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Abstract

We consider the heat equation defined by a generalized measure theoretic Laplacian on
[0,1]. This equation describes heat diffusion in a bar such that the mass distribution of
the bar is given by a non-atomic Borel probabiliy measure p, where we do not assume the
existence of a strictly positive mass density. We show that weak measure convergence implies
convergence of the corresponding generalized Laplacians in the strong resolvent sense. We
prove that strong semigroup convergence with respect to the uniform norm follows, which
implies uniform convergence of solutions to the corresponding heat equations. This provides,
for example, an interpretation for the mathematical model of heat diffusion on a bar with
gaps in that the solution to the corresponding heat equation behaves approximately like the
heat flow on a bar with sufficiently small mass on these gaps.

1 Introduction

Let p1 be a non-atomic Borel probability measure on [0, 1] such that 0,1 € supp(u), £2([0, 1], 1)
be the space of measurable functions f such that f: f2du < oo and L2([0,1], 1) be the corre-
sponding Hilbert space of equivalence classes with inner product (f,g), = fol fgdu. We define

D) = {f e CH([0,1]) : 3 ()" € L2([0,1], 1) = () = f'(0) + /O ()" ()dp(y), =€ lo, 1]}.
The Krein-Feller operator with respect to u is given as
Ay D C LA([0,1], 1) — L2([0,1], ), f = (f)"

This definition involves the derivative with respect to u. If a function f has a representation
given by

f(x) = /0 ’ C;‘Lﬂ:c)du(x), ze 1],

then % f is called the p-derivative of f. Consequently, in the above definition, (f’)" is the
p-derivative of f7.

This operator has been widely studied, for example with an emphasis on addressing questions
of the spectral asymptotics and further analytical properties [3,4, 1221, 23, 24, 35, 36, 38, 39|,
diffusion processes [30-32|, wave equations [6] and higher-dimensional generalizations [22,37,41].

In order to connect these operators with diffusion equations from a physical point of view,
we follow for example |27, Section 1.2] and consider a metallic rod of constant cross-sectional
area oriented in the z-direction occupying a region from z = 0 to x = 1 such that all thermal
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quantities are constant across a section. We can thus consider the rod as one-dimensional. We
investigate the conduction of heat energy on a segment from = = a to x = b. Let the temperature
at the point = € [a,b] and time ¢ € [0,00) be denoted by u(t,z) and the total thermal energy in
the segment at time ¢ be denoted by e, p(t). It is well-known that

b
coslt) = [ ult,z)pla)d

assuming that the rod possesses a mass density p : [0,1] — (0,00). However, if we denote the
mass distribution of the rod by p, we can write

b
ean(t) = / w(t, 2)dp(x).

Hence, we can define the total heat energy even if p has no density. The total heat energy
changes only if heat energy flows through the boundaries * = a and z = b. We deduce for the
rate of change of heat energy

Sean(t) = 6(t,0) — 6(1,0), (1)

where ¢(t, x) denotes the heat flux density, which gives the rate of thermal energy flowing through
x at time ¢ to the right. Assuming sufficient regularity, we can rewrite (1) as

/a (t, x)du(z /d¢t )dp(z),

where ¢.(z) == ¢(t,z) and the p-derivative was defined earlier. With w;(z) == u(z,t), Fourier’s
law of heat conduction ¢ = —3= gives

/at (t, x)dp(z /duda: ut(z)dp(z).

Since this is valid for all a,b € [0,1], a < b, it follows for ¢ € [0, 00) and p-almost all € [0, 1]

o d d
ailt7) = dpdz ui(@).

Applying the definition of the Krein-Feller operator leads to the generalized heat equation

ou
Tl Ayug, t€[0,00) (2)
with Dirichlet boundary conditions u(¢,0) = u(t, 1) = 0 for all t > 0 if we assume that the temper-

ature vanishes at the boundaries or with Neumann boundary conditions g—g(t, 0) = g—g(t, 1)=0

if the boundaries are assumed to be perfectly insulated. This provides a physical motivation for
a mass distribution having full support even if it possesses no Lebesgue density. However, it is
still not clear how to interpret the equation if the support of the mass distribution is not the
whole interval, in particular for singular measures, such as measures on the Cantor set.

The problem then is to describe heat flow on a rod with massless parts. Krein-Feller operators
defined by measures on the classical Cantor set or, more generally, Cantor-like sets with gaps
have been extensively studied in recent years (see e.g. [2,17-20]). In this paper, we give an
interpretation of a solution to (2) in the case where p is not of full support. We approximate the
solution by a sequence of solutions to heat equations defined by u, for n € N such that u, is of
full support and converges weakly to u for n — oc.

To this end, let b € {N, D} represent the boundary condition, where N denotes Neumann and
D Dirichlet boundary conditions and we give our basic assumption.



