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Abstract We consider an SPDE description of a large portfolio limit model
where the underlying asset prices evolve according to certain stochastic volatil-
ity models with default upon hitting a lower barrier. The asset prices and their
volatilities are correlated via systemic Brownian motions, and the resulting
SPDE is defined on the positive half-space with Dirichlet boundary condi-
tions. We study the convergence of the loss from the system, a function of
the total mass of a solution to this stochastic initial-boundary value problem
under fast mean reversion of the volatility. We consider two cases. In the first
case the volatility converges to a limiting distribution and the convergence of
the system is in the sense of weak convergence. On the other hand, when only
the mean reversion of the volatility goes to infinity we see a stronger form of
convergence of the system to its limit. Our results show that in a fast mean-
reverting volatility environment we can accurately estimate the distribution
of the loss from a large portfolio by using an approximate constant volatility
model which is easier to handle.
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1 Introduction

In this paper our aim is to investigate the fast mean reverting volatility asymp-
totics for an SPDE-based structural model for portfolio credit. SPDEs arising
from large portfolio limits of collections of defaultable constant volatility mod-
els were initially studied in Bush, Hambly et al. [5], and their regularity was
further investigated in Ledger [24]. In Hambly and Kolliopoulos [15–17] we
extended this work to a two-dimensional stochastic volatility setting, and here
we consider the question of effective one-dimensional constant volatility ap-
proximations which arise by considering fast mean-reversion in the volatilities.
This approach is to some extent motivated by the ideas of Fouque, Papanico-
laou and Sircar [11], but instead of option prices we look at the systemic risk
of large credit portfolios in the fast mean-reverting volatility setting.

The literature on large portfolio limit models in credit can be divided
into two approaches based on either structural or reduced form models for
the individual assets. Our focus will be on the structural approach where we
assume that we are modelling the financial health of the firms directly and
default occurs when these health processes hit a lower barrier.

The reduced form setting assumes that the default of each firm occurs as
a Poisson process and we model the default intensities directly. These can be
correlated through systemic factors and through the losses from the portfolio.
The evolution of the large portfolio limit of the empirical measure of the loss
can be analysed as a law of large numbers and then Gaussian fluctuations
derived around this limit, see Giesecke, Sirignano et al. [13,27,29,12] and Cvi-
tanic et al. [6]. Further, the large deviations can be analysed, see Sowers and
Spiliopoulos [30,31]. It is also possible to take an approach through interacting
particle systems where each firm as in one of two states representing financial
health and financial distress and there is a movement between states according
to some intensity, often firm dependent, and dependent on the proportion of
losses, see for instance Dai Pra and Tolotti [8] or Dai Pra et al. [7].

Our underlying set up is a structural model for default in which each asset
has a distance to default, which we think of as the logarithmically scaled
asset price process. The asset price evolves according to a general stochastic
volatility model, in which the distance to default of the i-th asset Xi satisfies
the system

dXi
t =

(
ri − h2(σit)

2

)
dt+ h(σit)

(√
1− ρ2

1,idW
i
t + ρ1,idW

0
t

)
, 0 ≤ t ≤ Ti

dσit = ki(θi − σit)dt+ ξig
(
σit
) (√

1− ρ2
2,idB

i
t + ρ2,idB

0
t

)
, t ≥ 0

Xi
t = 0, t > Ti

(Xi
0, σ

i
0) = (xi, σi,init),
Ti = inf{t ≥ 0 : Xi

t = 0}
(1.1)

for all i ∈ N, where the coefficient vectors Ci = (ri, ρ1,i, ρ2,i, ki, θi, ξi) are
picked randomly and independently from some probability distribution with
ρ1,i, ρ2,i ∈ [0, 1), the infinite sequence {(x1, σ1,init), (x2, σ2,init), ...} of ran-
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dom vectors in R2 is assumed to be exchangeable, and g, h are functions for
which we will give suitable conditions later. The exchangeablity condition im-
plies (see [1,20]) the existence of a σ-algebra G ⊂ σ({(xi, σi) : i ∈ N}), given
which the two-dimensional random vectors (xi, σi) are pairwise independent
and identically distributed. The idiosyncratic Brownian motions W i, Bi for
i ∈ N are taken to be pairwise independent, and also independent of the sys-
temic Brownian motions W 0, B0 which have a constant correlation ρ3.

We regard this as a system for Zi = (Xi, σi) with

dZi = bi(Zi)dt+Σi(Zi)dWi, Zi0 = (xi, σi,init)

for t < Ti, where

bi(X,σ) = (ri −
h(σ)2

2
, ki(θi − σ))>,

Σi(X,σ) =

h(σ)
√

1− ρ2
1,i h(σ)ρ1,i 0 0

0 0 ξig (σ)
√

1− ρ2
2,i ξig (σ) ρ2,i


and Wi = (W i,W 0, Bi, B0)>. Then, the infinitesimal generator of the above
two-dimensional process is given by

Aif =

2∑
j=1

bij
∂f

∂xj
+

1

2

2∑
j,k=1

aijk
∂2f

∂xj∂xk

for f ∈ C2(R+ × R,R). The matrix Ai = aijk is given by

Ai =

[
h(σ)2 h(σ)ξig(σ)ρ1,iρ2,iρ3

h(σ)ξig(σ)ρ1,iρ2,iρ3 ξ2
i g(σ)2

]
,

as Ai = ΣiR(Σi)>, with R the covariance matrix for the 4-dimensional Brow-
nian motion Wi.

We can show that the empirical measure of a sequence of finite sub-systems

νNt =
1

N

N∑
i=1

δXit ,σit ,

converges weakly as N → ∞ (see [17]) to the probability distribution of Z1
t

given W 0, B0 and G. This measure consists of two parts; its restriction to the
line x = 0, which is approximated by the restriction of νN to this line, and its
restriction to R+×R which possesses a two-dimensional density u(t, x, y). The
density u(t, x, y) can be regarded as an average of solutions to certain two-
dimensional SPDEs with a Dirichlet boundary condition on the line x = 0.
In particular, we can write u = E[uC1

|W 0, B0, G], where uC1
(t, x, y) is the

probability density of Z1
t given W 0, B0, G and C1 on R+ ×R, which satisfies,

for any value of the coefficient vector C1, the two-dimensional SPDE

duC1
= A1,∗uC1

dt+ B1,∗uC1
d(W 0, B0)>, (1.2)
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where A1,∗ is the adjoint of the generator A1 of Z1, and the operator B1,∗ is
given by

B1,∗f =

(
−ρ1,1h(y)

∂f

∂x
,−ξ1ρ2,1g (y)

∂f

∂y

)
.

The boundary condition is that uC1(t, 0, y) = 0 for all y ∈ R. In the special
case where the coefficients are constants independent of i, u is itself a solution
to the stochastic partial differential equation (1.2).

One reason for studying the large portfolio limit is the need to have a useful
approximation which captures the dynamics among the asset prices when the
number of assets is large. Moreover, by studying the limit SPDE instead of a
finite sub-system of (1.1), we can potentially provide a more efficient approach
to capturing the key drivers of a large portfolio without having to simulate a
large number of idiosyncratic Brownian paths.

Of central importance will be the loss function L, the mass of the probabil-
ity distribution of Z1

t given W 0, B0 and G on the line x = 0, which measures
the total loss in the large portfolio limit. The distribution of this function is a
simple measure of risk for the portfolio of assets and can be used to find the
probability of a large loss, or to determine the prices of portfolio credit deriva-
tives such as CDOs that can be written as expectations of suitable functions
of L. Thus our focus will be on estimating probabilities of the form

P
[
Lt ∈ (1− b, 1− a)

]
= P

[
P
[
X1
t > 0

∣∣W 0, B0, G
]
∈ (a, b)

]
(1.3)

for some 0 ≤ a < b ≤ 1, that is the probability that the total loss from the
portfolio lies within a certain range. Probabilities of the above form can be
approximated numerically with a simulated sample of values of Lt, obtained
via

1− Lt = P
[
X1
t > 0

∣∣∣W 0, B0, G
]

=

∫ +∞

0

∫ +∞

0

E
[
uC1

(t, x, y)
∣∣∣W 0, B0, G

]
dxdy

≈ 1

n

n∑
i=1

∫ +∞

0

∫ +∞

0

uc1,i(t, x, y)dxdy (1.4)

after solving the SPDE (1.2) for uC1
numerically, for a sample {c1,1, ..., c1,n}

of values of the vector C1. In the special case when asset prices are modelled as
simple constant volatility models, the numerics (see Giles and Reisinger [14], or
Bujok and Reisinger [4] for jump-diffusion models) have a significantly smaller
computational cost, which motivates the investigation of the existence of ac-
curate approximations using a constant volatility setting in the general case.
We note also that one-dimensional SPDEs describing large portfolio limits in
constant volatility environments have been found to have a unique regular
solution (see [5], or Hambly and Ledger [18] for a loss-dependent correlation
model), an important component of the numerical analysis and a counterpoint
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to the fact that we have been unable to establish uniqueness of solutions to
the two-dimensional SPDE arising in the CIR volatility case [15].

We will derive our one-dimensional approximations under two different
settings with fast mean-reverting volatility. In what we call the large vol-of-
vol setting, the mean reversion and volatility in the second equation in (1.1)
are scaled by suitable powers of ε in that ki = κi/ε and ξi = vi/

√
ε giving

dσit =
κi
ε

(θi − σit)dt+
vi√
ε
g
(
σit
) (√

1− ρ2
2,idB

i
t + ρ2,idB

0
t

)
, t ≥ 0,

and then we take ε → 0. This is distributionally equivalent to speeding up
the volatility processes by scaling the time t by ε, when ε is small. Our aim
is to take the limit as ε → 0, so that when the system of volatility processes
is positive reccurent, averages over finite time intervals involving the sped up
volatility processes will approximate the corresponding stationary means. In
the limit we obtain a constant volatility large portfolio model which could be
used as an effective approximation when volatilities are fast mean-reverting.
However, this speeding up does not lead to strong convergence of the volatility
processes, allowing only for weak convergence of our system, which can only
be established when ρ3 = 0 (effectively separating the time scales) and when
(κi, θi, vi, ρ2,i) is the same constant vector (κ, θ, v, ρ2) for all i ∈ N.

The case of small vol-of-vol has the mean reversion in the second equation
in (1.1) scaled by ε in that ki = κi/ε and

dσit =
κi
ε

(θi − σit)dt+ ξig
(
σit
) (√

1− ρ2
2,idB

i
t + ρ2,idB

0
t

)
, t ≥ 0.

We regard this case as a small noise perturbation of the constant volatility
model, where volatilities have stochastic behaviour but are pulled towards
their mean as soon as they move away from it due to a large mean-reverting
drift. When ε → 0, the drifts of the volatilities tend to infinity and dominate
the corresponding diffusion parts since the vol-of-vols remain small, allowing
for the whole system to converge to a constant volatility setting in a strong
sense. This strong convergence allows the rate of convergence of probabilities of
the form (1.3) to be estimated and gives us a quantitative measure of the loss
in accuracy in the estimation of these probabilities when a constant volatility
large portfolio model is used to replace a more realistic stochastic volatility
perturbation of that model.

In Sections 2 and 3 we present our main results for both settings. The
results are then proved in Sections 4 and 5. Finally the proofs of two propo-
sitions showing the positive recurrence, and hence applicability of our results,
for two classes of models can be found in the Appendix.

2 The main results: large vol-of-vol setting

We begin with the study of the fast mean-reversion - large vol-of-vol setting,
for which we need to assume that the correlation ρ3 of W 0 and B0 is zero.
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When g is either the square root function or a function behaving almost like
a positive constant for large values of the argument, it has been proven in
Theorem 4.3 in [15] and in Theorem 4.1 in [17] respectively that

uC1(t, x, y)

= pt
(
y|B0,G

)
E
[
u
(
t, x,W 0,G, C1, h

(
σ1
) ) ∣∣∣∣W 0, σ1

t = y,B0, C1,G
]

where pt is the density of each volatility path when the path of B0 is given,
and u(t, x,W 0,G, C1, h(σ1)) is the unique H1

0 (0, +∞) solution to the SPDE

u(t, x) = u0(x)−
∫ t

0

(
r −

h2
(
σ1
s

)
2

)
ux(s, x)ds

+

∫ t

0

h2
(
σ1
s

)
2

uxx(s, x)ds− ρ1,1

∫ t

0

h
(
σ1
s

)
ux(s, x)dW 0

s , (2.1)

where u0 is the density of each xi given G. In the above expression for the
two-dimensional density uC1(t, x, y), averaging happens with respect to the
idiosyncratic noises, and since we are interested in probabilities concerning Lt
which is computed by substituting that density in (1.4), averaging happens
with respect to the market noise (W 0, B0) as well. Therefore, we can replace
(W i, Bi) for all i ≥ 0 in our system by objects having the same joint law.
In particular, setting ki = κi/ε and ξi = vi/

√
ε, the i-th asset’s distance to

default Xi,ε satisfies the system

Xi,ε
t = xi +

∫ t
0

(
ri − h2(σi,εt )

2

)
dt

+
∫ t

0
h(σi,εt )

(√
1− ρ2

1,idW
i
t + ρ1,idW

0
t

)
, 0 ≤ t ≤ Ti

σi,εt = σi,init + κi
ε

∫ t
0
(θi − σi,εs )ds+ vi√

ε

∫ t
0
g
(
σi,εs
)
d
(√

1− ρ2
2,iB

i
s + ρ2,iB

0
s

)
Xi,ε
t = 0, t > T εi
T εi = inf{t ≥ 0 : Xi,ε

t = 0}

where the ε superscripts are used to underline the dependence on ε, and if we
substitute t = εt′ and s = εs′ for 0 ≤ s′ ≤ t′ and then replace (W i, Bi) by
(W i,

√
εBi·

ε
) for all i ≥ 0 which have the same joint law, the SDE satisfied by

the i-th volatility process becomes

σi,εεt′ = σi,init+κi

∫ t′

0

(θi−σi,εεs′)ds
′+vi

∫ t′

0

g
(
σi,εεs′

)
d
(√

1− ρ2
2,iB

i
s′ + ρ2,iB

0
s′

)
.

