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Abstract

We consider the heat equation defined by a generalized measure theoretic Laplacian on
[0, 1]. This equation describes heat diffusion in a bar such that the mass distribution of
the bar is given by a non-atomic Borel probabiliy measure µ, where we do not assume the
existence of a strictly positive mass density. We show that weak measure convergence implies
convergence of the corresponding generalized Laplacians in the strong resolvent sense. We
prove that strong semigroup convergence with respect to the uniform norm follows, which
implies uniform convergence of solutions to the corresponding heat equations. This provides,
for example, an interpretation for the mathematical model of heat diffusion on a bar with
gaps in that the solution to the corresponding heat equation behaves approximately like the
heat flow on a bar with sufficiently small mass on these gaps.

1 Introduction

Let µ be a non-atomic Borel probability measure on [0, 1] such that 0, 1 ∈ supp(µ), L2([0, 1], µ)

be the space of measurable functions f such that
∫ b
a f

2dµ < ∞ and L2([0, 1], µ) be the corre-
sponding Hilbert space of equivalence classes with inner product 〈f, g〉µ :=

∫ 1
0 fgdµ. We define

D2
µ :=

{
f ∈ C1([0, 1]) : ∃

(
f ′
)µ ∈ L2([0, 1], µ) : f ′(x) = f ′(0) +

∫ x

0

(
f ′
)µ

(y)dµ(y), x ∈ [0, 1]
}
.

The Krein-Feller operator with respect to µ is given as

∆µ : D2
µ ⊆ L2([0, 1], µ)→ L2([0, 1], µ), f 7→

(
f ′
)µ
.

This definition involves the derivative with respect to µ. If a function f has a representation
given by

f(x) =

∫ x

0

d

dµ
f(x)dµ(x), x ∈ [0, 1],

then d
dµf is called the µ-derivative of f . Consequently, in the above definition, (f ′)µ is the

µ-derivative of f ′.
This operator has been widely studied, for example with an emphasis on addressing questions

of the spectral asymptotics and further analytical properties [3, 4, 12–21, 23, 24, 35, 36, 38, 39],
diffusion processes [30–32], wave equations [6] and higher-dimensional generalizations [22,37,41].
In order to connect these operators with diffusion equations from a physical point of view,

we follow for example [27, Section 1.2] and consider a metallic rod of constant cross-sectional
area oriented in the x-direction occupying a region from x = 0 to x = 1 such that all thermal
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quantities are constant across a section. We can thus consider the rod as one-dimensional. We
investigate the conduction of heat energy on a segment from x = a to x = b. Let the temperature
at the point x ∈ [a, b] and time t ∈ [0,∞) be denoted by u(t, x) and the total thermal energy in
the segment at time t be denoted by ea,b(t). It is well-known that

ea,b(t) =

∫ b

a
u(t, x)ρ(x)dx,

assuming that the rod possesses a mass density ρ : [0, 1] → (0,∞). However, if we denote the
mass distribution of the rod by µ, we can write

ea,b(t) =

∫ b

a
u(t, x)dµ(x).

Hence, we can define the total heat energy even if µ has no density. The total heat energy
changes only if heat energy flows through the boundaries x = a and x = b. We deduce for the
rate of change of heat energy

d

dt
ea,b(t) = φ(t, a)− φ(t, b), (1)

where φ(t, x) denotes the heat flux density, which gives the rate of thermal energy flowing through
x at time t to the right. Assuming sufficient regularity, we can rewrite (1) as∫ b

a

∂

∂t
u(t, x)dµ(x) = −

∫ b

a

d

dµ
φt(x)dµ(x),

where φt(x) := φ(t, x) and the µ-derivative was defined earlier. With ut(x) := u(x, t), Fourier’s
law of heat conduction φ = −∂u

∂x gives∫ b

a

∂

∂t
u(t, x)dµ(x) =

∫ b

a

d

dµ

d

dx
ut(x)dµ(x).

Since this is valid for all a, b ∈ [0, 1], a < b, it follows for t ∈ [0,∞) and µ-almost all x ∈ [0, 1]

∂

∂t
u(t, x) =

d

dµ

d

dx
ut(x).

Applying the definition of the Krein-Feller operator leads to the generalized heat equation

∂u

∂t
= ∆µut, t ∈ [0,∞) (2)

with Dirichlet boundary conditions u(t, 0) = u(t, 1) = 0 for all t ≥ 0 if we assume that the temper-
ature vanishes at the boundaries or with Neumann boundary conditions ∂u

∂x(t, 0) = ∂u
∂x(t, 1) = 0

if the boundaries are assumed to be perfectly insulated. This provides a physical motivation for
a mass distribution having full support even if it possesses no Lebesgue density. However, it is
still not clear how to interpret the equation if the support of the mass distribution is not the
whole interval, in particular for singular measures, such as measures on the Cantor set.
The problem then is to describe heat flow on a rod with massless parts. Krein-Feller operators

defined by measures on the classical Cantor set or, more generally, Cantor-like sets with gaps
have been extensively studied in recent years (see e.g. [2, 17–20]). In this paper, we give an
interpretation of a solution to (2) in the case where µ is not of full support. We approximate the
solution by a sequence of solutions to heat equations defined by µn for n ∈ N such that µn is of
full support and converges weakly to µ for n→∞.
To this end, let b ∈ {N,D} represent the boundary condition, where N denotes Neumann and

D Dirichlet boundary conditions and we give our basic assumption.
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Assumption 1.1: Let (µn)n∈N be a sequence of non-atomic Borel probability measures on [0, 1]
such that 0, 1 ∈ supp(µn) and µn ⇀ µ,n→∞, where ⇀ denotes weak measure convergence.

It is well-known that ∆b
µ is a non-positive self-adjoint operator (see, e.g., [14]) and thus the

generator of a strongly continuous semigroup
(
T bt
)
t≥0 (see, e.g., [25, Lemma 1.3.2]). If u0 ∈

L2([0, 1], µ), then the unique mild solution to the initial value problem

∂u

∂t
(t) = ∆b

µu(t), t ∈ [0,∞),

u(0) = u0

(3)

is given by u(t) = T bt u0 (see, e.g., [10, Proposition II.6.4]). This motivates the investigation of
strong semigroup convergence. However, for different measures, the corresponding semigroups
are defined on different spaces. For the special case supp(µ) = supp(µn) = [0, 1] for all n ∈ N, the
results in [7] can be applied to obtain strong semigroup convergence on the space of continuous
functions on [0, 1]. To formulate a strong semigroup convergence result without that assumption,
we restrict the semigroup

(
TNt
)
t≥0 associated to ∆N

µ on L2([0, 1], µ) to the subspace of continuous
functions, denoted by (C[0, 1])Nµ , which is a Banach space with the uniform norm. The semigroup(
TDt
)
t≥0 is restricted to the Banach space of continuous functions satisfying Dirichlet boundary

conditions, denoted by (C[0, 1])Dµ . We show that the restricted semigroup, which we denote by(
T̄ bt
)
t≥0, is, again, a strongly continuous contraction semigroup and the infinitesimal generator

is given by

∆̄b
µf := ∆b

µf, D
(

∆̄b
µ

)
:=
{
f ∈ D

(
∆b
µ

)
: ∆b

µf ∈ (C[0, 1])bµ

}
.

