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Abstract

A p.c.f. fractal with a regular harmonic structure admits an associated Dirichlet
form, which is itself associated with a Laplacian. This Laplacian enables us to
give an analogue of the damped stochastic wave equation on the fractal. We show
that a unique function-valued solution exists, which has an explicit formulation in
terms of the spectral decomposition of the Laplacian. We then use a Kolmogorov-
type continuity theorem to derive the spatial and temporal Holder exponents of the
solution. Our results extend the analogous results on the stochastic wave equation in
one-dimensional Euclidean space. It is known that no function-valued solution to the
stochastic wave equation can exist in Euclidean dimension two or higher. The fractal
spaces that we work with always have spectral dimension less than two, and show
that this is the right analogue of dimension to express the “curse of dimensionality”
of the stochastic wave equation. Finally we prove some results on the convergence
to equilibrium of the solutions.

1 Introduction

The aim of this paper is to investigate the properties of some hyperbolic stochastic
partial differential equations (SPDEs) on finitely ramified fractals. In one dimension
[Wal86] motivated this problem as understanding the behaviour of a guitar string in a
sandstorm. That is we have a one-dimensional string which is forced by white noise
at every point in time and space and are interested in the ‘music’ - the properties of
the resulting waves induced in the string. In the fractal setting we may think of the
vibrations of a fractal drum in a sandstorm. For a two-dimensional drum, it is known
that the solutions to the stochastic wave equation are no longer functions and thus it
is of interest to see what happens in the case of finitely ramified fractals which behave
analytically as objects with dimension between one and two. As yet the theory for
the behaviour of waves propagating through a fractal is much less developed than that
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for the diffusion of heat and we will not discuss such deterministic waves. Instead we
consider the regularity properties of the waves starting from rest and arising from forcing
by white noise, which are easier to capture, as it is the noise and its smoothing via the
Laplacian that are crucial to understanding the behaviour of the waves.

The damped stochastic wave equation on R™, n > 1 is the SPDE given by

0? 0
S (@) = =282 (ba) + Ault, 2) + €4, ), .
ou '
u(07 ) - E(Ov ) =0,

where § > 0, A = A, is the Laplacian on R" and £ is a space-time white noise on
[0,00) x R™, where we interpret x € R™ as space and ¢ € [0,00) as time. The equation
(1.1) can equivalently be written as a system of stochastic evolution equations in the
following way:

du(t) = u(t)dt,
du(t) = —2Bu(t)dt + Au(t)dt + dW (t),
u(0) = (0) = 0 € L*(R"),

where W is a cylindrical Wiener process on L?(R"), and the solution u and its (formal)
derivative 4 are processes taking values in some space of functions on R™. Here we have
used instead the differential notation of stochastic calculus, and one should not presume
any a priori relationship between u and 4. The damped stochastic wave equation (SWE)
was introduced in [Cab70] in the case n = 1, and a unique solution was found via a Fourier
transform, though no results on the regularity of the solutions were given. If 8 = 0, there
is no damping, and (1.1) is the stochastic wave equation. The solution then has a neat
characterisation given in [Wal86, Theorem 3.1] as a rotated modified Brownian sheet in
[0,00) x R, and this immediately implies that it is jointly Holder continuous in space
and time for any Holder exponent less than % These properties, however, do not carry
over into spatial dimensions n > 2. Indeed, for n > 2 a solution to (1.1) still exists, but
it is not function-valued. It is necessary to expand our space beyond L?(R™) to include
certain distributions in order to make sense of the solution. This is related to the fact
that n-dimensional Brownian motion has local times if and only if n = 1, see [FKN11]
and further references. There is thus a distinct change in the behaviour of the SPDE
(1.1) between dimensions n = 1 and n > 2. One of the aims of the present paper is
to investigate the behaviour of the SPDE in the case that the dimension (appropriately
interpreted) is in the interval [1,2). When does a function-valued solution exist, and if it
does, what are its space-time Holder exponents? To answer these questions we introduce
a class of fractals.

The theory of analysis on fractals started with the construction of a symmetric dif-
fusion on the two-dimensional Sierpinski gasket in [Gol87], [Kus87] and [BP88], which is
now known as Brownian motion on the Sierpinski gasket. The field has grown quickly
since then; see[Kig01] and [Bar98] for analytic and probabilistic introductions respec-
tively. In [Kig01] it is shown that a certain class of fractals, known as post-critically



finite self-similar (or p.c.f.s.s.) sets with regular harmonic structures, admit operators
A akin to the Laplacian on R™. This class includes many well-known fractals such as
the n-dimensional Sierpinski gasket (for n > 2) and the Vicsek fractal, though not the
Sierpinski carpet. The operators A generate symmetric diffusions on their respective
fractals in the same way that the Laplacian on R" is the generator of Brownian motion
on R™, and we therefore refer to them also as “Laplacians”, see [Bar98]. In particular, the
existence of a Laplacian A on a given fractal F' allows us to formulate PDEs analogous to
the heat equation and the wave equation on F'. The heat equation on F' has been widely
studied, see [Kig01, Chapter 5| and many papers showing results such as sub-Gaussian
decay of the heat kernel. It is possible in the same way to formulate certain SPDEs on
these fractals; for example the stochastic heat equation [HY18b] and, the subject of the
present paper, the damped stochastic wave equation on F'. The spectral dimension ds,
defined as the exponent for the asymptotic scaling of the eigenvalue counting function of
A, for any of these fractals satisfies ds < 2, and is the correct definition of dimension to
use when investigating the analytic properties of the SPDE. Since all of our fractals are
compact, we can use spectral methods to vastly simplify the problem and find a solution
explicitly in terms of the eigenvalues and eigenfunctions of the Laplacian.

Previous work on hyperbolic PDEs and SPDEs on fractals is sparse. The wave
equation was first introduced on the Sierpinski gasket in [Kus87]. Since then, there have
been two strands of work, either focusing on bounded or on unbounded fractals. In the
case of bounded fractals [DSV99] gave strong evidence for the Sierpinski gasket that
there would be infinite propagation speed for the deterministic wave equation and this
was proved in [Leell] for some p.c.f. fractals. Existence and uniqueness for a non-linear
wave equation on some p.c.f. fractals is shown in [Hu02]. For the unbounded case there
is work by [KZ98] and [Str10] discussing the long time behaviour of waves on manifolds
with large scale fractal structure and on fractals themselves.

In [FKN11] it is mentioned that the stochastic heat equation on certain fractals has
a so-called “random-field” solution as long as the Hausdorff dimension of the fractal is
less than 2. The stochastic wave equation is studied elsewhere in that paper but an
analogous result is not given. In [HY18b] the stochastic heat equation on p.c.f.s.s. sets
with regular harmonic structures is shown to have continuous function-valued solutions,
as the spectral dimension is less than 2, and its spatial and temporal Hoélder exponents
are computed; this can be seen to be the direct predecessor of the present paper and is
the source of many of the ideas that we use in the following sections. We mention finally
that SPDEs on metric measure spaces with fractional noises have been considered in
[HZ12], [IZ15] where the existence of function valued solutions is discussed.