This shows that σi,ε = σi,εε× ·ε
can be replaced by σ1,1

·
ε

for all i ≥ 1, i.e the i-th

volatility process of our model when the mean-reversion coefficient and the
vol-of-vol are equal to κi and vi respectively and when the time t is scaled by
ε, speeding up the system of the volatilities when ε is small.

If g is now chosen so that the system of volatility processes becomes positive
recurrent, averages over finite time intervals converge to the corresponding
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stationary means as the speed tends to infinity, i.e as ε → 0+, which is the
key for the convergence of our system. We give a definition of the required
property for g.

Definition 2.1 (Positive recurrence property) We fix the distribution
from which each C ′i = (ri, ρ1,i, ρ2,i, ki, θi, ξi) is chosen, and we denote by C the
σ-algebra generated by all these coefficient vectors. Then, we say that g has
the positive recurrence property when the two-dimensional process (σi,1· , σ

j,1
· )

is a positive recurrent diffusion for any two i, j ∈ N, for almost all values of
C ′i and C ′j . This means that given C, there exists a two-dimensional random

variable (σi,j,1,∗, σi,j,2,∗) whose distribution is stationary for (σi,1· , σ
j,1
· ), and

whenever E[|F (σi,j,1,∗, σi,j,2,∗)| | C] exists and is finite for some measurable
function F : R2 → R we also have:

lim
T→+∞

1

T

∫ T

0

F
(
σi,1s , σj,1s

)
ds = E

[
F
(
σi,j,1,∗, σi,j,2,∗

) ∣∣∣ C],
or equivalently, after a change of variables,

lim
ε→0+

1

t

∫ t

0

F
(
σi,1s
ε
, σj,1s

ε

)
ds = E

[
F
(
σi,j,1,∗, σi,j,2,∗

) ∣∣∣ C]
for any t ≥ 0, P-almost surely.

The positive recurrence property is a prerequisite for our convergence re-
sults to hold, and now we will state two propositions which give us a few
classes of models for which this property is satisfied. The first shows that
for the Ornstein-Uhlenbeck model (g(x) = 1 for all x ∈ R) we always have
the positive recurrence property. The second shows that for the CIR model
(g(x) =

√
|x| for all x ∈ R) we have the positive recurrence property provided

that the random coefficients of the volatilities satisfy certain conditions. The
proofs of both propositions can be found in the Appendix.

Proposition 2.2 Suppose that g is a differentiable function, bounded from
below by some cg > 0. Suppose also that g′(x)κi(θi−x) < κig(x)+ vi

2 g
′′(x)g2(x)

for all x ∈ R and i ∈ N, for all possible values of Ci. Then g has the positive
recurrence property.

Proposition 2.3 Suppose that g(x) =
√
|x|g̃(x), where the function g̃ is a

continuously differentiable, strictly positive and increasing function taking val-
ues in [cg, 1] for some cg > 0. Then, there exists an η > 0 such that g has the
positive recurrence property when ‖Ci − Cj‖L∞(R6) < η and κi

v2
j
> 1

4 + 1√
2

for

all i, j ∈ N, P - almost surely.

We can proceed now to our main results, which will be governed by the
conditional moments σ1,1 = E[h(σ1,1,1,∗) | C] and σ2,1 =

√
E[h2(σ1,1,1,∗) | C], as

well as the quantity σ̃ =
√
E[h(σ1,2,1,∗)h(σ1,2,2,∗) | C], where σ1,1,1,∗, σ1,2,1,∗

and σ1,2,2,∗ are given in Definition 2.1. The next theorem implies the weak
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convergence of the loss Lεt = 1−P[X1,ε
t > 0 |W 0, B0, G] under the fast mean-

reverting volatility setting to the loss under an appropriate constant volatility
setting.

Theorem 2.4 Suppose that (κi, θi, vi, ρ2,i) = (κ, θ, v, ρ2) for all i ∈ N,
which is a deterministic vector in R4, the function h is bounded, and that g has
the positive recurrence property, in which case we have σ1,1 = E[h(σ1,1,1,∗)],

σ2,1 =
√
E[h2(σ1,1,1,∗)], and σ̃ =

√
E[h(σ1,2,1,∗)h(σ1,2,2,∗)]. Consider now the

one-dimensional large portfolio model where the distance to default of the i-th
asset Xi,∗

t evolves in time according to the system

Xi,∗
t = xi +

(
ri −

σ2
2,1

2

)
t+ ρ̃1,iσ2,1W

0
t +

√
1− ρ̃2

1,iσ2,1W
i
t , 0 ≤ t ≤ T ∗i

Xi,∗
t = 0, t ≥ T ∗i
T ∗i = inf{t ≥ 0 : Xi,∗

t = 0},

where ρ̃1,i = ρ1,i
σ̃
σ2,1

. Then, we have the convergence

P
[
X1,ε
t ∈ I

∣∣∣W 0, B0, G
]
−→ P

[
X1,∗
t ∈ I

∣∣∣W 0, G
]

in distribution as ε→ 0+, for any interval I = (0, U ] with U ∈ (0,+∞].

Remark 2.5 Since all volatility processes have the same stationary distribu-
tion, a simple Cauchy-Schwartz inequality shows that σ̃ ≤ σ2,1, which implies

that ˜ρ1,i ≤ ρ1,i < 1 and
√

1− ρ̃2
1,i is well-defined for each i.

The above theorem gives only weak convergence and only under the re-
strictive assumption of having the same coefficients in each volatility. For this
reason, we will also study the asymptotic behaviour of our system from a dif-
ferent perspective. In particular, we will fix the volatility path σ1,1 and the
coefficient vectors C ′i, and we will study the convergence of the solution uε(t, x)
to the SPDE (2.1) in the sped up setting, i.e

uε(t, x) = u0(x)−
∫ t

0

r − h2
(
σ1,1
s
ε

)
2

uεx(s, x)ds

+

∫ t

0

h2
(
σ1,1
s
ε

)
2

uεxx(s, x)ds− ρ1,1

∫ t

0

h
(
σ1,1
s
ε

)
uεx(s, x)dW 0

s ,

(2.2)

which is used to compute the loss Lεt.
We write now Eσ,C to denote the expectation given the volatility path σ1,1

and the Cis, which we have fixed, and L2
σ,C to denote the corresponding L2

norms. By 2. of Theorem 4.1 in [15], the solution uε to the above SPDE satisfies
the identity

‖uε(t, ·)‖2L2(R+) +
(
1− ρ2

1,1

) ∫ t

0

h2
(
σ1,1
t
ε

)
‖uεx(s, ·)‖2L2(R+) ds = ‖u0‖2L2(R+) ,

(2.3)
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which shows that the L2(R+) norms of uε, and also its L2([0, T ]×R+) norms
(for any T > 0), are all uniformly bounded by a random variable which has a
finite L2

σ,C(Ω) norm (the assumptions made in [15] are also needed for this).
It follows that in a subsequence of any given sequence of values of ε tending to
zero, we have weak convergence to some element u∗ (see [3]), and we can have
this both in L2

σ,C([0, T ] × R+ × Ω) and P-almost surely in L2([0, T ] × R+).
The characterization of the weak limits u∗ is given in the following theorem.

Theorem 2.6 Suppose that g has the positive recurrence property and that
for some C > 0 we have |h(x)| ≤ C for all x ≥ 0. Any weak limit u∗ of uε in
L2
σ,C([0, T ]× R+ ×Ω) solves the following SPDE

u∗(t, x) = u0(x)−

(
r −

σ2
2,1

2

)∫ t

0

u∗x(s, x)ds

+
σ2

2,1

2

∫ t

0

u∗xx(s, x)ds− ρ1,1σ1,1

∫ t

0

u∗x(s, x)dW 0
s . (2.4)

If h is bounded from below by a positive constant c > 0, the same weak con-
vergence holds also in H1

0 (R+) × L2
σ,C(Ω × [0, T ]), and u∗ is then the unique

solution to (2.4) in that space. In this case there is a unique subsequential weak
limit, and thus we have weak convergence as ε→ 0+.

It is not hard to see that the limiting SPDE (2.4) obtained in Theorem 2.6
corresponds to a constant volatility large portfolio model like the one given in
Theorem 2.4 under the assumption that (κi, θi, vi, ρ2,i) = (κ, θ, v, ρ2), but
with the correlation coefficients ρ̃1,i = ρ1,i

σ̃
σ2,1

replaced by ρ′1,i = ρ1,i
σ1,1

σ2,1
. This

indicates that the convergence of the loss Lεt can only be established in a weak
sense, as in general we will have σ̃ > σ1,1 and thus ρ̃1,i > ρ′1,i for all i. This is
stated explicitly in the next Proposition and its Corollary.

Proposition 2.7 Under the assumptions of Theorem 2.4, we have always
σ̃ ∈ [σ1,1, σ2,1]. The lower and upper bounds are generally attained only when
the volatilities are uncorrelated (ρ2 = 0) and perfectly correlated (ρ2 → 1)
respectively.

Corollary 2.8 In general, the convergence established in Theorem 2.4 does
not hold in any stronger sense, unless there is no market noise affecting all
the volatilities in our setting.

3 The main results: small vol-of-vol setting

We proceed now to the small vol-of-vol setting, where now only the volatility
drifts are scaled by ε, i.e ki = κi/ε for all i. This leads to the model where the
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i-th asset’s distance to default satisfies

Xi,ε
t = xi +

∫ t
0

(
ri − h2(σi,εt )

2

)
dt

+
∫ t

0
h(σi,εt )

(√
1− ρ2

1,idW
i
t + ρ1,idW

0
t

)
, 0 ≤ t ≤ T εi

σi,εt = σi,init +
∫ t

0
κi
ε (θi − σi,εt )dt+ ξig

(
σi,εt

)(√
1− ρ2

2,idB
i
t + ρ2,idB

0
t

)
Xi,ε
t = 0, t > T εi := inf{s ≥ 0 : Xi,ε

s ≤ 0}.

The main feature of the above model is that when the random coefficients
and the function g satisfy certain conditions, the i-th volatility process σi,ε

converges in a strong sense to the C-measurable mean θi as ε→ 0+ for all i ∈ N,
and we can also determine the rate of convergence. The required conditions
are the following, and they will be assumed to hold throughout the rest of this
section:

1. The i.i.d random variables σi, ξi, θi, κi take values in some compact subin-
terval of R, with each κi being bounded from below by some deterministic
constant cκ > 0.

2. g is a C1 function with at most linear growth (i.e |g(x)| ≤ C1,g + C2,g|x|
for some C1,g, C2,g > 0 and all x ∈ R).

3. Both the function h and its derivative have polynomial growth.

Under the above conditions, the convergence of each volatility process to
its mean is given in the following proposition

Proposition 3.1 For any t ≥ 0 and p ≥ 1, we have σi,ε → θi as ε → 0+ in

Lp(Ω × [0, t]) at a rate of ε
1
p . That is, we have ‖σi,ε − θi‖pLp(Ω×[0, t]) = O(ε)

as ε→ 0+.

The reason for having only weak convergence of our system in the large vol-
of-vol setting was the fact that the limiting quantities σ1,1, σ2,1 and σ̃ did not
coincide. On the other hand, Proposition 3.1 implies that the corresponding
limits in the small vol-of-vol setting are equal, allowing us to hope for our
system to converge in a stronger sense.