Moreover, if we assume that supp(µ) ⊆ supp(µn), the space (C[0, 1])bµ can be continuously embed-
ded in (C[0, 1])bµn , where we denote the embedding by πn. Due to the Trotter-Kato approximation
theorem (see e.g. [11, Theorem I.6.1]), the strong semigroup convergence is equivalent to strong
resolvent convergence and strong resolvent convergence is what we will establish. More precisely,
let f ∈ (C[0, 1])bµ, λ > 0 and n ∈ N. We define R̄bλ :=

(
λ− ∆̄b

µ

)−1 and R̄bλ,n :=
(
λ− ∆̄b

µn

)−1 and
prove ∥∥∥πnR̄bλf − R̄bλ,nπnf∥∥∥∞ → 0, n→∞. (4)

The main tool for proving (4) is the generalization of the hyperbolic functions sinh and cosh,
defined by generalizing the series

sinh(zx) =

∞∑
k=0

z2k+1 x2k+1

(2k + 1)!
, cosh(zx) =

∞∑
k=0

z2k
x2k

(2k)!
.

We replace xk

k! by generalized monomials defined by a measure µ. This extends the theory of
measure theoretic functions, developed for trigonometric functions in [2]. Then, we show that
the resolvent density of the operator ∆b

µ is a product of such generalized hyperbolic functions.
This leads to strong resolvent convergence for our sequence by proving convergence of these
generalized hyperbolic functions. As a consequence we obtain our main result.

Theorem 1.2: Let f ∈ (C[0, 1])bµ and µn be a sequence of measures satisfying Assumption 1.1.
Then, for all t ≥ 0

lim
n→∞

∥∥∥πnT̄ bt f − T̄ bt,nπnf∥∥∥∞ = 0,

uniformly on bounded time intervals.
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For f ∈ (C[0, 1])bµ, it follows in the same way as before, that
{
u(t) = T̄ bt f : t ≥ 0

}
is the unique

mild solution to the initial value problem

∂u

∂t
(t) = ∆̄b

µu(t), t ∈ [0,∞),

u(0) = f.
(5)

Further,
{
un(t) = T̄ bt,nf : t ≥ 0

}
is the unique mild solution to the initial value problem

∂un
∂t

(t) = ∆̄b
µnun(t), t ∈ [0,∞),

un(0) = πnf.

Finally, Theorem 1.2 yields

lim
n→∞

‖πnu(t)− un(t)‖∞ = 0,

uniformly on bounded time intervals.
This result gives a meaningful interpretation for the diffusion of heat in the case of a mass

distribution with gaps in that the heat in a rod with mass distribution µ diffuses approximately
like the heat on a rod with mass distribution µn for sufficiently large n.

This paper is structured as follows. In the following section we recall the definition of Krein-
Feller operators. In Section 3, we introduce the concept of generalized hyperbolic functions and
the connection to resolvent operators. Section 4 is devoted to the restriction of the Krein-Feller
operator semigroup to the spaces (C[0, 1])bµ for b ∈ {N,D}. After these preparations, in Section
5 we develop the central convergence results, namely the convergence of the hyperbolic functions
and the strong resolvent convergence in Section 5.1 and finally, the strong semigroup convergence
and convergence of solutions to heat equations in Section 5.2. In Section 6 we show how to apply
the results in three examples. Lastly, in Section 7, we discuss some open problems.

2 Preliminaries

First, we recall the definition and some properties of the operator ∆b
µ, where b ∈ {N,D} and µ

is a non-atomic Borel probability measure on [0, 1] such that 0, 1 ∈ supp(µ). If [0, 1]\supp(µ) 6= ∅,
then [0, 1] \ supp(µ) is open in R and can be written as

[0, 1] \ supp(µ) =
⋃
i≥1

(ai, bi) (6)

with 0 < ai < bi < 1, ai, bi ∈ supp(µ) for i ≥ 1. We define

D1 :=

{
f : [0, 1]→ R : there exists f ′ ∈ L2

(
[0, 1], λ1

)
: f(x) = f(0) +

∫ x

0
f ′(y)dy, x ∈ [0, 1]

}
and H1

(
[0, 1], λ1

)
to be the space of all L2([0, 1], µ)-equivalence classes possessing a D1−repre-

sentative. If µ = λ1 on [0, 1], this definition is equivalent to the definition of the Sobolev space
W 1

2 .
We observe that H1

(
[0, 1], λ1

)
is the domain of the non-negative symmetric bilinear form E

on L2([0, 1], µ) defined by

E(u, v) =

∫ 1

0
u′(x)v′(x)dx, u, v ∈ F := H1

(
[0, 1], λ1

)
.
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It is known (see [15, Theorem 4.1]) that (E ,F) defines a Dirichlet form on L2([0, 1], µ). Hence,
there exists an associated non-positive, self-adjoint operator ∆N

µ on L2([0, 1], µ) with F =

D
((
−∆N

µ

) 1
2

)
such that

〈−∆N
µ u, v〉µ = E(u, v), u ∈ D

(
∆N
µ

)
, v ∈ F

and

D
(
∆N
µ

)
=
{
f ∈ L2([0, 1], µ) : f has a representative f̄ with f̄ ∈ D2

µ and f̄ ′(0) = f̄ ′(1) = 0
}
.

The operator ∆N
µ is called the Neumann Krein-Feller operator with respect to µ. Furthermore,

let F0 be the space of all L2([0, 1], µ)-equivalence classes having a D1−representative f such that
f(0) = f(1) = 0. The bilinear form defined by

E(u, v) =

∫ 1

0
u′(x)v′(x)dx, u, v ∈ F0,

is a Dirichlet form, too (see [15, Theorem 4.1]). Again, there exists an associated non-positive,
self-adjoint operator ∆D

µ on L2([0, 1], µ) with F0 = D
((
−∆D

µ

) 1
2

)
such that

〈−∆D
µ u, v〉µ = E(u, v), u ∈

(
∆D
µ

)
, v ∈ F0

and

D
(
∆D
µ

)
=
{
f ∈ L2([0, 1], µ) : f has a representative f̄ with f̄ ∈ D2

µ and f̄(0) = f̄(1) = 0
}
.

Then ∆D
µ is called the Dirichlet Krein-Feller operator with respect to µ.

By Freiberg [14, Proposition 6.3, Lemma 6.7, Corollary 6.9], there exists an orthonormal basis
{ϕbk : k ∈ N} of L2([0, 1], µ) consisting of eigenfunctions of −∆b

µ and for the related ascending
ordered eigenvalues {λbk : k ∈ N} we have 0 ≤ λb1 ≤ λb2 ≤ ..., where λD1 > 0. Since {ϕbk : k ≥ 1}
is an orthonormal basis of L2([0, 1], µ), each f ∈ L2([0, 1], µ) can be written as f =

∑
k≥1 f

b
kϕ

b
k,

where f bk :=
〈
f, ϕbk

〉
µ
, k ≥ 1. Along with the self-adjointness, we obtain the following formula,

called the spectral representation of ∆b
µ (see e.g. [25, Section 1.3]):

−∆b
µf =

∑
k≥1

λbkf
b
kϕ

b
k,

D
(

∆b
µ

)
=

f ∈ L2([0, 1], µ) :
∑
k≥1

(
λbkf

b
k

)2
<∞

 .

