongates. These shape changes are associated with changes in velocity, which allow19
the rear bubble to catch the bubble in front even when they are of the same size.20

1. Introduction21

Over the past few decades, there has been significant and growing interest in the field of22
microfluidics and in the development of lab-on-a-chip devices (see, for example, Beebe et al.23
2002; Stone et al. 2004; Squires & Quake 2005; Dittrich & Manz 2006; Sackmann et al.24
2014; Nguyen et al. 2019; Battat et al. 2022). In particular, microfluidic devices are often25
used to generate and manipulate arrays of bubbles or droplets (see Anna 2016; Zhu & Wang26
2017) that are completely surrounded by an immiscible liquid. We study bubbles in Hele-27
Shaw geometries that are flattened by the channel walls and thus assume pancake-like shapes28
(Zhu & Gallaire 2016) with thin liquid films separating the bubble from the walls. We focus29
on bubbles that are small enough such that, due to the effects of surface tension, they remain30
approximately circular when viewed from above. This regime is relevant to many practical31
Hele-Shaw geometries (see, for example, Maxworthy 1986; Huerre et al. 2014; Beatus et al.32
2006; Gnyawali et al. 2017; Shen et al. 2014).33

A general model for the motion of such bubbles in a uniform background flow was34
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developed by Booth et al. (2023), who presented results for the motion of isolated bubbles and35
arrays of identical bubbles. This model was later generalized to the case of buoyancy-driven36
flow and extended to allow for bubble deformation (Wu et al. 2024). In the present paper,37
the model is applied to study the hydrodynamic interactions of a pair of bubbles of arbitrary38
radii. Understanding and characterizing two-body problems is a common starting point in39
the study of suspensions (see, for example, Frankel & Andreas 1967). In dilute suspensions,40
pairwise hydrodynamic interactions between particles are of principal importance, and they41
are used to construct first approximations of an effective viscosity (Batchelor & Green 1972;42
Batchelor 1977). Moreover, studies of two particles have provided significant insight on the43
collision, aggregation, and coalescence of particles (see, for example, Stoos et al. 1992; Leal44
2004; Arp & Mason 1977a), processes that have a significant impact on the composition45
of suspensions over time. We analyse two phenomena involving pairs of bubbles that are46
relevant both for the propagation of bubble suspensions in narrow channels and for the control47
of bubble arrays in microfluidic channels.48

The first phenomenon concerns a pair of circular bubbles of different radii. Since the49
larger bubble travels faster than the smaller one (Booth et al. 2023; Wu et al. 2024), the50
distance between the bubbles decreases when the larger bubble is behind the smaller one.51
As the larger bubble approaches the smaller one, hydrodynamic interactions cause them to52
roll over each other and avoid contact under certain circumstances. This is similar to how53
lubrication forces prevent the contact of rigid spheres and cylinders approaching each other54
in shear flow (Bartok & Mason 1957; Darabaner et al. 1967; Arp & Mason 1977b). However,55
for the model that we examine, there are circumstances in which two bubbles will collide.56
Our analysis of the “rollover” phenomenon includes an investigation of the conditions under57
which it may fail and the bubbles collide instead. The second phenomenon concerns two58
bubbles on the same streamline. When they are in close proximity, they deform so that the59
rear bubble becomes elongated and the front bubble becomes flattened. This shape change60
affects the bubble velocities, resulting in the eventual contact and coalescence of the bubbles.61
Analogous bubble phenomena, including deformation and coalescence of bubble pairs and62
smaller bubbles being “swept around” larger ones, have been observed at low Reynolds63
numbers for buoyancy-driven bubbles in unconfined geometries in both experiments and64
numerical simulations (Manga & Stone 1993). In Hele-Shaw geometries, deformation and65
pairing of single bubbles have been previously studied by Maxworthy (1986). Shen et al.66
(2014) report observations and numerical simulations of pairs of droplets of different sizes67
reorienting themselves and aligning with the flow direction.68

The interaction forces between circular bubbles or droplets in a Hele-Shaw cell are69
commonly approximated using a superposition of dipole solutions (see, for example, Beatus70
et al. 2006), which is valid provided the bubbles are well separated. Sarig et al. (2016)71
obtained exact solutions for the interaction forces of two closely spaced circular droplets of72
arbitrary radii, relative position, and velocities in a uniform background flow and additionally73
analysed the case in which the droplet velocities were determined by a force balance involving74
a free parameter describing the contribution of the droplets’ internal friction. Green (2018)75
approximated the results of Sarig et al. (2016) in order to develop a description of arbitrary76
numbers of identical circular droplets moving at the same velocity. In the present work,77
we examine the effect of the thin films above and below the bubble, resulting in a model78
with no free parameters. Using this model, we investigate the hydrodynamic interactions79
between pairs of circular bubbles of arbitrary radii. Particular attention is paid to the rollover80
phenomenon, which emerges as a result of these interactions under certain conditions.81

We also investigate the deformation of a pair of bubbles that are aligned with the flow82
direction due to their hydrodynamic interactions. Generally, two identical circular bubbles83
or droplets in a Hele-Shaw cell aligned in the direction of the background flow are expected84
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Figure 1: Schematic of the dimensionless two-bubble problem. The fluid domain is
denoted by Ω and the the bubble surfaces are 𝜕Ω1,2. We supply a uniform outer flow far
from the bubbles. The bubble centre–centre distance is 𝜎 and the angle the bubbles make

to the direction of the outer flow is 𝜙.

to travel together at some doublet velocity, which approaches that of an isolated bubble85
as the separation between the bubbles grows large (Sarig et al. 2016; Green 2018; Booth86
et al. 2023). Analogous behaviour is seen for pairs of solid spheres (Happel & Brenner87
2012). However, when deformable droplets or bubbles are in close proximity, they each88
experience distortions induced by the other (Manga & Stone 1993, 1995). Such deformations89
break fore-aft symmetry and the reversibility of Stokes flow, leading to qualitatively different90
dynamics, some of which will be explored in our work. Irreversible particle interactions such91
as those we report would have significant implications on the microstructure and rheology92
of a suspension (Leighton & Acrivos 1987; Davis 1993; Wilson & Davis 2000), as well as93
on the structure of bubble arrays propagating in microchannels.94

The structure of this paper is as follows. In §2, we summarise the general model developed95
by Booth et al. (2023) for the motion of a system of approximately circular pancake bubbles96
in a Hele-Shaw cell. In §3, solutions are presented for the motion of a pair of circular bubbles97
of arbitrary radii. Experimental methods are described in §4, and we present experimental98
and theoretical results for the motion of a pair of circular bubbles in §5. In §6, we focus on a99
pair of bubbles aligned in the flow direction and present theoretical and experimental results100
on the deformation of each bubble induced by the other. Finally, in §7, we summarize our101
findings and discuss potential extensions of our work.102

2. Mathematical modelling103

2.1. Governing equations104

As in Booth et al. (2023), we consider the motion of two bubbles in a Hele-Shaw cell of105
height ℎ̂ parallel to the (𝑥, 𝑦̂)-plane. Here ℎ̂ is assumed to be much smaller than the horizontal106
dimensions of the cell and the bubbles, so we can employ lubrication theory. The bubbles107
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are flattened by the cell walls above and below into pancake-like shapes with approximately108
circular profiles when viewed from above (figure 1), whose radii are denoted by 𝑅̂1 and 𝑅̂2,109
where 𝑅̂1,2 ≫ ℎ̂. We prescribe a uniform unidirectional flow with velocity 𝑈̂ 𝒊 in the far110
field (where 𝒊 denotes the unit vector in the 𝑥-direction). The viscosity of the liquid and the111
liquid–air surface tension are denoted by 𝜇̂ and 𝛾̂, respectively.112

We non-dimensionalise the system by scaling lengths with 𝑅̂1, velocities with 𝑈̂, the fluid113
pressure 𝑝 with 12𝜇̂𝑈̂ 𝑅̂1/ℎ̂2, and the pressure inside the 𝑘 th bubble, 𝑝𝑘 , with 2𝛾̂/ℎ̂, where114
𝛾̂ is the surface tension. This procedure gives the following dimensionless model, in which115
dimensionless variables are denoted without hats:116

∇2𝑝 = 0 in Ω, (2.1a)117

𝒏 · ∇𝑝 = −𝑈𝑛,𝑘 on 𝜕Ω𝑘 , (2.1b)118

𝑝𝑘 −
3Ca
𝜖

𝑝 = 1 + Ca2/3𝛽
(
𝑈𝑛,𝑘

) (
𝑈𝑛,𝑘

)2/3 + 𝜖𝜋

4
𝜅𝑘 on 𝜕Ω𝑘 , (2.1c)119

∇𝑝 → −𝒊 as 𝑥2 + 𝑦2 → ∞. (2.1d)120

Here, Ω is the fluid domain, while 𝜕Ω𝑘 , 𝜅𝑘 and 𝑈𝑛,𝑘 are the boundary, in-plane curvature,121
and local normal velocity of the interface of the 𝑘 th bubble, respectively (𝑘 = 1, 2), and 𝛽122
is the Bretherton coefficient, whose value depends on whether the meniscus is advancing or123
retreating (Bretherton 1961; Halpern & Jensen 2002; Wong et al. 1995):124

𝛽
(
𝑈𝑛,𝑘

)
=

{
𝛽1 ≈ 3.88 when 𝑈𝑛,𝑘 > 0,
𝛽2 ≈ −1.13 when 𝑈𝑛,𝑘 < 0.

(2.2)125

The boundary condition (2.1c) was proposed by Meiburg (1989) and later derived by Burgess126
& Foster (1990). In (2.1b) we neglect to include the contribution due to leakage into the thin127
films because this effect is always subdominant. However, this effect could easily be included128
in the model (see, for example Burgess & Foster 1990; Peng et al. 2015; Wu et al. 2024).129

The system (2.1) contains two dimensionless parameters: the bubble aspect ratio and the130
capillary number, defined by131

𝜖 =
ℎ̂

2𝑅̂1
, Ca =

𝜇̂𝑈̂

𝛾̂
, (2.3)132

respectively, both of which are assumed to be small. Specifically, in the distinguished limit133
Ca = 𝑂 (𝜖3), the viscous pressure balances the pressure drop across the menisci (the second134
and fourth terms in (2.1c)). In this regime, both bubbles remain circular to leading order,135
so 𝑈𝑛,𝑘 = 𝑼𝑘 · 𝒏, and 𝑝 is therefore fully determined by the problem (2.1a), (2.1b), and136
(2.1d) (up to an irrelevant constant) once the bubble velocities𝑼𝑘 are specified. As a shortcut137
to determine the bubble velocities we perform an effective net force balance by integrating138
(2.1c) around each bubble (see, for example, Booth et al. 2023), to obtain139

𝑼𝑘

|𝑼𝑘 |1/3 =
𝛿

𝜋𝑅𝑘

∮
𝜕Ω𝑘

−𝑝𝒏 d𝑠, (2.4)140

where 𝑅𝑘 is the dimensionless radius of the 𝑘 th bubble. The resulting problem contains a141
single dimensionless group, the Bretherton parameter, defined by142