Let uε be the solution to the SPDE (2.1) in the small vol-of-vol setting,

uε(t, x) = u0(x)−
∫ t

0

(
r −

h2
(
σ1,ε
s

)
2

)
uεx(s, x)ds

+

∫ t

0

h2
(
σ1,ε
s

)
2

uεxx(s, x)ds− ρ1,1

∫ t

0

h
(
σ1,ε
s

)
uεx(s, x)dW 0

s

(3.1)

where we have fixed the volatility paths and the random coefficients. Working
as in the case of (2.2) and the proof of Theorem 2.3, it is possible to establish
similar asymptotic properties for the SPDE as ε → 0+. However, it is more
convenient to work with the antiderivative v0,ε :=

∫ +∞
· uε(·, y)dy, which sat-

isfies the same SPDE but with different initial and boundary conditions, as
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the loss Lεt = 1 − P[X1,ε
t > 0 |W 0, B0, G] equals the average of its value at 0

over all possible volatility paths and coefficient values, while its convergence
can be established in a much stronger sense and without the need to assume
that W 0 and B0 are uncorrelated. Our main result is stated below

Theorem 3.2 Define v0(t, x) =
∫ +∞
x

u0(t, y)dy for all t, x ≥ 0 where u0 is
the unique solution to the SPDE

u0(t, x) = u0(x)−
∫ t

0

(
r − h2 (θ1)

2

)
u0
x(s, x)ds

+

∫ t

0

h2 (θ1)

2
u0
xx(s, x)ds− ρ1,1

∫ t

0

h (θ1)u0
x(s, x)dW 0

s

(3.2)

in L2(Ω × [0, T ];H1
0 (R+)), which arises from the constant volatility model

dXi,∗
t =

(
ri − h2(θi)

2

)
dt+ h(θi)

(√
1− ρ2

1,idW
i
t + ρ1,idW

0
t

)
, 0 ≤ t ≤ Ti

Xi,∗
t = 0, t > Ti := inf{s ≥ 0 : Xi,∗

s ≤ 0}
Xi,∗

0 = xi

(3.3)
for i ∈ N. Then, v0,ε converges to v0 as ε→ 0+, strongly in the Sobolev space
L2(Ω× [0, T ];H1(R+)) for any T > 0, and the rate of convergence is

√
ε. That

is, we have ‖v0,ε − v0‖L2(Ω×[0, T ];H1(R+)) = O(
√
ε) as ε→ 0+

The SPDE (3.2) corresponds to the model (3.3) in the sense that given the
loss Lt, the mass of non-defaulted assets 1− Lt equals

P
[
X1,∗
t > 0

∣∣∣W 0, G
]

= E
[
v0
(
t, 0
) ∣∣∣W 0, G

]
=

∫ +∞

0

E
[
u0
(
t, x
) ∣∣∣W 0, G

]
dx.

In order to estimate the rate of convergence of probabilities of the form (1.3),
we consider the approximation error

E
(
x, T

)
=∫ T

0

∣∣∣∣∣P
[
P
[
X1,ε
t > 0

∣∣∣W 0, B0, G
]
> x

]
− P

[
P
[
X1,∗
t > 0

∣∣∣W 0, G
]
> x

]∣∣∣∣∣dt
for x ∈ [0, 1], and determine its order of convergence.

Corollary 3.3 For any x ∈ [0, 1] such that P[X1,∗
t > 0 |W 0, C ′1, G] has a

bounded density near x, uniformly in t ∈ [0, T ], we have E(x, T ) = O(ε1/3) as
ε→ 0+
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4 Proofs: large vol-of-vol setting

We prove Theorem 2.4, Theorem 2.6, Proposition 2.7 and Corollary 2.8, the
main results of section 2.

Proof (Theorem 2.4) To establish convergence in distribution, we show that,
for every bounded and continuous function G : R→ R, we have:

E

[
G

(
P
[
X1,ε
t ∈ I

∣∣∣W 0, B0, G
])]

−→ E

[
G

(
P
[
X1,∗
t ∈ I

∣∣∣W 0, G
])]

(4.1)

as ε→ 0+, where I = (0, U ]. Observe now that since the conditional probabil-
ities take values in the compact interval [0, 1], it is equivalent to have (4.1) for
all continuous G : [0, 1] → R, and by the Weierstrass approximation theorem
and linearity, we actually need to have this only when G is a polynomial of
the form G(x) = xm.

We now write Y i,ε for the i-th asset’s distance to default in the sped up
volatility setting, when the stopping condition at zero is ignored, that is

Y i,εt = xi +

∫ t

0

ri − h2
(
σi,1s
ε

)
2

 ds

+

∫ t

0

h(σi,1s
ε

)ρ1,idW
0
s +

∫ t

0

h(σi,1s
ε

)
√

1− ρ2
1,idW

i
s

with

σi,1t = σi,init + κ

∫ t

0

(
θ − σi,1s

)
ds

+v

∫ t

0

g
(
σi,1s
)
ρ2dB

0
s + v

∫ t

0

g
(
σi,1s
)√

1− ρ2
2dB

i
s

for all t ≥ 0, and then we have Xi,ε
t = Y i,εt∧T εi

. The m stochastic processes

{Xi,ε : 1 ≤ i ≤ m} are obviously pairwise i.i.d when the information contained
in W 0, B0 and G is given. Therefore we can write:

E

[
G

(
P
[
X1,ε
t ∈ I

∣∣∣W 0, B0, G
])]

= E
[
Pm
[
X1,ε
t ∈ I

∣∣∣W 0, B0, G
]]

= E
[
P
[
X1,ε
t ∈ I, X

2,ε
t ∈ I, ..., X

m,ε
t ∈ I

∣∣∣W 0, B0, G
]]

= P
[
X1,ε
t ∈ I, X

2,ε
t ∈ I, ..., X

m,ε
t ∈ I

]
= P

[(
min

1≤i≤m
min

0≤s≤t
Y i,εs , max

1≤i≤m
Y i,εt

)
∈ (0, +∞)× (−∞, U ]

]
.

(4.2)
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Next, for each i, we write Y i,∗ for the process Xi,∗ when the stopping condition
at zero is ignored, that is

Y i,∗t = Xi
0 +

(
ri −

σ2
2,1

2

)
t+ ρ̃1,iσ2,1W

0
t +

√
1− ρ̃2

1,iσ2,1W
i
t

for all t ≥ 0, with ρ̃1,i = ρ1,i
σ̃
σ2,1

. Again, it is easy to check that the processes

Y i,∗ are pairwise i.i.d when the information contained in W 0, B0 and G is
given. Thus, we can write

E

[
G

(
P
[
X1,∗
t ∈ I

∣∣∣W 0, G
])]

= E
[
Pm
[
X1,∗
t ∈ I

∣∣∣W 0, G
]]

= E
[
P
[
X1,∗
t ∈ I, X2,∗

t ∈ I, ..., Xm,∗
t ∈ I

∣∣∣W 0, G
]]

= P
[
X1,∗
t ∈ I, X2,∗

t ∈ I, ..., Xm,∗
t ∈ I

]
= P

[(
min

1≤i≤m
min

0≤s≤t
Y i,∗s , max

1≤i≤m
Y i,∗t

)
∈ (0, +∞)× (−∞, U ]

]
.

(4.3)

Then, (4.2) and (4.3) show that the result we want to prove has been reduced
to the convergence(

min
1≤i≤m

min
0≤s≤t

Y i,εs , max
1≤i≤m

Y i,εt

)
−→

(
min

1≤i≤m
min

0≤s≤t
Y i,∗s , max

1≤i≤m
Y i,∗t

)
,

in distribution as ε→ 0+ (since the probability that any of the m minimums
equals zero is zero, as the minimum of any Gaussian process is always con-
tinuously distributed, while Y i,ε is obviously Gaussian for any given path of
σi,1).

Let C([0, t];Rm) be the classical Wiener space of continuous functions de-
fined on [0, t] and taking values in Rm (i.e the space of these functions equipped
with the supremum norm and the Wiener probability measure), and observe
that min1≤i≤m pi(min0≤s≤t ·(s)) defined on C([0, t];Rm), where pi stands for
the projection on the i-th axis, is a continuous functional. Indeed, for any two
continuous functions f1, f2 in C([0, t];Rm), we have:∣∣∣∣∣ min

1≤i≤m
pi

(
min

0≤s≤t
f1(s)

)
− min

1≤i≤m
pi

(
min

0≤s≤t
f2(s)

)∣∣∣∣∣
=
∣∣∣pi1(f1(s1)

)
− pi2

(
f2(s2)

)∣∣∣
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for some s1, s2 ∈ [0, t] and 1 ≤ i1, i2 ≤ m, and without loss of generality we
may assume that the difference inside the last absolute value is nonnegative.
Moreover we have:

pi1
(
f1(s1)

)
= min

1≤i≤m
pi

(
min

0≤s≤t
f1(s)

)
≤ pi2

(
f1(s2)

)
and thus ∣∣∣∣∣ min

1≤i≤m
pi

(
min

0≤s≤t
f1(s)

)
− min

1≤i≤m
pi

(
min

0≤s≤t
f2(s)

)∣∣∣∣∣
= pi1

(
f1(s1)

)
− pi2

(
f2(s2)

)
≤ pi2

(
f1(s2)

)
− pi2

(
f2(s2)

)
≤
∣∣∣pi2(f1(s2)

)
− pi2

(
f2(s2)

)∣∣∣
≤ ‖f1 − f2‖C([0, t];Rm) .

Obviously, max1≤i≤m pi(·(t)) defined on C([0, t];Rm) is also continuous (as the
maximum of finitely many evaluation functionals). Therefore, our problem is
finally reduced to showing that (Y 1,ε, Y 2,ε, ..., Y m,ε) converges in distribution
to (Y 1,∗, Y 2,∗, ..., Y m,∗) in the space C([0, t];Rm), as ε→ 0+.

In order to show the convergence in distribution we first establish that a
limit in distribution exists as as ε → 0+ by using a tightness argument, and
then we will characterize the limits of the finite dimensional distributions. To
show tightness of the laws of (Y 1,ε, Y 2,ε, ..., Y m,ε) for ε ∈ R+, which implies
the desired convergence in distribution, we recall a special case of Theorem
3.7.2 in Ethier and Kurtz [9] for continuous processes, according to which it
suffices to prove that for a given η > 0, there exist some δ > 0 and N > 0
such that:

P

[∣∣∣∣(Y 1,ε
0 , Y 2,ε

0 , ..., Y m,ε0

)∣∣∣∣
Rm

> N

]
≤ η (4.4)

and

P

[
sup

0≤s1,s2≤t, |s1−s2|≤δ

∣∣∣∣(Y 1,ε
s1 , Y

2,ε
s1 , ..., Y

m,ε
s1

)
−
(
Y 1,ε
s2 , Y

2,ε
s2 , ..., Y

m,ε
s2

)∣∣∣∣
Rm

> η

]
≤ η (4.5)

for all ε > 0. (4.4) can easily be achieved for some very large N > 0, since
(Y 1,ε

0 , Y 2,ε
0 , ..., Y m,ε0 ) = (x1, x2, ..., xm), which is independent of ε and almost

surely finite (the sum of the probabilities that the norm of this vector belongs
to [n, n+ 1] over n ∈ N is a convergent series and thus, by the Cauchy criteria,
the same sum but for n ≥ N tends to zero as N tends to infinity). For (4.5),
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observe that | · |Rm can be any of the standard equivalent Lp norms of Rm,
and we choose it to be L∞. Then we have:

P

[
sup

0≤s1,s2≤t, |s1−s2|≤δ

∣∣∣(Y 1,ε
s1 , Y

2,ε
s1 , ..., Y

m,ε
s1

)
−
(
Y 1,ε
s2 , Y

2,ε
s2 , ..., Y

m,ε
s2

)∣∣∣
Rm

> η

]

= P

[
∪mi=1

{
sup

0≤s1,s2≤t, |s1−s2|≤δ

∣∣Y i,εs1 − Y i,εs2 ∣∣ > η

}]

≤
m∑
i=1

P

[
sup

0≤s1,s2≤t, |s1−s2|≤δ

∣∣Y i,εs1 − Y i,εs2 ∣∣ > η

]

= mP

[
sup

0≤s1,s2≤t, |s1−s2|≤δ

∣∣Y 1,ε
s1 − Y

1,ε
s2

∣∣ > η

]
(4.6)

and since the Ito integral
∫ t

0
h(σ1,1

s
ε

)(
√

1− ρ2
1dW

1
s +ρ1dW

0
s ) can be written as

W̃∫ t
0
h2(σ1,1

s
ε

)ds, where W̃· is another standard Brownian motion, denoting the

maximum of h by M we also have:

P

[
sup

0≤s1,s2≤t, |s1−s2|≤δ

∣∣Y 1,ε
s1 − Y

1,ε
s2

∣∣ > η

]

= P

[
sup

0≤s1,s2≤t, |s1−s2|≤δ

∣∣∣∣∣
∫ s1

s2

r − h2
(
σ1,1
s
ε

)
2

 ds

+

(
W̃∫ s1

0 h2

(
σ1,1
s
ε

)
ds
− W̃∫ s2

0 h2

(
σ1,1
s
ε

)
)∣∣∣∣∣ > η

]

≤ P

 sup
0≤s1,s2≤t, |s1−s2|≤δ

∣∣∣∣∣∣
∫ s1

s2

r − h2
(
σ1,1
s
ε

)
2

 ds

∣∣∣∣∣∣ > η

2


+P

[
sup

0≤s1,s2≤t, |s1−s2|≤δ

∣∣∣∣∣W̃∫ s10 h2

(
σ1,1
s
ε

)
ds
− W̃∫ s2

0 h2

(
σ1,1
s
ε

)
ds

∣∣∣∣∣ > η

2

]
≤ P

[
δ (r +M) >

η

2

]
+P

[
sup

0≤s3,s4≤M2t, |s3−s4|≤M2δ

∣∣∣W̃s3 − W̃s4

∣∣∣ > η

2

]

since |
∫ b
a
h2(σ1,1

s
ε

)ds| ≤ M2|a − b| for all a, b ∈ R+. The first of the last two

probabilities is clearly zero for δ < η
2(r+M) , while the second one can also

be made arbitrarily small for small enough δ, since by a well known result



16 Ben Hambly, Nikolaos Kolliopoulos

about the modulus of continuity of a Brownian motion (see Levy [25]) the
supremum within that probability converges almost surely (and thus also in

probability) to 0 as fast as M
√

2δ ln 1
M2δ . Using these in (4.6) we deduce that

(4.5) is also satisfied and we have the desired tightness result, which implies
that (Y 1,ε

· , ..., Y m,ε· ) converges in distribution to some limit (Y 1,0
· , ..., Y m,0· )

(along some sequence).