The structure of the present paper is as follows: In the next subsection we set up
the problem, state the precise SPDE to be solved and summarise the main results of the
paper. In Section 2 we make precise the definition of a solution to the damped stochastic
wave equation and prove the existence of a unique solution u in the form of an L?-valued
process. We show that it is a solution in both a “mild” sense and a “weak” sense. Then,
in Section 3, we show that this solution is Holder continuous in L? and that the point
evaluations u(t, x) are well-defined random variables. The latter is a necessary condition



for us to be able to consider matters of continuity in space and time. In Section 4 we
utilise a Kolmogorov-type continuity theorem for fractals proven in [HY18b] to deduce
the spatial and temporal Holder exponents of the solution u. In Section 5 we give results
that describe the long-time behaviour of the solutions for any given set of parameters,
in particular whether or not they eventually settle down into some equilibrium measure.

1.1 Description of the problem

We use an identical set-up to [HY18b]. Let M > 2 be an integer. Let (F,(1;)M,) be
a connected p.c.f.s.s. set (see [Kig01]) such that F' is a compact metric space and the
¥; + F — F are injective strict contractions on F. Let I = {1,..., M} and for each
n>0let W, =1" Let W, = Un>0 W,, and let W = IN. We call the sets W,,, W, and
W word spaces and we call their elements words. Note that Wy is a singleton containing
an element known as the empty word. We use the notation w = wywows ... with w; € 1
for words w € W, UW. For a word w = wy,...,w, € W,, let 1, = 1y, 0--- 0y, and
let Fy, = ¥ (F). If w is the empty word then 1, is the identity on F.

If W is endowed with the standard product topology then there is a canonical con-
tinuous surjection 7 : W — F given in [Bar98, Lemma 5.10]. Let P C W be the
post-critical set of (F, (¢;),), which is finite by assumption. Then let F° = 7(P), and
for each n > 1 let F" = {J, e, w(FY). Let F, = p_o F™. It is easily shown that
(F™)p>0 is an increasing sequence of finite subsets and that F is dense in F.

Let the pair (Ag,r) be a regular irreducible harmonic structure on (F, (;)M,) such
that r = (r1,...,ry) € RM for some constants 7; > 0, i € I (harmonic structures
are defined in [Kig01, Section 3.1]). Here regular means that r; € (0,1) for all 7. Let
Pmin = Minerr; and rmax = maxerr;. Ifn > 0, w = wy,...w, € W then write
Tw i= H:‘L:1 Tw,. Let di > 0 be the unique real number such that

Z er =1.

el
Then let p be the Borel regular probability measure on F' such that for any n > 0, if
w € W, then u(F,) = r#. In other words, u is the self-similar measure on F in the
sense of [Kig01, Section 1.4] associated with the weights T?H on I. Let (£,D) be the
regular local Dirichlet form on L?(F, 1) associated with this harmonic structure, as given

by [Kig01, Theorem 3.4.6]. This Dirichlet form is associated with a resistance metric R
on F', defined by

R(z,y) = (if{E(f, f): f(2) =0, f(y) =1, f € D} ",

which generates the original topology on F, by [Kig01, Theorem 3.3.4]. Now let 2 * =
{b:b C F% be the power set of FV. Let Do = D, and for proper subsets b € 28 et

Dy ={f €D: flpoy = 0}.

Then similarly to [Kig01, Corollary 3.4.7], (£,Dy) is a regular local Dirichlet form on
L2(F\ (FO\ b), ). If b= F° then we may equivalently write b = N, and if b = ) then



we may equivalently write b = D, see [HY18b]. The letters N and D indicate Neumann
and Dirichlet boundary conditions respectively, and all other values of b indicate a mized
boundary condition. Intuitively, b gives the subset of FO of points that are free to move
under the influence of the SPDE, whereas the remaining elements of F© are fixed at the
value 0.

Let b € 2F°. By [Bar98, Chapter 4], associated with the Dirichlet form (&,Dy) on
L2(F, ) is a p-symmetric diffusion X® = (X?);>¢ on F which itself is associated with a
Co-semigroup of contractions S = (S?);>0 on L2(F, ). Let Ay be the generator of this
diffusion. If b = N then X* has infinite lifetime, by [Bar98, Lemma 4.10]. On the other
hand, if b is a proper subset of F© then the process X° has the law of a version of XV
which is killed at the points F°\ b, by [FOT11, Section 4.4]. Our notation is identical
to that of [HY18a).

Example 1.1. ([HY18b, Example 1.1]) Let F' = [0,1] and take any M > 2. For
1 <i< M lety;: F— F be the affine map such that ¢;(0) = 53, ¢;(1) = 5. It
follows that F* = {0,1}. Let r; = M~! for all i € I and let

-1 1
49 = ( L ) |
Then all the conditions given above are satisfied. We have D = H'[0,1] and &(f,g) =
fol f'g’. The generators Ay and Ap are respectively the standard Neumann and Dirich-

let Laplacians on [0, 1]. The induced resistance metric R is none other than the standard
Euclidean metric.

Let (2, F,P) be a probability space. The damped stochastic wave equation that we
consider in the present paper is the SPDE (system) given by

du(t) = a(t)dt,
di(t) = —2B0(t)dt + Apu(t)dt + dW (¢), (1.2)
u(0) = i(0) = 0 € L*(F, p),

where 8 > 0 the damping coefficient and b € 2F ’ the boundary conditions are parameters,
and W = (W (t))s>0 is a P-cylindrical Wiener process on L?(F, u). That is, W satisfies

E [(f, W (8)) r2(pu) (W (L), 9) r2(r ) | = (s A, 9) L2(m

for all s,t € [0,00) and f,g € L?(F, u). We would like the solution process u = (u(t));>0
to be L?(F, p)-valued, however it is not clear whether or not the same should be required
of the first-derivative process u = (u(t))¢>0. This will be clarified in the following section.

The main results of the present paper (Theorems 2.8, 3.6 and 4.5) can be roughly
paraphrased as follows:

Theorem 1.2. Fquip F with its resistance metric R. The SPDE (1.2) has a unique
solution which is a stochastic process u = (u(t,z) : (t,z) € [0,00) x F'), which is almost



surely jointly continuous in [0,00) X F. For each t € [0,00), u(t,-) is almost surely
essentially %—Hé’lder continuous in (F,R). For each v € F, u(-,z) is almost surely
essentially (1 — dz—s)—Hb'lder continuous in the Euclidean metric, where ds € [1,2) is the
spectral dimension of (F, R).

The precise meaning of essentially is given in Section 3. We see that the Holder
exponents given in the above theorem agree with the case “F = R” described in the
introduction—there we have dy, = 1, and the solution is a rotation of a modified Brownian
sheet so it has essential Holder exponent % in every direction. Of course R is not compact
so it doesn’t exactly fit into our set-up, but we get a similar result by considering the
interval [0, 1] instead, see Example 1.1.

Example 1.3 (Hata’s tree-like set). See [Kig01, Figure 1.4] for a diagram. This p.c.f.
fractal takes a parameter ¢ € C such that |c|,|1 —¢| € (0,1), with F* = {¢,0,1}, as
described in [Kig01, Example 3.1.6]. It has a collection of regular harmonic structures
given by

“h ok 0
Ao=| h —(h+1) 1
0 1 —1

with r = (h=1,1 — h=2) for h € (1,00), and these all fit into our set-up. In the intro-
duction to [Wal86] the stochastic wave equation on the unit interval is said to describe
the motion of a guitar string in a sandstorm (as long as we specify Dirichlet boundary
conditions). Likewise, by taking b = {c, 1} in our tree-like set, we are “planting” it at the
point 0 so the associated stochastic wave equation approximately describes the motion
of a tree in a sandstorm.