𝛿 =
1
𝜂

Ca1/3

𝜖
=

2
𝜂

𝑅̂1

ℎ̂

(
𝜇̂𝑈̂

𝛾̂

)1/3

, (2.5)143
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which is assumed to be 𝑂 (1) while 𝜖 and Ca both tend to zero. The numerical constant144

𝜂 =
(𝛽1 − 𝛽2)Γ(4/3)

3
√
𝜋Γ(11/6)

≈ 0.894 (2.6)145

incorporates the Bretherton pressure drops (2.2) across the advancing and retreating menisci146
(Bretherton 1961; Wu et al. 2024).147

The Bretherton parameter is a dimensionless parameter that compares the magnitudes of148
the viscous pressure from the flow around the bubble and of the Bretherton pressure, or the149
pressure drop across the thin films surrounding the bubble. As 𝛿 increases to infinity, the150
viscous pressure dominates over the Bretherton pressure. In this limit, we recover the result151
due to Taylor & Saffman (1959) that the bubble moves at twice the background flow velocity,152
which was obtained while disregarding the thin film drag. Booth et al. (2023) showed that153
an isolated circular bubble travels parallel to the background flow with velocity 𝑼𝑏 = 𝑈𝑏 𝒊,154
where 𝑈𝑏 is a monotonically increasing function of 𝛿, satisfying 𝑈𝑏 → 0 as 𝛿 → 0 and155
𝑈𝑏 → 2 as 𝛿 → ∞. Importantly for this work, it follows that larger bubbles travel faster than156
smaller ones when all other parameters are fixed, since 𝛿 ∝ 𝑅̂1. This conclusion may also157
be drawn using dimensional analysis, through which it can be shown that the driving force158
due to the background flow is proportional to 𝑅̂2

1 and the drag force due to the thin films is159

proportional to 𝑅̂1.160

2.2. Complex variable formulation161

We now reformulate the problem (2.1) in terms of complex variables. At leading order we162
have two circular bubbles whose centroids are at positions (𝑥1, 𝑦1) and (𝑥2, 𝑦2) in the (𝑥, 𝑦)-163
plane, with a uniform velocity in the far-field of unit magnitude. We label the bubbles such164
that the smaller bubble is located at (𝑥1, 𝑦1) and the dimensionless radii of the two bubbles165
are thus 𝑅1 = 1 and 𝑅2 = 𝑅, where 𝑅 ⩾ 1 is the radius ratio of the two bubbles. As shown166
schematically in figure 1, the problem is instantaneously characterised by the length 𝜎 of the167
vector joining the smaller bubble centre to the larger bubble centre, the angle 𝜙 that it makes168
with the 𝑥-axis (which is parallel to the background flow direction), and the radius ratio 𝑅.169

Since the flow is governed by Laplace’s equation, we can formulate this as a problem for170
the complex potential 𝑤(𝑧) = −𝑝 + i𝜓, where 𝜓 is the streamfunction, and 𝑧 = 𝑥 + i𝑦. Then171
𝑤(𝑧) is holomorphic in the region Ω outside the two bubbles and satisfies the boundary172
conditions173

Im[𝑤(𝑧)] = 𝑄1 + Im
(
U1𝑧

)
on |𝑧 − 𝑧1 | = 𝑅1 = 1, (2.7a)174

Im[𝑤(𝑧)] = 𝑄2 + Im
(
U2𝑧

)
on |𝑧 − 𝑧2 | = 𝑅2 = 𝑅 ⩾ 1, (2.7b)175

𝑤(𝑧) ∼ 𝑧 + 𝑜(1) as 𝑧 → ∞, (2.7c)176

where, for 𝑘 ∈ {1, 2}, we denote by 𝑧𝑘 = 𝑥𝑘 + i𝑦𝑘 and U𝑘 = 𝑈𝑘 + i𝑉𝑘 the complex177
representations of the 𝑘 th bubble position and velocity, respectively, and the 𝑄𝑘 are a priori178
unknown constants. The over-bars denote complex conjugation. Note that (2.7a) and (2.7c)179
are the complex representations of the kinematic boundary conditions (see, for example,180
Crowdy 2008).181

Once we have solved for 𝑤(𝑧), to close the system we evaluate the effective force balance182
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(2.4) on each bubble, which in complex variables becomes183

1
i𝜋

∮
𝜕Ω1

𝑤(𝑧) d𝑧 = −U1 +
1
𝜋

∮
𝜕Ω1

𝑝i d𝑧 = −U1 +
U1

𝛿 |U1 |1/3 , (2.8a)184

1
i𝜋

∮
𝜕Ω2

𝑤(𝑧) d𝑧 = −𝑅2U2 +
1
𝜋

∮
𝜕Ω2

𝑝i d𝑧 = −𝑅2U2 +
𝑅U2

𝛿 |U2 |1/3 . (2.8b)185

Here 𝜕Ω𝑘 is the boundary of the 𝑘 th bubble, given by |𝑧 − 𝑧𝑘 | = 𝑅𝑘 .186
The problem for the pressure field generated by two bubbles of unequal radii was solved187

by Sarig et al. (2016) using a bipolar coordinate transformation, resulting in infinite series188
solutions for the interaction forces between the bubbles. Instead, using our complex variable189
formulation facilitates the evaluation of the integrals (2.8) in the force balance in closed form.190

3. Solution for two bubbles of arbitrary radii191

To begin we define the conformal map192

𝑧 = 𝑧1 + ei𝜙
(

1 + 𝑎𝜁

𝜁 + 𝑎

)
, (3.1)193

from the the concentric annulus 𝐴 = {𝜁 : 𝑋 ⩽ |𝜁 | ⩽ 1} onto the solution domain Ω (see194
figure 2 for a schematic overview of the conformal mapping procedure), where195

𝑎 =
𝜎2 − 𝑅2 + 1 −

√︁
(𝜎2 − 𝑅2 + 1)2 − 4𝜎2

2𝜎
, (3.2a)196

𝑋 = 𝑎2 + (𝑅 − 1)𝑎(𝑎 + 1) (𝜎 − 𝑅 − 1)
𝜎(𝜎 − 𝑅 − 𝑎) . (3.2b)197

Note that 𝑎2 ⩽ 𝑋 < 𝑎 < 1. The conformal map is derived by first translating the fluid domain198
such that one of the bubbles is centred at the origin, then rotating so both bubble centres199
lie on the real axis, and finally applying a Möbius transformation to map the domain to a200
concentric annulus. In the mapping, the point at infinity in the 𝑧-plane maps to −𝑎 in the201
𝜁-plane, and 𝑋 is the inner radius of the annulus.202

We then define 𝑤(𝑧) = 𝑧 +𝑊 (𝜁), where 𝑊 (𝜁) is holomorphic on the annulus, 𝐴, and203
satisfies the conditions204

Im[𝑊 (𝜁)] = 𝑞1 + Im
[
𝛼1

(
1 + 𝑎𝜁

𝜁 + 𝑎

)]
on |𝜁 | = 1, (3.3a)205

Im[𝑊 (𝜁)] = 𝑞2 + Im
[
𝛼2

(
1 + 𝑎𝜁

𝜁 + 𝑎

)]
on |𝜁 | = 𝑋, (3.3b)206

with 𝛼𝑘 = (U𝑘 − 1)ei𝜙, and 𝑞𝑘 = 𝑄𝑘 − Im[(U𝑘 − 1)𝑧1].207
Now we express 𝑊 (𝜁) as a Laurent expansion on 𝐴, i.e.,208

𝑊 (𝜁) =
∞∑︁

𝑛=−∞
𝑐𝑛𝜁

𝑛, (3.4)209

and use the boundary conditions (3.3) to calculate the coefficients 𝑐𝑛. On |𝜁 | = 1 we have210
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Figure 2: Schematic of the conformal map (3.1) from the annulus 𝐴 = {𝜁 : 𝑋 ⩽ |𝜁 | ⩽ 1}
in the 𝜁-plane to the fluid region Ω in the 𝑧-plane.

𝜁 = 1/𝜁 so we can rearrange boundary condition (3.3a) to211

Im[𝑊 (𝜁)] = Im[𝑐0] + Im

[ ∞∑︁
𝑛=1

(𝑐𝑛 − 𝑐−𝑛)𝜁𝑛
]

212

= 𝑞1 − Im[𝛼1𝑎] − Im

[
𝛼1

∞∑︁
𝑛=1

(1 − 𝑎2) (−𝑎)𝑛−1𝜁𝑛

]
on |𝜁 | = 1. (3.5)213

It follows from (3.5) that214

𝑐𝑛 − 𝑐−𝑛 =
𝛼1(1 − 𝑎2) (−𝑎)𝑛

𝑎
(𝑛 ⩾ 1), (3.6)215

and, without loss of generality, we can choose 𝑞1 = Im[𝛼1]𝑎, so 𝑐0 = 0.216

We progress similarly on |𝜁 | = 𝑋 , where now 𝜁 = 𝑋2/𝜁 . The boundary condition (3.3b)217
can be rewritten as218

Im[𝑊 (𝜁)] = Im

[ ∞∑︁
𝑛=1

(𝑐−𝑛 − 𝑋2𝑛𝑐𝑛)𝜁−𝑛
]

219

= 𝑞2 − Im
[
𝛼2
𝑎

]
− Im

[
𝛼2
𝑎

∞∑︁
𝑛=1

(1 − 𝑎2)
(
−𝑋2

𝑎

)𝑛
𝜁−𝑛

]
on |𝜁 | = 𝑋, (3.7)220

and it follows that221

𝑋2𝑛𝑐𝑛 − 𝑐−𝑛 =
𝛼2
𝑎
(1 − 𝑎2)

(
−𝑋2

𝑎

)𝑛
, (3.8)222

and 𝑞2 = Im(𝛼2/𝑎). We simultaneously solve equations (3.6) and (3.8) to find that the223
complex potential 𝑊 (𝜁) is given by
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𝑊 (𝜁) = (1 − 𝑎2)
𝑎

∞∑︁
𝑛=1

𝑋𝑛

1 − 𝑋2𝑛

[ (
𝛼1

(−𝑎
𝑋

)𝑛
− 𝛼2

(
−𝑋
𝑎

)𝑛)
𝜁𝑛224

+
(
𝛼1 (−𝑎𝑋)𝑛 − 𝛼2

(
−𝑋
𝑎

)𝑛)
𝜁−𝑛

]
. (3.9)225

The equations of motion for the bubbles can be found from (2.8) via226

1
i𝜋

∮
𝜕Ω1

𝑤(𝑧) d𝑧 =
(1 − 𝑎2)ei𝜙

i𝜋

∮
|𝜁 |=1

𝑊 (𝜁) d𝜁
(𝜁 + 𝑎)2 , (3.10a)227

− 1
i𝜋

∮
𝜕Ω2

𝑤(𝑧) d𝑧 =
(1 − 𝑎2)ei𝜙

i𝜋

∮
|𝜁 |=𝑋

𝑊 (𝜁) d𝜁
(𝜁 + 𝑎)2 . (3.10b)228

The integrand in (3.10a) has poles at 𝜁 = −𝑎 and 0, whereas (3.10b) only has a pole at 𝜁 = 0.229
The residue due to the pole at 𝜁 = 0 is the same for both integrals and can be calculated to230
give231