To conclude our proof, we need to show that (Y 1,0
· , ..., Y m,0· ) coincides with

(Y 1,∗
· , ..., Y m,∗· ). Since both m-dimensional processes are uniquely determined

by their finite-dimensional distributions, and since evaluation functionals on
C([0, t];Rm) preserve convergences in distribution (as continuous linear func-
tionals), we only need to show that for any fixed (i1, ..., i`) ∈ {1, ..., m}`, any
fixed (t1, ..., t`) ∈ (0, +∞)`, and any fixed continuous and bounded function
q : R` → R, for an arbitrary ` ∈ N, we have

E
[
q
(
Y i1,εt1 , Y i2,εt2 , ..., Y i`,εt`

)]
−→ E

[
q
(
Y i1,∗t1 , Y i2,∗t2 , ..., Y i`,∗t`

)]
as ε → 0+. By the dominated convergence theorem, the above follows if we
are able to show that

lim
ε→0+

E
[
q
(
Y i1,εt1 , Y i2,εt2 , ..., Y i`,εt`

) ∣∣∣∣σi1,1· , σi2,1· , ..., σi`,1· , C
]

= E
[
q
(
Y i1,∗t1 , Y i2,∗t2 , ..., Y i`,∗t`

) ∣∣∣∣σi1,1· , σi2,1· , ..., σi`,1· , C
]

P- almost surely. However, when the information contained in σi1,1· , ..., σi`,1·
and C is given, both (Y i1,εt1 , ..., Y i`,εt`

) and (Y i1,∗t1 , ..., Y i`,∗t`
) follow a normal

distribution in R`. This means that given (σi1,1· , ..., σi`,1· ) and C, we only
need to show that as ε → 0+, the mean vector and the covariance matrix
of (Y i1,εt1 , ..., Y i`,εt`

) converge to the mean vector and the covariance matrix

of (Y i1,∗t1 , ..., Y i`,∗t`
) respectively. Given (σi1,1· , ..., σi`,1· ), the information con-

tained in C, and a k ∈ {1, 2, ..., `}, the k-th coordinate of the mean vector

of (Y i1,εt1 , Y i2,εt2 , ..., Y i`,εt`
) is equal to Xik

0 +
∫ tk

0
(rik −

h2(σ
ik,1
s
ε

)

2 )ds, and by the

positive recurrence property it converges as ε → 0+ to Xik
0 + (rik −

σ2
2,1

2 )tk
(since the volatility processes all have the same coefficients and thus the same
stationary distributions), which is the k-th coordinate of the mean vector of
(Y i1,∗t1 , Y i2,∗t2 , ..., Y i`,∗t`

). Now we only need to obtain the corresponding conver-
gence result for the covariance matrices of our processes. For some 1 ≤ p, q ≤ `,
given (σi1,1· , σi2,1· , ..., σi`,1· ) and the information contained in C, the covariance

of Y
ip,ε
tp and Y

iq,ε
tq is equal to

(
ρ1,ipρ1,iq + δip,iq

√
1− ρ1,ip

√
1− ρ1,iq

) ∫ tp∧tq

0

h
(
σ
ip,1
s
ε

)
h
(
σ
iq,1
s
ε

)
ds,
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while the covariance of Y
ip,∗
tp and Y

iq,∗
tq is equal to(

ρ̃1,ip ρ̃1,iq + δip,iq

√
1− ρ̃2

1,ip

√
1− ρ̃2

1,iq

)
σ2

2,1tp ∧ tq.

This means that for ip = iq = i ∈ {1, 2, ..., m} we need to show that∫ tp∧tq

0

h2
(
σi,1s
ε

)
ds −→ σ2

2,1tp ∧ tq

as ε→ 0+, while for ip 6= iq we need to show that:

ρ1,ipρ1,iq

∫ tp∧tq

0

h
(
σ
ip,1
s
ε

)
h
(
σ
iq,1
s
ε

)
ds −→ ρ̃1,ip ρ̃1,iqσ

2
2,1tp ∧ tq

as ε→ 0+, where ρ̃1,iσ2,1 = ρ1,iσ̃ for all i ≤ m. Both convergence results follow

from the positive recurrence property for σ̃ =
√
E [h (σip,iq,1,∗)h (σip,iq,2,∗)],

which does not depend on ip and iq since the volatility processes all have
the same coefficients and thus the same joint stationary distributions. This
concludes the proof. ut

Proof (Theorem 2.6) Let V be the set of W 0
· -adapted, square-integrable

semimartingales on [0, T ]. Thus for any {Vt : 0 ≤ t ≤ T} ∈ V, there exist
two W 0-adapted and square-integrable processes {v1,t : 0 ≤ t ≤ T} and
{v2,t : 0 ≤ t ≤ T}, such that

Vt = V0 +

∫ t

0

v1,sds+

∫ t

0

v2,sdW
0
s , (4.7)

for all t ≥ 0. The processes of the above form for which {v1,t : 0 ≤ t ≤ T} and
{v2,t : 0 ≤ t ≤ T} are simple processes, that is

vi,t = FiI[t1, t2](t), (4.8)

for all 0 ≤ t ≤ T and i ∈ {1, 2}, with each Fi being FW 0

t1 -measurable, span

a linear subspace Ṽ which is dense in V under the L2 norm. By using the
boundedness of h and then the estimate (2.3), for any p > 0 and any T > 0
we obtain ∫ T

0

∥∥∥∥hp(σ1,1
t
ε

)
uε(t, ·)

∥∥∥∥2

L2
σ,C(R+×Ω)

dt ≤ TC2p ‖u0‖2L2(R+) . (4.9)

It follows that given a sequence εn → 0+, there exists always a subsequence
{εkn : n ∈ N}, such that hp(σ1,1

·
ε

)uε(·, ·) converges weakly to some up(·, ·)
in the space L2

σ,C([0, T ] × R+ × Ω) for p ∈ {1, 2}. Testing (2.2) against an
arbitrary smooth and compactly supported function f of x ∈ R+, using Ito’s
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formula for the product of
∫
R+
uε(·, x)f(x)dx with a process V· ∈ Ṽ having

the form (4.7) - (4.8), and finally taking expectations, we find that:

Eσ,C

[
Vt

∫
R+

uε(t, x)f(x)dx

]

= Eσ,C

[
V0

∫
R+

u0(x)f(x)dx

]
+ r

∫ t

0

Eσ,C

[
Vs

∫
R+

uε(s, x)f ′(x)dx

]
ds

−
∫ t

0

Eσ,C

Vs ∫
R+

h2
(
σ1,1
s
ε

)
2

uε(s, x)f ′(x)dx

 ds
+

∫ t

0

Eσ,C

Vs ∫
R+

h2
(
σ1,1
s
ε

)
2

uε(s, x)f ′′(x)dx

 ds
+

∫ t

0

Eσ,C

[
v1,s

∫
R+

uε(s, x)f(x)dx

]
ds

+ρ1,1

∫ t

0

Eσ,C

[
v2,s

∫
R+

h
(
σ1,1
s
ε

)
uε(s, x)f ′(x)dx

]
ds (4.10)

for all t ≤ T . Thus, setting ε = εkn and taking n → +∞, by the weak
convergence results mentioned above we obtain

Eσ,C

[
Vt

∫
R+

u∗(t, x)f(x)dx

]

= Eσ,C

[
V0

∫
R+

u0(x)f(x)dx

]
+ r

∫ t

0

Eσ,C

[
Vs

∫
R+

u∗(s, x)f ′(x)dx

]
ds

−1

2

∫ t

0

Eσ,C

[
Vs

∫
R+

u2(s, x)f ′(x)dx

]
ds

+
1

2

∫ t

0

Eσ,C

[
Vs

∫
R+

u2(s, x)f ′′(x)dx

]
ds

+

∫ t

0

Eσ,C

[
v1,s

∫
R+

u∗(s, x)f(x)dx

]
ds

+ρ1,1

∫ t

0

Eσ,C

[
v2,s

∫
R+

u1(s, x)f ′(x)dx

]
ds (4.11)

for all 0 ≤ t ≤ T . The convergence of the terms in the RHS of (4.10) holds
pointwise in t, while the one term in the LHS converges weakly. Since we can
easily find uniform bounds for all the terms in (4.10) (by using (4.9)), the
dominated convergence theorem implies that all the weak limits coincide with
the corresponding pointwise limits, which gives (4.11) as a limit of (4.10) both
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weakly and pointwise in t. It is clear then that Eσ,C [Vt
∫
R+
u∗(t, x)f(x)dx]

is differentiable in t (in a W 1,1 sense). Next, we can check that the expec-
tation Eσ,C [vi,t

∫
R+
uεkn (t, x)f(x)dx] converges to Eσ,C [vi,t

∫
R+
u∗(t, x)f(x)dx]

for both i = 1 and i = 2, both weakly and pointwise in t ∈ [0, T ], while the
limits are also differentiable in t everywhere except the two jump points t1
and t2. This follows because everything is zero outside [t1, t2], while both v1

and v2 are constant in t and thus of the form (4.7) - (4.8) if we restrict to
that interval. Subtracting from each term of (4.10) the same term but with uε

replaced u∗ and then adding it back, we can rewrite this identity as

Eσ,C

[
Vt

∫
R+

uε(t, x)f(x)dx

]

= Eσ,C

[
V0

∫
R+

u0(x)f(x)dx

]
+ r

∫ t

0

Eσ,C

[
Vs

∫
R+

uε(s, x)f ′(x)dx

]
ds

−
∫ t

0

h2
(
σ1,1
s
ε

)
2

(
Eσ,C

[
Vs

∫
R+

uε(s, x)f ′(x)dx

]

−Eσ,C

[
Vs

∫
R+

u∗(s, x)f ′(x)dx

])
ds

−
∫ t

0

h2
(
σ1,1
s
ε

)
2

Eσ,C

[
Vs

∫
R+

u∗(s, x)f ′(x)dx

]
ds

+

∫ t

0

h2
(
σ1,1
s
ε

)
2

(
Eσ,C

[
Vs

∫
R+

uε(s, x)f ′′(x)dx

]

−Eσ,C

[
Vs

∫
R+

u∗(s, x)f ′′(x)dx

])
ds

+

∫ t

0

h2
(
σ1,1
s
ε

)
2

Eσ,C

[
Vs

∫
R+

u∗(s, x)f ′′(x)dx

]
ds

+

∫ t

0

Eσ,C

[
v1,s

∫
R+

uε(s, x)f(x)dx

]
ds

+ρ1,1

∫ t

0

h
(
σ1,1
s
ε

)(
Eσ,C

[
v2,s

∫
R+

uε(s, x)f ′(x)dx

]

−Eσ,C

[
v2,s

∫
R+

u∗(s, x)f ′(x)dx

])
ds

+ρ1,1

∫ t

0

h
(
σ1,1
s
ε

)
Eσ,C

[
v2,s

∫
R+

u∗(s, x)f ′(x)dx

]
ds.