Assumption 1.1: Let (pn),cn
such that 0,1 € supp(py) and p, — p,n — 0o, where — denotes weak measure convergence.

be a sequence of non-atomic Borel probability measures on [0, 1]

It is well-known that AZ is a non-positive self-adjoint operator (see, e.g., [14]) and thus the
>0 (see, e.g., [25, Lemma 1.3.2]). If up €
L?([0,1], i), then the unique mild solution to the initial value problem

generator of a strongly continuous semigroup (T tb)

o7 (1) = Au(t), t€0,00), (3)
u(0) = ug

is given by u(t) = TPug (see, e.g., [10, Proposition 11.6.4]). This motivates the investigation of
strong semigroup convergence. However, for different measures, the corresponding semigroups
are defined on different spaces. For the special case supp(u) = supp(in) = [0, 1] for all n € N, the
results in |7] can be applied to obtain strong semigroup convergence on the space of continuous
functions on [0, 1]. To formulate a strong semigroup convergence result without that assumption,
we restrict the semigroup (T}") 1> associated to Aﬁ[ on L?([0, 1], 1) to the subspace of continuous
functions, denoted by (C|0, 1]) /Jj , which is a Banach space with the uniform norm. The semigroup

(78) 10
conditi_ons, denoted by (C]0, 1])}1,‘7 . We show that the restricted semigroup, which we denote by

is restricted to the Banach space of continuous functions satisfying Dirichlet boundary

(Ttb) >0 18, again, a strongly continuous contraction semigroup and the infinitesimal generator
is given by

Anf=ahf, D(AL) = {feD(AL):ahf e (01}

Moreover, if we assume that supp(u) C supp(uy, ), the space (C|0, 1])2 can be continuously embed-
ded in (C|0, 1])Zn, where we denote the embedding by 7,,. Due to the Trotter-Kato approximation
theorem (see e.g. [11, Theorem 1.6.1]), the strong semigroup convergence is equivalent to strong
resolvent convergence and strong resolvent convergence is what we will establish. More precisely,
let f € (C[0,1])%, A >0 and n € N. We define RS = (A — AZ)_I and Rlx)\,n == Azn)_l and

prove

The main tool for proving (4) is the generalization of the hyperbolic functions sinh and cosh,
defined by generalizing the series

7ran R S

‘ — 0, n— oo. (4)
oo

0 22k+1 0
sinh(zx) kz_o 22k 2kt 1) cosh(zx) kz_o 22k

We replace ’”k—lf by generalized monomials defined by a measure p. This extends the theory of

measure theoretic functions, developed for trigonometric functions in [2|. Then, we show that
the resolvent density of the operator AZ is a product of such generalized hyperbolic functions.
This leads to strong resolvent convergence for our sequence by proving convergence of these
generalized hyperbolic functions. As a consequence we obtain our main result.

Theorem 1.2: Let f € (C]0, 1])Z and [, be a sequence of measures satisfying Assumption 1.1.
Then, for allt >0

lim ‘ T f — TP mnf
n—00 ’

=0

uniformly on bounded time intervals.



For f € (C]0, 1])2, it follows in the same way as before, that {u(t) = TP f :t > 0} is the unique
mild solution to the initial value problem

ou %
S0 = Abu(t), te0,00), (5)

Oup, A
o0 = A unt), t€[0,00)

Finally, Theorem 1.2 yields

lim ||mu(t) — un(t)||

n—oo

0o 0’
uniformly on bounded time intervals.

This result gives a meaningful interpretation for the diffusion of heat in the case of a mass
distribution with gaps in that the heat in a rod with mass distribution p diffuses approximately
like the heat on a rod with mass distribution u, for sufficiently large n.

This paper is structured as follows. In the following section we recall the definition of Krein-
Feller operators. In Section 3, we introduce the concept of generalized hyperbolic functions and
the connection to resolvent operators. Section 4 is devoted to the restriction of the Krein-Feller
operator semigroup to the spaces (C|0, 1])Z for b € {N, D}. After these preparations, in Section
5 we develop the central convergence results, namely the convergence of the hyperbolic functions
and the strong resolvent convergence in Section 5.1 and finally, the strong semigroup convergence
and convergence of solutions to heat equations in Section 5.2. In Section 6 we show how to apply
the results in three examples. Lastly, in Section 7, we discuss some open problems.

2 Preliminaries

First, we recall the definition and some properties of the operator AZ, where b € {N, D} and
is a non-atomic Borel probability measure on [0, 1] such that 0,1 € supp(u). If [0, 1]\supp(p) # 0,
then [0, 1] \ supp(x) is open in R and can be written as

[0,1] \ supp(u) = U(% bi) (6)

1>1

with 0 < a; < b; < 1, a;,b; € supp(p) for ¢ > 1. We define
Dl = {f: [0,1] — R : there exists f' € L* ([0, 1],)\1) : f(x) = £(0) +/ f'(y)dy, = €0, 1]}
0

and H'! ([0, 1], )\1) to be the space of all L%([0, 1], u)-equivalence classes possessing a D!—repre-
sentative. If u = A! on [0, 1], this definition is equivalent to the definition of the Sobolev space

We observe that H' ([0,1],A') is the domain of the non-negative symmetric bilinear form &
on L?([0,1], 1) defined by

1
E(u,v) = /0 o (2)0 (x)dw, u,v € F=H"([0,1],\").



It is known (see [15, Theorem 4.1]) that (£, F) defines a Dirichlet form on L2([0, 1], x). Hence,
there exists an associated non-positive, self-adjoint operator A/Jy on L*([0,1],p) with F =

D ((~AN)*) such that
(—ANu, v =E(u,v), ueD(AY),veF
and
D (A]) ={f € L*([0,1], ) : f has a representative f with f € D% and f'(0) = f'(1) = 0}.

The operator Afy is called the Neumann Krein-Feller operator with respect to p. Furthermore,
let Fo be the space of all L?(]0, 1], u)-equivalence classes having a D! —representative f such that
f(0) = f(1) = 0. The bilinear form defined by

1
E(u,v) :/ o (2) (z)dx, u,v € Fy,
0

is a Dirichlet form, too (see [15, Theorem 4.1]). Again, there exists an associated non-positive,

1
self-adjoint operator Aff on L?([0,1], u) with Fy = D ((—AE) 2) such that

<—A5u,v>u =&(u,v), ue€ (Aﬁ)) , veEFo
and
D (Af) ={fe L%([0,1], 1) : f has a representative f with f € DZ and f(0) = f(1) =0}.
Then AE is called the Dirichlet Krein-Feller operator with respect to p.