Res
[
𝑊 (𝜁)
(𝜁 + 𝑎)2 ; 𝜁 = 0

]
=

1 − 𝑎2

𝑎2

∞∑︁
𝑛=1

𝑛𝑋2𝑛

1 − 𝑋2𝑛

[
(U2 − 1)e−i𝜙

𝑎2𝑛 − (U1 − 1)ei𝜙
]
. (3.11)232

The residue at 𝜁 = −𝑎 is given by

Res
[
𝑊 (𝜁)
(𝜁 + 𝑎)2 ; 𝜁 = −𝑎

]
=

1 − 𝑎2

𝑎2

∞∑︁
𝑛=1

𝑛𝑋2𝑛

1 − 𝑋2𝑛

[
(U1 + U2 − 2)ei𝜙233

−(U1 − 1)e−i𝜙
( 𝑎
𝑋

)2𝑛
− (U2 − 1)e−i𝜙

𝑎2𝑛

]
. (3.12)234

Thus, by Cauchy’s Residue Theorem, we find235

1
i𝜋

∮
𝜕Ω1

𝑤(𝑧) d𝑧 = 𝑓1(𝜎, 𝑅)
(
U2 − 1

)
e2i𝜙 − 𝑓2(𝜎, 𝑅)

(
U1 − 1

)
, (3.13a)236

1
i𝜋

∮
𝜕Ω2

𝑤(𝑧) d𝑧 = 𝑓1(𝜎, 𝑅)
(
U1 − 1

)
e2i𝜙 − 𝑓3(𝜎, 𝑅)

(
U2 − 1

)
, (3.13b)237

where238

𝑓1(𝜎, 𝑅) =
2(1 − 𝑎2)2

𝑎2

∞∑︁
𝑛=1

𝑛𝑋2𝑛

1 − 𝑋2𝑛 =
2(1 − 𝑎2)2

𝑎2

Ψ′
𝑋2 (1)

4 log2 𝑋
, (3.14a)239

𝑓2(𝜎, 𝑅) =
2(1 − 𝑎2)2

𝑎2

∞∑︁
𝑛=1

𝑛𝑋2𝑛

1 − 𝑋2𝑛

( 𝑎
𝑋

)2𝑛
=

2(1 − 𝑎2)2

𝑎2

Ψ′
𝑋2

(
log 𝑎

log 𝑋

)
4 log2 𝑋

, (3.14b)240

𝑓3(𝜎, 𝑅) =
2(1 − 𝑎2)2

𝑎2

∞∑︁
𝑛=1

𝑛𝑋2𝑛

1 − 𝑋2𝑛

(
1
𝑎

)2𝑛
=

2(1 − 𝑎2)2

𝑎2

Ψ′
𝑋2

(
log(𝑋/𝑎)

log 𝑋

)
4 log2 𝑋

, (3.14c)241

and Ψ𝑞 is the 𝑞-digamma function (Salem 2012), defined by242

Ψ𝑞 (𝜉) =
1

Γ𝑞 (𝜉)
dΓ𝑞 (𝜉)

d𝜉
, (3.15)243

where Γ𝑞 is the 𝑞-gamma function (Askey 1978). Recall that 𝑎 and 𝑋 are given in terms of 𝜎244
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Liquid Inlet OutletBubble Inlet
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Figure 3: Diagram of the Hele-Shaw cell including bubbles of typical size.

and 𝑅 by (3.2). These formulae provide closed forms for the infinite series solutions derived245
by Sarig et al. (2016).246

The equations of motion for the bubbles are given by (2.8), which reduces to247

𝑓1(𝜎, 𝑅)
(
U2 − 1

)
e2i𝜙 − 𝑓2(𝜎, 𝑅)

(
U1 − 1

)
= −U1 +

U1

𝛿 |U1 |1/3 , (3.16a)248

𝑓1(𝜎, 𝑅)
(
U1 − 1

)
e2i𝜙 − 𝑓3(𝜎, 𝑅)

(
U2 − 1

)
= −𝑅2U2 +

𝑅U2

𝛿 |U2 |1/3 . (3.16b)249

For general 𝑅, both 𝜎 and 𝜙 vary with time, 𝑡, which is made dimensionless using the250
advective timescale 𝑅̂1/𝑈̂. At each instant, the system (3.16) is solved for U𝑘 (𝑘 = 1, 2),251
using Newton’s method, and the bubble positions 𝑧𝑘 = 𝑥𝑘 + i𝑦𝑘 are then updated using252

d𝑧𝑘
d𝑡

= U𝑘 . (3.17)253

We solve (3.17) using a forward Euler discretisation with a time step of 0.01, which was found254
to achieve a relative error of approximately 10−5 in the bubble positions (by comparison with255
solutions obtained with a smaller time step).256

If the bubbles are identical (𝑅 = 1), then (3.2b) implies that 𝑋 = 𝑎2 so equations (3.16)257
are equivalent, and it follows that U1 = U2 ≡ U𝑝. Therefore, the two bubbles move at the258
same velocity, and the values of 𝜎 and 𝜙 remain fixed for all time, a result that is expected259
for pairs of identical circular bubbles in a Hele-Shaw cell at low Reynolds number (Happel260
& Brenner 2012; Sarig et al. 2016; Green 2018). The trajectories of non-identical circular261
bubbles are also expected to be reversible and fore-aft symmetric, which is indeed what our262
model predicts.263

Having established our theoretical model for the motion of a pair of bubbles in a Hele-Shaw264
cell, we next describe the setup used for our experiments.265

4. Experimental methods266

Experiments were performed in a Hele-Shaw cell constructed using two 12.7 mm thick cast267
acrylic plates. A section shaped like an elongated hexagon was sealed by a gasket along its268
perimeter, and a uniform distance between the plates was maintained using plastic spacers.269
The plan view layout of the cell is shown in figure 3.270

Flow in the channel was manipulated using a series of circular holes cut into the top plate.271
Liquid was injected into and removed from the cell through 4 mm diameter holes whose272
centres were located at opposing vertices of the hexagon. Bubbles were manually introduced273
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ℎ̂ [mm] 𝑤̂ [mm] 𝑈̂ [mm/s] 𝑅̂1 [mm] Ca × 104 𝜖 × 102 𝛿 𝑅 px/mm

I 0.42 65 2.4 2.6 6.1 8.1 1.17 2.05 172.0 10.6 0.90 2.32

II 0.29 90
1.3 5.4 3.3 2.7 2.86 1

541.3 4.8 3.3 3.0 2.55 1.23
2.6 2.9 6.6 5.0 1.94 1.65

Table 1: Experimental parameters: the channel height ℎ̂, the channel width 𝑤̂, the
depth-averaged background flow velocity 𝑈̂, the effective bubble radius of the smaller
bubble 𝑅̂1, the capillary number Ca = 𝜇̂𝑈̂/𝛾̂, the bubble aspect ratio 𝜖 = ℎ̂/2𝑅̂1, the

Bretherton parameter 𝛿 = Ca1/3/𝜂𝜖 , the radius ratio 𝑅, and image resolution reported in
pixels per mm. Parameters are shown for experiments investigating interactions

(I) between nearly circular bubbles with an initial offset in the 𝑦-direction as discussed in
§5, and (II) between bubbles in a line parallel to background flow as discussed in §6.

using a syringe connected to a 1 mm diameter hole located downstream of the main inlet.274
The bubble inlet was sealed when not in use to limit fluctuations in pressure and flow rate275
during measurements. The components of the cell were cleaned with ethanol and distilled276
water prior to assembly and experiments.277

The viscous liquid used in experiments was silicone oil (Sigma Aldrich, Product278
No. 317667). According to information provided by the manufacturer, its kinematic279
viscosity was 𝜈̂ = 5 mm2/s, and its dynamic viscosity was 𝜇̂ = 4.6 mPa s. The surface tension280
was measured using the pendant drop method to be 𝛾̂ = 18.2 mN/m. The bubbles were281
composed of air. Flow was generated by driving oil into the cell at a constant volumetric282
flow rate, 𝑄̂, through the liquid inlet using a syringe pump (Harvard Apparatus, PHD Ultra).283
Oil ejected from the cell was collected, filtered, then reused. Blockage effects due to the284
presence of the bubbles were not taken into account, and the background flow velocity was285
estimated to be 𝑈̂ = 𝑄̂/𝑤̂ℎ̂ (where 𝑤̂ and ℎ̂ are the dimensional cell width and height). The286
Reynolds numbers Re = 2𝑈̂ 𝑅̂1𝜖

2/𝜈̂ calculated using the smaller bubble radius ranged from287
7.2 × 10−3 to 1.7 × 10−2.288

Experiments were recorded using a DSLR camera (Nikon) positioned to capture the plan289
view of the Hele-Shaw cell. The cell was illuminated from above, and a light-absorbing black290
background was used to enhance contrast. Reflections of light from the bubble interfaces291
caused the plan view shapes of the bubbles to appear as white outlines. Videos were acquired292
at 30 frames per second, and calibration was performed using an object of known size in the293
focal plane.294

Table 1 shows a summary of the experiments presented in this work. Experiments were295
performed to investigate the interactions (I) between two nearly circular bubbles with an296
initial offset in the 𝑦-direction, which exhibit the rollover phenomenon introduced in §5,297
and (II) between two bubbles in a line parallel to the background flow, which induce shape298
deformations in each other as discussed in §6. The Hele-Shaw cell used to investigate (I)299
had a rectangular section 19 cm long, and the one used to investigate (II) was 22 cm long.300
In the rollover experiments (I), the bubbles were slightly flattened in the direction of the301
flow with aspect ratios typically within 5% of circularity, which is consistent with the shape302
perturbations predicted by Wu et al. (2024) for isolated bubbles in uniform flow. Thus, they303

Rapids articles must not exceed this page length
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Experiments:

Theory:

𝑡 = 0 𝑡 = 4.0 𝑡 = 7.8 𝑡 = 12.7

Figure 4: Two-bubble rollover with 𝛿 = 1.17 and 𝑅 = 2.05 at different dimensionless times
𝑡 = 𝑡𝑈̂/𝑅̂1. (top) Experimental images are compared with (bottom) simulations of the
dimensionless dynamical system (3.17) with the same initial conditions at 𝑡 = 0. The

background flow is from left to right. Experimental images have been rescaled by the rear
bubble radius, 𝑅̂1 = 2.6 mm, for comparison with the theory.

were tracked by fitting ellipses onto their outlines in the images. The bubble velocities were304
obtained using central finite differences with forward and backward finite differences applied305
at the two endpoints. In experiments investigating the deformation of two bubbles aligned306
with the flow (II), bubble shapes were extracted by obtaining an array of points on the closed307
contour on which the pixel intensity was maximized in grey-scale images. In all cases, the308
radius of a circle of equivalent area for each bubble was used as the effective radius of the309
bubble for scaling and further data reduction. We observed that bubbles decreased in size310
slightly as they travelled downstream, which we attribute to the diffusion of air from the311
bubble into the silicone oil (Chuan & Yurun 2011). Over the course of an experiment, whose312
typical duration was 15 seconds, bubbles experienced an average decrease in their effective313
radius by approximately 2%. Measurements are reported using the time-averaged bubble314
size.315