(4.12)
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Then we have∣∣∣∣∣
∫ t

0

h
(
σ1,1
s
ε

)(
Eσ,C

[
v2,s

∫
R+

uε(s, x)f ′(x)dx

]

−Eσ,C

[
v2,s

∫
R+

u∗(s, x)f ′(x)dx

])
ds

∣∣∣∣∣
≤ C

∫ t

0

∣∣∣∣∣Eσ,C
[
v2,s

∫
R+

uε(s, x)f ′(x)dx

]

−Eσ,C

[
v2,s

∫
R+

u∗(s, x)f ′(x)dx

] ∣∣∣∣∣ds,
which tends to zero (when ε = εkn and n→∞) by the dominated convergence
theorem, since the quantity inside the last integral converges pointwise to
zero and it can be dominated by using (4.9). The same argument is used to
show that the 4th and 6th terms in (4.12) tend also to zero along the same
subsequence. Finally, for any term of the form∫ t

0

hp
(
σ1,1
s
ε

)
Eσ,C

[
Vs

∫
R+

u∗(s, x)f (m)(x)dx

]
ds

for p,m ∈ {0, 1, 2}, we can recall the differentiability of the second factor
inside the integral (which was mentioned earlier) and then use integration by
parts to write it as:∫ t

0

hp
(
σ1,1
w
ε

)
dw

(
Eσ,C

[
Vs

∫
R+

u∗(t, x)f (m)(x)dx

])

−
∫ t

0

∫ s

0

hp
(
σ1,1
w
ε

)
dw

(
Eσ,C

[
Vs

∫
R+

u∗(s, x)f (m)(x)dx

])′
ds

which converges, by the positive recurrence property, to the quantity

tE
[
hp
(
σ1,1,1,∗) | C](Eσ,C [Vs ∫

R+

u∗(t, x)f (m)(x)dx

])

−
∫ t

0

sE
[
hp
(
σ1,1,1,∗) | C](Eσ,C [Vs ∫

R+

u∗(s, x)f (m)(x)dx

])′
ds.

Using integration by parts once more, this last expression is equal to

E
[
hp
(
σ1,1,1,∗) | C] ∫ t

0

Eσ,C

[
Vs

∫
R+

u∗(s, x)f (m)(x)dx

]
ds.

This last convergence result holds also if we replace V by v1 or v2, as we can
show by following exactly the same steps in the subinterval [t1, t2] (where vi
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is supported for i ∈ {1, 2} and where we have differentiability that allows
integration by parts).

If we set now ε = εkn in (4.12), take n→ +∞, and substitute all the above
convergence results, we obtain

Eσ,C

[
Vt

∫
R+

u∗(t, x)f(x)dx

]

= Eσ,C

[
V0

∫
R+

u0(x)f(x)dx

]

+

(
r −

σ2
2,1

2

)∫ t

0

Eσ,C

[
Vs

∫
R+

u∗(s, x)f ′(x)dx

]
ds

+
σ2

2,1

2

∫ t

0

Eσ,C

[
Vs

∫
R+

u∗(s, x)f ′′(x)dx

]
ds

+

∫ t

0

Eσ,C

[
v1,s

∫
R+

u∗(s, x)f(x)dx

]
ds

+ρ1,1σ1,1

∫ t

0

Eσ,C

[
v2,s

∫
R+

u∗(s, x)f ′(x)dx

]
ds. (4.13)

Since Ṽ is dense in V, for a fixed t ≤ T , we can have (4.13) for any square-
integrable martingale {Vs : 0 ≤ s ≤ t}, for which we have v1,s = 0 for all
0 ≤ s ≤ t. Next, we denote by Ru(t, x) the RHS of (2.4). Using then Ito’s
formula for the product of

∫
R+
Ru(s, x)f(x)dx with Vs at s = t, subtracting

Vt
∫
R+
u∗(t, x)f(x)dx from both sides, taking expectations and finally substi-

tuting from (4.13), we find that

Eσ,C

[
Vt

(∫
R+

Ru(t, x)f(x)dx−
∫
R+

u∗(t, x)f(x)dx

)]
= 0

for our fixed t ≤ T . Using the martingale representation theorem, Vs can be
taken equal to Eσ,C

[
IEs |σ

(
{W 0

s′ : s′ ≤ s}
)]

for all s ≤ t, where we define

Et =

{
ω ∈ Ω :

∫
R+

Ru(t, x)f(x)dx >

∫
R+

u∗(t, x)f(x)dx

}
,

and this implies Vt = IEs allowing us to write

Eσ,C

[
IEt

(∫
R+

Ru(t, x)f(x)dx−
∫
R+

u∗(t, x)f(x)dx

)]
= 0

for any 0 ≤ t ≤ T . If we integrate the above for t ∈ [0, T ] we obtain that∫ T

0

Eσ,C

[
IEt

(∫
R+

Ru(t, x)f(x)dx−
∫
R+

u∗(t, x)f(x)dx

)]
dt = 0
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where the quantity inside the expectation is always non-negative and becomes
zero only when IEt = 0. This implies

∫
R+
Ru(t, x)f(x)dx ≤

∫
R+
u∗(t, x)f(x)dx

almost everywhere, and working in the same way with the indicator of the
complement IEct we can deduce the opposite inequality as well. Thus, we must
have

∫
R+
Ru(t, x)f(x)dx =

∫
R+
u∗(t, x)f(x)dx almost everywhere, and since

the function f is an arbitrary smooth function with compact support, we can
deduce that Ru coincides with u∗ almost everywhere, which gives (2.4).

If h is bounded from below, we can use (2.3) to obtain a uniform (inde-
pendent of ε) bound for the H1

0 (R+) ⊗ L2
σ,C(Ω × [0, T ]) norm of uεkn , which

implies that in a further subsequence, the weak convergence to u∗ holds also
in that Sobolev space, in which (2.4) has a unique solution [5]. This implies
convergence of uε to the unique solution of (2.4) in H1

0 (R+)⊗L2
σ,C(Ω× [0, T ]),

as ε→ 0+. The proof is now complete. ut

Proof (Proposition 2.7) The upper bound can be obtained by a simple
Cauchy-Schwarz inequality,

σ̃ =

√
E
[
h (σ1,2,1,∗)h (σ1,2,2,∗)

]
≤

√√
E
[
h2 (σ1,2,1,∗)

]√
E
[
h2 (σ1,2,2,∗)

]
=
√
σ2,1 × σ2,1.

= σ2,1

This calculation shows that this bound is only attainable when σi,j,1,∗ = σi,j,2,∗

for all i and j with i 6= j, and this happens only when all the assets share a
common stochastic volatility (i.e ρ2 = 1).

For the lower bound, considering our volatility processes for i = 1 and
i = 2 started from their 1-dimensional stationary distributions independently,
we have for any t, ε ≥ 0

E
[

1

t

∫ t

0

h
(
σ1,1
s
ε

)
h
(
σ2,1
s
ε

)
ds

]
=

1

t

∫ t

0

E
[
h
(
σ1,1
s
ε

)
h
(
σ2,1
s
ε

) ]
ds

=
1

t

∫ t

0

E
[
h
(
σ1,1
s
ε

) ]
E
[
h
(
σ2,1
s
ε

) ]
ds

+
1

t

∫ t

0

E

[(
h
(
σ1,1
s
ε

)
− E

[
h
(
σ1,1
s
ε

) ])(
h
(
σ2,1
s
ε

)
− E

[
h
(
σ2,1
s
ε

) ])]
ds

= σ2
1,1

+
1

t

∫ t

0

E

[
E
[(
h
(
σ1,1
s
ε

)
− E

[
h
(
σ1,1
s
ε

) ])
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×
(
h
(
σ2,1
s
ε

)
− E

[
h
(
σ1,1
s
ε

) ]) ∣∣∣∣B0

]]
ds

= σ2
1,1 +

1

t

∫ t

0

E

[
E
[(
h
(
σ1,1
s
ε

)
− σ1,1

) ∣∣∣∣B0

]2
]
ds

≥ σ2
1,1, (4.14)

since σ1,1 and σ2,1 are identically distributed, and also independent when B0 is
given. Taking ε→ 0+ on (4.14) and recalling the positive recurrence property,
the definition of σ̃, and the dominated convergence theorem on the LHS (since
the quantity inside the expectation there is bounded by the square of an upper
bound of h), we obtain the lower bound, i.e σ̃ ≥ σ1,1, which can also be shown
to be unattainable in general. Indeed, if we choose h such that its composition
h̃ with the square function is strictly increasing and convex, and if g is chosen
to be a square root function (thus we are in the CIR volatility case), for any
α > 0 we have

1

t

∫ t

0

E

[
E
[(
h
(
σ1,1
s
ε

)
− σ1,1

) ∣∣∣∣B0

]2
]
ds

= E

[
1

t

∫ t

0

(
E
[
h̃

(√
σ1,1
s
ε

) ∣∣∣∣B0

]
− σ1,1

)2

ds

]

≥ α2E
[

1

t

∫ t

0

I
σB

0,h
s
ε
≥α+σ1,1

ds

]

where σB
0,h

s := E[h̃(
√
σ1,1
s ) |B0] ≥ h̃(σB

0

s ) for σB
0

s := E[
√
σ1,1
s |B0], which

implies that

1

t

∫ t

0

E

[
E
[(
h
(
σ1,1
s
ε

)
− σ1,1

) ∣∣∣∣B0

]2
]
ds

≥ α2E
[

1

t

∫ t

0

I
σB

0
s
ε
≥h̃−1(α+σ1,1)

ds

]
. (4.15)

Let σρt be the solution to the SDE

σρt = σB
0

0 +
1

2

∫ t

0

(
κθ − v2

4

)
1

σρs
ds+

κ

2

∫ t

0

σρsds+
ρ2v

2
B0
s .

Then σρ can be shown to be the square root of a CIR process having the same
mean-reversion and vol-of-vol as σ1,1 and a different stationary mean, which
satisfies the Feller condition for not hitting zero at a finite time. If for some
t1 > 0 we have σρt1 > σB

0

t1 , we consider t0 = sup{s ≤ t1 : σρs = σB
0

s } which
is obviously non-negative. Then, since E[ 1√

σ1,1
s

|B0] ≥ 1

E[
√
σ1,1
s |B0]

= 1
σB0
s

we
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have

σB
0

t1 = σB
0

t0 +
1

2

∫ t1

t0

(
κθ − v2

4

)
E

[
1√
σ1,1
s

∣∣∣∣∣B0

]
ds

−κ
2

∫ t1

t0

σB
0

s ds+
ρ2v

2

(
B0
t1 −B

0
t0

)
≥ σB

0

t0 +
1

2

∫ t1

t0

(
κθ − v2

4

)
1

σB0

s

ds− κ

2

∫ t1

t0

σB
0

s ds+
ρ2v

2

(
B0
t1 −B

0
t0

)
≥ σρt0 +

1

2

∫ t1

t0

(
κθ − v2

4

)
1

σρs
ds− κ

2

∫ t1

t0

σρsds+
ρ2v

2

(
B0
t1 −B

0
t0

)
= σρt1

which is a contradiction. Thus σρs ≤ σB
0

s for all s ≥ 0, and in (4.15) this gives

1

t

∫ t

0

E

[
E
[(
h
(
σ1,1
s
ε

)
− σ1,1

) ∣∣∣∣B0
·

]2
]
ds

≥ α2E
[

1

t

∫ t

0

Iσρs
ε
≥h̃−1(α+σ1,1)ds

]
.

By the positive recurrence of σρ (which is the root of a CIR process, the ergod-
icity of which has been discussed in [11]), the RHS of the above converges to
α2P(σρ,∗ ≥ h̃−1(α+ σ1,1)) as ε→ 0+, where σρ,∗ has the stationary distribu-
tion of σρ. This expression can only be zero when σρ,∗ is a constant, and since
the square of σρ satisfies Feller’s boundary condition, this can only happen
when ρ2 = 0. In that case, we can easily check that σ1,2,1,∗ and σ1,2,1,∗ are
independent, which implies that σ̃ = σ1,1. This completes the proof. ut

Proof (Corollary 2.8) Suppose that P(X1,ε
t ∈ I |W 0

· , B
0
· , G) converges to

P(X1,∗
t ∈ I |W 0

· , G) in probability, under the assumptions of both Theorem 2.4
and Theorem 2.6. The same convergence has to hold in a strong L2 sense for
some sequence εn ↓ 0, since it will hold P - almost surely for some sequence, and
then we can apply the dominated convergence theorem. Therefore, the same
convergence must hold weakly in L2 as well. However, assuming for simplicity
that (ri, ρ1,i) is also a constant vector (r, ρ1) for all i and fixing a sufficiently
integrable and σ(W 0

· , B
0
· )∩G-measurable random variable Ξ, by Theorem 2.6

we have

lim
n→+∞

E
[
ΞP
[
X1,εn
t ∈ I

∣∣∣W 0, B0, G
]]

= lim
n→+∞

E
[
ΞP
[
X1,εn
t ∈ I

∣∣∣W 0, σ1,1, G
]]

= lim
n→+∞

E
[∫ +∞

0

ΞII(x)uεn(t, x)dx

]
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= E
[∫ +∞

0

ΞII(x)u∗(t, x)dx

]
= E

[
ΞP
[
X1,w
t ∈ I

∣∣∣W 0, G
]]
,

where for each i we define

Xi,w
t = xi +

(
r − σ2

2,1

2

)
t+ ρ′1σ2,1W

0
t +

√
1− (ρ′1)

2
σ2,1W

i
t , 0 ≤ t ≤ Twi

Xi,w
t = 0, t ≥ Twi
Twi = inf{t ≥ 0 : Xi,w

t = 0},

with ρ′1 = ρ1
σ1,1

σ2,1
, in which the density of Xi,w

t given W 0 and G is the unique

solution u∗ to (2.4) [18]. Therefore, by the uniqueness of a weak limit we must
have P[X1,∗

t ∈ I |W 0, G] = P[X1,w
t ∈ I |W 0, G] P-almost surely, which cannot

be true for any interval I, as otherwise the processes X1,w
· and X1,∗

· would
coincide, which is clearly not the case here. Indeed, this can only be true when
ρ̃1,1 = ρ′1 ⇔ σ̃ = σ1,1, and by Proposition 2.7 this is generally not the case
unless ρ2 = 0. ut

5 Proofs: small vol-of-vol setting

We proceed now to the proofs of Proposition 3.1, Theorem 3.2 and Corol-
lary 3.3, the main results of Section 3.