For more examples see [HY18b, Example 1.3].

Remark 1.4. The resistance metric R is not a particularly intuitive metric on F'. How-
ever, many fractals have a natural embedding in Euclidean space R”, and subject to
mild conditions on F' it can be shown that R is equivalent to some positive power of
the Euclidean metric, see [HWO06]. An example is the n-dimensional Sierpinski gasket
described in [HY18b, Example 1.3] with n > 2. In [HWO06, Section 3] it is shown that
there exists a constant ¢ > 0 such that

o —y|™ ™Y < R(z,y) < cla — y|

for all x,y € FF C R", where d,, = log43) 4o the walk dimension of the gasket and

log 2
dy = loglg%l) is its Euclidean Hausdorfl dimension. It follows that the above theorem

holds (with a different spatial Holder exponent) if R is replaced with a Euclidean metric
on F. We observe that this means that there are function valued solutions to the
stochastic wave equation for fractals with arbitrarily large Hausdorff dimension.

Remark 1.5. We note that although we work within the class of p.c.f. fractals, the
results can straightforwardly be established in the setting of resistance forms [Kig01]
with suitable assumptions on the spectra of the forms.



2 Existence and uniqueness of solution

In this section we will make explicit the meaning of a solution to the SPDE (1.2), and
show that such a solution exists and is unique.

Henceforth let # = L?(F,p) and denote its inner product by (-,-),. Moreover, for
A > 0 let D* be the space D equipped with the inner product

<.’ .>>\ e 5(7 ) + )\<.7 '>M'

Since (€, D) is closed, D is a Hilbert space.

Remark 2.1. The space D contains only %—Hélder continuous functions since by the

definition of the resistance metric we have that

() = fW)P < R(z,9)E(f, f) (2.1)

for all f € D and all x,y € F. Therefore, since Dy is the intersection of the kernels of
the continuous linear functionals {f ~ f(x): x € F?\ b}, it is a closed subset of any
D and has finite codimension |F° \ b|.

The unique real dg > 0 such that
LY
el
is the Hausdorff dimension of (F, R), see [Kig01, Theorem 1.5.7].
The spectral dimension of (F, R) is given by
2y
N dy + 1’
see [Kig01, Theorem 4.1.5 and Theorem 4.2.1]. Note by [HY18b, Remark 2.6] that
dp € [1,00) and d; € [1,2).
If A is a linear operator on H then we denote the domain of A by D(A). If A
is bounded, then let ||A|| be its operator norm. By [HY18a, Proposition 2.5], for each

b € 2F there exists an orthonormal basis (‘PZ)ZO:1 of H, where the associated eigenvalues
()\z)zozl are assumed to be in increasing order. In particular any element f € H has a

series representation
o
b
f= Z frer
k=1

where fr = (¢, f),. Then for any function = : Ry — R, the map Z(—4,) is a well-
defined self-adjoint operator from D(Z(—Ap)) to H and has the representation

S

E(=An)f =) HEN)e,
k=1

where the domain D(E(—Ay))) is the subspace of H of exactly those f for which the above
expression is in H. In fact the operator Z(—A}) is densely defined since 8 € D(Z(—Ay)))



for all k. This theory is known as the functional calculus for linear operators, see [RS80,
Theorem VIIL5].
In particular, if @ > 0 then (1 — Ab)% is an invertible operator on H, and its inverse
(1 — Ay)~% is a bounded operator on # which is a bijection from H to D((1 — Ay)2).
Let o > 0 be a real number and b € 27", The bounded operator (1 — Ab)fg is called
a Bessel potential operator, see [Str03] for a discussion of this operator in the fractal
setting. Let H, ® be the closure of H with respect to the inner product given by

(fr9) = (1= D)3 £, (1= &) "% gy
H, “ is called a Sobolev space, as in [Str03].

Remark 2.2. Recall that D((1 — Ap)2) is dense in H. It follows that the operator
(1 —Ap)2 : D((1 — Ap)%) — H extends to an isometric isomorphism from # to H,
characterised by

(1-Ay)2 (Z fWZ) =Y (L+A)2 freh-
k=1 k=1

(e}

It is easy to see that <(1 + AZ)%@Z)
follows that H is dense in H, “.

is a complete orthonormal basis of H, *. It
k=1

2.1 Solution to the SPDE

Let & denote direct sum of Hilbert spaces. Let o > 0. The SPDE (1.2) can be recast as
a first-order SPDE on the Hilbert space H © H, * given by

dU (t) = Ap gU(t)dt + dV(t),
U()=0eHDH, ",

0 1
Ay .:<Ab _25>
(1-3

is a densely defined operator on H @ H, * with D(Ayg) =D (Ab 2)\/0) @ H and

we ().

There is a precise definition of a solution to evolution equations of the form (2.2) which
is given in [DZ14, Chapter 5], so we can now finally define the notion of a solution to
the second-order SPDE (1.2). Note that it is still not clear what value of « should be
picked.

(2.2)

where

Definition 2.3. Let T' € (0,00]. An H-valued predictable process u = (u(t))l, is a
solution to the SPDE (1.2) if there exists a > 0 and an H, *-valued predictable process

o = (u(t))E, such that
o (2)

8



is an ‘H @© H, “-valued weak solution to the SPDE (2.2) in the sense of [DZ14, Chapter
5). If T' = oo, then it is a global solution.

Admittedly, the above definition is lacking as it is very abstract and unintuitive. In
Theorem 2.8 we prove that solutions to (1.2) also satisfy a property which is analogous
to the concept of weak solution as defined in [DZ14, Chapter 5], and is much more
instructive.

Definition 2.4. For A > 0 and 8 > 0, let V3(A\,-) : [0,00) — R be the unique solution
to the second-order ordinary differential equation

d2
Y — + 25 + Av =0,
dv '
v(0) =0, —(0) = L.

Explicitly,
(8% — \)"2¢ Pt sinh <(ﬁ2 - A)%t) A< B2,
V(A1) = { te=Bt A =32
(A — B%)"3e P sin <()\ - ﬁ?)%t) A> B2
For fixed A and §3, this function is evidently smooth in [0, 00). Let V3(\,-) = %()\, ).

dt

Remark 2.5. The different forms of Vjz correspond respectively to the motion of over-
damped, critically damped and underdamped oscillators.

Lemma 2.6. Let o = 1. Then for each >0 and b € 2FO, the operator Ay g generates
a quasicontraction semigroup S®P = (Sf’ﬁ)tzo on H®H, ' such that HSf’ﬁH < e3 for all
t > 0. Moreover, the right column of Sf’ﬁ s given by

wo- (0 528)

0 1
Ay g = :
b (Ab —2ﬁ>
1
If feD(A}), g €H then

4505 )5 o

Gy P+ (Dp(1 = D)2 £, (1= Ap) " 29), — 2611 — Ay)2g]2

(1= Ap)(L = Ap) " f,ghu + (Ay(1— Ap) 71 g) — 268111 — Ay) 3]
1, <1—Ab> D — 2811 = Ap)"Eg]2

1112 + —H(l — Ay)Ngl2 — 28011 — Ay) 2 gl?