(7)

The spectral representation provides a direct way to introduce the associated semigroup. Define
for f ∈ L2([0, 1], µ)

T bt f :=
∑
k≥1

e−λ
b
ktf bkϕ

b
k, t ≥ 0. (8)

Then,
(
T bt
)
t≥0 is a strongly continuous semigroup on L2([0, 1], µ) and its infinitesimal generator

is ∆b
µ (see e.g. [25, Lemma 1.3.2]).
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3 Generalized Hyperbolic Functions and the Resolvent Operator

Let b ∈ {N,D} and let µ be defined as before. In this section we develop a useful representation
for the resolvent density of ∆b

µ.
Let λ > 0. We consider the initial value problem{

∆µg = λg,

g(0) = 1, g′(0) = 0
(9)

on L2([0, 1], µ). The problem (9) possesses a unique solution (see [14, Lemma 5.1]), which we
denote by gλ1,N . Further, under the initial conditions

g(1) = 1, g′(1) = 0, (10)
g(0) = 0, g′(0) = 1, (11)

and

g(1) = 0, g′(1) = 1, (12)

respectively, the above eigenvalue problems also possess unique solutions (see [14, Remark 5.2]),
and we denote them by gλ2,N , g

λ
1,D and gλ2,D, respectively. The resolvent density is then given as

follows.

Lemma 3.1: [14, Theorem 6.1] Let λ > 0. The resolvent operator Rbλ := (λ − ∆b
µ)−1 is

well-defined and for all f ∈ L2([0, 1], µ) we have

Rbλf(x) =

∫ 1

0
ρbλ(x, y)f(y)dµ(y), x ∈ [0, 1],

where the resolvent densities are given by

ρNλ (x, y) = ρNλ (y, x) :=
gλ1,N (x)gλ2,N (y)(

gλ1,N

)′
(1)

, x, y ∈ [0, 1], x ≤ y,

ρDλ (x, y) = ρDλ (y, x) := −
gλ1,D(x)gλ2,D(y)

gλ1,D(1)
, x, y ∈ [0, 1], x ≤ y.

It is well-known that if µ = λ1, the solutions to (9) and (11) are given by

gλ1.N (x) = cosh
(√

λx
)

and gλ1.D(x) =
1√
λ

sinh
(√

λx
)
, x ∈ [0, 1],

respectively. We generalize the notion of hyperbolic functions by solving (9) and (11) for an
arbitrary measure µ with the given initial conditions. To this end, we introduce generalized
monomials as in [2].

Definition 3.2: For x ∈ [0, 1] we set p0(x) = q0(x) = 1 and for k ∈ N

pk(x) :=

{∫ x
0 pk−1(t)dµ(t), if k is odd,∫ x
0 pk−1(t)dt, if k is even,

qk(x) :=

{∫ x
0 qk−1(t)dt, if k is odd,∫ x
0 qk−1(t)dµ(t), if k is even.
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We note that for x ∈ [0, 1] and k ≥ 0,

p2k+1(x) ≤ p2k(x) ≤ xk

k!
, q2k+1(x) ≤ p2k(x) ≤ xk

k!
(13)

(see [19, Lemma 2.3]).

Definition 3.3: We define for x ∈ [0, 1], z ∈ R

sinhz(x) :=
∞∑
k=0

z2k+1q2k+1(x), coshz(x) :=
∞∑
k=0

z2kp2k(x).

By (13) for all z ∈ R

‖sinhz‖∞ ≤ ze
z2 , ‖coshz‖∞ ≤ e

z2 . (14)

Example 3.4: If µ = λ1, we have qk(x) = xk

k! , k ≥ 0. It follows that in this case

sinhz(x) =

∞∑
k=0

z2k+1 x2k+1

(2k + 1)!
= sinh(zx)

and analogously coshz(x) = cosh(zx).

Proposition 3.5: Let λ > 0. Then, for x ∈ [0, 1], we have

gλ1,N (x) = cosh√λ(x), gλ1,D(x) =
1√
λ

sinh√λ(x),

gλ2,N (x) = cosh√λ(1− x), gλ2,D(x) =− 1√
λ

sinh√λ(1− x).

Proof. The assertion for gλ1,D was proven in [19, Lemma 2.3]. The proof for gλ1,N works analo-
gously. We verify the assertion for gλ2,N . Let x ∈ [0, 1]. Then,

cosh√λ(1− x) =
∞∑
n=0

λnp2n(1− x)

= 1 +
∞∑
n=1

λn
∫ 1−x

0

∫ y

0
p2n−2(t)dµ(t)dy

= 1 +

∞∑
n=1

λn
∫ 1−x

0

∫ 1

1−y
p2n−2(1− t)dµ(t)dy

= 1−
∞∑
n=1

λn
∫ 1

x

∫ y

0
p2n−2(1− t)dµ(t)dy

= 1−
∞∑
n=0

λn+1

∫ 1

x

∫ y

0
p2n(1− t)dµ(t)dy.

Due to estimate (13) we can use the dominated convergence theorem and obtain

cosh√λ(1− x) = 1− λ
∫ 1

x

∫ y

0

∞∑
n=0

λnp2n(1− t)dµ(t)dy

= 1− λ
∫ 1

x

∫ y

0
cosh√λ(1− t)dµ(t)dy.

7



We set f(x) := cosh√λ(1− x), x ∈ [0, 1] and get

f(x) = 1− λ
∫ 1

x

∫ y

0
f(t)dµ(t)dy, x ∈ [0, 1]

and in particular

f(0) = 1− λ
∫ 1

0

∫ y

0
f(t)dµ(t)dy.

It follows that, for x ∈ [0, 1],

f(x)− f(0) = λ

∫ x

0

∫ y

0
f(t)dµ(t)dy.

The latter equation can be written as ∆µf = λf. It remains to verify the initial conditions.
Obviously, f(1) = cosh√λ(0) = 1. Using (13) again, we have

f ′(1) = −
∞∑
n=1

λnp2n−1(0) = 0.

The proof for gλ2,D follows using the same ideas.

This leads to the following representation for the resolvent density:

Corollary 3.6: Let λ > 0. We have for x, y ∈ [0, 1], x ≤ y,

ρNλ (x, y) = ρNλ (y, x) =
(

cosh′√
λ
(1)
)−1

cosh√λ(x) cosh√λ(1− y),

ρDλ (x, y) = ρDλ (y, x) =
1√
λ

(
sinh√λ(1)

)−1
sinh√λ(x) sinh√λ(1− y).