Proof (Proposition 3.1) First, we will show that each volatility process has
a finite 2p-moment for any p ∈ N. Indeed, we fix a p ∈ N and we consider the
sequence of stopping times {τn,ε : n ∈ N}, where τn,ε = inf{t ≥ 0 : σi,εt > n}.
Setting σi,n,εt = σi,εt∧τn,ε , by Ito’s formula we have(

σi,n,εt − θi
)2p

=
(
σi,n,ε0 − θi

)2p

− 2pκi
ε

∫ t

0

I[0,τn,ε](s)
(
σi,n,εs − θi

)2p
ds

+2pξi

∫ t

0

I[0,τn,ε](s)
(
σi,n,εs − θi

)2p−1
g
(
σi,n,εs

)
dB̃is

+p(2p− 1)ξ2
i

∫ t

0

I[0,τn,ε](s)
(
σi,n,εs − θi

)2p−2
g2
(
σi,n,εs

)
ds

(5.1)

for B̃is =
√

1− ρ2
2,iB

i
t + ρ2,iB

0
t , where the stochastic integral is a martin-

gale. Taking expectations, setting f(t, n, p, ε) = E[(σi,n,εt − θi)
2p] and using

the growth condition of g (|g(x)| ≤ C1,g + C2,g|x| for all x ∈ R) and simple
inequalities, we can easily obtain

f(t, n, p, ε) ≤M +M ′
∫ t

0

f(s, n, p, ε)ds
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with M,M ′ depending only on p, cg and the bounds of σi, ξi, θi. Thus, using
Gronwall’s inequality we get a uniform (in n) estimate for f(t, n, p, ε), and
then by Fatou’s lemma we obtain the desired finiteness of

f(t, p, ε) := E
[(
σi,εt − θi

)2p
]
.

This implies the almost sure finiteness of the conditional expectation

fC(t, p, ε) := E
[(
σi,εt − θi

)2p
∣∣∣∣ C]

as well.
Taking expectations given C, letting n→ +∞ on (5.1), using the monotone

convergence theorem (all quantities are monotone for large enough n) and the
growth condition on g, we find that

fC(t, p, ε) ≤M +

(
M ′ − 2κi

ε

)∫ t

0

fC(s, p, ε)ds,

where again, M,M ′ depend only on p, cg and the bounds of σi, ξi, θi. Using
Grownwall’s inequality again on the above, we obtain the estimate∫ t

0

fC(s, p, ε)ds ≤ M

∫ t

0

e(M
′− 2κi

ε )(t−s)ds

≤ MeM
′t

∫ t

0

e(−
2κi
ε )(t−s)ds

=
ε

2κi
eM
′t
(

1− e(−
2κi
ε )t
)

<
ε

2cκ
eM
′t.

Then, we have that
∫ t

0
f(s, p, ε)ds = E

[∫ t
0
fC(s, p, ε)ds

]
< ε

2cκ
eM
′t, and this

gives the desired result. ut

Proof (Theorem 3.2) We can easily check that v0,ε and v0 are the unique
solutions to the SPDEs (3.1) and (3.2) respectively in L2(Ω× [0, T ];H2(R+)),
under the boundary conditions v0,ε

x (t, 0) = 0 and v0
x(t, 0) = 0 respectively.

Subtracting the SPDEs satisfied by v0,ε and v0 and setting vd,ε = v0 − v0,ε,
we can easily verify that

vd,ε (t, x)

= −1

2

∫ t

0

(
h2
(
σ1,ε
s

)
− h2 (θ1)

)
v0,ε
x (s, x) ds

+

∫ t

0

(
r − h2 (θ1)

2

)
vd,εx (s, x) ds

+
1

2

∫ t

0

(
h2
(
σ1,ε
s

)
− h2 (θ1)

)
v0,ε
xx (s, x) ds+

∫ t

0

h2 (θ1)

2
vd,εxx (s, x) ds
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+ρ1,1

∫ t

0

(
h
(
σ1,ε
s

)
− h (θ1)

)
v0,ε
x (s, x) dW 0

s

+ρ1,1

∫ t

0

h (θ1) vd,εx (s, x) dW 0
s .

Now using Ito’s formula for the L2 norm (see Krylov and Rozovskii [22]), given
the volatility path and C, we obtain

Eσ,C

[∫
R+

(
vd,ε (t, x)

)2

dx

]

= −
∫ t

0

(
h2
(
σ1,ε
s

)
− h2 (θ1)

)
Eσ,C

[∫
R+

v0,ε
x (s, x) vd,ε (t, x) dx

]
ds

+2

(
r − h2 (θ1)

2

)∫ t

0

Eσ,C

[∫
R+

vd,εx (s, x) vd,ε (t, x) dx

]
ds

−
∫ t

0

(
h2
(
σ1,ε
s

)
− h2 (θ1)

)
×Eσ,C

[∫
R+

v0,ε
x (s, x) vd,εx (t, x) dx

]
ds

−
∫ t

0

h2 (θ1)Eσ,C

[∫
R+

(
vd,εx (s, x)

)2

dx

]
ds

+ρ2
1,1

∫ t

0

(
h
(
σ1,ε
s

)
− h (θ1)

)2

Eσ,C

[∫
R+

(
v0,ε
x (s, x)

)2

dx

]
ds

+2ρ2
1,1h (θ1)

∫ t

0

(
h
(
σ1,ε
s

)
− h (θ1)

)
×Eσ,C

[∫
R+

v0,ε
x (s, x) vd,εx (t, x) dx

]
ds

+ρ2
1,1

∫ t

0

h2 (θ1)Eσ,C

[∫
R+

(
vd,εx (s, x)

)2

dx

]
ds+N(t, ε) (5.2)

where N(t, ε) is some noise due to the correlation between B0 and W 0, with
E[N(t, ε)] = 0. In particular, since for some Brownian motion V 0 independent
from B0 we could have written W 0 =

√
1− ρ2

3V
0 + ρ3B

0, we will have

N(t, ε) = 2ρ1,1

∫ t

0

Eσ, C

[
h
(
σ1,ε
s

) ∫
R+

vd,ε (s, x) v0,ε
x (s, x) dx

]
dB0

s .

Next, we can apply 2. of Theorem 4.1 in [15] to the SPDE (3.1) to find∥∥v0,ε
x (s, ·)

∥∥
L2
σ,C(Ω×R+)

= ‖uε(s, ·)‖L2
σ,C(Ω×R+) ≤ ‖u0(·)‖L2(Ω×R+)
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for all s ≥ 0. Using this expression, we can obtain the following estimate∫ t

0

(
h2
(
σ1,ε
s

)
− h2 (θ1)

)
Eσ,C

[∫
R+

v0,ε
x (s, x) vd,ε (t, x) dx

]
ds

≤
∫ t

0

(
h2
(
σ1,ε
s

)
− h2 (θ1)

)∥∥v0,ε
x (s, ·)

∥∥
L2
σ,C(Ω×R+)

×
∥∥vd,ε(s, ·)∥∥

L2
σ,C(Ω×R+)

ds

≤ ‖u0(·)‖L2(Ω×R+)

√∫ t

0

(
h2
(
σ1,ε
s

)
− h2 (θ1)

)2

ds

×

√∫ t

0

‖vd,ε(s, ·)‖2L2
σ,C(Ω×R+) ds

≤ 1

2
‖u0(·)‖2L2(Ω×R+)

∫ t

0

(
h2
(
σ1,ε
s

)
− h2 (θ1)

)2

ds

+
1

2

∫ t

0

∥∥vd,ε(s, ·)∥∥2

L2
σ,C(Ω×R+)

ds, (5.3)

and in the same way∫ t

0

(
h2
(
σ1,ε
s

)
− h2 (θ1)

)
Eσ,C

[∫
R+

v0,ε
x (s, x) vd,εx (t, x) dx

]
ds

≤ ‖u0(·)‖L2(Ω×R+)

√∫ t

0

(
h2
(
σ1,ε
s

)
− h2 (θ1)

)2

ds

×

√∫ t

0

∥∥∥vd,εx (s, ·)
∥∥∥2

L2
σ,C(Ω×R+)

ds

≤ 1

2η
‖u0(·)‖2L2(Ω×R+)

∫ t

0

(
h2
(
σ1,ε
s

)
− h2 (θ1)

)2

ds

+
η

2

∫ t

0

∥∥vd,εx (s, ·)
∥∥2

L2
σ,C(Ω×R+)

ds (5.4)

and ∫ t

0

(
h
(
σ1,ε
s

)
− h (θ1)

)
Eσ,C

[∫
R+

v0,ε
x (s, x) vd,εx (t, x) dx

]
ds

≤ ‖u0(·)‖L2(Ω×R+)

√∫ t

0

(
h
(
σ1,ε
s

)
− h (θ1)

)2

ds

×

√∫ t

0

∥∥∥vd,εx (s, ·)
∥∥∥2

L2
σ,C(Ω×R+)

ds

≤ 1

2η
‖u0(·)‖2L2(Ω×R+)

∫ t

0

(
h
(
σ1,ε
s

)
− h (θ1)

)2

ds
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+
η

2

∫ t

0

∥∥vd,εx (s, ·)
∥∥2

L2
σ,C(Ω×R+)

ds (5.5)

for some η > 0. Moreover, we have the estimate∫ t

0

Eσ,C

[∫
R+

vd,εx (s, x) vd,ε (t, x) dx

]
ds

≤
∫ t

0

∥∥vd,εx (s, ·)
∥∥
L2
σ,C(Ω×R+)

∥∥vd,ε(s, ·)∥∥
L2
σ,C(Ω×R+)

ds

≤
(∫ t

0

∥∥vd,ε(s, ·)∥∥2

L2
σ,C(Ω×R+)

ds

)1/2(∫ t

0

∥∥vd,εx (s, ·)
∥∥2

L2
σ,C(Ω×R+)

ds

)1/2

≤ 1

2η

∫ t

0

∥∥vd,ε(s, ·)∥∥2

L2
σ,C(Ω×R+)

ds+
η

2

∫ t

0

∥∥vd,εx (s, ·)
∥∥2

L2
σ,C(Ω×R+)

ds

(5.6)

and by using ‖v0,ε
x (s, ·)‖L2

σ,C(Ω×R+) ≤ ‖u0(·)‖L2(Ω×R+) again, we also obtain∫ t

0

(
h
(
σ1,ε
s

)
− h (θ1)

)2

Eσ,C

[∫
R+

(
v0,ε
x (s, x)

)2

dx

]
ds

≤ ‖u0(·)‖2L2(Ω×R+)

∫ t

0

(
h
(
σ1,ε
s

)
− h (θ1)

)2

ds. (5.7)

Using (5.3), (5.4), (5.5), (5.6) and (5.7) in (5.2), and then taking η to be
sufficiently small, we get the estimate∥∥vd,ε(t, ·)∥∥2

L2
σ,C(Ω×R+)

+m

∫ t

0

∥∥vd,εx (s, ·)
∥∥2

L2
σ,C(Ω×R+)

ds

≤M
∫ t

0

∥∥vd,ε(s, ·)∥∥2

L2
σ,C(Ω×R+)

ds+N(t, ε) +MH(ε) (5.8)

for all t ∈ [0, T ], where

H(ε) =

∫ T

0

(
h2
(
σ1,ε
s

)
− h2 (θ1)

)2

ds+

∫ T

0

(
h
(
σ1,ε
s

)
− h (θ1)

)2

ds

and where M,m > 0 are constants independent of the fixed volatility path.
Taking expectations in (5.8) to average over all volatility paths, we find that∥∥vd,ε(t, ·)∥∥2

