Glacier and Ice-Sheet Hydrology

Ian Hewitt, University of Oxford <u>hewitt@maths.ox.ac.uk</u>

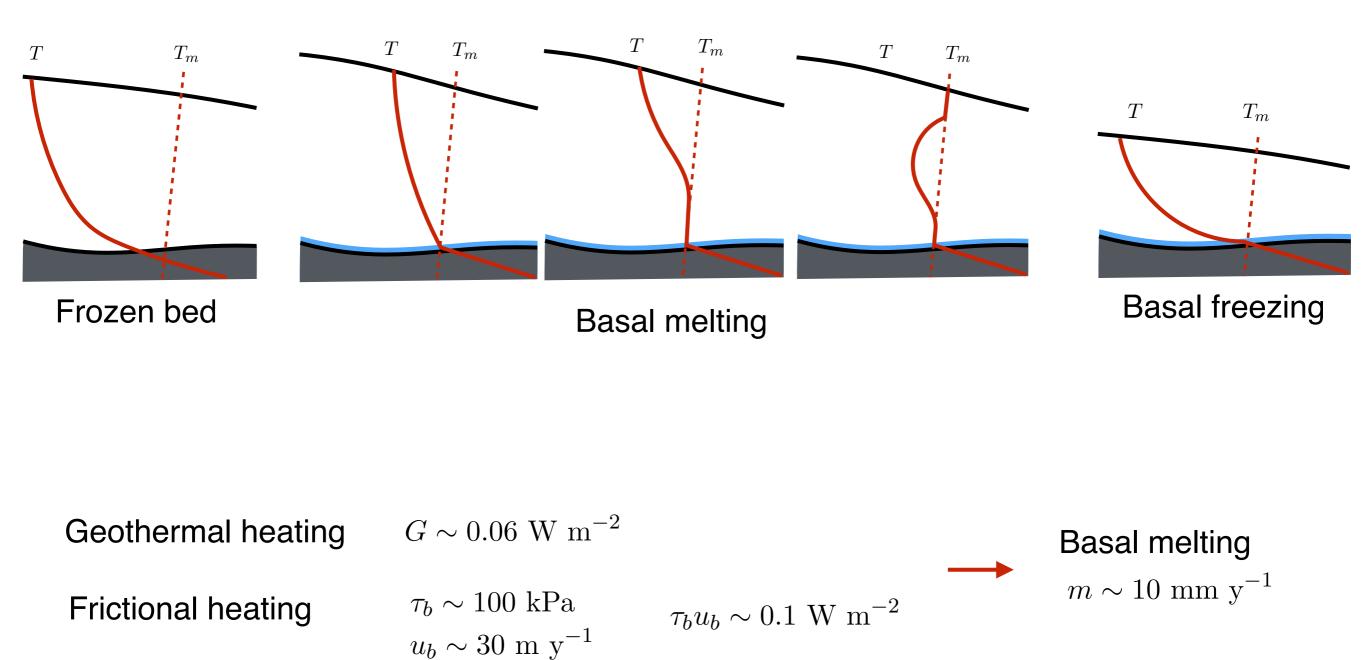
Why is glacier or ice sheet hydrology important?

Where is water produced on a glacier or ice sheet? How much?

What happens to that water?

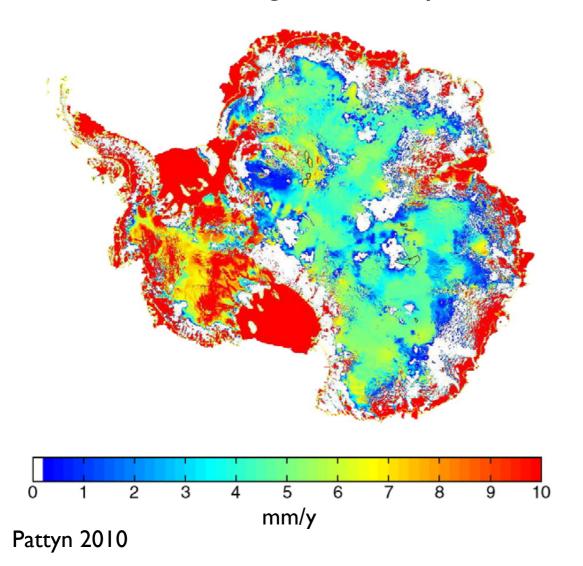
How does water move at the base of a glacier or ice sheet?