5. Bubble rollover316

5.1. Observed behaviour317

In this section, we consider situations involving two nearly circular bubbles in which the318
larger bubble is initially far behind the smaller one and offset in the 𝑦-direction by a distance319
less than the sum of the two bubble radii, such that 𝑥1 − 𝑥2 ≫ 1 and 0 < |𝑦2 − 𝑦1 | < 1 + 𝑅.320
As explained in §2.1, the larger bubble at the rear is expected to travel faster than the bubble321
at the front (Booth et al. 2023). Thus, the bubbles would collide if they only moved parallel322
to the background flow. However, for a range of starting positions, we find that the nonlinear323
hydrodynamic interaction between the bubbles allows them to avoid collision by rotating324
around one another. Lubrication forces prevent the collision of the nearly circular bubbles325
in a manner that is analogous to how they cause rigid spheres or cylinders to rotate around326
and pass each other without contact in shear flow (see, e.g., Arp & Mason 1977b). As the327
larger bubble approaches from behind, it continues along a relatively straight trajectory. It328
overtakes the smaller bubble, which manoeuvres out of the way to let the larger bubble pass.329

In figure 4, we show experimental images demonstrating this rollover effect for a system330
of two approximately circular bubbles with 𝛿 = 1.17 and 𝑅 = 2.05 (see movie 1 provided in331
the Supplementary Material). The larger bubble catches up to the smaller one, which evades332
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contact by rolling over the larger one. In the lower plots, we demonstrate good qualitative333
agreement with solutions of the dynamical system (3.17) for the same parameter values and334
initial conditions. Movies 2–7 in the Supplementary Material show additional instances of335
the two-bubble rollover phenomenon, serving as evidence that it is reproducible for various336
combinations of bubble sizes and initial conditions.337

In figure 5, the instantaneous bubble velocity components (𝑈𝑘 , 𝑉𝑘) are plotted for the same338
experiment as shown in figure 4 and for another example in which 𝛿 = 0.90 and 𝑅 = 2.32339
(see movie 2 provided in the Supplementary Material). The model predicts that the smaller340
bubble decelerates in the 𝑥-direction as the large bubble approaches from behind, while also341
translating in the 𝑦-direction such that |𝑦2 − 𝑦1 | is increasing. The time at which the pair of342
bubbles is aligned perpendicularly to the background flow (i.e., when 𝑥1 = 𝑥2) coincides with343
when the axial velocity of the smaller bubble,𝑈1, reaches a minimum and when𝑉1 = 𝑉2 = 0.344
We observe reasonable agreement between theory and experiment. However, in experiments,345
the velocity components 𝑈1 and 𝑉1 of the smaller bubble are generally biased to reduce the346
distance between the bubble centres.347

In figure 6, we compare the experimental and theoretical results for the (𝑥, 𝑦)-positions of348
the bubble centres. In both cases, we observe that the motion of the larger bubble is largely349
unaffected by the interaction while the smaller bubble is displaced in the 𝑦-direction such that350
the bubbles avoid contact as the larger one passes. The final distance in the 𝑦-direction between351
the bubbles in experiments is significantly smaller than what is theoretically predicted. The352
bubbles also become slightly closer in the 𝑥-direction in experiments as compared with353
theory. The small discrepancies between the theoretical and experimental velocities shown354
in figure 5 accumulate over time and lead to noticeable differences between the theoretical355
and experimental bubble trajectories.356

Finally, in figure 7 we plot the trajectories of the centre of the larger bubble relative to that357
of the smaller one (i.e. 𝑧2 − 𝑧1) calculated using (3.17). Any trajectory entering the solid grey358
region |𝑧2 − 𝑧1 | ⩽ 1 + 𝑅 corresponds to a collision between the bubbles. Points extracted359
from the experiments are superimposed on the theoretically determined bubble trajectories.360
We observe that in experiments, the larger bubble initially follows a trajectory, then departs361
from that trajectory when the two bubbles are close. This departure is likely to be due to362
interactions between the bubbles that are not included in the model. Finally, as the bubbles363
separate, the larger bubble once again closely follows a trajectory, albeit a different trajectory364
from the one on which the bubble started.365

While the 𝑥-positions of the bubble centres are well captured by the theory, there is366
a significant disagreement between the predicted and observed 𝑦-positions of the smaller367
bubble during and after the rollover (see figure 6). In the experiments, the smaller bubble368
appears to be entrained behind the larger bubble such that the distances between their centres369
in both the 𝑥- and 𝑦-directions are smaller than the corresponding theoretical trajectories.370
This process breaks the fore-aft symmetry that is predicted by (3.17), and indeed which371
would be expected in Stokes flow for circular bubbles. However, as noted in §4, there are372
perturbations to the bubble shape due to the background flow, which also happen to be373
fore-aft asymmetric due to the differences between the advancing and retreating menisci374
(Wu et al. 2024). Deformations due to interactions between bubbles are known to cause375
asymmetric trajectories for unconfined bubbles rising due to buoyancy. Experiments and376
numerical simulations performed at low Reynolds numbers have shown that a smaller bubble377
tends to align itself behind a larger bubble and even accelerate towards it so that the two378
bubbles collide, all while both bubbles undergo significant deformations (Manga & Stone379
1993, 1995). It is possible that small inertial effects also play a role: experiments and380
numerical simulations have shown that a deformable bubble rising due to buoyancy behind381
another one tends to get drawn into the wake of the latter (Crabtree & Bridgwater 1971; Katz382
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Figure 5: The instantaneous bubble velocity components (𝑈𝑘 , 𝑉𝑘) (top and bottom,
respectively) versus dimensionless time 𝑡 for (a) 𝛿 = 1.17 and 𝑅 = 2.05, (b) 𝛿 = 0.90 and
𝑅 = 2.32. Solid lines show theoretical predictions and points show experimental data. The
bubble of unit dimensionless radius (𝑘 = 1) is shown in blue (circles), and the bubble of

radius 𝑅 (𝑘 = 2) is shown in red (triangles). In each plot, the time at which 𝑥1 = 𝑥2 is
shown with a vertical line. Error bars are comparable to the size of the markers and are

thus omitted.

& Meneveau 1996; Bunner & Tryggvason 2003; Huisman et al. 2012). In §6, we investigate383
the deviations in the bubble shape of two bubbles in a line parallel to the background flow.384

5.2. Do the bubbles collide?385

5.2.1. Conditions for a bubble collision386

In §5.1 we found that the bubbles can avoid colliding by rolling over one another. By analysing387
the dynamical system (3.17), we can predict when or if the bubble rollover effect will occur.388
We note that the following analysis of bubble–bubble collisions is conducted within the389
context of the Hele-Shaw model. The Hele-Shaw model will break down when the bubbles390
are close to contact, in which case a three-dimensional analysis would be needed to achieve391
a complete description of the dynamics.392

At each instant in time, (3.16) determines U1 and U2 as functions of 𝜎 and 𝜙. We can then393
update 𝜎 and 𝜙 using U2 − U1 =

(
¤𝜎 + i𝜎 ¤𝜙

)
ei𝜙 (where the dot represents differentiation394

with respect to 𝑡). In figure 8, we plot the phase space showing the resulting trajectories of395
the larger bubble relative to the smaller one, i.e., 𝑧2 − 𝑧1 = 𝜎ei𝜙. In this figure, we take 𝑅 = 2396
for illustration. The solid grey region, 1 < |𝑧2 − 𝑧1 | ⩽ (1 + 𝑅), corresponds to the region of397
intersection between the bubbles. The rollover effect occurs on any trajectory that starts from398
𝑥1 − 𝑥2 ≫ 1 with 0 < |𝑦2 − 𝑦1 | < 1 + 𝑅 and that does not enter the solid grey region, and the399
likelihood of observing the effect depends strongly on the value of 𝛿. In figure 8(a), we show400
a case where 𝛿 is large, and all suitable initial conditions satisfying the inequalities stated401
above will give rise to the rollover effect. In this case, the bubbles repel each other so strongly402
that collision between the bubbles is impossible. On the other hand, in figure 8(b), we show403
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Figure 6: The positions of the bubble centres (𝑥, 𝑦) (top and bottom, respectively) versus
dimensionless time 𝑡 for (a) 𝛿 = 1.17 and 𝑅 = 2.05, (b) 𝛿 = 0.90 and 𝑅 = 2.32. Solid lines
show theoretical predictions, and points show experimental data. The bubble of unit radius

(𝑘 = 1) is shown in blue (circles), and the bubble of radius 𝑅 (𝑘 = 2) is shown in red
(triangles). In each plot, the time at which 𝑥1 = 𝑥2 is shown with a vertical line. Error bars

are comparable to the size of the markers and are thus omitted.
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Figure 7: Trajectories for the two-bubble dynamical system (3.17) in the reference frame
of the smaller bubble, with (a) 𝛿 = 1.17 and 𝑅 = 2.05, (b) 𝛿 = 0.90 and 𝑅 = 2.32. The

blue vectors show the predicted trajectories of the centre of the larger bubble relative to
the smaller one, and the red points show the experimentally measured bubble positions.

Error bars are comparable to the size of the markers and are thus omitted. Any trajectories
entering the solid grey region |𝑧2 − 𝑧1 | ⩽ (1 + 𝑅) are such that the two bubbles will

collide. The solid black region |𝑧2 − 𝑧1 | ⩽ 1 represents the smaller bubble.

that a smaller value of 𝛿 leads to much weaker interaction between the bubbles, such that404
the trajectories remain almost parallel to the flow. In this case, the rollover effect can occur405
only for a very narrow band of initial conditions, and we are much more likely to observe406
the bubbles colliding with each other. To understand the underlying physical mechanisms,407
we recall that 𝛿 is a dimensionless parameter that compares the relative magnitudes of the408
viscous pressure and of the Bretherton pressure, and that in this system 𝛿 is defined using the409
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Figure 8: Trajectories for the two-bubble dynamical system (3.17) in the reference frame
of the smaller bubble, with 𝑅 = 2 and (a) 𝛿 = 5, (b) 𝛿 = 1/2. Any trajectories entering the
solid grey region |𝑧2 − 𝑧1 | ⩽ (1 + 𝑅) are such that the two bubbles will collide. Stationary
points are shown in red. The solid black region |𝑧2 − 𝑧1 | ⩽ 1 represents the smaller bubble.

radius of the smaller bubble, whose motion is essential to successful rollover. As 𝛿 increases,410
the magnitude of the viscous pressure dominates that of the Bretherton pressure, so the411
motion of the smaller bubble is less hindered by the Bretherton drag, and collision is less412
likely.413

In this section, we consider conditions under which the bubbles will collide. First, we414
observe that there are stationary points (saddle points, located at 𝜙 = 0 and 𝜙 = 𝜋, shown in415
red) in figure 8(a) but not in figure 8(b). The existence of such stationary points outside of416
the solid grey region as in figure 8(a) implies that two aligned bubbles (i.e., with 𝑦1 = 𝑦2)417
will never collide. The stable manifolds of the two saddle points coincide with the horizontal418
axis, 𝑦1 − 𝑦2 = 0, so a point on the horizontal axis also lies on the stable manifold of one419
of the stationary points. Therefore trajectories beginning on the horizontal axis converge420
to a stationary point without entering the solid grey region. Furthermore, we find that, in421
figure 8(a), the trajectories on the surface |𝑧2 − 𝑧1 | = 1 + 𝑅 with 𝑥2 > 𝑥1 (the larger bubble in422
front) are directed inwards (into the solid grey region) and for 𝑥2 < 𝑥1 are directed outwards.423
In this case, bubbles may only collide if they are initially close to each other, and the larger424
bubble is ahead of the smaller one when the collision occurs. The reverse is true in figure 8(b),425
in which the surface |𝑧2 − 𝑧1 | = 1 + 𝑅 is entirely outside of the separatrix connecting the two426
stationary points.427