4 The Restricted Semigroup

Let b ∈ {N,D} and let µ be defined as before. It is well-known that ∆b
µ is the generator of a

strongly continuous Markovian semigroup
(
T bt
)
t≥0 of contractions on L2([0, 1], µ).

Definition 4.1: For (t, x, y) ∈ (0,∞)× [0, 1]× [0, 1], we define

pbt(x, y) :=
∞∑
k=1

e−λ
b
ktϕbk(x)ϕbk(y).

This is called the heat kernel of ∆b
µ.

The heat kernel is the integral kernel of the semigroup
(
T bt
)
t≥0. That is, for t > 0 and

f ∈ L2([0, 1], µ), we can write

T bt f(x) =

∫ 1

0
pbt(x, y)f(y)dµ(y), x ∈ [0, 1].

In this section, we restrict these semigroups to appropriate spaces of equivalence classes of con-
tinuous functions.
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Definition 4.2: (i) We define (C[0, 1])Nµ as the set of all L2([0, 1], µ)-equivalence classes pos-
sessing a continuous representative, formally

(C[0, 1])Nµ :=
{
f ∈ L2([0, 1], µ) : f possesses a continuous representative

}
.

(ii) We further define (C[0, 1])Dµ as the set of all L2([0, 1], µ)-equivalence classes possessing a
continuous representative that satisfies Dirichlet boundary conditions, formally

(C[0, 1])Dµ :=
{
f ∈ L2([0, 1], µ) : f possesses a continuous representative f̄

such that f̄(0) = f̄(1) = 0
}
.

The space (C[0, 1])bµ is a Banach space with the norm ‖f‖(C[0,1])bµ
:=
∥∥∥f |supp(µ)∥∥∥∞. Note that

‖f‖(C[0,1])bµ
=
∥∥∥f̃∥∥∥

∞
,

where f̃ is the continuous representative of f that is affine on all intervals in [0, 1] \ supp(µ). To
simplify the notation, we henceforth write ‖f‖∞ for ‖f‖(C[0,1])bµ

.
Let u =

∑
k≥1 u

b
kϕ

b
k ∈ L2([0, 1], µ) and let t > 0. From

(
f bk
)
k≥1 ∈ l2(N) it follows that((

λbk
)n
e−λ

b
ktf bk

)
k≥1
∈ l2(N) and thus by (7) and (8)

(
−∆b

µ

)k
T bt u =

∑
k≥1

(
λbk

)k
e−λ

b
ktubkϕ

b
k ∈ L2([0, 1], µ) (15)

and especially T bt u ∈ D
(
∆b
µ

)
. Hence, the following inclusion holds:

T bt

(
(C[0, 1])bµ

)
⊆ (C[0, 1])bµ.

This motivates the definition of the restricted semigroup
(
T̄ bt
)
t≥0 :=

((
T bt
)
|
(C[0,1])bµ

)
t≥0

, which is

for t ≥ 0 defined by

T̄ bt : (C[0, 1])bµ → (C[0, 1])bµ, T̄
b
t f = T bt f.

When evaluating an element of (C[0, 1])bµ pointwise, we always evaluate the representative that
is affine on all intervals in [0, 1] \ supp(µ).
The goal of this section is to show that

(
T̄ bt
)
t≥0 again defines a strongly continuous contraction

semigroup. It is obvious that the semigroup property holds. Note that by the Markov property
of (T bt )t≥0 for g ∈ (C[0, 1])Nµ∣∣∣T bt g(x)

∣∣∣ =

∣∣∣∣∫ 1

0
pbt(x, y)g(y)dµ(y)

∣∣∣∣ ≤ ‖g‖∞ ∣∣∣∣∫ 1

0
pbt(x, y)dµ(y)

∣∣∣∣ ≤ ‖g‖∞ , x ∈ [0, 1].

Hence, (T̄ bt )t≥0 is a semigroup of contractions. It remains to prove the strong continuity. To this
end, we need some preparations. We write E(f, f) := E(f) and ‖f‖2µ :=

∫ 1
0 f(x)2dµ(x).

Lemma 4.3: If f ∈ F , then

‖f‖∞ ≤ E(f)
1
2 + ‖f‖µ .

9



Proof. Let f ∈ F . Then, by the Cauchy-Schwarz inequality for all x, y ∈ [0, 1]

|f(x)− f(y)| =
∣∣∣∣∫ y

x
f ′(z)dz

∣∣∣∣ ≤ (∫ y

x

(
f ′
)2

(z)dz

) 1
2

|x− y|
1
2 = E(f)

1
2 |x− y|

1
2 .

It follows by the reversed triangle inequality and by |x− y| ≤ 1

|f(x)| ≤ |f(y)|+ E(f)
1
2 .

Further, by integrating of y w.r.t. µ,

|f(x)| ≤
∫ 1

0
|f(y)|dµ(y) + E(f)

1
2

and finally by the Cauchy-Schwarz inequality

|f(x)| ≤ ‖f‖µ + E(f)
1
2 .

Lemma 4.4: Let f ∈ (C[0, 1])bµ. Then, limt→0

∥∥T bt f − f∥∥∞ = 0.

Proof. We follow the proof of [28, Proposition 5.2.6]. Let f ∈ F . By Lemma 4.3 and [28, Lemma
B.2.4],

lim
t→0

∥∥∥T bt f − f∥∥∥∞ ≤ lim
t→0
E
(
T bt f − f

) 1
2

+
∥∥∥T bt f − f∥∥∥

µ

≤ lim
t→0

2
1
2

(
E
(
T bt f − f

)
+
∥∥∥T bt f − f∥∥∥2

µ

) 1
2

= 0.

By the fact that F is dense in (C[0, 1])Nµ and that, for t ≥ 0, TNt is continuous on (C[0, 1])Nµ , we
obtain the assertion for b = N . To verify the case b = D, we prove that F0 is dense in (C[0, 1])Dµ .
Let f ∈ (C[0, 1])Dµ . Then, by the density of F in (C[0, 1])Nµ , there exists a sequence (fn)n∈N with
fn ∈ F for each n ∈ N such that

‖f − fn‖∞ → 0, n→∞. (16)

We define for n ∈ N

fn,0(x) := fn(x)− fn(0)− x(fn(1)− fn(0)), x ∈ [0, 1],

which is an element of F0. Further, we have that

f0(x) := f(x)− f(0)− x(f(1)− f(0)) = f(x), x ∈ [0, 1],

since f satisfies Dirichlet boundary conditions. This along with (16) implies for n ∈ N

lim
n→∞

‖fn,0 − f‖∞
= lim

n→∞
‖fn,0 − f0‖∞

≤ lim
n→∞

sup
x∈[0,1]

|fn(x)− f(x)|+ |fn(0)− f(0)|+ |x (fn(1)− fn(0)− (f(1)− f(0)))|

= 0.

The main result of this section now follows immediately.