By Freiberg [14, Proposition 6.3, Lemma 6.7, Corollary 6.9], there exists an orthonormal basis
{¢b : k € N} of L%([0,1], i) consisting of eigenfunctions of —AZ and for the related ascending
ordered eigenvalues {\’ : k € N} we have 0 < A} < A} < ..., where AP > 0. Since {¢? : k > 1}
is an orthonormal basis of L?([0,1], ), each f € L%([0,1], u) can be written as f = >~ fre?b,
where f]g = <f, cp@u, k > 1. Along with the self-adjointness, we obtain the following fTormula,

called the spectral representation of Az (see e.g. |25, Section 1.3]):

—ALf =Y N fiers
k>1
) ()
D (AZ) —{fer?(ow: Y (Agfg) <

k>1

The spectral representation provides a direct way to introduce the associated semigroup. Define
for f € L2([0,1], 1)

THf =Y e W, t=o. (8)
k>1
Then, (Ttb) 50 is a strongly continuous semigroup on L?([0,1], 1) and its infinitesimal generator

is Al (see e.g. [25, Lemma 1.3.2]).



3 Generalized Hyperbolic Functions and the Resolvent Operator

Let b € {N, D} and let i be defined as before. In this section we develop a useful representation
for the resolvent density of AZ.
Let A > 0. We consider the initial value problem

{Augi)\% o 9)
9(0)=1, ¢'(0)=0

on L?([0,1], ). The problem (9) possesses a unique solution (see [14, Lemma 5.1]), which we
denote by g{‘ n- Further, under the initial conditions

9(1)=1, ¢(1)=0, (10)

9(0)=0, ¢'(0)=1, (11)
and

9(1)=0, ¢(1)=1, (12)

respectively, the above eigenvalue problems also possess unique solutions (see [14, Remark 5.2|),
and we denote them by gg‘ N gf p and g%‘ p» respectively. The resolvent density is then given as
follows.

Lemma 3.1: [1/, Theorem 6.1] Let A > 0. The resolvent operator R} = (X — AZ)*l is
well-defined and for all f € L*([0,1], ) we have

1
R f() = / Ry f)duly), =< (0,1,
0

where the resolvent densities are given by

A A
91,]\7(55)92,]\7(9)
px (@,y) = px (y,2) = =——7——, @y e[0.1], z<y,
(91,1\1) (1)
A A
91.0(®) 95 p(Y)
p)[\)(x’y):p)\D<y7x) = B ) x,ye[O,l], r<y.
97 p(1)

It is well-known that if u = A!, the solutions to (9) and (11) are given by

g7 n(2) = cosh (ﬁx) and g7 p(z) = \% sinh (ﬁx) , x €[0,1],

respectively. We generalize the notion of hyperbolic functions by solving (9) and (11) for an
arbitrary measure p with the given initial conditions. To this end, we introduce generalized
monomials as in [2].

Definition 3.2: For z € [0,1] we set po(z) = qo(z) =1 and for k € N
fox pr—1(t)du(t), if k is odd,
Jo pe—1(t)dt, if k is even,

t)dt, if k is odd,
Iy au—1(t)du(t), if k is even.



We note that for z € [0,1] and k& > 0,

k l’k

x
Pokt1(x) < pax(z) < PR Qrt1(x) < pop(x) < i (13)
(see [19, Lemma 2.3]).

Definition 3.3: We define for x € [0,1], z € R

o0
sinh, ( g 22kt q2k+1 ), cosh,( g z%pgk
k=0

By (13) for all z € R
||lsinh. ||, < 2622, |lcosh. ||, < e (14)

Example 3.4: If = \', we have qx(x) = ””k—];, k > 0. It follows that in this case

o0 p2k+1
sinh, ( Z 22kt ; = sinh(zz)
o @k

and analogously cosh(z) = cosh(zx).

Proposition 3.5: Let A > 0. Then, for z € [0, 1], we have

1
Phale) =cosh 5(0). ahple) = sinh (),
1 .
gé\yN(a;) :coshﬁ(l — ), gé\yD(:z:) =— \ﬁ smhﬁ(l — ).

Proof. The assertion for gi‘, p was proven in [19, Lemma 2.3]. The proof for gf" N works analo-
gously. We verify the assertion for gé\ ~- Let x € [0,1]. Then,

coshfl—x Z)\pgnl—m
-z py

=1+ Z )\n/ / pan—2(t)dp(t)dy
n=1 0 0
> -z ,l

=1+> )\n/ / pan—2(1 — t)dpu(t)dy
n=1 0 1=y
00 1 py

—1->o | /O Pan—a(l — t)du(t)dy
n=1 x

00 1y
=1-> At Pon(1 = t)dp(t)dy.
n=0 z J0

Due to estimate (13) we can use the dominated convergence theorem and obtain

cosh (1 —2) =1— A //ka%l—t)du()d

—1-a /x /0 cosh5(1 — £)du(t)dy.



We set f(z) = cosh (1 —x), € [0,1] and get

1 ry
fa)=1-2A / /0 F(O)du(t)dy, = € (0,1

and in particular

1 ry
£(0)=1- /0 /O F(t)du(t)dy.