Motivated by these observations, we examine the following two conditions on the flow:428

1. The stationary points of the dynamical system (3.17) in the reference frame of the429
smaller bubble are in the region |𝑧2 − 𝑧1 | ⩾ 1 + 𝑅.430

2. In a neighbourhood of 𝑥1 = 𝑥2, the trajectories point into the region |𝑧2 − 𝑧1 | ⩽ 1 + 𝑅431
for 𝑥2 > 𝑥1 and out of the region |𝑧2 − 𝑧1 | ⩽ 1 + 𝑅 for 𝑥2 < 𝑥1.432

In §5.2.2 and §5.2.3, for each condition 𝑘 ∈ {1, 2}, we will find a critical minimum value433
of 𝛿 = 𝛿𝑘 (𝑅). Then, for 𝛿 < 𝛿1, we argue that there is always a range of initial conditions434
with 𝑥1 − 𝑥2 ≫ 1 and |𝑦2 − 𝑦1 | < 1 + 𝑅 such that the bubbles collide (including the case435
𝑦2 = 𝑦1 where the bubbles are aligned). On the other hand, for 𝛿 > 𝛿2, it is impossible for436
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bubbles that start far apart in the 𝑥-direction to collide, regardless of their initial transverse437
separation.438

Note that there exists a third critical value of 𝛿 = 𝛿𝑐 (𝑅) satisfying 𝛿1 ⩽ 𝛿𝑐 ⩽ 𝛿2, at439
which the separatrix connecting the two stationary points is tangent to |𝑧2 − 𝑧1 | = 1+ 𝑅. This440
critical value provides a sharp bound on 𝛿 above which collision between two bubbles that are441
initially well separated in the 𝑥-direction (the direction of the background flow) is impossible.442
However, 𝛿𝑐 is delicate to compute numerically as it depends on the global properties of the443
flow whereas, as we will show, the critical values 𝛿1 and 𝛿2 can be determined from purely444
local information about the normal velocity 𝑈𝑛 at the collision boundary |𝑧1 − 𝑧2 | = 1 + 𝑅.445

5.2.2. Condition 1: stationary points446

If this condition is satisfied, then two aligned bubbles will never collide. By analysing (3.16),447
we can find the stationary points by solving for U1 = U2 ≡ U and for (𝜎, 𝜙) ≡ (𝜎𝑠, 𝜙𝑠) at448
a fixed 𝛿. Since each 𝑓𝑘 in (3.14) is real, by symmetry we find that U = 𝑈 ∈ R and 𝜙𝑠 = 0449
or 𝜋. We focus on the case 𝜙𝑠 = 0 since by symmetry the stationary points are at (±𝜎𝑠, 0).450
Thus, for given 𝛿 and 𝑅 we find 𝑈 and 𝜎𝑠 by solving the nonlinear algebraic equations451 (

𝑓1(𝜎𝑠, 𝑅) − 𝑓2(𝜎𝑠, 𝑅)
)
(𝑈 − 1) = −𝑈 + 𝑈2/3

𝛿
, (5.1a)452 (

𝑓1(𝜎𝑠, 𝑅) − 𝑓3(𝜎𝑠, 𝑅)
)
(𝑈 − 1) = −𝑅2𝑈 + 𝑅𝑈2/3

𝛿
(5.1b)453

numerically, using Newton’s method.454
The position of the stationary point,𝜎𝑠, is plotted as a function of the Bretherton parameter,455

𝛿, in figure 9. The black dashed curve shows where 𝜎𝑠 = 1 + 𝑅. For each fixed value of 𝑅 we456
observe that, for suitably small 𝛿, there are no stationary points in the region |𝑧2− 𝑧1 | ⩾ 1+𝑅.457
As 𝛿 is increased, there exists a first value 𝛿 = 𝛿1(𝑅) at which a stationary point appears at458
𝜎𝑠 = 1 + 𝑅. Then, for 𝛿 > 𝛿1, 𝜎𝑠 is a monotonically increasing function of 𝛿.459

We can find 𝛿1(𝑅) by substituting 𝜎𝑠 = 1 + 𝑅 in (5.1) and solving for 𝑈 and 𝛿1; the details460
of this calculation may be found in Appendix A. We plot 𝛿1 as a function of the bubble radius461
ratio, 𝑅, in figure 10. We observe that 𝛿1 is a monotonically decreasing function of 𝑅, which462
means that for larger values of 𝑅 the stationary points are present for smaller values of 𝛿. We463
also observe that, as 𝑅 → 1+, 𝛿1(𝑅) tends to a finite value that is approximately 2.37.464

In figure 11(a), we plot the phase space showing the resulting trajectories of the larger465
bubble relative to the smaller bubble with 𝑅 = 2 for 𝛿 = 𝛿1(2). We observe that the stationary466
points of the system occur on the real axis at 𝜎𝑠 = 1+𝑅 (shown by red points); however there467
are still trajectories that enter the solid grey region |𝑧2 − 𝑧1 | ⩽ 1 + 𝑅. Hence the bubbles can468
still collide.469

5.2.3. Condition 2: normal velocity470

Condition 2 concerns the sign of the normal relative velocity of the two bubbles in a471
neighbourhood of the two points where 𝑧2 − 𝑧1 = ±i(1+ 𝑅). When this condition is satisfied,472
the only trajectories that result in a collision of the bubbles are ones in which the bubbles473
are initially close to one another, and collisions always occur when the larger bubble is474
ahead of the smaller bubble. If the larger bubble is initially behind the smaller one, the475
bubbles will rotate around one another before colliding. We define the normal velocity by476
𝑈𝑛 = (𝑼2 −𝑼1) · 𝒏, where here 𝒏 is the outward unit normal of the smaller bubble at the point477
where the bubbles are touching. When the separatrix encloses the region |𝑧2 − 𝑧1 | ⩽ 1 + 𝑅,478
we have 𝑈𝑛 > 0 for 𝑥2 < 𝑥1, meaning the bubbles separate when the larger bubble is behind,479
and 𝑈𝑛 < 0 for 𝑥2 > 𝑥1, meaning the bubbles collide when the larger bubble is ahead. For480
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Figure 9: Position of the stationary point, 𝜎𝑠 , as a function of the Bretherton parameter, 𝛿,
for radius ratios 𝑅 = 1.5 (red), 2 (blue), 2.5 (purple). The dashed black curve shows where

𝜎𝑠 = 1 + 𝑅.
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Figure 10: Minimum values 𝛿1 (𝑅) (dashed) and 𝛿2 (𝑅) (solid) of the Bretherton
parameter, 𝛿, satisfying Conditions 1 (see §5.2.2) and 2 (see §5.2.3), respectively.

condition 2, we find the value of 𝛿 at which 𝑈𝑛 is stationary at 𝑥1 = 𝑥2, i.e., 𝜕𝑈𝑛/𝜕𝜙 = 0 at481
𝜎 = 1 + 𝑅, 𝜙 = ±𝜋/2. The details of the calculation can be found in Appendix A.482

We plot 𝛿2 as a function of the bubble radius ratio, 𝑅, in figure 10. We observe that 𝛿2(𝑅)483
is a monotonically decreasing function of 𝑅. We also observe that as 𝑅 → 1+, 𝛿2(𝑅) tends484
to a finite value 𝛿∗ ≈ 3.10. For all 𝑅, we have 𝛿2(𝑅) > 𝛿1(𝑅), as expected, and we know that485
the critical value 𝛿𝑐 (𝑅) lies somewhere between these two curves. In figure 11(b), we plot486
the phase space showing the resulting trajectories of the larger bubble relative to the smaller487
bubble with 𝑅 = 2 for 𝛿 = 𝛿2(2). We observe that the separatrix fully encloses the region488
|𝑧2 − 𝑧1 | < 1 + 𝑅 and hence it is impossible for the bubbles to collide whenever they start far489
apart. Hence, we find that for any value of 𝑅 and |𝑦2 − 𝑦1 | > 0, if 𝛿 ⩾ 𝛿∗ ≈ 3.10 (this is not490
a sharp bound), then any trajectory with the larger bubble initially far behind will result in491
the bubbles rolling over one another instead of colliding.492
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Figure 11: Trajectories for the two-bubble dynamical system (3.17) in the frame of the
smaller bubble, with 𝑅 = 2 and (a) 𝛿 = 𝛿1 (2), at which the stationary points (shown as red

points) lie on the surface |𝑧2 − 𝑧1 | = 1 + 𝑅, (b) 𝛿 = 𝛿2 (2), above which the separatrix
encloses the region |𝑧2 − 𝑧1 | < 1 + 𝑅 (solid grey fill). The solid black region |𝑧2 − 𝑧1 | ⩽ 1

represents the smaller bubble.

5.3. Do the bubbles collide in finite time?493

In figure 8(b), we observe trajectories that enter the solid grey region |𝑧2 − 𝑧1 | ⩽ 1 + 𝑅, which494
suggests that the bubbles collide. To show that a collision occurs in finite time, we calculate495
the relative normal velocity 𝑈𝑛 of the two bubbles in in the limit when they are touching as496
𝜎 → 1 + 𝑅 (see Appendix A for the behaviour of the functions 𝑓𝑘 given by (3.14) in this497
limit). If 𝑈𝑛 < 0, the bubbles collide in finite time if they start sufficiently close. We plot 𝑈𝑛498
as a function of 𝜙 in figure 12(a) for 𝑅 = 2 and various values of 𝛿. Figure 12(b) shows a499
schematic of the two bubbles touching with the definitions of 𝒏 and 𝜙.500

We find three possible regimes:501

(i) If 𝛿 ⩾ 𝛿𝑐 (see §5.2), then when a trajectory starts inside the separatrix with a non-zero502
offset in the 𝑦-direction, it will result in a collision in finite time (see figure 8(a)).503

(ii) If 𝛿1 < 𝛿 < 𝛿𝑐, we are in an intermediate regime where 𝑈𝑛 > 0 for parts of both504
𝜙 ∈ (0, 𝜋/2) and 𝜙 ∈ (𝜋/2, 𝜋) and the separatrix does not completely enclose the region505
|𝑧2−𝑧1 | ⩽ 1+𝑅. In this regime, the stationary points of (3.17) are in the region |𝑧2−𝑧1 | > 1+𝑅.506
Hence, there exist trajectories with the larger bubble beginning far behind the smaller one507
(𝑥1 − 𝑥2 ≫ 1) that result in collision in finite time.508

(iii) If 𝛿 ⩽ 𝛿1, we have 𝑈𝑛 < 0 for 𝜙 ∈ (𝜋/2, 𝜋). Thus, in configurations where the larger509
bubble is behind the smaller one (𝑥1 > 𝑥2), they collide in finite time provided that the initial510
value of |𝑦2−𝑦1 | is not too large. Example trajectories of this kind are observed in figure 8(b).511