Corollary 4.5:
(
T̄ bt
)
t≥0 is a strongly continuous contraction semigroup on (C[0, 1])bµ.
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5 Convergence results

5.1 Strong Resolvent Convergence

Let µ be defined as before and let F be the distribution function of µ. Further, let (µn)n∈N
satisfy Assumption 1.1 and let Fn be the distribution function of µn for n ∈ N.
First, we give convergence results for the generalized hyperbolic functions introduced in Sec-

tion 3 using results from [20]. Let pk, qk, k ∈ N be defined by µ and pk,n, qk,n, k ∈ N be defined
by µn for n ∈ N.

Lemma 5.1: [20, Lemma 3.1] For x ∈ [0, 1] and k, n ∈ N we have

|q2k(x)− q2k,n(x)| ≤ 2
‖F − Fn‖∞ xk

(k − 1)!
, |p2k(x)− p2k,n(x)| ≤ 2

‖F − Fn‖∞ xk

(k − 1)!
,

|q2k+1(x)− q2k+1,n(x)| ≤ 2
‖F − Fn‖∞ xk

(k − 1)!
, |p2k+1(x)− p2k+1,n(x)| ≤ 2

‖F − Fn‖∞ xk

(k − 1)!
.

Remark 5.2: Since the distribution function of µ is continuous, weak measure convergence
implies uniform convergence of the corresponding distribution functions (see [5, Section 8.1]),
which is the condition in [20, Lemma 3.1].

For z ∈ R let coshz, sinhz be defined by µ and coshz,n, sinhz,n be defined by µn for n ∈ N. We
obtain a result for the generalized hyperbolic functions, comparable to that for the trigonometric
functions in [20].

Lemma 5.3: Let z ∈ R. Then,

‖coshz − coshz,n‖∞ ≤ 2z2ez
2 ‖F − Fn‖∞ ,∥∥cosh′z − cosh′z,n

∥∥
∞ ≤

(
z2 + 2z4ez

2
)
‖F − Fn‖∞ ,

‖sinhz − sinhz,n‖∞ ≤ 2z3ez
2 ‖F − Fn‖∞ .

Proof. Let x ∈ [0, 1] and n ∈ N. Then,

|coshz(x)− coshz,n(x)| ≤
∞∑
k=1

|p2k(x)− p2k,n(x)| z2k

≤
∞∑
k=1

2 ‖F − Fn‖∞
(k − 1)!

z2k

=

∞∑
k=0

2 ‖F − Fn‖∞
k!

z2k+2

= 2z2ez
2 ‖F − Fn‖∞ .

Further, note that

cosh′z(x) =

∞∑
k=1

p2k−1(x)z2k

and
|p1(x)− p1,n(x)| = |µ([0, x])− µn([0, x])| ≤ ‖F − Fn‖∞ .
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With that,

∣∣cosh′z(x)− cosh′z,n(x)
∣∣ ≤ ∞∑

k=1

|p2k−1(x)− p2k−1,n(x)| z2k

≤

(
z2 + 2

∞∑
k=2

z2k

(k − 2)!

)
‖F − Fn‖∞

≤
(
z2 + 2z4ez

2
)
‖F − Fn‖∞ .

Finally,

|sinhz(x)− sinhz,n(x)| ≤
∞∑
k=1

|q2k+1(x)− q2k+1,n(x)| z2k+1

≤
∞∑
k=1

2 ‖F − Fn‖∞
(k − 1)!

z2k+1

≤
∞∑
k=0

2 ‖F − Fn‖∞
k!

z2k+3

≤ 2z3ez
2 ‖F − Fn‖∞ ,

We turn to the main result of this section. For b ∈ {N,D} and λ > 0, let Rbλ be defined by µ
and Rbλ,n be defined by µn. We assume supp(µ) ⊆ supp(µn) for all n ∈ N. Then, the mapping

πn : (C[0, 1])bµ → (C[0, 1])bµn , f 7→ f (17)

defines an embedding, where f ∈ (C[0, 1])bµn denotes the L2([0, 1], µn)-equivalence class of the
representative of f ∈ (C[0, 1])bµ that is affine on each interval I ⊆ supp(µn) \ supp(µ).

Theorem 5.4: Let λ > 0. Then, for all f ∈ (C[0, 1])bµ,

lim
n→∞

∥∥∥Rbλ,nπnf − πnRbλf∥∥∥∞ = 0.

Proof. We simplify the notation in this proof by omitting all embeddings. If we evaluate on
supp(µn) \ supp(µ), we always evaluate the representative that is affine on each interval I ⊆
supp(µn)\ supp(µ). First, we consider the case b = N. Let λ > 0, n ∈ N, x, y ∈ [0, 1] with x ≤ y.
Using the triangle inequality,∣∣ρNλ (x, y)− ρNλ,n(x, y)

∣∣
≤
∣∣∣∣(cosh′√

λ
(1)
)−1
−
(

cosh′√
λ,n

(1)
)−1∣∣∣∣ ∣∣∣cosh√λ(x) cosh√λ(1− y)

∣∣∣
+
∣∣∣cosh√λ(x)− cosh√λ,n(x)

∣∣∣ ∣∣∣∣(cosh′√
λ,n

(1)
)−1

cosh√λ(1− y)

∣∣∣∣
+
∣∣∣cosh√λ(1− y)− cosh√λ,n(1− y)

∣∣∣ ∣∣∣∣(cosh′√
λ,n

(1)
)−1

cosh√λ,n(x)

∣∣∣∣ .
(18)

We have

cosh′√
λ
(1) =

∞∑
n=1

λnp2n−1(1) ≥ λp1(1) = λ (19)
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and similarly cosh′√
λ,n

(1) ≥ λ. Applying this along with Lemma 5.3, we get

∣∣∣∣(cosh′√
λ
(1)
)−1
−
(

cosh′√
λ,n

(1)
)−1∣∣∣∣ =

∣∣∣∣∣cosh′√
λ,n

(1)− cosh′√
λ
(1)

cosh′√
λ
(1) cosh′√

λ,n
(1)

∣∣∣∣∣
≤
(
λ+ 2λ2eλ

)
‖F − Fn‖∞

λ2

and thus with (14)∣∣∣∣(cosh′√
λ
(1)
)−1
−
(

cosh′√
λ,n

(1)
)−1∣∣∣∣ ∣∣∣cosh√λ(x) cosh√λ(1− y)

∣∣∣ ≤ (e2λ + 2λe3λ
)
‖F − Fn‖∞

λ
.

For the second term on the right-hand side of inequality (18), we calculate∣∣∣cosh√λ(x)− cosh√λ,n(x)
∣∣∣ ∣∣∣∣(cosh′√

λ,n
(1)
)−1

cosh√λ(1− y)

∣∣∣∣ ≤ 2e2λ ‖F − Fn‖∞ .

Treating the third term analogously and using the above calculations in (18) yields

lim
n→∞

max
x∈[0,1]

∣∣ρNλ (x, y)− ρNλ,n(x, y)
∣∣ ≤ lim

n→∞

(
e2λ + 2λe3λ

)
‖F − Fn‖∞

λ
+ 4e2λ ‖F − Fn‖∞

= lim
n→∞

(
1

λ
+ 2eλ + 4

)
e2λ ‖F − Fn‖∞

= 0.