It follows that, for x € [0, 1],

f(2) — £(0) = A /0 ’ /0 " () dult)dy.

The latter equation can be written as A, f = Af. It remains to verify the initial conditions.
Obviously, f(1) = cosh (0) = 1. Using (13) again, we have

f’(l) = — Z )\annfl(O) = 0.
n=1

The proof for gg‘ p follows using the same ideas. O
This leads to the following representation for the resolvent density:

Corollary 3.6: Let A > 0. We have for x,y € [0,1], x <y,

N =¥ — (cost’ (1)) cosh h (1
o (2.y) = pY (g, @) = (cosh!5(1))  cosh,3(x) cosh,5(1 — ),

PRz, y) = pPy, ) = \% (sinh\5(1)>71 sinh /5 (z) sinh (1 —y).

4 The Restricted Semigroup

Let b € {N, D} and let p be defined as before. It is well-known that AZ is the generator of a

strongly continuous Markovian semigroup (77),., of contractions on L*([0, 1], ).

t>0
Definition 4.1: For (t,z,y) € (0,00) x [0,1] x [0, 1], we define

[e.e]

_ o
pe,y) =Y e ol (x)oh(y)-
k=1

This is called the heat kernel of AZ.

The heat kernel is the integral kernel of the semigroup (Ttb) >0" That is, for ¢ > 0 and
f € L?([0,1], 1), we can write

1
Ttbf(w)Z/ Pz, y) f(y)duly), x€[0,1].
0

In this section, we restrict these semigroups to appropriate spaces of equivalence classes of con-
tinuous functions.



Definition 4.2: (i) We define (C|0, 1])5 as the set of all L?([0, 1], u)-equivalence classes pos-
sessing a continuous representative, formally

(Cl0, 1))} = {f € L*([0,1], ) : f possesses a continuous representative} .

(i) We further define (C]0, 1])5 as the set of all L*([0, 1], u)-equivalence classes possessing a
continuous representative that satisfies Dirichlet boundary conditions, formally

(Clo,1]);, ={f € L*([0,1], ) : f possesses a continuous representative f
such that f(0) =0}.

The space (C[0,1])}, is a Banach space with the norm 1Nl ey, = H Flsupp() H . Note that
I’ 143 o0

Hf”(c[og]);; = Hﬂ)oo’

where fis the continuous representative of f that is affine on all intervals in [0, 1] \ supp(p). To
simplify the notation, we henceforth write || f{|o for [|fl[(c(o1 e

Let u = > 5 ubd € L*([0,1],) and let t > 0. From (fk)k>1 € I?(N) it follows that
((Az)ne_)‘ztﬂ;) o € I2(N) and thus by (7) and (8)

(—an) T =37 (3)" e Mtufh € L2(0. 11,10 (15)
k>1

and especially TPu € D (AZ). Hence, the following inclusion holds:
7! ((Cl0,1])}) < (Cl0,1])

This motivates the definition of the restricted semigroup (Ttb) >0 = ((Tb) > , which is
= (co,1pb, >0
for t > 0 defined by

Ttb : (C[Oa 1])2 - (C[Oa 1])27 T;tbf = T;tbf

When evaluating an element of (C0, 1]) pointwise, we always evaluate the representative that
is affine on all intervals in [0, 1] \supp(,u)

The goal of this section is to show that (Ttb) +>o again defines a strongly continuous contraction
semigroup. It is obvious that the semigroup property holds. Note that by the Markov property
of (T})s0 for g € (C[0, 1))

1 1
pi’(w,y)g(y)du(y)‘ <19l ‘/ pi’(:v,y)du(y)‘ <gllo > € [0,1].
0 0

‘Ttbg(x)‘ =

Hence, (Ttb)tzo is a semigroup of contractions. It remains to prove the strong continuity. To this
end, we need some preparations. We write £(f, f) == £(f) and || f||% == fo (x)2du(x)

Lemma 4.3: If f € F, then

1flloe < EHZ+ 11,



Proof. Let f € F. Then, by the Cauchy-Schwarz inequality for all =,y € [0, 1]

Yy / Y / 2 % 1 1 1
[ r@i < ([0 @dz) e - uld =e)i e - ult.
It follows by the reversed triangle inequality and by |z —y| < 1

1
Lf@)] < [fw)] +E(f)z.
Further, by integrating of y w.r.t. pu,

[f (@) = fy)| =

1 1
uun</\ﬂwmmw+ewﬁ
0
and finally by the Cauchy-Schwarz inequality
1f@)] < [If], + E(f)2.

Lemma 4.4: Let f € (C[0,1]),. Then, lim; o ||TP f — f|| = 0.

Proof. We follow the proof of [28, Proposition 5.2.6]. Let f € F. By Lemma 4.3 and [28, Lemma
B.2.4|,

lim HTtbf _ fHoo <limé& (Tff - f); + HTtbf - fHH

50 T t—=0
1
<t (o (221 -5) [atr =g )
= 0.

By the fact that F is dense in (C[0,1])7 and that, for ¢t > 0, T} is continuous on (C[0, 1])7, we
obtain the assertion for b = N. To verify the case b = D, we prove that F is dense in (C]0, 1})5.
Let f € (C]0, 1])5. Then, by the density of F in (C[0, 1])5, there exists a sequence (fy,),,cny With
fn € F for each n € N such that

|f = falloo = 0, n— o0. (16)
We define for n € N
fro(@) = fulz) — fu(0) — 2(fu(1) — fn(0)), = € [0,1],
which is an element of Fy. Further, we have that
Jo(@) = f(z) = £(0) —=(f(1) — £(0)) = f(z), = €0,1],

since f satisfies Dirichlet boundary conditions. This along with (16) implies for n € N

Tim [ fuo — fll

= T fuo — foll

< lim S (@) = f@)] + [fn(0) = FO)] + 2 (fa(1) = fn(0) = (f(1) = F(0)))]

=0.