In figure 12(a) we observe that the values of 𝛿1 and 𝛿2 can be determined by the local512
information about the normal velocity 𝑈𝑛. The first critical value, 𝛿1 is the value of 𝛿 at513
which 𝑈𝑛 = 0 at 𝜙 = 0 and 𝜋, and the second critical value, 𝛿2, is the value of 𝛿 at which514
𝜕𝑈𝑛/𝜕𝜙 = 0 at 𝜙 = 𝜋/2.515

It should be noted that we would expect our model to break down in the moments preceding516
the collision because the squeezing and drainage of liquid out from between the bubbles517
significantly influences bubble dynamics (see, for example, Crabtree & Bridgwater 1971;518
Chauhan & Kumar 2020; Ohashi et al. 2022). Furthermore, when the distance between the519
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Figure 12: (a) The relative normal velocity, 𝑈𝑛, of the two bubbles as a function of the
polar angle, 𝜙, for a fixed 𝑅 = 2 and 𝛿 shown by the colour bar. The dotted and dashed

curves show 𝑈𝑛 as a function of 𝜙 at 𝛿 = 𝛿1 (2), and 𝛿 = 𝛿2 (2), respectively (see §5.2). (b)
Schematic of two bubbles touching showing the definitions of 𝒏 and 𝜙.
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Figure 13: Schematic of the two-bubble deformation problem. The background flow is
from left to right.

bubble interfaces is on the order of the gap height, we expect additional three-dimensional520
effects to become important.521

6. The deformation of two bubbles522

6.1. Asymptotic expansions523

In this section, we calculate the first-order corrections in 𝜖 , the bubble aspect ratio (2.3), to the524
shapes of a pair of bubbles, each of which undergoes deformations induced by the presence525
of the other. For simplicity, we consider two bubbles aligned in the direction of the flow526
with centres at positions (0, 0) and (𝜎, 0), respectively, in the (𝑥, 𝑦)-plane (see figure 13). At527
leading order, the bubbles are circles of radii 𝑅1 = 1, and 𝑅2 = 𝑅, with velocities U1 = 𝑈1528
and U2 = 𝑈2 given by (3.16), respectively. We assume that the deformations occur faster529
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than the timescale, 1/|𝑈1 −𝑈2 | for the relative motion of the two bubbles, which means we530
can treat the deformations as quasi-steady, with 𝜎 assumed to be a known constant.531

To find the corrections to the bubble shapes, we return to the dynamic boundary condition532
(2.1c) and expand the curvatures and bubble pressures in powers of 𝜖 as533

𝜅𝑘 ∼ 1
𝑅𝑘

+ 𝜖𝜅𝑘1 + · · · , (6.1a)534

𝑝𝑘 ∼ 1 + 𝜋𝜖

4𝑅𝑘

+ 𝜖2𝑝𝑘2 + · · · , (6.1b)535

for 𝑘 ∈ {1, 2}. Note that, for completeness, one should also expand the complex potential,536
𝑤(𝑧), and the bubble velocities, 𝑈1 and 𝑈2, as asymptotic series in powers of 𝜖 . However,537
to find the first-order shape correction we only need the leading-order solutions (3.9) and538
(3.16), and so for ease of notation we do not include an additional subscript 0 for these539
variables. We note that our analysis does not at present determine the first corrections to the540
bubble velocities due to the deformations.541

6.2. Deformation of the rear bubble542

For the first bubble, the dynamic boundary condition (2.1c) at 𝑂 (𝜖2) reads543

𝜅11 =
4𝑝12
𝜋

+ 12𝛿3𝜂3

𝜋
Re

[
𝑧 +𝑊

(
1 − 𝑎𝑧

𝑧 − 𝑎

)]
−

4𝛿2𝜂2𝑈
2/3
1

𝜋
𝛽(𝒊 · 𝒏) |𝒊 · 𝒏|2/3, (6.2)544

on |𝑧 | = 1. We define polar coordinates centred at (0, 0), so the bubble surface is given by545
𝑟 = 1 + 𝜖𝑔1(𝜃), where 𝜃 is the polar angle. The dynamic boundary condition (6.2) in polar546
coordinates is given by

− 𝑔′′1 − 𝑔1 =
4𝑝12
𝜋

+ 12𝛿3𝜂3

𝜋
Re

[
ei𝜃 +𝑊

(
1 − 𝑎ei𝜃

ei𝜃 − 𝑎

)]
−

4𝛿2𝜂2𝑈
2/3
1

𝜋
𝛽(cos 𝜃) | cos 𝜃 |2/3.

(6.3)

547

We determine 𝑝12 by enforcing conservation of bubble area, i.e.,548 ∫ 2𝜋

0
𝑔1 d𝜃 = −

∫ 2𝜋

0
𝜅11 d𝜃 = 0. (6.4)549

We solve (6.3) by expanding 𝑔1 as the Fourier cosine series550

𝑔1(𝜃) =
𝑐0
2

+
∞∑︁
𝑛=1

𝑐𝑛 cos 𝑛𝜃. (6.5)551

By the area conservation condition (6.4), we find that 𝑐0 = 0. We further fix the centroid of552
the bubble at the origin, which corresponds to 𝑐1 = 0. The remaining coefficients (𝑛 ⩾ 2)553
are determined by554

𝑐𝑛 =
1

(𝑛2 − 1)

∫ 2𝜋

0

12𝛿3𝜂3

𝜋2 Re
[
𝑊

(
1 − 𝑎ei𝜃

ei𝜃 − 𝑎

)]
cos 𝑛𝜃 d𝜃 −

4𝛿2𝜂2𝑈
2/3
1 𝑏𝑛

𝜋(𝑛2 − 1)
, (6.6)555

where the 𝑏𝑛 are the Fourier coefficients of 𝛽(cos 𝜃) | cos 𝜃 |2/3 and are given by
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𝑏𝑛 =

Γ

(
5
3

)
Γ

(
𝑛
2 − 1

3

)
4𝜋22/3Γ

(
𝑛
2 + 4

3

) [ (
(
√

3 + 1)𝛽1 + (
√

3 − 1)𝛽2

)
(−1) ⌊ 𝑛−1

2 ⌋556

−
(
(
√

3 − 1)𝛽1 + (
√

3 + 1)𝛽2

)
(−1) ⌊ 𝑛

2 ⌋
]
. (6.7)557

Equation (6.5) then determines the first-order shape correction of the rear bubble 𝜕Ω1.558

6.3. Deformation of the front bubble559

We proceed similarly with the second bubble. By defining polar coordinates centred at (𝜎, 0),560
we find that the bubble surface is given by 𝑟 = 𝑅+𝜖𝑔2(𝜃), where 𝑔2(𝜃) is given by the Fourier561
series562

𝑔2(𝜃) =
𝑑0
2

+
∞∑︁
𝑛=1

𝑑𝑛 cos 𝑛𝜃. (6.8)563

By area conservation, we find that 𝑑0 = 0. We further fix the centroid of the bubble at (𝜎, 0),564
which corresponds to 𝑑1 = 0. The remaining coefficients (𝑛 ⩾ 2) are determined by565

𝑑𝑛 =
𝑅2

(𝑛2 − 1)

∫ 2𝜋

0

12𝛿3𝜂3

𝜋2 Re
[
𝑊

(
1 − 𝑎(𝜎 + 𝑅ei𝜃 )
(𝜎 + 𝑅ei𝜃 ) − 𝑎

)]
cos 𝑛𝜃 d𝜃 −

4𝑅2𝛿2𝜂2𝑈
2/3
1 𝑏𝑛

𝜋(𝑛2 − 1)
.

(6.9)566
This then determines the first-order shape correction of the front bubble 𝜕Ω2.567

6.4. Results568

6.4.1. Identical bubbles (𝑅 = 1)569

In figure 14, we show example solutions for the bubble shapes at different separations, 𝜎,570
calculated using (6.5) and (6.8), with 𝑅 = 1, 𝛿 = 2.86 and 𝜖 = 0.027, alongside experimental571
measurements under the same conditions. We observe good agreement between theory and572
experiments. The bubble in front flattens in the direction of motion (left to right), and the573
bubble behind elongates. In the theoretical plots, we use 𝜎 as a proxy for time, because we574
assume that the deformations are quasi-steady.575

To quantify our results, we define the in-plane bubble aspect ratios as576

𝐴𝑘 =
2𝑅𝑘 + 𝜖 (𝑔𝑘 (0) + 𝑔𝑘 (𝜋))

2𝑅𝑘 + 2𝜖𝑔𝑘 (𝜋/2) ∼ 1 + 𝜖

2𝑅𝑘

(𝑔𝑘 (0) + 𝑔𝑘 (𝜋) − 2𝑔𝑘 (𝜋/2)), (6.10)577

for 𝑘 ∈ {1, 2}. In figure 15, we plot 𝐴1,2 versus bubble separation, 𝜎, for a fixed value of 𝛿. We578
observe that, as the bubbles become close, the disparity between their aspect ratios increases:579
the bubble in front becomes more flattened, while the rear bubble develops a more pronounced580
elongation. There is good agreement between the predicted and experimentally measured581
aspect ratio 𝐴2 of the front bubble, however, there is a constant offset of approximately 0.06,582
which induces an approximate 6–10% error between the theory and experiments. The model583
generally over-predicts the degree of flattening of the front bubble. For the aspect ratio 𝐴1 of584
the rear bubble, there is a discrepancy between theory and experiments. In the experiments, 𝐴1585
is approximately constant, however our model predicts this to be a monotonically decreasing586
function, and thus under-predicts the elongation of the rear bubble. In the experiments, the587
two bubbles become very close and, in this limit, we expect the theory may break down588
due to the three-dimensional effects in the fluid flow between the two bubbles. In addition,589
our dynamic boundary condition (2.1c) is strictly valid only when the normal velocities at590
corresponding points on the front and rear menisci are equal and opposite; when the bubbles591
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(a) 𝑡 = 0 (b) 𝑡 = 1.0 (c) 𝑡 = 1.9

Figure 14: Experimental bubble shapes (black solid), asymptotic solution (6.5) and (6.8)
(red dashed) dashed for 𝑅 = 1, 𝛿 = 2.86, and 𝜎 = (a) 2.68, (b) 2.56, (c) 2.43. The
corresponding different dimensionless times 𝑡 = 𝑡𝑈̂/𝑅̂1 are shown above for the

experiments. The background flow is from left to right. Experimental images have been
rescaled by the rear bubble radius, 𝑅̂1 = 5.4 mm, for comparison with the theory. The

bubble shapes from experiment and asymptotics are aligned so that the centroids of the
bubble pairs coincide.

deform significantly this is no longer true and we should incorporate the full Burgess & Foster592
(1990) boundary conditions on the bubble surface. Furthermore, bubbles in Hele-Shaw cells593
that are approaching or separating experience additional stresses due to their relative motion594
(Bremond et al. 2008; Lai et al. 2009; Chan et al. 2010) that have not been included in our595
analysis.596

In §3 we found that, if 𝑅 = 1, the bubbles travel at the same velocity at leading order in 𝜖 .597
However, in experiments, we observe that the bubbles approach each other while deforming,598
due to 𝑂 (𝜖) corrections to the velocities which we currently do not calculate. Ultimately, the599
bubbles collide and coalesce when 𝜎 < 1 + 𝑅, a range that is inaccessible with our current600
analytical methods.601