Further, by (14) and (19),∣∣∣∣∫ 1

0
ρNλ (x, y)f(y)dµ(y)−

∫ 1

0
ρNλ (x, y)f(y)dµn(y)

∣∣∣∣
≤
∣∣∣∣(cosh′√

λ
(1)
)−1

cosh√λ(x)

∣∣∣∣ ∣∣∣∣∫ 1

0
cosh√λ(1− y)f(y)dµ(y)−

∫ 1

0
cosh√λ(1− y)f(y)dµn(y)

∣∣∣∣
≤ eλ

λ

∣∣∣∣∫ 1

0
cosh√λ(1− y)f(y)dµ(y)−

∫ 1

0
cosh√λ(1− y)f(y)dµn(y)

∣∣∣∣ .
Due to weak measure convergence,

lim
n→∞

∫ 1

0
cosh√λ(1− y)f(y)dµn(y)−

∫ 1

0
cosh√λ(1− y)f(y)dµ(y) = 0

and consequently,

lim
n→∞

max
x∈[0,1]

∣∣∣∣∫ 1

0
ρNλ (x, y)f(y)dµ(y)−

∫ 1

0
ρNλ (x, y)f(y)dµn(y)

∣∣∣∣ = 0.

We get the same result for x ≥ y and obtain

lim
n→∞

max
x∈[0,1]

∣∣RNλ,nf(x)−RNλ f(x)
∣∣

≤ lim
n→∞

max
x∈[0,1]

∣∣∣∣∫ 1

0
ρNλ (x, y)f(y)dµ(y)−

∫ 1

0
ρNλ (x, y)f(y)dµn(y)

∣∣∣∣
+ lim
n→∞

max
x∈[0,1]

∣∣∣∣∫ 1

0

(
ρNλ (x, y)− ρNλ,n(x, y)

)
f(y)dµn

∣∣∣∣
= 0.
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Now, let b = D. Again using the triangle inequality, for n ∈ N, x, y ∈ [0, 1], x ≤ y,∣∣ρDλ (x, y)− ρDλ,n(x, y)
∣∣

≤ 1√
λ

(∣∣∣∣(sinh√λ(1)
)−1
−
(

sinh√λ,n(1)
)−1∣∣∣∣ ∣∣∣sinh√λ(x) sinh√λ(1− y)

∣∣∣
+
∣∣∣sinh√λ(x)− sinh√λ,n(x)

∣∣∣ ∣∣∣∣(sinh√λ,n(1)
)−1

sinh√λ(1− y)

∣∣∣∣
+
∣∣∣sinh√λ(1− y)− sinh√λ,n(1− y)

∣∣∣ ∣∣∣∣(sinh′√
λ,n

(1)
)−1

sinh√λ,n(x)

∣∣∣∣
)
.

(20)

We have

sinh√λ(1) =
∞∑
n=0

λn+
1
2 q2n+1(1) ≥

√
λq1(1) =

√
λ

and thus ∣∣∣∣(sinh√λ(1)
)−1
−
(

sinh√λ,n(1)
)−1∣∣∣∣ ≤ 2

√
λeλ ‖F − Fn‖∞ .

Arguing in the same way as before, we get

lim
n→∞

max
x∈[0,1]

∣∣ρDλ (x, y)− ρDλ,n(x, y)
∣∣ ≤ lim

n→∞

2√
λ

√
λeλ ‖F − Fn‖∞ λe

2λ

+ lim
n→∞

4√
λ
λ

3
2 eλ ‖F − Fn‖∞ e

λ

= lim
n→∞

(
2eλ + 4

)
λe2λ ‖F − Fn‖∞

= 0.

Further,

max
x∈[0,1]

∣∣∣∣∫ 1

0
ρDλ (x, y)f(y)dµ(y)−

∫ 1

0
ρDλ (x, y)f(y)dµn(y)

∣∣∣∣
≤ max

x∈[0,1]

∣∣∣∣(√λ sinh√λ(1)
)−1

sinh√λ(x)

∣∣∣∣ ∣∣∣∣ ∫ 1

0
sinh√λ(1− y)f(y)dµ(y)

−
∫ 1

0
sinh√λ(1− y)f(y)dµn(y)

∣∣∣∣
≤
∣∣∣∣(√λ sinh√λ(1)

)−1∣∣∣∣ ∥∥∥sinh√λ

∥∥∥
∞

∣∣∣∣ ∫ 1

0
sinh√λ(1− y)f(y)dµ(y)

−
∫ 1

0
sinh√λ(1− y)f(y)dµn(y)

∣∣∣∣.
Due to the weak measure convergence, this goes to zero as n tends to ∞. Deducing the same
result for x ≥ y and combining the above inequalities,

lim
n→∞

max
x∈[0,1]

∣∣RDλ,nf(x)−RDλ f(x)
∣∣

≤ lim
n→∞

max
x∈[0,1]

∣∣∣∣∫ 1

0
ρDλ (x, y)f(y)dµ(y)−

∫ 1

0
ρDλ (x, y)f(y)dµn(y)

∣∣∣∣
+ lim
n→∞

max
x∈[0,1]

∣∣∣∣∫ 1

0

(
ρDλ (x, y)− ρDλ,n(x, y)

)
f(y)dµn

∣∣∣∣
= 0.
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Remark 5.5: We made the assumption supp(µ) ⊆ supp(µn) for all n ∈ N only to simplify
the proofs. Note that our results can be formulated and proven in a very similar way if this
condition is not satisfied. If, for example, supp(µ) ⊇ supp(µn) for all n ∈ N, define πn :
(C[0, 1])bµ → (C[0, 1])bµn , f 7→ f |supp(µn). This is again a bounded linear transformation between
Banach spaces and we can follow the same steps as before.

5.2 Strong Semigroup Convergence

Let µ be defined as before and let λ > 0. Analogously to the restricted semigroup, we define
the restricted resolvent operator by

R̄Nλ : (C[0, 1])Nµ → (C[0, 1])Nµ , R̄
N
λ f = RNλ f,

R̄Dλ : (C[0, 1])Dµ → (C[0, 1])Dµ , R̄
D
λ f = RDλ f.

Further, we define the operators ∆̄N
µ and ∆̄D

µ by

∆̄N
µ f := ∆N

µ f, D
(
∆̄N
µ

)
:=
{
f ∈ D

(
∆N
µ

)
: ∆N

µ f ∈ (C[0, 1])Nµ
}
,

∆̄D
µ f := ∆D

µ f, D
(
∆̄D
µ

)
:=
{
f ∈ D

(
∆D
µ

)
: ∆D

µ f ∈ (C[0, 1])Dµ
}
,

which are called the part of the operator ∆N
µ in C[0, 1])Nµ and the part of the operator ∆D

µ in
C[0, 1])Dµ , respectively. The following Lemma shows how the restricted semigroup, the restricted
resolvent and the part of the operator are connected. For that, let b ∈ {N,D}.

Lemma 5.6: (i) The infinitesimal generator of the strongly continuous contraction semigroup(
T̄ bt
)
t≥0 is ∆̄b

µ.

(ii) R̄bλ is the resolvent of ∆̄b
µ.