The main result of this section now follows immediately.

Corollary 4.5: (Ttb) is a strongly continuous contraction semigroup on (C|0, 1})2

>0

10



5 Convergence results

5.1 Strong Resolvent Convergence

Let p be defined as before and let F' be the distribution function of y. Further, let (n),cy
satisfy Assumption 1.1 and let F}, be the distribution function of u, for n € N.

First, we give convergence results for the generalized hyperbolic functions introduced in Sec-
tion 3 using results from [20]. Let p, qx, k € N be defined by p and pg p, qin, k£ € N be defined
by py, for n € N.

Lemma 5.1: /20, Lemma 3.1] For x € [0,1] and k,n € N we have

F — F,| =* F —F, ="

|gor () — qon ()] < 2’(1@»—”'1';7’ P2k () = P2in ()] < QH(kj'l';T’
|F ~ Fullo o* IF — Fulloo o*

31:1(2) = arr1a@)] < 2GR P (@)~ paceal@)] < 2R

Remark 5.2: Since the distribution function of p is continuous, weak measure convergence
implies uniform convergence of the corresponding distribution functions (see [5, Section 8.1|),
which is the condition in [20, Lemma 3.1].

For z € R let cosh;, sinh, be defined by p and cosh, ,, sinh, , be defined by pu,, for n € N. We
obtain a result for the generalized hyperbolic functions, comparable to that for the trigonometric
functions in [20].

Lemma 5.3: Let z € R. Then,
|cosh, —cosh, || < 2:2¢%" |F = Full o
Hcosh —coshan < <22 +2z4ez2) |F = Full&
Isinh —sinhy ||, < 2% ||F — Byl

Proof. Let x € [0,1] and n € N. Then,
|cosh, (z) — cosh, ,(x)] < Z Ipok () — por.n(2)] 22
2 F F,
< Z | ”oo 2k

_ Z QHF—FnHoo L 2h+2

k!
k=0

— 2227 |F - F,| .
Further, note that

cosh’ Z Par—1(

and
Ip1(2) — prn(@)] = |u([0,2]) — pn([0,2])] < | — Fallo

11



With that,

|coshl, () — cosh’ ,, Z |P2k—1(2) — Por—1.n(z)] 2%

< (z +2Z )HF Fullo
< <z + 22%e" )||F—Fn\|oo

Finally,
o0
i (2) ()] € 3 ok ) 1) 2

Z 2P =Pl

2||F—FnH 2%k+3
< Z—k! =z

k=0
< 2235 |F — Fyll. ,

O

We turn to the main result of this section. For b € {N, D} and X > 0, let Rg be defined by p
and le\’n be defined by p,. We assume supp(u) C supp(py,) for all n € N. Then, the mapping

T+ (C[0,1))5, = (C[0, 1)), > f (17)

defines an embedding, where f € (C]0, 1])Zn denotes the L2([0, 1], i, )-equivalence class of the
representative of f € (C|[0, 1])2 that is affine on each interval I C supp(uy) \ supp(p).

Theorem 5.4: Let A > 0. Then, for all f € (C|0, 1])fu

hm HR/\ WTnf — 7rnR)\fH

Proof. We simplify the notation in this proof by omitting all embeddings. If we evaluate on
supp(pn) \ supp(p), we always evaluate the representative that is affine on each interval I C
supp(pn) \ supp(u). First, we consider the case b= N.Let A > 0, n € N, z,y € [0,1] with z < y.
Using the triangle inequality,

|pN (2, y) — P\ (@, 9)]
-1

-1
< (cosh'\ﬂ(l)) — (coshl\ﬁﬁn(l)> ’COShﬁ(JJ) cosh (1 - y)’
) -1 (18)
+ ‘COShﬁ(l‘) — coshﬁ’n(x)‘ (coshﬁn(l)) cosh (1 - y)‘
-1
+ ‘coshﬁ(l —y) —cosh 5 (1 - y)‘ (cosh/\&n(l)> cosh /5 . (2]
We have
cosh' ZA Pan—1(1) > Ap1(1) = A (19)
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and similarly cosh’\&n(l) > X. Applying this along with Lemma 5.3, we get

)

cosh (1) cosh’ ( )
cosh ( )cosh Ny
<(>\+2>\2 AiF FH

(cosh’\a(l)) o (cosh’\&’n(l)> o

and thus with (14)

(62)‘ + 2)\63’\) |F — Foll o

(cosh'\5(1)>_1 — (cosh’\ﬁﬁn(l)>_1 ’coshﬁ(x) cosh /5(1 — y)’ <

For the second term on the right-hand side of inequality (18), we calculate

A

-1
(cosh’\ﬂ (1)> cosh /5(1 — y)‘ < 2P ||F — Fol

)

‘coshﬁ(x) - coshﬁ’n(a:)‘

Treating the third term analogously and using the above calculations in (18) yields

e 120N |F - F,
lim max ‘pA (x,y) — pﬁ\\{n(az,y)‘ < lim ( ) lloc

n—00 z€[0,1] n—o0 A

+4e* M ||F — Fy |,

: 1 A 2X
:nlgrolo </\—|—2e —|—4)e |F — Full«

=0.