Proof. Recall that

=
=
=



where in the last line we have used the Cauchy-Schwarz inequality. Now || (1—Ab)7% | <1
by the functional calculus. It follows that

(s =2) (5)- (5 )

1 _1 - -3
< =5 (101 = 20) )2 — (1= ) 7gl12) — 28011 — A)Fg)2
<0,

which implies that the operator A; 53— % is dissipative. Moreover, it can be easily checked
that the operator A — A; 3 is invertible for any A > 0 with bounded inverse

A= App) ' = < QﬁA_: A i\ ) (AA+28) — Ayt

It follows by the Lumer—Phillips theorem for reflexive Banach spaces [EN01, Corollary
11.3.20] that A5 — % generates a contraction semigroup on H @ 7—[;1. It follows that
Ay g generates a quasicontraction semigroup St = (Sf B )0 on H @ H;l such that
||Sf’6|| < e2 for all £ > 0.

To construct the semigroup S, we first observe that H @ 7-[;1 has a complete or-
thonormal basis given by

() rempoflasag ) rem)

and that all of the elements of this basis are in D(Ap3). By a density argument, it
suffices to compute how Ay g affects the elements of this basis. For £ > 1 we see that

SDb - 0 1 SDb
(5 )= (5 20 ) (T,
PPzl ) T\ =N =28 ) ()l )

Therefore to compute the semigroup S»# it will suffice to take a simple matrix expo-

nential. We see that
0 1 : Vﬁ()\z,t) )
ex tl = . ,
P|( 5y )= (0 0t

where the left column of the matrix is not computed as it is not important. It follows
that the semigroup generated by A g takes the form

w01 528)

10



Proposition 2.7. Let « = 1. Then for each 8> 0 and b € 2F" there is a unique global
H @ H, *-valued weak solution U to the SPDE (2.2) given by

[ V(=D t — s)dW (s)
utt) = < fg VZ Az,t — 8)dW (s) ) '

In particular, it is a centred Gaussian process and has an H & H, L_continuous version.

Proof. Following [DZ14, Section 5.1.2], we define the stochastic convolution
b, b,
Wh(t) / Sh8 aw(t) / SPB LydW (t)

for t > 0, where 2 : H — H & H; ' is the (bounded linear) map f — < ?C > For

a € [0,1) we wish to show that

T
o
0

for all ' > 0, where || - HHS(H Luew-t) denotes the Hilbert-Schmidt norm of operators
b
from H to H & ’H;l. We have that

g 5 T e lebs b2
el e (S
/0 t 2| ps e e 0 ; 2Pk
o0

Sl el

k=1
oo T oo T )

:Z/ t“VB(AZ,t)th+Z/ 1+ A TV )2,
=10 =10

and we treat the above two sums separately.

Now t — t~¢V3(\8,#)? is always integrable in [0,7] so the only thing that can go
wrong is the sum. Since there are only finitely many & such that )\Z < /32, it suffices to
consider the case )\z > (2. In this case we have that

T T
/ V(AL 1)2dt = (A, — 52) ! / £~ 2P gin? ((Az - ﬁ2)%t> dt
0

0
< (-1

bB

QH dt < oo
HS(H—HeH, b

dt
HOH,

It follows that

i/ V(A Pt <Y / V(N 1) dt + < > -

k:xb<p2 k:xb>p2

lfa

11



which is finite by [HY18a, Proposition 2.5]. We use a similar method for the VB sum.
Taking a = 0, it thus follows from [DZ14, Theorem 5.4] that the SPDE (2.2) has a
unique global solution U = (U (#))$2, in H @ H,; * given by

B V(=D t — s)dW (s)
) =Wt = ( TVt — )aw (s ) |

It is a Gaussian process in H @ ’H;l by [DZ14, Theorem 5.2]. As a stochastic integral of
a cylindrical Wiener process, it is centred. Moreover, taking a € (0,1) we see that this
U has an H @ H,, '-continuous version by [DZ14, Theorem 5.11]. O

Theorem 2.8 (Solution to (1.2)). There exists a unique global solution u to the SPDE
(1.2). It is a centred Gaussian process on H given by

u(t) = /0 Va(—Ap, t — s)dW (s).

Moreover, u is the unique H-valued process which satisfies the following “weak solution”
property: For all h € D(Ay), the function t — (u(t),h), satisfies (u(0),h), = 0, is
continuous in [0,00), and is continuously differentiable in (0,00) with

G, = [ {us), Ahhyds =201 + [ G dW ()

Proof. Existence is given directly by Proposition 2.7, and yields the required centred
Gaussian process 1 as a solution which is continuous in H, with its associated u contin-
uous in 7—[;1. Now note that our construction of S®? in Lemma 2.6 was independent
of the value of . That is, for any a > 0 such that A g generates a Cp-semigroup on
H © H, “, that semigroup must be S8, This means that the process U constructed in
Proposition 2.7 is independent of o and thus ensures uniqueness of .

It can be checked directly that the adjoint of the operator A4; 3 is given by

Af . = 0 (1 - Ab)_lAb
AT\ 1—A -2 ’

1
with domain D(A; 5) = D(A;) & H = D(App). By the definition of weak solution in
1
[DZ14, Chapter 5] for (2.2) we see that for all f € D(A7) and g € H and t € [0,00),
<U(t)a f>u + <7l(t)7g>7-[b—1

- /O ((us), (1 = 20) " Bghy + ((s), (1 = A)f = 28g)5,,1 ) ds + /0 (g, AW (5)) .-
(2.4)

12



1
Take g = 0 and f € D(A;) in (2.4). Then by the fact that 7 is continuous in ’Hb_1
and the fundamental theorem of calculus, the function ¢ — (u(t), f), is continuously
differentiable in (0, c0) with

s o =, (1= 84)

Note in particular that the right-hand side of the above equation is equal to (%, f), if
@ € H. Now in (2.4) we take f = 0 and let g = (1 — Ap)h for some h € D(A), which
gives

(0(0), (1 = By

:/ ((uls), Aphu = 28(i(s), (1 = Ay ) ds+/ (1= D), dW (5)) 1,
0 0

which is equivalent to

d t t

G0 = [ (0(s), M) = 280u(e). 1 + [ (bW ()
Thus w satisfies the required “weak” property. It remains to prove that u uniquely
satisfies this property among all H-valued processes. In order to do this let @ be a
process also satisfying the property and let v = u — . Let vy (t) = (v(t), p}), for k > 1,
t € [0,00). Then vy can be seen to satisfy the ordinary differential equation

d?uy, b duy,
20k _ 93¢
A
duy,
vk(0) = —~(0) = 0.
The unique solution to this ODE is v = 0 for every k, which implies u = . U

Now that we have our solution u to (1.2) given by Theorem 2.8, we show that it has
a nice eigenfunction decomposition. Let uy = (¢8u) u for k> 1. We see that

u(t) = /O V(. — ) (g, dW (5)),

and it can be easily shown that ((¢%,W),)%, is a sequence of independent standard
real Brownian motions.