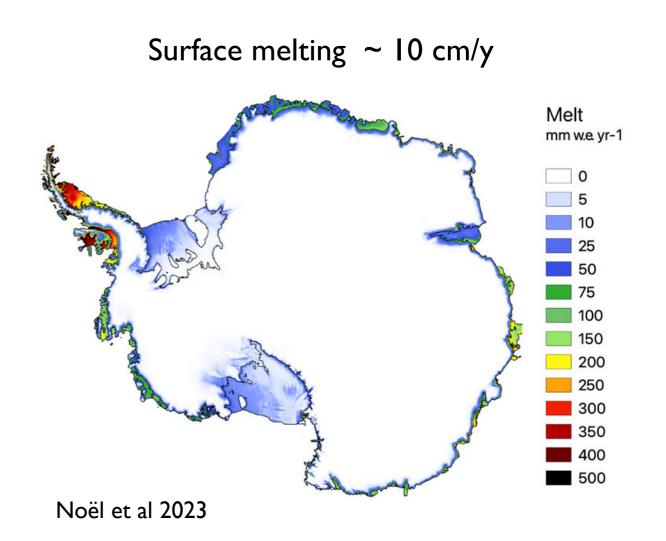
Thermal setting



Water sources in Antarctica

Basal melting ~ 10 mm/y



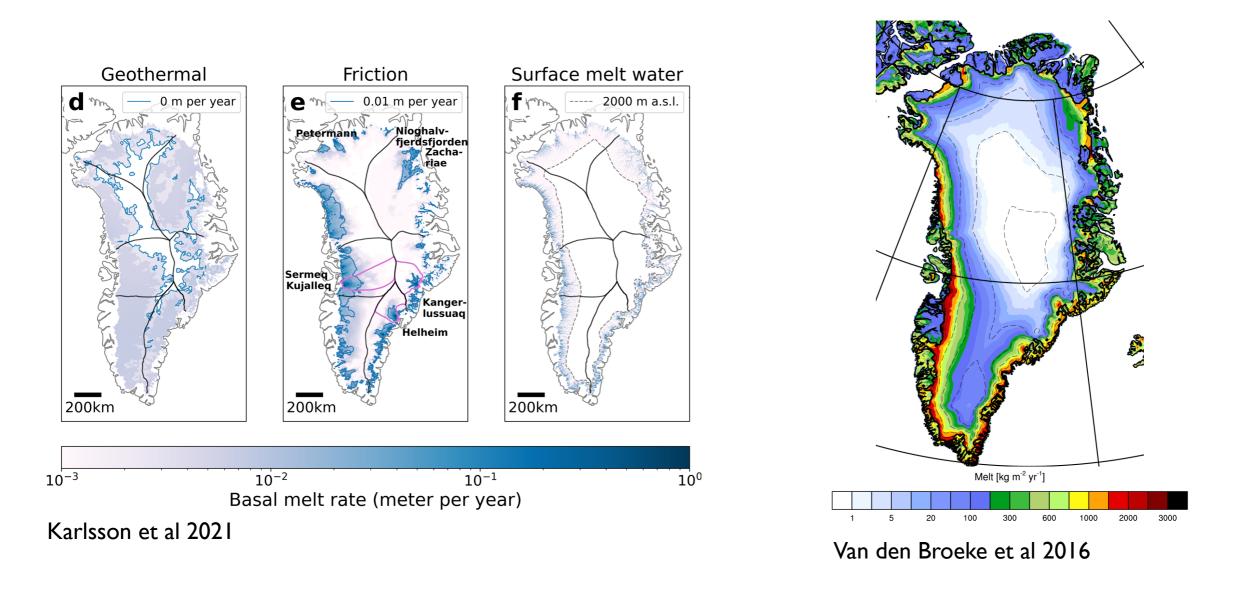