Proof. For all f ∈ L2([0, 1], µ), we have ‖f‖∞ ≥ ‖f‖µ, therefore the inclusion map i : (C[0, 1])bµ →
L2([0, 1], µ), f 7→ f is continuous. Moreover,

(
T̄ bt
)
t≥0 defines a strongly continuous contraction

semigroup on (C[0, 1])bµ and (C[0, 1])bµ is
(
T̄ bt
)
t≥0-invariant (see Corollary 4.5). We thus can

apply [10, II.2.3 Proposition] to verify (i). We turn to part (ii). Let λ > 0 and let R̃bλ be the
resolvent of ∆̄b

µ. By part (i) and [10, I.1.10 Theorem], this operator is well-defined and given by

R̃bλf =

∫ ∞
0

e−λsT̄ bs fds, f ∈ (C[0, 1])bµ.

Further, by definition of
(
T̄ bt
)
t≥0 and R̄bλ,

R̄bλf = Rbλf =

∫ ∞
0

e−λsT bs fds =

∫ ∞
0

e−λsT̄ bs fds, f ∈ (C[0, 1])bµ.

It follows R̃bλ = R̄bλ on (C[0, 1])bµ.

We are now able to establish strong semigroup convergence. To this end, let (µn)n∈N satisfy
Assumption 1.1 and we assume supp(µ) ⊆ supp(µn) for all n ∈ N. For b ∈ {N,D} let

(
T bt
)
t≥0

be defined by µ,
(
T bt,n

)
t≥0 be defined by µn and analogously the restricted semigroups

(
T̄ bt
)
t≥0

and
(
T̄ bt,n

)
t≥0 be defined by µ and µn, respectively.

Proof of Theorem 1.2. For n ∈ N, πn is a bounded linear transformation between Banach spaces.
Further,

(
T̄ bt
)
t≥0 and

(
T̄ bt,n

)
t≥0 , n ∈ N are strongly continuous contraction semigroups on their

respective spaces (see Corollary 4.5). Hence, due to the first Trotter-Kato approximation the-
orem (see [11, Theorem I.6.1, Problem I.8.13] for a suitable version), the assertion is a direct
consequence of Theorem 5.4.
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Remark 5.7: As a further direct consequence of the Trotter-Kato approximation theorem,
we obtain the graph norm convergence. That is, for f ∈ D

(
∆̄b
µ

)
there exists (fn)n∈N with

fn ∈ D
(
∆̄b
µn

)
such that for n ∈ N

lim
n→∞

‖πnf − fn‖∞ +
∥∥∥πn∆̄b

µf − ∆̄b
µnfn

∥∥∥
∞

= 0.

Strong semigroup convergence can be interpreted as convergence of solutions to heat equations.
The connection is given as follows (see [10, Proposition VI.6.2]).

Lemma 5.8: Let A be the generator of a strongly continuous semigroup (St)t≥0 on a Banach
space X. Then, for each f ∈ D(A) the abstract heat equation

∂u

∂t
(t) = Au(t), t ≥ 0

u(0) = f
(21)

has a unique classical solution on X given by

u : [0,∞)→ X, t 7→ Stf,

meaning that u is continuously differentiable with respect to X, u(t) ∈ D (A) and (21) holds for
all t ≥ 0.

Let T > 0 and f ∈ D
(
∆̄b
µ

)
. Theorem 1.2 implies that the classical solution to

∂un
∂t

(t) = ∆̄b
µnun(t),

un(0) = πnf

converges uniformly for (t, x) ∈ [0, T ]× [0, 1] to the classical solution to

∂u

∂t
(t) = ∆̄b

µu(t),

u(0) = f

as n → ∞, assuming that πnf ∈ D
(
∆̄b
µn

)
. However, the assumption f ∈ D

(
∆̄b
µ

)
and πnf ∈

D
(
∆̄b
µn

)
for all n ∈ N is very restrictive, as the following example illustrates.

Example 5.9: Let µ be a measure satisfying our conditions such that supp(µ) is a λ1-zero set
and assume that supp(µn) = [0, 1] for all n ∈ N. Further, let f ∈ D

(
∆̄b
µ

)
. Then, on any interval

I ⊆ [0, 1] \ supp(µ), πnf is affine. Now, if we assume that πnf ∈ D
(
∆̄b
µn

)
, then ∆̄b

µnf(x) = 0,
x ∈ I and thus ∆̄b

µnf = 0 ∈ (C[0, 1])bµn . If b = D, we obtain πnf = 0 ∈ (C[0, 1])Dµn and thus
f = 0 ∈ (C[0, 1])bµ and if b = N , (πnf)′ = 0 ∈ C[0, 1] and thus f ′ = 0 ∈ (C[0, 1])Nµ .

This motivates the concept of a mild solution (see [10, Definition II.6.3]).

Definition 5.10: Let X be a Banach space, A : D(A) ⊂ X → X and f ∈ X. We call a map
u : [0,∞)→ X, t 7→ u(t) a mild solution to the abstract heat equation

du

dt
(t) = Au(t), t ≥ 0,

u(0) = f
(22)

if
∫ t
0 u(s)ds ∈ D(A) and u(t) = A

∫ t
0 u(s)ds+ f for all t ≥ 0.
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Using this solution concept, we can establish the desired convergence for any initial condition
in the appropriate space.

Theorem 5.11: Let f ∈ (C[0, 1])bµ and let (µn)n∈N satisfy Assumption 1.1. Further, let {u(t) :
t ≥ 0} be the unique mild solution to

du

dt
(t) = ∆̄b

µu(t), t ≥ 0,

u(0) = f
(23)

and, for n ≥ 1 ,let {un(t) : t ≥ 0} be the unique mild solution to

dun
dt

(t) = ∆̄b
µnun(t), t ≥ 0,

un(0) = πnf.
(24)

Then,

lim
n→∞

‖πnu(t)− un(t)‖∞ = 0, (25)

uniformly on bounded time intervals.

Proof. Since ∆̄b
µ is the generator of a strongly continuous semigroup, it follows by [10, Proposition

II.6.4] that t 7→ T̄ bt f is the unique mild solution to (23). The same argument shows that T̄ bt,nπnf
is the unique mild solution to (24) for n ∈ N. Then, (25) is a direct consequence of Theorem
1.2.

6 Applications

Example 6.1: As a first application, we consider a non-atomic Borel probability measure µ on
[0, 1] such that 0, 1 ∈ supp(µ) and supp(µ) 6= [0, 1]. We define for ε ∈ (0, 1) the approximating
probability measure µε by

µε :=
µ+ ελ1

1 + ε
.

It is elementary that µε converges weakly to µ as ε → 0 and Theorem 5.11 is applicable. Let
b ∈ {N,D} and f ∈ (C[0, 1])bµ. Then, the unique solution {uε(t) : t ≥ 0} to

duε
dt

(t) = ∆̄b
µεuε(t),

uε(0) = πεf,

where πε : (C[0, 1])bµ → (C[0, 1])bµε is an embedding as previously defined (see (17)), converges
to the unique solution {u(t) : t ≥ 0} to

du

dt
(t) = ∆̄b

µu(t),

u(0) = f

with respect to the uniform norm as ε tends to zero.