Definition 2.9 (Series representation of solution). Let 8 > 0 and b € 2 For k >0
let ka e (Ylf B (t))t>0 be the centred real-valued Gaussian process given by

VO = [ Vot = )k dW (s)

The family (ka B )22 is clearly independent, and if  is the solution to (1.2) for the given
values of 8 and b, then

u(t) =Y VP ()eh. (2.5)
k=1

13



Remark 2.10. By Theorem 2.8, the real-valued process Ylf ' satisfies the following stochas-
tic integro-differential equation:
¢

t
() ==2590) =X, [ ws)ds+ [ (W),
y(0) =0,
and it is easily shown to be the unique solution.
Remark 2.11 (Non-zero initial conditions). For a moment we consider the SPDE
du(t) = u(t)dt,
du(t) = —2p4(t)dt + Apu(t)dt + dW (t), (2.6)
u(0) = f, a(0) = g-
This is simply the SPDE (1.2) with possibly non-zero initial conditions. We can char-
acterise the solutions of this SPDE using the deterministic damped wave equation
du(t) = u(t)dt,
du(t) = =2pa(t)dt + Ayu(t)dt, (2.7)
u(0) = f, w(0) = g,
which is studied in [DSV99] and [Hu02] in the case 8 = 0. Let u be the unique solution
to (1.2) given in Theorem 2.8. Then it is clear that a process @ solves (2.6) if and only if
@ —u solves (2.7). Thus understanding the stochastic wave equation with general initial

conditions on a fractal is equivalent to understanding the deterministic wave equation
on that fractal.

3 Regularity of solution

3.1 L?-Hoélder continuity

The first regularity property of the solution u = (u(t));2, to (1.2) that we will consider
is Holder continuity in H, when w is interpreted as a function u : © x [0,00) — H.

Proposition 3.1. Let u: Q x [0,00) — H be the solution to the SPDE (1.2). For every
T > 0 there exists a constant C' > 0 such that

E |lu(s) = u(s + DII%] < c2~
for all s,t >0 such that s,s +t € [0,T].
Proof. By Ito’s isometry for Hilbert spaces,
2
E [llu(s) - u(s + )2

s+t
=E / (VB(_Aba s+t— t/) — Vﬁ(—Ab, s — t/)l{t’gs}) dW(t/)
0

2

J
s+t , / 2 /

=/ |Va(=Lp, s+t —1") = Va(=Ap,s — ¢ )1{15/SS}HHS(H) d’,
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where || - |lag(z) denotes the Hilbert-Schmidt norm for operators from H to itself. It
follows that

E |llu(s) - u(s + )2

S t
2 2
:/0 HVB(—Ab,tH’)—Vﬁ(—Ab,t’)HHS(H)dt’Jr/O [V (=20, ) |[gg ) @ (3.1)
[e%} s 9 0 t 2
:Z/ <V5()\b,t+t/)—V5()\b,t/)) dt’+2/ (Vg()\b,t')> dt’
k=0"0 k=0"0

and we treat each of the above two sums separately. Notice that by [HY18a, Proposition
2.5] there are only finitely many k such that )\z < B2

We consider the first sum of (3.1), and we first look at the case A\? > 32. Then using
standard facts about the Lipschitz coefficients of the functions exp and sin in [0, 7] we
see that

/S (Vﬁ()\b,t +t') — Vﬁ(/\b,t’)>2dt'
0
= (- /05 (6_6(t+t/) sin (()\z _ 52)%(75 i t’)) B in (()\z B ﬁQ)%t’)>2dt’

<Oh-a7 [ (0 G- phenz) i
At2AL

We get a similar result in the case )\Z < /32, that is, a term of order O(¢?). In this case
the dependence of this term on k is unimportant as there are only finitely many & such
that )\z < 2. There therefore exists a constant C’ > 0 such that

AtZAL
Ao — g2

o0 s 2
Z/ (Vo t ) = Vot "t < 0 a7 Y
k=00 kb >p2

Using [HY18a, Proposition 2.5], there therefore exists C” > 0 such that

e s 9 oo
Z/O (Vﬁ(Ab,t ) — Vﬁ(Az,t’)> dt' < ¢ <t2 +3 kT /\t2> .
k=0 k=1

Then by [HY18b, Lemma 5.2], there exists a C" > 0 such that

o s 2
> /0 (Vﬁ(/\b,mt’)—vﬁuz,t’)) dt’ < ¢"?ds,
k=0

15



Now for the second sum of (3.1), again we first look at the case )\Z > 2. Using
Lipschitz coefficents and the fact that Vz(A?,0) = 0 we have that

/t <V5(Ab,t’))2 dr = (A — g2) /t =28 sin? (()\ ~ 52)%75') dt’
0

0

g@i—@){[(@+&ﬂ—ﬁ%%ﬂA02w
<4\ — )t /t (Ag(t')Q A 1) dt’
0

AtZAL

In the case )\Z < B? we get as usual a similar result, of order O(#3), and its dependence
on k is unimportant as there are only finitely many. Using the same method as for the
first sum of (3.1) we see that there exists a C"”” > 0 such that

Z/ (Vg()\b,t,)> dt’ < C””t?’_ds.
k=00
Plugging the estimates into (3.1) finishes the proof. U

Let (M, d;) and (Mo, d2) be metric spaces and let § € (0,1]. A function f : M; — Mo
is essentially 0-Holder continuous if for each v € (0,9) there exists Cy > 0 such that

do(f (), f(y)) < Cyda(z,y)”
for all z,y € M.

Theorem 3.2 (L?-Holder continuity). Let u : € x [0,00) — H be the solution to the
SPDE (1.2). Then there exists a version U of u such that the following holds: for all
T > 0, the restriction of @ to Q x [0,T] is almost surely essentially (1 — %)-Hélder
continuous as a function from [0,T] to H.

Proof. Fix T' > 0. This is a simple application of Kolmogorov’s continuity theorem. It
is a consequence of Fernique’s theorem [DZ14, Theorem 2.7] that for each p € N there
exists a constant K, > 0 such that if Z is a Gaussian random variable on some separable
Banach space B then
2p 2]?
E|IZI%] < KE |1215)
see also [Hail6, Proposition 3.14]. Since u is a Gaussian process, Proposition 3.1 gives
us that
2 —ds
E|l[us) = u(®) 7] < KpC7|s -t

for all s,t € [0,T], for all p € N. Then by taking p arbitrarily large and using Kol-
mogorov’s continuity theorem, the result follows. Note that any two continuous versions
of w must be indistinguishable, which allows us to extend the construction of % on any
given finite time interval [0, 7] to the whole interval [0, c0). O
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3.2 Pointwise regularity

Let u be the solution to (1.2) in Theorem 2.8. Henceforth we assume that u is the
‘H-continuous version constructed in Theorem 3.2. We currently have u as an H-valued
process, so in this section we will show that the “point evaluations” w(t,x) for (¢,x) €
[0,00) x F' can be defined in such a way that they make sense as real-valued random
variables. This will allow us to interpret u as a function from € x [0,00) x F' to R, and
is necessary for us to be able to talk about continuity of u in space and time.