L2(Ω×R+)
+m

∫ t

0

∥∥vd,εx (s, ·)
∥∥2

L2(Ω×R+)
ds

≤M
∫ t

0

∥∥vd,ε(s, ·)∥∥2

L2(Ω×R+)
ds+ME [H(ε)] ,

and using Gronwall’s inequality on the above we finally obtain∥∥vd,ε(t, ·)∥∥2

L2(Ω×R+)
+m

∫ t

0

∥∥vd,εx (s, ·)
∥∥2

L2(Ω×R+)
ds ≤M ′E [H(ε)]
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for some M ′ > 0, with E[H(ε)] = O(ε) as ε→ 0+. This last result follows since
for h̃ ∈ {h, h2} we can use the mean value theorem to find that∫ T

0

(
h̃
(
σ1,ε
s

)
− h̃ (θ1)

)2

ds =

∫ T

0

h̃′
(
σ1,ε
s,∗
) (
σ1,ε
s − θ1

)2
ds (5.9)

for some σ1,ε
s,∗ lying between θ1 and σ1,ε

s , with∣∣∣h̃′(σ1,ε
s,∗)
∣∣∣ ≤ λ1 + λ2

∣∣σ1,ε
s,∗
∣∣m

≤ λ1 + λ2

(∣∣σ1,ε
s

∣∣+ |θ1|
)m

≤ λ1 + λ2

(∣∣σ1,ε
s − θ1

∣∣+ 2 |θ1|
)m

for some λ1, λ2 > 0 and some m ∈ N, which allows us to bound the RHS of
(5.9) by a linear combination of terms of the form ‖σ1,ε

· −θ1‖pLp(Ω×[0, T ]) which

are all O(ε) as ε → 0+ by Proposition 3.1. The proof of the theorem is now
complete. ut

Proof (Corollary 3.3) Let Et, ε = {ω ∈ Ω : P[X1,ε
t > 0 |W 0, B0, G] > x} for

ε > 0, Et, 0 = {ω ∈ Ω : P[X1,∗
t > 0 |W 0, G] > x}, and observe that

E(x, T ) =

∫ T

0

∣∣P [Et, ε]− P [Et, 0]
∣∣dt,

=

∫ T

0

∣∣∣P[Et, ε ∩ Ect, 0]− P
[
Et, 0 ∩ Ect, ε

] ∣∣∣dt,
≤
∫ T

0

P
[
Et, ε ∩ Ect, 0

]
dt+

∫ T

0

P
[
Et, 0 ∩ Ect, ε

]
dt. (5.10)

Next, for any η > 0 we have

P
[
Et, ε ∩ Ect, 0

]
= P

[
P
[
X1,ε
t > 0

∣∣∣W 0, B0, G
]
> x ≥ P

[
X1,∗
t > 0

∣∣∣W 0, G
]]

= P
[
P
[
X1,ε
t > 0

∣∣∣W 0, B0, G
]
> x

> x− η > P
[
X1,∗
t > 0

∣∣∣W 0, G
]]

+P
[
P
[
X1,ε
t > 0

∣∣∣W 0, B0, G
]
> x

≥ P
[
X1,∗
t > 0

∣∣∣W 0, G
]
≥ x− η

]
≤ P

[∣∣∣∣P[X1,ε
t > 0

∣∣∣W 0, B0, G
]
− P

[
X1,∗
t > 0

∣∣∣W 0, G
]∣∣∣∣ > η

]
+P
[
x ≥ P

[
X1,∗
t > 0

∣∣∣W 0, G
]
≥ x− η

]
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≤ 1

η2
E

[(
P
[
X1,ε
t > 0

∣∣∣W 0, B0, G
]
− P

[
X1,∗
t > 0

∣∣∣W 0, G
])2

]

+P
[
x ≥ P

[
X1,∗
t ≥ 0

∣∣∣W 0, G
]
≥ x− η

]
(5.11)

and if we denote by S the σ-algebra generated by the volatility paths, since
X1,∗
t is independent of S and the path of B0, by using the Cauchy-Schwarz

inequality we find that∫ T

0

E

[(
P
[
X1,ε
t > 0

∣∣∣W 0, B0, G
]
− P

[
X1,∗
t > 0

∣∣∣W 0, G
])2

]
dt

=

∫ T

0

E

[
E
[
P
[
X1,ε
t > 0

∣∣∣W 0, C ′1, S, G
]

−P
[
X1,∗
t > 0

∣∣∣W 0, C ′1, G
] ∣∣∣∣W 0, B0, G

]2
]
dt

≤
∫ T

0

E

[
E
[(

P
[
X1,ε
t > 0

∣∣∣W 0, C ′1, S, G
]

−P
[
X1,∗
t > 0

∣∣∣W 0, C ′1, G
])2 ∣∣∣∣W 0, B0, G

]]
dt

=

∫ T

0

E

[(
P
[
X1,ε
t > 0

∣∣∣W 0, C ′1, S, G
]
− P

[
X1,∗
t > 0

∣∣∣W 0, C ′1, G
])2

]
dt

=
∥∥v0,ε (·, 0)− v0 (·, 0)

∥∥2

L2(Ω×[0, T ])

= O (ε) ,

where the last follows by using Morrey’s inequality in dimension 1 (see e.g.
Evans [10]) and Theorem 3.2. On the other hand, since P[X1,∗

t > 0 |W 0, G]
has a bounded density near x, uniformly in t ∈ [0, T ], we have∫ T

0

P
[
x ≥ P

[
X1,∗
t > 0

∣∣∣W 0, G
]
≥ x− η

]
dt = O (η) .

Therefore, (5.11) gives
∫ T

0
P[Et, ε ∩ Ect, 0]dt ≤ 1

η2O(ε) +O(η) for any η > 0, and

in a similar way we can obtain
∫ T

0
P[Et, 0 ∩ Ect, ε]dt ≤ 1

η2O(ε) + O(η). Using

these two expressions in (5.10) and taking η = εp for some p > 0, we finally
obtain

E(x, T ) ≤ O (εp) +O
(
ε1−2p

)
,

which becomes optimal as ε → 0+ when 1 − 2p = p ⇔ p = 1
3 . This gives

E(x, T ) = O(ε
1
3 ) as ε→ 0+.
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A APPENDIX: Proofs of positive reccurence results

In this Appendix we prove Proposition 2.2 and Proposition 2.3. Both proofs are
based on Theorem 2.5 from Bhattacharya and Ramasubramanian [2], which
gives sufficient conditions for an n-dimensional Markov process X with in-
finitesimal generator

Lt =
1

2

n∑
i,j=1

ai,j(t, x)
∂2

∂xixj
+

n∑
i=1

bi(t, x)
∂

∂xi

to be positive reccurent, i.e possess an invariant probability distribution v on
Rn such that

lim
T→+∞

1

T

∫ T

0

f (Xs) ds =

∫
Rn
f · dv

for any v-integrable function f . That theorem involves the functions

Az(s, x) :=

n∑
i,j=1

ai,j(s, x)
(xi − zi)(xj − zj)

|x− z|22

B(s, x) :=

n∑
i=1

ai,i(s, x)

Cz(s, x) := 2

n∑
i,j=1

bi(s, x)(xi − zi)

αz(r) := inf
s≥0,|x−z|2=r

Az(s, x)

β(r; z, t0) := sup
s≥t0,|x−z|2=r

B(s, x)−Az(s, x) + Cz(s, x)

Az(s, x)

Iz,r0(r) :=

∫ r

r0

β(u; z, 0)

u
du

and the conditions implying positive reccurence are the following:

1. ai,j(·, ·) and bi(·, ·) are Borel measurable on [0, T ] × Rn and bounded on
compacts.

2. For each N > 0, there exists a δN (r) ↓ 0 as r ↓ 0 such that for all t ≥ 0
and x, y ∈ Rn with t, |x|2, |y|2 ≤ N we have

‖a·,·(t, x)− a·,·(t, y)‖2 ≤ δN (|x− y|2),

where ‖ · ‖2 stands for the matrix 2-norm.

3. For any compactK ⊂ Rn and every z′ ∈ Rk, the function B+Cz′
Az′

is bounded

away from +∞ on [0, +∞]×K.
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4. There exist z ∈ Rn and r0 > 0 such that:∫ +∞

r0

e−Iz,r0 (r)dr = +∞

and ∫ +∞

r0

1

αz(r)
eIz,r0 (r)dr < +∞

We proceed now to our proofs, where we will establish positive reccurence
results by showing that the above conditions are satisfied.

Proof (Proposition 2.2) It suffices to show that the two-dimensional con-
tinuous Markov process (σ1,1, σ2,1) is positive recurrent. To do this, we set
Hi(x) =

∫ x
0

1
vig(y)dy which is a strictly increasing bijection from R to itself, and

then Zi = Hi(σi,1), for i ∈ {1, 2}. It suffices to show that the two-dimensional
process Z = (Z1, Z2) is positive recurrent. The infinitesimal generator LZ of
Z maps any smooth function F : R2 → R to

LZF (x, y) = V 1(x)Fx(x, y) + V 2(y)Fy(x, y)

+
1

2

(
Fxx(x, y) + Fyy(x, y)

)
+ λFxy(x, y)

for λ = ρ2,1ρ2,2 < 1 and V i(x) = κi(θi−(Hi)−1(x))
vig((Hi)−1(x)) −

vi
2 g
′((Hi)−1(x)), with

V i being a continuous and strictly decreasing bijection from R to itself for
i ∈ {1, 2}.

We can compute

A(z, w)

(
s, (x, y)

)
=

1

2
+ λ

(x− z)(y − w)

(x− z)2 + (y − w)2

≥ 1

2
+ λ
− 1

2

(
(x− z)2 + (y − w)2

)
(x− z)2 + (y − w)2

=
1

2
(1− λ) > 0

and also B(s, (x, y)) = 1 and

C(z, w)

(
s, (x, y)

)
= 2
(
V 1(x)(x− z) + V 2(y)(y − w)

)
for all (x, y), (z, w) ∈ R2. Since the coefficients of LZ are continuous, with
the higher order ones being constant, we can easily verify conditions 1. and 2.
Moreover, since B and C(z, w) are constant in t and continuous in (x, y) while

A(z, w) is lower-bounded by 1
2 (1− λ) > 0, it follows that we have 3. as well.

Next, we choose z and w to be the unique roots of V 1(x) and V 2(y) re-
spectively and we have

α(z, w)(r) = inf
(x−z)2+(y−w)2=r2

A(z, w)

(
s, (x, y)

)
≥ 1

2
(1− λ) > 0 (A.1)
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and

β
(
r; (z, w), 0

)
= sup

(x−z)2+(y−w)2=r2

B
(
s, (x, y)

)
−A(z, w)

(
s, (x, y)

)
+ C(z, w)

(
s, (x, y)

)
A(z, w)

(
s, (x, y)

)
≤ 2

1− λ
− 1 +

2

1 + λ
sup

(x−z)2+(y−w)2=r2

C(z, w)

(
s, (x, y)

)
(A.2)

since C(z, w)(s, (x, y)) is never greater than zero and

A(z, w)

(
s, (x, y)

)
=

1

2
+ λ

(x− z)(y − w)

(x− z)2 + (y − w)2

≤ 1

2
+ λ

1
2

(
(x− z)2 + (y − w)2

)
(x− z)2 + (y − w)2

=
1

2
(1 + λ).

Now fix an r0 > 0 and take any r > r0. For the pair (x, y) for which the
supremum of C(z, w)(s, (x, y)) is attained when (x − z)2 + (y − w)2 = r2, we
have x = z + r cos(φr) and y = w + r sin(φr) for some angle φr. Then, we

have either | cos(φr)| ≥
√

2
2 or | sin(φr)| ≥

√
2

2 . If cos(φr) ≥
√

2
2 holds, we can

estimate

C(z, w)

(
s, (x, y)

)
= 2r cos(φr)V

1
(
z + r cos(φr)

)
+2r sin(φr)V

2
(
w + r sin(φr)

)
≤ 2r cos(φr)V

1
(
z + r cos(φr)

)
≤ c1r

with c1 =
√

2V 1(z+r0

√
2

2 ) < 0. In a similar way, by using the fact that both V 1

and V 2 are strictly decreasing, we can find constants c2, c3, c4 < 0 such that
C(z, w)(s, (x, y)) < c2r, C(z, w)(s, (x, y)) < c3r and C(z, w)(s, (x, y)) < c4r,

when cos(φr) ≤ −
√

2
2 , sin(φr) ≥

√
2

2 and sin(φr) ≤ −
√

2
2 respectively. Thus,

for c∗ = max{c1, c2, c3, c4} < 0 we have C(z, w)(s, (x, y)) < c∗r, which can be
used in (A.2) to give the estimate

β
(
r; (z, w), 0

)
≤ 2

1− λ
− 1 +

2c∗

1 + λ
r

for all r ≥ r0. This means that for r0 large enough we have

I(z, w),r0(r) ≤
∫ r

r0

1

r′

(
2

1− λ
− 1 +

2c∗

1 + λ
r′
)
dr′

≤ c∗∗(r − r0)
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for some c∗∗ < 0 and all r ≥ r0. This implies that∫ +∞

r0

e−I(z, w),r0
(r)dr = +∞

and combined with (A.1), it also gives∫ +∞

r0

1

α(z, w)(r)
eI(z, w),r0

(r)dr ≤ 2

1− λ

∫ +∞

r0

ec
∗∗rdr <∞.