Further, by (14) and (19),

‘/01 PN (@, y) f(y)dp(y) — /01 pﬁv(x,y)f(y)dun(y)‘

~1 1 1
< (cosh/\a(l)) coshﬁ(x) ; coshﬁ(l — ) f(y)du(y) _/o Coshﬁ(l — ) f () dpn(y)
er ot 1
=% /0 cosh 5 (1 —y) f(y)du(y) —/0 cosh, /x(1 — y)f(y)dun(y)‘ :

Due to weak measure convergence,
1 1
i [ cosh (1 = ) )dal) = [ cosh 51 =) w)dn(s) = 0

n—oo 0

and consequently,

lim max
n—00 z€[0,1]

1 1
[ ¥ @nimas) - [ s o
We get the same result for x > y and obtain

lim max ‘R)\nf(:n) - Rﬁ\vf(x)}

n—00 z£[0,1]

< lim max

n—00 z£[0,1]

1 1
/piv(x,y)f(y)du(y)—/ piv(fv,y)f(y)dun(y)‘
0 0

+ lim max
n—00 ££[0,1]

=0.

1
| 0w = st £,

13



Now, let b = D. Again using the triangle inequality, for n € N, z,y € [0,1], z < y,
D D
X (2, y) — pxn (@, y))|

< \%( (smhﬁ(n)_l ~ (simh5,(1)

+ ‘Sinhﬁ(m) - Sinhﬁm(z)}

-1

sinh /5(z)sinh (1 — y)‘

(sinhﬁyn(l))

1
sinh (1 — y)’

+ [sinh 5(1 —y) —sinh /5 (1 - y)’ (sinh’\a’n(l))_1 sinh /5, (2) >
We have
sinh /5 (1) = iv%qgnﬂu) > Vg (1) = VA
and thus "

(sinh (1)~ (sinhﬁm(l))_l’ < VA | F = Fol. .

Arguing in the same way as before, we get

. . 2
lim max ‘pAD(af,y) - pgn(az, y)| < nlgn;o W\F)\eA |F — Fpll Ae*

n—o00 x€[0,1]
: 4 13 3 A
taln eIl

— lim (zeA + 4) AP |F — Bl

—0.
Further,
1 1
max /0 pX (,y) f(y)dp(y) — /0 Py (:v,y)f(y)dun(y)‘

< max
z€(0,1]

(\F)\sinhﬁ(l)>_1 sinh /5 () ‘/01 sinh 5(1 —y) f(y)du(y)

1
_/0 sinh_ /5 (1 — y)f(y)dun(y)‘

-1

< [(VAsinh 5(1) sinh_/5 1Sinhﬁ(1 —y)f(Y)du(y)
(asis00) | fons], |

1
_/0 sinh (1 — y)f(y)dun(@/)’-

Due to the weak measure convergence, this goes to zero as n tends to co. Deducing the same
result for £ > y and combining the above inequalities,

lim max ‘Rgnf(m) —RADf(SL')‘

n—00 z€(0,1]

< lim max
n—00 z€[0,1]

1 1
| Reprwine - [ pﬁ’u,y)f(y)dun(y)'
0 0

+ lim max
n—00 z€[0,1]

=0.

1
/0 (pX (@,9) = pXn (@) f(y)dpm
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Remark 5.5: We made the assumption supp(u) C supp(p,) for all n € N only to simplify
the proofs. Note that our results can be formulated and proven in a very similar way if this
condition is not satisfied. If, for example, supp(px) 2 supp(uy,) for all n € N, define m, :
(clo, 1])2 — (0, 1])Zn, J 7 Flsupp(un)- This is again a bounded linear transformation between
Banach spaces and we can follow the same steps as before.

5.2 Strong Semigroup Convergence

Let p be defined as before and let A > 0. Analogously to the restricted semigroup, we define
the restricted resolvent operator by

Ry (Cl0,1))) = (Clo, 1))y, RY f = RYf,
RY : (C0,1])) = (Clo, 1))y, RYf =Ry f.
Further, we define the operators Afj and Aﬁ) by
AVf=AYf, DAY):={feD(A])):A)fe(C0.1))},
APf=A0f D(A])={feD(A]):Alfe(Cl0,1]);},
which are called the part of the operator AIJLV in CI0, 1])5 and the part of the operator Ag in

o, 1])5 , respectively. The following Lemma shows how the restricted semigroup, the restricted
resolvent and the part of the operator are connected. For that, let b € {N, D}.

Lemma 5.6: (i) The infinitesimal generator of the strongly continuous contraction semigroup
(Ttb)tzo is AZ'
(i1) Rg is the resolvent of AZ.
Proof. Forall f € L?([0,1], ), we have || f|| ., > If1l,,, therefore the inclusion map i : (C[0, 1])Z —
L2([0,1], 1), f + f is continuous. Moreover, (T})
semigroup on (C|0, 1])Z and (C]0, 1])2 is (Ttb)t>0
apply [10, I1.2.3 Proposition| to verify (i). We turn to part (ii). Let A > 0 and let ]?ig be the
resolvent of AZ' By part (i) and [10, 1.1.10 Theorem)], this operator is well-defined and given by

i~ defines a strongly continuous contraction

-invariant (see Corollary 4.5). We thus can

RYf = /OOO e MTlfds, f € (C[0,1))5.