Lemma 3.3. Let 3> 0 and A > 0. If a > 0 then

1
Ao+ B)(® +2a8 + A)

/ e 2V (N t)2dt =
0

Proof. Can be computed explicitly using (complex) integration in each of the cases
A< B2, A= p? and \ > 32 using the definition of V3. O

For A >0 and b € 27 let plj\ : F' X F' — R be the resolvent density associated with
Ay, exactly as in [HY18a, Section 3.1].

Lemma 3.4. Let u : [0,00) — H be the solution to the SPDE (1.2). If g € H and
t € [0,00) then

W B)t
E [(u(t), 9)}] e - / / p1(x,y)g(x)g(y)u(dz)u(dy).

Proof. Let g* € H* be the bounded linear functional f — (f,g),. We see by Ito’s
isometry that

t
- /0 19V (= Ay, ) [Bsds

t
- /0 V(= Ay, $)glds

where the last equality is a result of the self-adjointness of the operator Vz(—Ay,s). If
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we let g, = <gpz, g)p for k> 1 then for any a > 0 we have that

E ng;/ VB )\k’ )2d5
< eZothgi/ €_2a8V5()\b78)2d8

2at 1
;g‘“ Ao+ B)(a? + 208+ A

e2at

TCE) ((@®+ 208 — Ab)_19,9>ﬂ

eQat
- m/F/FP32+2a5($,y)g(ﬂf)g(y)p(daz)p(dy),

where we have used Lemma 3.3. Finally we pick o = /32 + 1 — 3 so that a® +2a8 = 1
and the proof is complete. O

For x € F and € > 0 let B(x,¢) be the closed R-ball in F' with centre x and radius
€.

Lemma 3.5 (Neighbourhoods). There exists a constant cs > 0 such that the following
holds: If x € F and n > 0 then there exists a subset DO(z) C F such that u(D%(x)) >
r 9=dun g
x € D%(z) C B(z,c527™).
Proof. The DY(z) we need is the n-neighbourhood of = and is defined in [HY18b, Def-
inition 3.10]. The result DY(z) C B(x,c52™™) then follows from [HY18b, Proposition
3.12]. The result on u(DY(z)) is due to the fact that by definition, F,, C D2 (z) for some
w € W, such that ry, > rm2™". O

For x € F and n > 0, define
I = (D)) pg 2y

Evidently f% € H, ||f¥]12 = u(Dy(z))~! < @ 9dun by the above Lemma and if g € H
is continuous then

lim (f7,9), = g9(z),

n—o0
by the above lemma.
We can now state and prove the main theorem of this section, for a similar result for
the stochastic heat equation see [HY18b, Theorem 4.8].

Theorem 3.6 (Pointwise regularity). Let u : [0,00) — H be the solution to the SPDE
(1.2). Then for all (t,x) € [0,00) x F' the expression

= v () (x)
k=1
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is a well-defined real-valued centred Gaussian random variable. There exists a constant
cg > 0 such that for allx € F, t € [0,00) and n > 0 we have that

E | ((u(t), fa)u — u(t,x))Q < cge(v F+1-p)to—n

Proof. Note that ¢} € D(A,) for each k, so ¢? is continuous and so ¢¢ () is well-defined.
By the definition of u(t, z) as a sum of real-valued centred Gaussian random variables we
need only prove that it is square-integrable and that the approximation estimate holds.
Let © € F. The theorem is trivial for t = 0 so let ¢ € (0,00). By Lemma 3.4 we have
that

E [(u(t), f£ — f2)?%]
W Byt
_ e [ [ A2 - B0 () - S ulden)at).

Then using the definition of f, [HY18a, Proposition 3.2] and Lemma 3.5 we have that

e2(V/ B2 +1-B)t
B2+

0= 2(V/ B2+1-PB)t

_ 6 (27" +27™).

VI

Writing w in its series representation (2.5) and using the independence of the ka B , it
follows that

S Y22 02] (ke £ — (e ) <
k=1

E [(u(t),fnw — fﬁﬁz] < (8052_" + 8052_7”)

(3.2)

20562(\/52“—5)15
VB +1

Thus the left-hand side of the above equation tends to zero as m,n — oo. The solution
u is an H-valued Gaussian process so we know that

(27 +27m).

ZE[ (02] (b £202 = E [(ult). £2] < o0

forall z € F, n > 0 and ¢ € [0,00), therefore by the completeness of the sequence space
¢? there must exist a unique sequence (yk)72, such that > 72, yl%, < oo and

2

JE&Z( b0 ]% (cpZ,fn%—yk) = 0.

Since <pz is continuous we have limnﬁoo(cpz, I, = wi(w). Thus by Fatou’s lemma we
can identify the sequence (yi); we must have

ZE {Y,f’ﬁ(t)ﬂ @b (z)? < o0
k=1
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and

n—oo

tim S [¥000] (6. i — @) =0
k=1

Equivalently by (2.5),

E [u(t,x)ﬂ < 00

(so we have proven square-integrability) and

lim E [((u(t), S — u(t,2))] =0.

n—oo

In particular by taking m — oo in (3.2) we have that

) , 20562(\/m—ﬁ)t
B [(ule) £2)s - ult.0))"] < =2

O

We can now interpret our solution u as a so-called “random field” solution u : Q x
[0,00) x F' — R. However, the relationship between the random field solution and the
original H-valued solution is still rather unclear. We discuss this in the next section.

4 Space-time Holder continuity

Now that we have the interpretation of the solution u to (1.2) as a function u : 2x[0, c0) x
F — R, we can prove results about its continuity in time and space. In particular, we
show that it has a Holder continuous version which is also a version of the original
‘H-valued solution found in Theorem 2.8.

4.1 Spatial estimate

The spatial continuity of u is the same as for the stochastic heat equation, see [HY18b,
Section 5.1].

Proposition 4.1. Let T > 0. Let u : Q x [0,T] x F — R be (the restriction of) the
solution to the SPDE (1.2). Then there exists a constant C1 > 0 such that

E [(u(tv 1’) - u(t7 y))Q] < ClR(xa y)
for allt € [0,T] and all z,y € F.

Proof. Recall from Theorem 3.6 that

n—oo

i B | ((w(0). 12, ~ u(t.0))| =
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and an analogous result holds for y. Thus by Lemma 3.4,

E [(ult, 2) - u(t,y))?] = lim E|{u(t), f§ - fy>]

e2(V/ B2 +1-B)t ; ) )
4 n%oo/ / pl 21,22 ) - fn(zl))(fn (22) - fn(ZQ))M(dzl),u(dZQ)

62(\/ B2+1_ﬁ)t b b
= m (P1(x7x) —2p1(z,y) + Pl(%y)) ;

where we have used the continuity of the resolvent density, Lemma 3.5, and the definition
of f¥ (similarly to the proof of Theorem 3.6). Hence by [HY18a, Proposition 3.2],

2(y/B*+1-B)T
E [(u(t, ) — u(t,y))’] < ezlw (6@ 2) = ph(w,y) + Py, ) - Py, )
e2(V/ B2 +1-B)T

< WR(QUW)-

4.2 Temporal estimate

Lemma 4.2. We have the following estimates on Vg and Vﬁ:
(1). Let B >0 and t > 0. Then

B~ te Btsinh (Bt) B >0,

sup V51, 1) = .

A>0 t 5=0.
In particular, supysq [Va(A, t)| is O(t) as t — 0.