Wu et al. (2024) found that, if an isolated bubble is flattened in the direction of motion, then602
the leading-order solution over-predicts the bubble velocity, and vice versa if the bubble is603
elongated. The same line of reasoning here would suggest that the velocity of the bubble at the604
front is over-predicted by (3.16), while the velocity of the bubble behind is under-predicted605
by (3.16). Thus, the bubble behind would travel faster than the bubble in front, resulting in606
the collision of bubbles of equal size. Similar behaviour has been observed experimentally607
and computationally for a pair of unconfined bubbles rising at low Reynolds numbers due to608
buoyancy (Manga & Stone 1993, 1995). As a result of the interaction between the bubbles,609
the leading bubble flattens in the direction of motion while the bubble behind elongates, and610
the distance between them decreases until they collide. Our results establish that there is an611
analogous mechanism for bubble collision in Hele-Shaw cells.612

6.4.2. Bubbles of different radii (𝑅 ≠ 1)613

In the absence of shape deformation, larger bubbles are expected to travel faster than smaller614
ones (Booth et al. 2023). For this case, conditions were derived in §5.2 under which a larger615
bubble can catch and collide with a smaller bubble in finite time. In §6.4.1, we presented616
suggestions of a further mechanism arising from shape deformation by which two bubbles617
of equal size can collide. Here, we show that shape deformations and the resulting effects618
on the surrounding flow can be strong enough to enable a smaller bubble to catch a larger619
bubble.620

We show example solutions for the bubble shapes given by (6.5) and (6.8) alongside621
experimental images with, 𝑅 = 1.23 and 𝛿 = 2.55 in figures 16(a–c) and 𝑅 = 1.65 and622
𝛿 = 1.94 in figures 16(d–f). Similarly to the examples of the bubbles with the same leading-623
order radius (see figure 14), the leading bubble flattens in the direction of motion, whereas624
the rear bubble elongates. To quantify this observation, we plot the bubble aspect ratios625
𝐴1,2 versus separation, 𝜎, in figure 17. We observe good agreement between theory and626
experiments. In particular, we correctly predict that 𝐴1 > 𝐴2. Again, there is a discrepancy627
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Figure 15: The in-plane bubble aspect ratios, 𝐴𝑘 , versus separation, 𝜎, for the rear bubble
(𝑘 = 1, dashed curve and open markers) and the front bubble (𝑘 = 2, solid curve and filled
markers), with 𝛿 = 2.86 and 𝜖 = 0.027. The points show experimental measurements and
the curves are the asymptotic predictions (6.10). The different marker shapes (triangle,

circle, diamond) represent distinct pairs of bubbles that were tracked and measured as the
rear bubble caught up and collided with the front bubble. The error between experiment

and theory is approximately 6–10%.

𝑡 = 0

(a) (b)

𝑡 = 0.4 𝑡 = 0.8

(c)
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𝑡 = 3.6
(e)

𝑡 = 7.2
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Figure 16: Experimental bubble shapes (black solid), asymptotic solution (6.5) and (6.8)
(red dashed) for (a–c) 𝑅 = 1.23, 𝛿 = 2.55 and 𝜎 = (a) 2.39, (b) 2.34, (c) 2.28,

(d–f) 𝑅 = 1.65, 𝛿 = 1.94 and 𝜎 = (d) 3.45, (e) 3.23, (f) 2.94. The corresponding different
dimensionless times 𝑡 = 𝑡𝑈̂/𝑅̂1 are shown above for the experiments. The background flow
is from left to right. Experimental images have been rescaled by the rear bubble radii, 𝑅̂1 =

(a–c) 2.9 mm and (d–f) 4.8 mm, for comparison with the theory. The bubble shapes from
experiment and asymptotics are aligned so that the centroids of the bubble pairs coincide.

between the experimentally measured aspect ratios and theoretical predictions, which we628
attribute to the same reasons as discussed in §6.4.1. Nevertheless, these results hint that,629
although the smaller rear bubble is expected to lag behind the larger front bubble when630
they are both circular, deformations may allow for a region of parameter space in which a631
smaller bubble can catch up to a larger one. Several collisions of this type have been observed632
experimentally, and the progression of shape deformation for a few examples is shown in633
figure 16. To establish this result theoretically, one would need to find the perturbation to the634
bubble speeds, for example by performing a complex variable analysis similar to that done635
by Wu et al. (2024). We leave such analysis for future work.636
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Figure 17: The bubble aspect ratios, 𝐴𝑘 , versus separation, 𝜎, for the rear bubble (𝑘 = 1,
dashed curve and open markers) and the front bubble (𝑘 = 2, solid curve and filled

markers), with (a) 𝑅 = 1.23, 𝛿 = 2.55 and 𝜖 = 0.03 (b), 𝑅 = 1.65, 𝛿 = 1.94 and 𝜖 = 0.05.
The points show experimental measurements, and the curves are the asymptotic

predictions (6.10). The error between experiment and theory is approximately (a) 5–7%
and (b) 10–13%.

7. Conclusions637

In this paper we analyse a model and present new experimental results for the motion of638
two bubbles in a Hele-Shaw cell. The mathematical model depends on two dimensionless639
parameters, the bubble aspect ratio 𝜖 and the capillary number Ca, both of which are assumed640
to be small. Specifically, we consider the asymptotic distinguished limit in which Ca = 𝑂

(
𝜖3)641

and the bubbles are circular to leading order. Through the use of complex variable methods,642
we derive analytical equations of motion for the two bubbles. In general, the instantaneous643
bubble velocities are obtained by solving the system of nonlinear algebraic equations (3.16).644

For two non-identical bubbles such that the larger bubble is initially far behind the smaller645
bubble with a small transverse offset, there are two possible outcomes. The first is that the646
bubbles collide, while in the second, due to the nonlinear interactions, instead of colliding647
they rotate around each other. Which behaviour occurs depends on the value of the Bretherton648
parameter 𝛿. For each bubble radius ratio, 𝑅, there exists a first critical Bretherton parameter,649
𝛿1(𝑅), above which it is impossible for two aligned bubbles to collide. Then there exists a650
second critical Bretherton parameter, 𝛿2(𝑅), above which any trajectory in which the bubbles651
are initially far apart in the 𝑥-direction results in the bubbles rotating around one another, and652
if the bubbles are initially close with the larger bubble behind, the bubbles will rotate around653
one another and then collide with the large one in front. We find that if 𝛿 ⩾ 𝛿∗ ≈ 3.10 then654
the bubbles must always rotate around one another regardless of their radii if the smaller655
bubble is initially in front. Furthermore, we establish that, if the bubbles collide, they do so656
in finite time.657

Finally, we find the leading-order perturbations to the bubble shapes for a pair of bubbles658
in a Hele-Shaw cell aligned with a uniform background flow. If the bubbles are the same659
size, we observe that the bubble in front flattens in the direction of motion, while the bubble660
behind elongates. By analogy with the results for an isolated bubble obtained by Wu et al.661
(2024), we argue that these deformations permit the bubble behind to catch and collide with662
the bubble in front, despite the leading-order solution predicting that two identical bubbles663
should travel at the same velocity. Furthermore, this same pattern of deformation is seen in664
systems of two bubbles with a larger bubble in front, suggesting that we could see a smaller665
bubble catch a larger one. Such collisions are indeed observed in experiments. It is the subject666
of future work to calculate the perturbations to the bubble velocities and thus confirm these667
observations theoretically.668

As one possible application, the work presented in this paper provides a foundation for669
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studying the interactions among suspensions of bubbles in microfluidic configurations. As670
is common in the study of suspensions, the analytical results obtained here for the motion of671
two bubbles can be used to derive an approximate pairwise interaction model. Such a model672
will accurately capture situations in which two bubbles become close, where the commonly673
used dipole model (Beatus et al. 2006, 2012; Green 2018) breaks down.674

Funding. DJB is grateful to EPSRC, grant reference number EP/V520202/1, for funding. KW gratefully675
acknowledges the support of the National Science Foundation Graduate Research Fellowship under Grant676
No. DGE-2039656.677

Declaration of interests. The authors report no conflict of interest.678

Appendix A. Small separation asymptotics and computation of 𝛿1 and 𝛿2679

A.1. Small separation asymptotic expansions680

In §5.2, we find two conditions, one necessary and one sufficient, for the dividing trajectory681
to completely enclose circle 𝜎 = 1 + 𝑅 and thus prevent collision between two initially682
separated bubbles. For each condition we find a value of 𝛿 = 𝛿𝑘 , for 𝑘 ∈ {1, 2}, at which683
condition 𝑘 is first satisfied (see §5.2). We will show how to calculate the values of 𝛿1 and684
𝛿2 in the sections below.685

First, we calculate the behaviour of the functions 𝑓𝑘 defined by (3.14) in the limit𝜎 → 1+𝑅,686
namely687

𝑓1(𝜎, 𝑅) ∼
𝜋2𝑅2

3(1 + 𝑅)2 +𝑂

(√
𝜎 − 1 − 𝑅

)
, (A 1a)688

𝑓2(𝜎, 𝑅) ∼
2𝑅2

(1 + 𝑅)2Z
(
2,

𝑅

1 + 𝑅

)
+𝑂

(√
𝜎 − 1 − 𝑅

)
, (A 1b)689

𝑓3(𝜎, 𝑅) ∼
2𝑅2

(1 + 𝑅)2Z
(
2,

1
1 + 𝑅

)
+𝑂

(√
𝜎 − 1 − 𝑅

)
, (A 1c)690

where Z(𝑠, 𝑏) is the Hurwitz zeta-function (Kanemitsu et al. 2000) given by691

Z(𝑠, 𝑏) =
∞∑︁
𝑛=0

1
(𝑛 + 𝑏)𝑠 . (A 2)692

A.2. Computation of 𝛿1693

To find the value of 𝛿1 at which the stationary points exist on the surface |𝑧1 − 𝑧2 | = 1 + 𝑅,694
we use the behaviour of 𝑓𝑘 (A 1) in the limit 𝜎 → 1 + 𝑅 to obtain the system695

2𝑅2

(1 + 𝑅)2

(
𝜋2

6
−Z

(
2,

𝑅

1 + 𝑅

))
(𝑈 − 1) = −𝑈 + 𝑈2/3

𝛿1
, (A 3a)696

2𝑅
(1 + 𝑅)2

(
𝜋2

6
−Z

(
2,

1
1 + 𝑅

))
(𝑈 − 1) = −𝑅𝑈 + 𝑈2/3

𝛿1
. (A 3b)697

We can easily eliminate 𝛿1 from the (A 3) by subtracting the two equations, which leaves a698
linear equation for 𝑈. The solution for 𝑈 is then substituted back into one of the equations to699
obtain an explicit (though unpleasant) formula for 𝛿1(𝑅).700

We observe that 𝛿1 tends to a finite constant as 𝑅 → 1+. To find the value of this constant701
we have to be careful because the equations have a one-parameter family of solutions when702
𝑅 = 1, as the bubbles travel at the same velocity. To find the limiting value we let 𝑅 = 1 + 𝜀,703

where 0 < 𝜀 ≪ 1, and expand 𝑈 ∼ 𝑈 (0) + 𝜀𝑈 (1) + · · · and 𝛿1 ∼ 𝛿
(0)
1 + 𝜀𝛿

(1)
1 + · · · . At 𝑂 (1)704
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both equations in (A 3) give705