Therefore, we have that all the required conditions are satisfied for the process
Z = (Z1, Z2), which means that (Z1, Z2) is a positive recurrent diffusion, and
thus (σ1,1, σ2,1) is positive recurrent as well. ut

Proof (Proposition 2.3) We will show first that each volatility process never
hits zero. Recalling the standard properties of the scale function S(x) of σ1,1

(see e.g. Rogers and Williams [26]), we have that

S(x) =

∫ x

θ1

e
−
∫ y
θ1

2κ1(θ1−z)
v2
1zg̃

2(z)
dz
dy

and we need to show that limn→+∞ S( 1
n ) = −∞. Since supx∈R g̃

2(x) ≤ 1

which is strictly less than 2κ1θ1
v2
1

, for n ≥ 1
θ1

we have

S

(
1

n

)
= −

∫ θ1

1
n

e

∫ θ1
y

2κ1(θ1−z)
v2
1zg̃

2(z)
dz
dy

≤ −
∫ θ1

1
n

e
∫ θ1
y

(θ1−z)
θ1z

dzdy

≤ −
∫ θ1

1
n

e
∫ θ1
y

1
z dz−

∫ θ1
y

1
θ1
dzdy

≤ −1

e

∫ θ1

1
n

θ1

y
dy = −θ1

e
(lnn+ ln θ1)

which tends to −∞ as n → +∞. This shows that our volatility processes
remain positive forever.

As our volatility processes are strictly positive, we can set Zi = lnσi,1 for
i ∈ {1, 2}, and we need to show that (Z1, Z2) is a positive recurrent diffusion.
Again, we can easily determine the infinitesimal generator LZ of Z = (Z1, Z2),
which this time maps any smooth function F : R2 → R to

LZF (x, y) = V 1(x)Fx(x, y) + V 2(y)Fy(x, y)

+
v2

1e
−xg̃2(ex)

2
Fxx(x, y) +

v2
2e
−y g̃2(ey)

2
Fyy(x, y)

+λv1v2e
− x+y

2 g̃(ey)g̃(ey)Fxy(x, y)
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for λ = ρ2,1ρ2,2 < 1 and V i(x) = e−x(κiθi− v2
i

2 g̃
2(ex))−κi for i ∈ {1, 2}, which

are again two continuous and strictly decreasing bijections from R to itself.
This can be shown by using the fact that g̃ is increasing and upper-bounded
by 1.

Using the inequality ab ≥ −a
2+b2

2 we obtain

A(z, w)

(
s, (x, y)

)
=

1

2

(
v2

1e
−xg̃2(ex)(x− z)2

(x− z)2 + (y − w)2
+
v2

2e
−y g̃2(ey)(y − w)2

(x− z)2 + (y − w)2

)
+λ

v1v2e
− x+y

2 g̃(ex)g̃(ey)(x− z)(y − w)

(x− z)2 + (y − w)2

≥ 1− λ
2

(
v2

1e
−xg̃2(ex)(x− z)2

(x− z)2 + (y − w)2
+
v2

2e
−y g̃2(ey)(y − w)2

(x− z)2 + (y − w)2

)
≥ (1− λ) min{v2

1 , v
2
2}

2
min{e−xg̃2(ex), e−y g̃2(ey)}

which is strictly positive. Moreover, we can compute

B
(
s, (x, y)

)
=
v2

1e
−xg̃2(ex)

2
+
v2

2e
−y g̃2(ey)

2

and

C(z, w)

(
s, (x, y)

)
= 2

(
V 1(x)(x− z) + V 2(y)(y − w)

)
for all (x, y), (z, w) ∈ R2. Since all the coefficients of LZ are continuous and
A(z, w)(s, (x, y)) is strictly positive, it follows that conditions 1. and 3. are
satisfied. To verify 2., we pick an N > 0 and x, y, x̄, ȳ ∈ [−N, N ], we set

M(x, y) =

 v2
1e
−xg̃2(ex)

2
λv1v2e

− x+y
2 g̃(ex)g̃(ey)
2

λv1v2e
− x+y

2 g̃(ex)g̃(ey)
2

v2
2e
−y g̃2(ey)

2


and we compute

‖M(x, y)−M(x̄, ȳ)‖2

=

(
v2

1e
−xg̃2(ex)

2
− v2

1e
−x̄g̃2(ex̄)

2

)2

+

(
v2

2e
−y g̃2(ey)

2
− v2

2e
−ȳ g̃2(eȳ)

2

)2

+

(
λv1v2e

− x+y
2 g̃(ex)g̃(ey)

2
− λv1v2e

− x̄+ȳ
2 g̃(ex̄)g̃(eȳ)

2

)2

≤ CN ‖(x, y)− (x̄, ȳ)‖2R2 ,

where we have used the two-dimensional mean value theorem on each of the
three terms, and the fact that all of the functions involved have a bounded
gradient in [−N, N ]2 (since g̃ has continuous derivatives). Thus, if we take
δN (r) = CNr, we have 2. as well.
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Next, for some r0 > 0 and all r ≥ r0, we compute

β
(
r; (z, w), 0

)
= sup

(x−z)2+(y−w)2=r2

B
(
s, (x, y)

)
−A(z, w)

(
s, (x, y)

)
+ C(z, w)

(
s, (x, y)

)
A(z, w)

(
s, (x, y)

)
= −1 + sup

(x−z)2+(y−w)2=r2

B
(
s, (x, y)

)
+ C(z, w)

(
s, (x, y)

)
A(z, w)

(
s, (x, y)

) (A.3)

where again we choose z and w to be the unique roots of V 1(x) and V 2(y)
respectively. Then, by setting x = z + r cos(φr) and y = w + r sin(φr) with
φr ∈ [0, 2π] for the (x, y) for which the above supremum is attained, since g̃
is increasing we have

C(z, w)

(
s, (x, y)

)
= 2

(
e−x

(
κ1θ1 −

v2
1

2
g̃2(ex)

)
− κ1

)
(x− z)

+2

(
e−y

(
κ2θ2 −

v2
2

2
g̃2(ey)

)
− κ2

)
(y − w)

≤ 2

(
e−x

(
κ1θ1 −

v2
1

2
g̃2(ez)

)
− κ1

)
(x− z)

+2

(
e−y

(
κ2θ2 −

v2
2

2
g̃2(ew)

)
− κ2

)
(y − w)

= 2κ1

(
ez−x − 1

)
(x− z) + 2κ2

(
ew−y − 1

)
(y − w)

≤ 2 min{κ1, κ2}
( (
ez−x − 1

)
(x− z) +

(
ew−y − 1

)
(y − w)

)
= κr

((
e−r cos(φr) − 1

)
cos(φr) +

(
e−r sin(φr) − 1

)
sin(φr)

)
(A.4)

for κ = 2 min{κ1, κ2}, and since g̃ is bounded, for ξ = max{v1, v2}2
2 supx∈R g̃(x)

we can also show that

A(z, w)

(
s, (x, y)

)
= ξ

(
e−x

(x− z)2

(x− z)2 + (y − w)2
+ e−y

(y − w)2

(x− z)2 + (y − w)2

)
= ξ

(
e−z−r cos(φr) cos2(φr) + e−w−r sin(φr) sin2(φr)

)
= ξ

(
e−z

(
e−r cos(φr) − 1

)
cos2(φr) + e−w

(
e−r sin(φr) − 1

)
sin2(φr)

)
+ξ
(
e−z cos2(φr) + e−w sin2(φr)

)
≤ −ξ

(
e−z

(
e−r cos(φr) − 1

)
cos(φr) + e−w

(
e−r sin(φr) − 1

)
sin(φr)

)
+ξ
(
e−z + e−w

)
, (A.5)
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where we have also used the elementary inequality (eab − 1)a2 ≤ −(eab − 1)a
for |a| ≤ 1 and b < 0. Using (A.4) and (A.5) we obtain

C(z, w)

(
s, (x, y)

)
A(z, w)

(
s, (x, y)

) ≤ −rκ
ξ

`(r)

`(r) + ξ (e−z + e−w)
(A.6)

where

`(r) = −ξ
(
e−z

(
e−r cos(φr) − 1

)
cos(φr) + e−w

(
e−r sin(φr) − 1

)
sin(φr)

)
≥ −ξe−z

(
e−r cos(φr) − 1

)
cos(φr)

= ξe−z
∣∣∣e−r cos(φr) − 1

∣∣∣ | cos(φr)|

≥ ξmin{e−z, e−w}
√

2

2
min

{ ∣∣∣e−r0 √2
2 − 1

∣∣∣ , ∣∣∣er0 √2
2 − 1

∣∣∣ } (A.7)

since we take r ≥ r0, and without loss of generality we can assume that

| cos(φr)| ≥
√

2
2 . Thus, (A.6) implies that there is a universal c∗ < 0 such that

C(z, w)

(
s, (x, y)

)
A(z, w)

(
s, (x, y)

) ≤ c∗r
when r ≥ r0. Plugging the last in (A.3) we obtain

β
(
r; (z, w), 0

)
= −1 + sup

(x−z)2+(y−w)2=r2

B
(
s, (x, y)

)
+ C(z, w)

(
s, (x, y)

)
A(z, w)

(
s, (x, y)

)
≤ −1 + pc∗r + sup

(x−z)2+(y−w)2=r2

B
(
s, (x, y)

)
+ (1− p)C(z, w)

(
s, (x, y)

)
A(z, w)

(
s, (x, y)

)
(A.8)

for all r ≥ r0 and a p ∈ [0, 1] which will be chosen later.
We will show now that the last term in the RHS of (A.8) above is negative

for r ≥ r0 with r0 large enough (depending on p). Indeed, by using (A.4), the
definition of B(s, (x, y)), and the fact that g̃ is upper-bounded, we can obtain
the estimate

sup
(x−z)2+(y−w)2=r2

B
(
s, (x, y)

)
+ (1− p)C(z, w)

(
s, (x, y)

)
A(z, w)

(
s, (x, y)

)
≤ sup

(x−z)2+(y−w)2=r2

{
κ∗
(

(ez−x − 1) (x− z) + (ew−y − 1) (y − w)
)

A(z, w)

(
s, (x, y)

)
+

ξ(e−x + e−y)

A(z, w)

(
s, (x, y)

)} (A.9)
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where as before, we have ξ = max{v1, v2}2
2 supx∈R g̃(x), and κ∗ = (1− p)κ. The

numerator in the last supremum can easily be shown to tend to −∞ when x
or y tends to ±∞, which happens when r → +∞. Thus, for r ≥ r0 with r0

large enough, the RHS of (A.9) is negative.

The last can be used in (A.8) to give

β
(
r; (z, w), 0

)
≤ −1 + pc∗r (A.10)

for all r ≥ r0, with c∗ < 0. On the other hand, we can also compute

α(z, w)(r) = inf
(x−z)2+(y−w)2=r2

A(z, w)

(
s, (x, y)

)
≥ (1− λ) min{v2

1 , v
2
2}

2
e−max{z, w}−r g̃2

(
emax{z, w}+r

)
(A.11)

It follows from (A.10) that for r0 large enough we have

I(z, w),r0(r) ≤
∫ r

r0

1

r′
(−1 + pc∗r′) dr′ ≤ pc∗(r − r0) (A.12)

with c∗ < 0, for all r ≥ r0, which implies that∫ +∞

r0

e−I(z, w),r0
(r)dr = +∞,

while we can use (A.12), (A.11) and the fact that g̃ is lower-bounded by some-
thing positive to find that∫ +∞

r0

1

α
(
r; (z, w), 0

)eI(z, w),r0
(r)dr < Cα

∫ +∞

r0

e(1+pc∗)rdr.

for some Cα > 0, and it remains to show that the RHS of the above is finite.
The last is the case when pc∗ < −1, which is achieved by taking η small enough
and r0 big enough. Indeed, this forces e−w and e−z to be arbitrarily close to
each other, and the lower bound of ` (given by (A.7)) to be arbitrarily close

to
√

2ξ
2 e−z. This brings c∗ (obtained in (A.6)) arbitrarily close to

−κ
ξ

√
2√

2 + 4
= − min{κ1, κ2}

max{v2
1 , v

2
2} supx∈R g̃(x)

4
√

2√
2 + 4

which is less by −1 by our initial assumptions. Therefore, if p is chosen to
be sufficiently close to 1, we have pc∗ < −1 as well and this completes the
proof. ut
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