In the previous example, µ could be chosen to be an absolutely continuous measure, for example
λ1|[0, 13 ]∪[ 23 ,1]

, or to be a singular measure, as a self-similar measure on the Cantor set. Furthermore,

it is not required that the approximating measures have full support.
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Figure 1: Approximating Cantor measures of levels n = 0, 1, 2.

Example 6.2: Let w1, w2 ∈ (0, 1) such that w1 +w2 = 1 and let µ be the unique invariant Borel
probabiliy measure on [0, 1] given by the IFS consisting of S1(x) = x

3 and S2(x) = 2
3 + x

3 , x ∈ [0, 1]
and weights w1 and w2, i.e. µ is a so-called Cantor measure. Following [20], for n ∈ N we define
the approximating Cantor measures of level n by

µn(B) := 3n
∑

x∈{1,2}n
λ1|Ix

n∏
i=1

ωxi , B ∈ B([0, 1]),

where Ix := (Sx1 ◦ ... ◦ Sxn) ([0, 1]), x ∈ {1, 2}n. The approximating Cantor measures of levels
n = 0, 1, 2 are illustrated in Figure 1. We denote the distribution function of µ by F and the
distribution function of µn by Fn for n ∈ N. Then, ‖F − Fn‖∞ → 0 (see [20, Proposition
4.2]) as well as supp(µ) ⊂ supp(µn) for n ∈ N and Theorem 5.11 can be applied. Hence, for
f ∈ (C[0, 1])bµ, the unique solution {un(t) : t ≥ 0} to

dun
dt

(t) = ∆̄b
µnun(t),

un(0) = πnf

converges to the unique solution {u(t) : t ≥ 0} to

du

dt
(t) = ∆̄b

µu(t),

u(0) = f

with respect to the uniform norm as n tends to infinity.

Finally, we connect both applications.

Example 6.3: Let ε > 0, n ∈ N and let µ, µn, {u(t) : t ≥ 0} and {un(t) : t ≥ 0} be defined as
in Example 6.2. We define µn,ε by

µn,ε :=
µn + ελ1

1 + ε
,

i.e. analogously to Example 6.1, and {un,ε(t) : t ≥ 0} to be the solution to

dun,ε
dt

(t) = ∆̄b
µn,εun,ε(t),

un,ε(0) = πn,εf,

where πn,ε is an embedding as previously defined. Further, let t ∈ [0,∞) and δ > 0. By Example
6.2, there exists n0 ∈ N such that for all n ≥ n0 we have

‖u(t)− un(t)‖∞ <
δ

2
.
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By Example 6.1, for each n ≥ n0 there exists εn > 0 such that for all ε < εn we have

‖un(t)− un,ε(t)‖∞ <
δ

2
.

Hence, for all n ≥ n0, ε < εn we have

‖u(t)− un,ε(t)‖∞ < δ.

Thus the heat in a rod with mass distribution given by a Cantor measure diffuses approximately
like the heat on a rod possessing a strictly positive mass density which is small off the Cantor
set.

7 Directions for Further Research

Remark 7.1: Consider the heat equation (2) with initial value given by the Delta distribution
δy : g 7→ g(y) for y ∈ supp(µ). Then, the heat kernel

pt(x, y) =
∑
k≥1

e−λ
b
ktϕbk(x)ϕbk(y), (t, x) ∈ [0,∞)× (0, 1]

solves the equation in the distributional sense, where
{
λbk, k ≥ 1

}
are the ascending ordered

eigenvalues and
{
ϕbk, k ≥ 1

}
the L2([0, 1], µ)-normed eigenfunctions of ∆b

µ on L2([0, 1], µ). The
heat kernel is of particular importance in the context of the associated Markov process (see the
remark below) and stochastic partial differential equations (see [8, 9]). It is an open question
whether weak measure convergence implies pointwise convergence of the corresponding heat
kernels for each (t, x, y) ∈ (0,∞)× [0, 1]2.

Remark 7.2: The operator ∆b
µ on L2([0, 1], µ) is the infinitesimal generator of a Markov process,

called a quasi-diffusion (see, e.g., [30–33]). Convergence of semigroups raises the question of
whether the associated Markov processes also converge weakly. If µn ⇀ µ, our results imply that
for each f ∈ (C[0, 1])bµ, t ∈ [0,∞) and each starting point x ∈ [0, 1]

E
[
f
(
Xb
n(t)

)]
= T bt,nf(x)→ T bt f(x) = E

[
f
(
Xb(t)

)]
, n→∞,

where Xb is associated to ∆b
µ and Xb

n is associated to ∆b
µn . We denote by E the expectation with

respect to the law of the appropriate process. This could be extended to a proof of convergence
of all finite-dimensional distributions, and tightness would then also be required in order to
establish that Xb

n → Xb weakly in the Skorokhod space of càdlàg functions.

Remark 7.3: Let µ be of full support. Consider the analogue of the wave equation

d2u

dt2
(t) = ∆b

µu(t), t ∈ [0,∞)

on L2([0, 1], µ). This hyperbolic equation describes the motion of a vibrating string with mass
distribution µ such that, if it is deflected, a tension force drives it back towards its state of
equilibrium. If µ were not of full support, the string would have massless parts. It is not clear
how to interpret massless parts of a string. We suppose that the motion of such a string behaves
approximately like the motion of a string with very little mass on these gaps, analogous to our
results about the diffusion of heat.
Assume that u(0) ∈ D

(
∆b
µ

)
and, for reasons of simplicity, that the initial velocity vanishes.

Then, there exists a unique solution on L2([0, 1], µ) given by u(t) = C(t)u(0), t ≥ 0, where
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{C(t) : t ≥ 0} denotes the strongly continuous cosine family of ∆b
µ (see, e.g., [42]). We have

already shown that µn ⇀ µ implies strong resolvent convergence of the corresponding opera-
tors restricted to continuous functions. It is well-known that this implies convergence of the
corresponding cosine families {Cn(t) : t ≥ 0}, which implies convergence of the solutions to the
corresponding wave equation, provided that there exists M > 0 and w ≥ 0 such that for all
n ≥ 1, t ≥ 0 ‖Cn(t)‖ ≤Mew|t| (see [26]). Proving that the restriction of C(t) to (C[0, 1])bµ is the
cosine family of ∆̄b

µ (and analogously for µn) and verifying the above estimate would be a way
to establish the desired convergence of solutions to the wave equation.

Remark 7.4: The Krein-Feller operator ∆b
µ can also be defined with respect to a measure µ with

atoms, see e.g. [29] for a model in this direction. If µ is atomless, the weak convergence implies
uniform convergence of the corresponding distribution functions, which we have used to prove
convergence of the corresponding generalized monomials (see Remark 5.2). For a measure with
atoms, it would be required to find such convergence results without this uniform convergence
property. Further, a representation of the resolvent density needs to be developed (see Lemma
3.1 for atomless measures).
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