(2). Let >0 and T > 0. Then

sup sup [Vz(\, t)] < T
0<t<T A>0

Proof. 1t is easy, if somewhat tedious, to prove that V3 and VB are both continuous in A
for fixed t > 0. Note that

sin x . sinhxz
lim =1=lim
x—0 X z—0 xT
and
sin x . sinh z
sup =1= inf .
xER\{O} X zeR\{0} x
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For (1), assume that ¢ > 0 (otherwise the result is trivial). We have that

sup |Va(\, 1) = te Pt sup
A> 32 A> 32

= tefﬁt
= |V3(8%, )],

(= #2)ke) " sin (0= 7))

so we need only consider the case A < 2. If 3 = 0 then this directly implies the result.
Suppose now that 5 > 0. The function = — % is positive and increasing when x is
positive so by continuity we have that

sup [Va(A, )] = sup [Vs(A,1)]
A>0 A<pB2
— Bt 2 _ \34) " sinh 2_)\%>
te )\8;152 (((ﬁ ) t) sin ((6 ) t)
= te P (8t)" ! sinh (Bt)
= e Ptsinh (Bt)

which is the required result.
Now for (2), assume that 7' > 0, otherwise the result is trivial. We have

sup sup [Vz(\,t)]
0<t<T A>3

= sup sup
0<t<T \>p2

e Pt cos ((A - 52)%t> — B\ — B2 Fe Plsin (()\ - 52)%75) ‘

<14 sup ‘Btefﬁt‘

0<t<T
<14pT
and
sup sup [Vs(, 1)
0<t<T A<
= sup sup |e P cosh ((52 - )\)%t> — B(6* - )\)7%67&5 sinh ((52 - )\)%t>‘
0<t<T A<p?
-1
< cosh(BT) + BT sup sup (((ﬁQ - )\)%t) sinh <(52 - )\)%t>>
0<t<T A<f2

< cosh(BT) + sinh(BT) = &7

and supg<;<r V5(62,1)| = SUPg<i<T ‘e*m - ﬁte*m‘ < 14 BT. Finally we note that the
inequality 1 + ST < €T holds. O

We can now give the temporal estimate. Here we see the effect of the extra time
derivative compared to the stochastic heat equation [HY18b, Proposition 5.5].
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Proposition 4.3. Let T > 0. Let u : Q x [0,T] x F — R be (the restriction of) the
solution to the SPDE (1.2). Then there exists Co > 0 such that

E [(u(s,z) —u(s + t,2))?] < Cyt*ds
for all s,t > 0 such that s,s+t <T and all x € F.

Proof. Let ¢ == 8cge(V 52+1_B)T, where cg is from Theorem 3.6. By Theorem 3.6 we
have that if n > 0 is an integer then

E [(u(s, ) — u(s + t,2))?] < 2E [(u(s) — u(s +t), f;’f>i] + g2 (4.1)
Then Ito’s isometry for Hilbert spaces (see also proof of Lemma 3.4) gives us that
E [(u(s) — u(s + 1), f)}]

s+t 9
=E [</0 (VB(_Ab, s+t—t)—Vi(—Ap, s — f/)l{t/gs}) AW (t), fﬁ> ]

I
S+t 9
— /0 H (Vﬁ(—Ab, s+t — t,) — Vg(—Ab, S — t/)l{t’gs}) fﬂfHﬂdt,
2 a / / 2 4
S [ Vo= =) = Vo= s = 1y | .
Recall that |72 < r—dn9dnn Using the functional calculus we see that
s+t 9
| IVttt =) = Vi85 = 10|
) <
s s+t
- / [Va(=Dpy s+t — ') = Vg(=Dp, s — )| > dt’ + / V(=2 s+t — )| at’
0 s
s t
:/ [Va(=Ap, t+1') — VB(—Ab,t’)Hth’+/ [Va(—2p, )| dt!
0 0
s t
< / sup (Va(A,t + ') — Va(\, ) dt’ +/ sup Vg(A, t')%dt!
0 A>0 0 A>0

t
<t*T sup supV5(A,t')2+/ supV5()\,t')2dt’,
0<t/<T A>0 0 A>0

where in the last line we have used the mean value theorem. Therefore by using Lemma
4.2 there exists ¢ > 0 such that

s+t
/ |VB(—=2p, s+t —t") = Va(—=Dp,s — t") 1y < 2t < ct?
0
. —d . ..
for all s,¢ > 0 such that s,s +t < T. Letting ¢ = 2r_:"c and plugging this into (4.1)
we have that

E [(u(s,z) — u(s + t, x))2] < dt2dHm 4 o,
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for all s,¢ > 0 such that s,s +¢ < T and all z € F. In fact, defining
cf =y VdpdT?,
we have that
E [(u(s, ) — u(s + t, ﬂ:))Q] < Jt?dHn 4 g (4.2)

as well. This estimate will turn out to be easier to work with.

We assume now that ¢ > 0, and our aim is to choose n > 0 to minimise the expression
on the right of (4.2). Fixing t € (0,T], define g : R — R such that g(y) = /t?29#Y +
c¢27Y. The function g has a unique stationary point which is a global minimum at

1 c
= 1 .
Yo (di +1)log 2 ©8 (dHc’t2>

Since t < T we have by the definition of ¢f that yo > 0. Since yp is not necessarily an
integer we choose n = [yg|. Then g is increasing in [yg, 00) so we have that

E [(u(s,x) —u(s +t,2))°] < g(n) < g(yo +1).

Setting ¢’ == dif ; and evaluating the right-hand side we see that

C

dy .
M\ d 1 MmN o
2 {(uts) —als 4 )] < (B)7 w2 ()

< cg"t#

= g2
for all s > 0, ¢ > 0 such that s,s+¢ < T and all # € F, where the constant ¢f”’ > 0 is
independent of s,t,x. This inequality obviously also holds in the case t = 0. U
4.3 Holder continuity
We are now ready to prove the main result of this paper.

Definition 4.4. Let R, be the metric on R x F' given by
Roo((s,2), (t,y)) = [s —t| V R(z,y).

Theorem 4.5 (Space-time Hélder continuity). Let u : %[0, 00) x F' — R be the solution
to the SPDE (1.2). Let § =1 — d—QS. Then there exists a version @ of u which satisfies
the following:

(1). ForeachT > 0, i is almost surely essentially (1 A\S)-Hélder continuous on [0, T]x F
with respect to Ryo.

(2). For each t € [0,00), u(t,-) is almost surely essentially %-Hélder continuous on F
with respect to R.
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(3). For each x € F, u(-,x) is almost surely essentially §-Hélder continuous on [0,T]
with respect to the FEuclidean metric.

Moreover, the collection of random wvariables @ = ((t,))z)e(0,00)xF 5 such that
(a(t,))efo,00) 75 an H-valued process, and moreover (u(t,-))ic0,00) 25 an H-continuous
version of the H-valued solution to (1.2) found in Theorem 2.8.

Proof. Take T > 0 and consider ur, the restriction of u to [0,7] x F. It is a well-known
fact that for every p € N there exists a constant CI', > 0 such that if Z is any centred
real Gaussian random variable then

E[Z*") = C,E[Z°]P.