Further, by definition of (Tf’) >0 and Rf’\,
R f=RYf= / e T fds = / e Tl fds, f € (C[0,1))5.
0 0
It follows élj\ = R} on (C[0, 1])Z O

We are now able to establish strong semigroup convergence. To this end, let (i), oy satisfy
Assumption 1.1 and we assume supp(u) C supp(uy,) for all n € N. For b € {N, D} let (1)

be defined by pu, (Ttbn)
and (Tgn)

t>0

>0 be defined by u, and analogously the restricted semigroups (Ttb)

be defined by p and u,, respectively.

>0
>0
Proof of Theorem 1.2. For n € N, m,, is a bounded linear transformation between Banach spaces.
Further, (T tb) >0 and (Ttbn) >0 ME N are strongly continuous contraction semigroups on their

respective spaces (see Corollary 4.5). Hence, due to the first Trotter-Kato approximation the-
orem (see |11, Theorem 1.6.1, Problem 1.8.13] for a suitable version), the assertion is a direct
consequence of Theorem 5.4. O
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Remark 5.7: As a further direct consequence of the Trotter-Kato approximation theorem,
we obtain the graph norm convergence. That is, for f € D (AZ) there exists (fn)nen with
fne€D (Azn) such that for n € N

=0.

(e 9]

WnAZf - Abnfn

7S = falloo + |

lim
n—oo

Strong semigroup convergence can be interpreted as convergence of solutions to heat equations.
The connection is given as follows (see [10, Proposition VI.6.2|).

Lemma 5.8: Let A be the generator of a strongly continuous semigroup (Si);~, on a Banach
space X. Then, for each f € D(A) the abstract heat equation

ou
5 (1) =Au(t), t>0 (21)
u(0) = f

has a unique classical solution on X given by
u:[0,00) = X, t+— Sif,

meaning that u is continuously differentiable with respect to X, u(t) € D (A) and (21) holds for
allt > 0.

Let T'>0and f €D (AZ). Theorem 1.2 implies that the classical solution to

A, _
(0 = Al un(t),
Un(0) = mp f

converges uniformly for (¢,x) € [0,7] x [0,1] to the classical solution to

ou
o ()

u(0)

Ajult),

as n — oo, assuming that m,f € D (Afm). However, the assumption f € D (AZ) and 7, f €
D (Azn) for all n € N is very restrictive, as the following example illustrates.

Example 5.9: Let u be a measure satisfying our conditions such that supp(u) is a Al-zero set
and assume that supp(u,) = [0, 1] for all n € N. Further, let f € D (AZ) Then, on any interval
I C[0,1] \ supp(p), mf is affine. Now, if we assume that m,f € D (Azn), then Aznf(x) =0,
xz € I and thus Aznf =0 € (C]o, 1])Zn. If b = D, we obtain 7, f = 0 € (C]0, 1])5n and thus
f=0€e(C[0,1])) and if b= N, (mf)' = 0 € C[0,1] and thus f' =0 € (C[0,1])}).

This motivates the concept of a mild solution (see [10, Definition 11.6.3]).

Definition 5.10: Let X be a Banach space, A : D(A) C X — X and f € X. We call a map
u:[0,00) = X, t — u(t) a mild solution to the abstract heat equation

du
= (B) = Au(t), t 20, (22)
u(0) = f

if fg u(s)ds € D(A) and u(t) = Afot u(s)ds + f for allt > 0.
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Using this solution concept, we can establish the desired convergence for any initial condition
in the appropriate space.

Theorem 5.11: Let f € (C]0, 1])Z and let (pn)nen satisfy Assumption 1.1. Further, let {u(t) :
t > 0} be the unique mild solution to

du -
—(t) = Alu(t), t >
dt( ) y,u( ), t=>0, (23)
u(0) = f
and, forn > 1 ,let {u,(t) : t > 0} be the unique mild solution to
du -
—2(t) = Ab wu,(t), t >0
dt ( ) ;,Lnu ( )7 - i (24)
un(0) = m, f.
Then,
lim [m1(t) = wa(8)], = 0. (25)

uniformly on bounded time intervals.

Proof. Since AZ is the generator of a strongly continuous semigroup, it follows by |10, Proposition
11.6.4] that ¢ — T? f is the unique mild solution to (23). The same argument shows that 7, tljnﬂn f
is the unique mild solution to (24) for n € N. Then, (25) is a direct consequence of Theorem
1.2. O

6 Applications

Example 6.1: As a first application, we consider a non-atomic Borel probability measure p on
[0, 1] such that 0,1 € supp(u) and supp(p) # [0,1]. We define for € € (0,1) the approximating
probability measure p. by

p+ et
He = .
1+¢

It is elementary that u. converges weakly to p as € — 0 and Theorem 5.11 is applicable. Let
be {N,D} and f € (C]0, 1})2. Then, the unique solution {uc(t) : t > 0} to

dus .«

where 7. : (C|0, 1])2 — (Clo, 1})25 is an embedding as previously defined (see (17)), converges
to the unique solution {u(t) : ¢t > 0} to

with respect to the uniform norm as € tends to zero.

In the previous example, i could be chosen to be an absolutely continuous measure, for example

A , or to be a singular measure, as a self-similar measure on the Cantor set. Furthermore,

[o-410[3)

it is not required that the approximating measures have full support.
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Figure 1: Approximating Cantor measures of levels n = 0,1, 2.