𝜋2

6

(
1 −𝑈 (0)

)
= −𝑈 (0) +

(
𝑈 (0) )2/3

𝛿
(0)
1

, (A 4)706

which gives us a one-parameter family of solutions. To find the relevant solution, we need to707
use a solvability condition. To that end we subtract (A 3b) from (A 3a) and divide by 𝑅 − 1708
before expanding as above to obtain709

7
2
Z(3)

(
1 −𝑈 (0)

)
+ 2𝑈 (0) =

(
𝑈 (0) )2/3

𝛿
(0)
1

, (A 5)710

where Z(𝑠) = Z(𝑠, 1) is the Riemann zeta-function. Solving (A 4) and (A 5) simultaneously711
gives712

𝑈 (0) = 1 + 6
21Z(3) − 𝜋2 − 6

≈ 1.64, 𝛿
(0)
1 =

(
𝑈 (0) )2/3

𝑈 (0) + 𝜋2/6
(
1 −𝑈 (0) ) ≈ 2.37. (A 6)713

In the other extreme as 𝑅 → ∞, as suggested by figure 10, it may be shown that 𝛿1(𝑅)714
tends to a finite positive limit, namely 2−1/3 ≈ 0.79.715

A.3. Computation of 𝛿2716

To find the value of 𝛿2, we need to determine when 𝜕𝑈𝑛/𝜕𝜙 = 0 at 𝜎 = 1 + 𝑅, 𝜙 = 𝜋/2,717
which can be written as718

𝜕𝑉1
𝜕𝜙

− 𝜕𝑉2
𝜕𝜙

+𝑈2 −𝑈1 = 0. (A 7a)719

From (3.16) we obtain720

2𝑅2

(1 + 𝑅)2

(
𝜋2

6
(𝑈2 − 1) + Z

(
2,

𝑅

1 + 𝑅

)
(𝑈1 − 1)

)
= 𝑈1 −

𝑈
2/3
1
𝛿2

, (A 7b)721

2𝑅2

(1 + 𝑅)2

(
𝜋2

6
(𝑈1 − 1) + Z

(
2,

1
1 + 𝑅

)
(𝑈2 − 1)

)
= 𝑅2𝑈2 −

𝑅𝑈
2/3
2

𝛿2
, (A 7c)722

at (𝜎, 𝜙) = (1+ 𝑅, 𝜋/2). By differentiating (3.16) with respect to 𝜙 and taking the imaginary723
part we obtain724

2𝑅2

(1 + 𝑅)2

(
𝜋2

6

(
𝜕𝑉2
𝜕𝜙

− 2(𝑈2 − 1)
)
−Z

(
2,

𝑅

1 + 𝑅

)
𝜕𝑉1
𝜕𝜙

)
= −𝜕𝑉1

𝜕𝜙

(
1 − 1

𝛿2𝑈
1/3
1

)
, (A 7d)725

2𝑅2

(1 + 𝑅)2

(
𝜋2

6

(
𝜕𝑉1
𝜕𝜙

− 2(𝑈1 − 1)
)
−Z

(
2,

1
1 + 𝑅

)
𝜕𝑉2
𝜕𝜙

)
= −𝜕𝑉2

𝜕𝜙

(
𝑅2 − 𝑅

𝛿2𝑈
1/3
2

)
. (A 7e)726

These equations (A 7) form a closed system of five nonlinear equations for five unknowns727
{𝛿2,𝑈1,𝑈2, 𝜕𝑉1/𝜕𝜙, 𝜕𝑉2/𝜕𝜙}, which can be solved numerically via, for example, Newton’s728
method.729

REFERENCES
Anna, S.L. 2016 Droplets and bubbles in microfluidic devices. Ann. Rev. Fluid Mech. 48, 285–309.730



Bubble racing in a Hele-Shaw cell 27

Arp, P.A & Mason, S.G 1977a The kinetics of flowing dispersions: IX. doublets of rigid spheres731
(experimental). J. Colloid Interface Sci 61 (1), 44–61.732

Arp, P.A. & Mason, S.G. 1977b The kinetics of flowing dispersions: VIII. doublets of rigid spheres733
(theoretical). J. Colloid Interface Sci 61 (1), 21–43.734

Askey, R. 1978 The q-gamma and q-beta functions. Appl. Anal. 8 (2), 125–141.735
Bartok, W. & Mason, S.G. 1957 Particle motions in sheared suspensions: V. rigid rods and collision736

doublets of spheres. J. Colloid Sci. 12 (3), 243–262.737
Batchelor, G.K. 1977 The effect of brownian motion on the bulk stress in a suspension of spherical738

particles. J. Fluid Mech 83 (1), 97–117.739
Batchelor, G.K. & Green, J.T. 1972 The determination of the bulk stress in a suspension of spherical740

particles to order 𝑐2. J. Fluid Mech. 56 (3), 401–427.741
Battat, S., Weitz, D.A. & Whitesides, G.M. 2022 An outlook on microfluidics: the promise and the742

challenge. Lab Chip 22 (3), 530–536.743
Beatus, T., Bar-Ziv, R.H. & Tlusty, T. 2012 The physics of 2D microfluidic droplet ensembles. Phys. Rep.744

516 (3), 103–145.745
Beatus, T., Tlusty, T. & Bar-Ziv, R.H 2006 Phonons in a one-dimensional microfluidic crystal. Nat. Phys.746

2 (11), 743–748.747
Beebe, D.J., Mensing, G.A. & Walker, G.M. 2002 Physics and applications of microfluidics in biology.748

Annu. Rev. Biomed. Eng. 4 (1), 261–286.749
Booth, D.J., Griffiths, I.M. & Howell, P.D. 2023 Circular bubbles in a Hele-Shaw channel: a Hele-Shaw750

Newton’s cradle. J. Fluid Mech. 954, A21.751
Bremond, N., Thiam, A.R. & Bibette, J. 2008 Decompressing emulsion droplets favors coalescence. Phys.752

Rev. Lett. 100 (2), 024501.753
Bretherton, F. 1961 The motion of long bubbles in tubes. J. Fluid Mech. 10 (2), 166–188.754
Bunner, B. & Tryggvason, G. 2003 Effect of bubble deformation on the properties of bubbly flows. J.755

Fluid Mech. 495, 77–118.756
Burgess, D. & Foster, M.R. 1990 Analysis of the boundary conditions for a Hele-Shaw bubble. Phys.757

Fluids A 2 (7), 1105–1117.758
Chan, D.Y.C., Klaseboer, E. & Manica, R. 2010 Dynamic interactions between deformable drops in the759

Hele-Shaw geometry. Soft Matter 6 (8), 1809–1815.760
Chauhan, S. & Kumar, P. 2020 Approach and breakup of taylor bubble and taylor drop in a hele-shaw cell.761

Phys. Fluids 32 (8), 082104.762
Chuan, D. & Yurun, F. 2011 Measurement of diffusion coefficients of air in silicone oil and in hydraulic763

oil. Chin. J. Chem. Eng. 19 (2), 205–211.764
Crabtree, J.R. & Bridgwater, J. 1971 Bubble coalescence in viscous liquids. Chem. Eng. Sci. 26 (6),765

839–851.766
Crowdy, D.G. 2008 Explicit solution for the potential flow due to an assembly of stirrers in an inviscid fluid.767

J. Eng. Math. 62, 333–344.768
Darabaner, C.L., Raasch, J.K. & Mason, S.G. 1967 Particle motions in sheared suspensions XX: Circular769

cylinders. Can. J. Chem. Eng. 45 (1), 3–12.770
Davis, R.H. 1993 Microhydrodynamics of particulate: Suspensions. Adv. Colloid Interface Sci. 43 (1),771

17–50.772
Dittrich, P.S. & Manz, A. 2006 Lab-on-a-chip: microfluidics in drug discovery. Nat. Rev. Drug Discov.773

5 (3), 210–218.774
Frankel, N.A. & Andreas, A. 1967 On the viscosity of a concentrated suspension of solid spheres. Chem.775

Eng. Sci. 22 (6), 847–853.776
Gnyawali, V., Moon, B.U., Kieda, J., Karshafian, R., Kolios, M.C. & Tsai, S.S.H. 2017 Honey, I shrunk777

the bubbles: microfluidic vacuum shrinkage of lipid-stabilized microbubbles. Soft Matter 13 (22),778
4011–4016.779

Green, Y. 2018 Approximate solutions to droplet dynamics in Hele-Shaw flows. J. Fluid Mech. 853,780
253–270.781

Halpern, D. & Jensen, O.E. 2002 A semi-infinite bubble advancing into a planar tapered channel. Phys.782
Fluids 14 (2), 431–442.783

Happel, J. & Brenner, H. 2012 Low Reynolds number hydrodynamics: with special applications to784
particulate media. Springer Science & Business Media.785



28

Huerre, A., Miralles, V. & Jullien, M.-C. 2014 Bubbles and foams in microfluidics. Soft Matter 10 (36),786
6888–6902.787

Huisman, S.G., Ern, P. & Roig, V. 2012 Interaction and coalescence of large bubbles rising in a thin gap.788
Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 85 (2), 027302.789

Kanemitsu, S., Katsurada, M. & Yoshimoto, M. 2000 On the Hurwitz–Lerch zeta-function. Aequ. Math.790
59 (1), 1–19.791

Katz, J. & Meneveau, C. 1996 Wake-induced relative motion of bubbles rising in line. Int. J. Multiph.792
Flow 22 (2), 239–258.793

Lai, A., Bremond, N. & Stone, H.A. 2009 Separation-driven coalescence of droplets: an analytical criterion794
for the approach to contact. J. Fluid Mech. 632, 97–107.795

Leal, L.G. 2004 Flow induced coalescence of drops in a viscous fluid. Phys. Fluids 16 (6), 1833–1851.796
Leighton, D. & Acrivos, A. 1987 The shear-induced migration of particles in concentrated suspensions.797

J. Fluid Mech. 181, 415–439.798
Manga, M. & Stone, H.A. 1993 Buoyancy-driven interactions between two deformable viscous drops. J.799

Fluid Mech. 256, 647–683.800
Manga, M. & Stone, H.A. 1995 Collective hydrodynamics of deformable drops and bubbles in dilute low801

reynolds number suspensions. J. Fluid Mech. 300, 231–263.802
Maxworthy, T. 1986 Bubble formation, motion and interaction in a Hele-Shaw cell. J. Fluid Mech. 173,803

95–114.804
Meiburg, E. 1989 Bubbles in a Hele-Shaw cell: Numerical simulation of three-dimensional effects. Phys.805

Fluids A 1 (6), 938–946.806
Nguyen, N.-T., Wereley, S.T & Shaegh, S.A.M. 2019 Fundamentals and applications of microfluidics.807

Artech house.808
Ohashi, Masatoshi, Toramaru, Atsushi & Namiki, Atsuko 2022 Coalescence of two growing bubbles809

in a hele–shaw cell. Scientific reports 12 (1), 1270.810
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