We know that ur is a centred Gaussian process on [0, 7] x F' by Theorem 3.6. Proposi-
tions 4.1 and 4.3 then give us the estimates

E [(ur(t,z) — ur(t,y))*] < C)CYR(z, y)?,
E [(ur(s,z) — uT(t,x))Qp] < C)C%|s — ¢[p(2=ds)

for all s,t € [0,T] and all z,y € F. The existence of a version 4 with the required Holder
continuity properties then follows in the same way as in [HY18b, Theorem 5.6]. Then
using Theorem 3.6 and the series representation of u, the rest of the present theorem
follows in the same way as in [HY18b, Theorem 5.7]. O

5 Convergence to equilibrium

We conclude this paper with a brief discussion of the long-time behaviour of the solution
u to the SPDE (1.2). We are interested in whether the solution “settles down” as t — oo
to some equilibrium measure. Intuitively, we expect this to be the case when the damping
constant [ is positive. However the undamped case 8 = 0 is less clear. In this case there
is no dissipation of energy, so is the rate of increase of energy quantifiable? Note that
in this section we use the term “weak convergence” in the probabilistic sense, not in the
functional analytic sense.

We treat the undamped case first. Throughout this section we will use the inter-
pretation of the solution u : Q x [0,00) — H as an H-valued process. Recall the series
representation of wu,

o0
u=> Y ek,
k=1

given in (2.5).
Theorem 5.1 (5 =0). Let u be the solution to the SPDE (1.2) with 5 = 0.

(1). If b # N, then t_%u(t) has a non-trivial weak limit in H as t — oo.
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(2). If b= N, then f%u(t) has no weak limit in H as t — oco. However u — Y] 6g01
and Y/ A o are independent H-valued processes and 3 <u(t) — YlN’B(t)gol > has
a non—tmmal weak limit in H as t — oo.

Proof. Let ((;)32, be an independent and identically distributed sequence of real stan-
dard Gaussian random variables. We start with (1), so that A} > 0. For each ¢ € [0, 00)
let

0 1
a(t) = YA (1= (4xh) T sin (4D FE) )7 Guh.
k=1
It can be easily checked that u(t) is a well-defined #-valued random variable with the
same law as u(t) for each ¢ € [0, 00). Now let

[e.9]

oo = > (2M0) 3Gl

k=1

so that u is also a well-defined H-valued random variable. It is then simple to check
using dominated convergence (see [HY18a, Proposition 2.5]) that

lim B [ % a(t) - uec|2] = 0,

t—o00

so in particular t_%ﬁ(t) — Uso Weakly as t — 0o. Therefore the same weak convergence
holds for t_%u(t).

We now tackle (2). The issue that forces us to consider this case separately is that
AV =0, so the variance of (f%u(t),gojlvm tends to infinity as t — co. We deal with
this by subtracting off the offending component, which is exactly YlN’ﬁ <p{v . It is clearly
independent of u — YNﬁ N by (2.5). Now AY > 0 for all k > 2, so similar to (1) we let

= N—% o Ny—1 % 3 N
kzﬁzx (¢ = ()~ sin (4A)71))” Gl

which has the same law as u(t) — YlN’ﬁ(t)go{V, and

[e o]

1
Uoo = Z(QAéV)*?CkgokN.
k=2
As with (1) we conclude that 2 <u(t) - YNﬁ( )N > — Uso weakly as t — oo. O

We now tackle the damped case § > 0. It turns out that we must split this again
into two subcases: b# N and b= N

Theorem 5.2 (5 > 0). Let u be the solution to the SPDE (1.2) with 5 > 0.

(1). If b # N, then u(t) has a non-trivial weak limit as t — oo.
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(2). If b = N, then u(t) has no weak limit as t — oco. However u — Y] ’ngl and
YlN’Bcp]lV are independent H-valued processes, and <u(t) -Y] B( ) > has a non-

trivial weak limit as t — 0o.

Proof. We do case (1) first. Observe that if 5 > 0and b € 2l \{N} then Vz(A,t) decays
exponentially as ¢ — oo for any A > 0. It follows that

/OO Vs (A, 8)%ds < o0 (5.1)
0

for all A > 0, and so by Ito’s isometry we may define

250 = [ Vo) ek W (5

for each ¢ € [0,00] and k& > 1, which is an #H-valued random variable. In the case
t € [0,00) this evidently has the same law as ka’ﬁ(t). Then for each t € [0,00) let

i(t) = 2" ()}
k=1

and
o0
b7
k=1

It is clear that u(t) is an H-valued random variable with the same law as wu(t), for all
t € [0,00). Now for any t € [0,00) we have by Itd’s isometry that

E [[la(t) — uooll7] ZE[( Zfi’ﬁ(@ﬂ
:Z/ V(A2 5)%ds (5.2)
Z / Va( (A2, 5)2ds + Z / Va( Ao, s)

kAl <2 kb >p2

We treat each of these terms separately. As we mentioned in Proposition 2.7, there are
only finitely many k such that A} < 82, see [HY18a, Proposition 2.5]. Then by (5.1) we
have that

> / Vi(A\y, 8)%ds < oo, t >0,

k:Ab <2

lim > / V(A 5)%ds = 0.

k:ab<p2
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Now for the the {k : )\z > (2} sum we need to do some estimates. Our assumption that
B > 0 allows us to improve on the estimates of Proposition 2.7:

00 1 o . . 1
Z /t V(N2 5)2%ds = Z )\2—52/15 e~ 255 sin? <()\Z—ﬁ2)2s)d8

k:)\z>ﬁ2 k:)\z>ﬁ2
1 > 28
— S
<Y ) e
kab>p2 Tk
1 o 1
:ﬁe Z )\b_ﬂZ'
k:ab>pg2 'k

By [HY18a, Proposition 2.5 the infinite sum above converges, so we have by dominated
convergence that

o0
Z / Vg()\b,s)zds <oo, t>0,
k:xb > 32 ¢

lim Z / V(\2, 5)%ds = 0.
t

t—o00
k:)\z>ﬁ2

Setting t = 0 in (5.2), we have now proven that
E [[luselli] < oo,

and so us is a well-defined H-valued random variable. From (5.2) we have also proven
that
lim E [||i(t) — uol|?] = 0.

t—00
In particular this implies that 4(t) — us, weakly as t — co. Since u(t) has the same law
as u(t) for all ¢, this implies that u(t) — us weakly as t — oc.

In (2), we have the issue that A = 0 so V3(AY,-) is not square-integrable, which
precludes u(t) from having a weak limit. We get around this issue by simply subtracting
the associated term of the series representation of u, leaving only the square-integrable
terms. We we still have )\{CV > 0 for all k > 2, so by Ito’s isometry we may define

2V (c0) = /O VA, s)ol d (s)

for k > 2. From the series representation (2.5) of u, observe that YlN’B ()¢l is simply
the component of u(t) associated with the eigenfunction ¥, so that

o0

N7 N?
u(t) = Y (et = v ),
k=2
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and the independence result is clear. For each ¢ we then define

t
%széwmﬁ$ﬁwW@

and

o0

N N,

a(t) = >z ()l
k=2

so that u(t) has the same law as u(t) — YlN’B (t)¢Y. The proof proceeds from here in the
same way as in the proof of (1)—we show that

E [HuooHi] < 00

and
. ~ 27
Jim E [[a(t) — us|2] = 0
which imply the result. O
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