Example 6.2: Let wy, wy € (0,1) such that wy +we = 1 and let p be the unique invariant Borel

probabiliy measure on [0, 1] given by the IFS consisting of Si(z) = § and Sa(z) = %+ £,z €[0,1]
and weights wy and wo, i.e. p is a so-called Cantor measure. Following [20], for n € N we define

the approximating Cantor measures of level n by

pn(B)=3" > Al [[ws. BeB(0,1),

ze{1,2}n i=1

where I, == (S, 0...053,) ([0,1]), x € {1,2}". The approximating Cantor measures of levels
n = 0,1,2 are illustrated in Figure 1. We denote the distribution function of p by F' and the
distribution function of p, by F, for n € N. Then, ||F — F,||,, — 0 (see [20, Proposition
4.2]) as well as supp(u) C supp(py) for n € N and Theorem 5.11 can be applied. Hence, for
f e (Clo, 1])2, the unique solution {u,(t) : ¢t > 0} to

dun _Ab
W(t) = A}, un(t),
un(0) = mp f
converges to the unique solution {u(t) : ¢ > 0} to
du ~b
W) = Abun),
u(0) = f

with respect to the uniform norm as n tends to infinity.

Finally, we connect both applications.

Example 6.3: Let ¢ > 0, n € N and let p, pp, {u(t) : t > 0} and {u,(t) : t > 0} be defined as
in Example 6.2. We define i, . by

e
Hne = 1+

)

i.e. analogously to Example 6.1, and {u,.(t) : t > 0} to be the solution to

duy, ¢
dt
Un,a(o) = ﬂ-n,afv
where m, . is an embedding as previously defined. Further, let ¢ € [0,00) and § > 0. By Example

6.2, there exists ng € N such that for all n > ng we have

0
-

(t) = AV upc(t),

[u(t) = un(t)ll oo <
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By Example 6.1, for each n > ng there exists €, > 0 such that for all ¢ < g, we have

J

Jun(t) — e (®)] < 5.

Hence, for all n > ng, € < g, we have

”u(t) - un,e(t)Hoo < 4.

Thus the heat in a rod with mass distribution given by a Cantor measure diffuses approximately
like the heat on a rod possessing a strictly positive mass density which is small off the Cantor
set.

7 Directions for Further Research

Remark 7.1: Consider the heat equation (2) with initial value given by the Delta distribution
dy : g g(y) for y € supp(p). Then, the heat kernel

=> e Metb (2)b(y), () € [0,00) x (0,1]

k>1

solves the equation in the distributional sense, where {)\b, k> 1} are the ascending ordered
eigenvalues and {¢?, k > 1} the L([0, 1], u)-normed eigenfunctions of AZ on Ls([0, 1], ). The
heat kernel is of particular importance in the context of the associated Markov process (see the
remark below) and stochastic partial differential equations (see [8,9]). It is an open question
whether weak measure convergence implies pointwise convergence of the corresponding heat
kernels for each (t,z,y) € (0,00) x [0, 1]2.

Remark 7.2: The operator AZ on L ([0, 1], ) is the infinitesimal generator of a Markov process,
called a quasi-diffusion (see, e.g., [30-33|). Convergence of semigroups raises the question of
whether the associated Markov processes also converge weakly. If p,, — p, our results imply that
for each f € (C|0, 1])2, t € [0,00) and each starting point = € [0, 1]

E[f (xh0)] = Tt @) > T f@) =E[£ (X*®)], n— o0,

where X? is associated to Az and X! is associated to Azn. We denote by E the expectation with
respect to the law of the appropriate process. This could be extended to a proof of convergence
of all finite-dimensional distributions, and tightness would then also be required in order to
establish that X2 — X° weakly in the Skorokhod space of cadlag functions.

Remark 7.3: Let u be of full support. Consider the analogue of the wave equation

d*u b
W(t) = Auu(t), t €[0,00)

on L?([0,1], ). This hyperbolic equation describes the motion of a vibrating string with mass
distribution @ such that, if it is deflected, a tension force drives it back towards its state of
equilibrium. If p were not of full support, the string would have massless parts. It is not clear
how to interpret massless parts of a string. We suppose that the motion of such a string behaves
approximately like the motion of a string with very little mass on these gaps, analogous to our
results about the diffusion of heat.

Assume that u(0) € D (AZ) and, for reasons of simplicity, that the initial velocity vanishes.
Then, there exists a unique solution on Ls([0,1], ) given by u(t) = C(t)u(0), t > 0, where

19



{C(t) : t > 0} denotes the strongly continuous cosine family of AZ (see, e.g., [42]). We have
already shown that p, — p implies strong resolvent convergence of the corresponding opera-
tors restricted to continuous functions. It is well-known that this implies convergence of the
corresponding cosine families {Cy,(¢) : ¢ > 0}, which implies convergence of the solutions to the
corresponding wave equation, provided that there exists M > 0 and w > 0 such that for all
n>1,t>0|C(t)] < Me¥l" (see [26]). Proving that the restriction of C(t) to (C|0, 1])Z is the
cosine family of AZ (and analogously for u,) and verifying the above estimate would be a way
to establish the desired convergence of solutions to the wave equation.

Remark 7.4: The Krein-Feller operator AZ can also be defined with respect to a measure p with
atoms, see e.g. [29] for a model in this direction. If p is atomless, the weak convergence implies
uniform convergence of the corresponding distribution functions, which we have used to prove
convergence of the corresponding generalized monomials (see Remark 5.2). For a measure with
atoms, it would be required to find such convergence results without this uniform convergence
property. Further, a representation of the resolvent density needs to be developed (see Lemma
3.1 for atomless measures).
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