> Basal melting (grounded ice) ~ 65 Gt/y Surface melting ~ 150 Gt/y

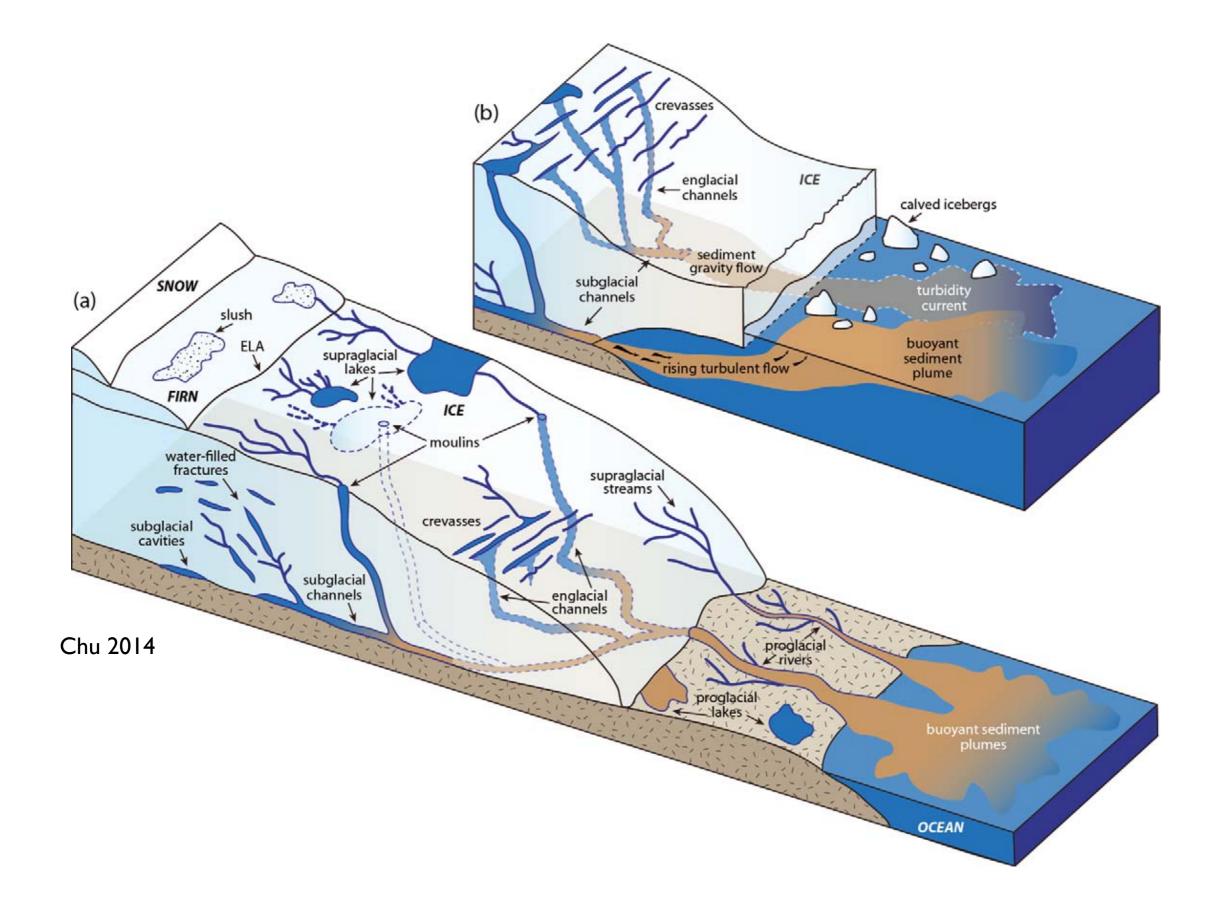
Water sources in Greenland

Basal melting ~ 10 mm/y

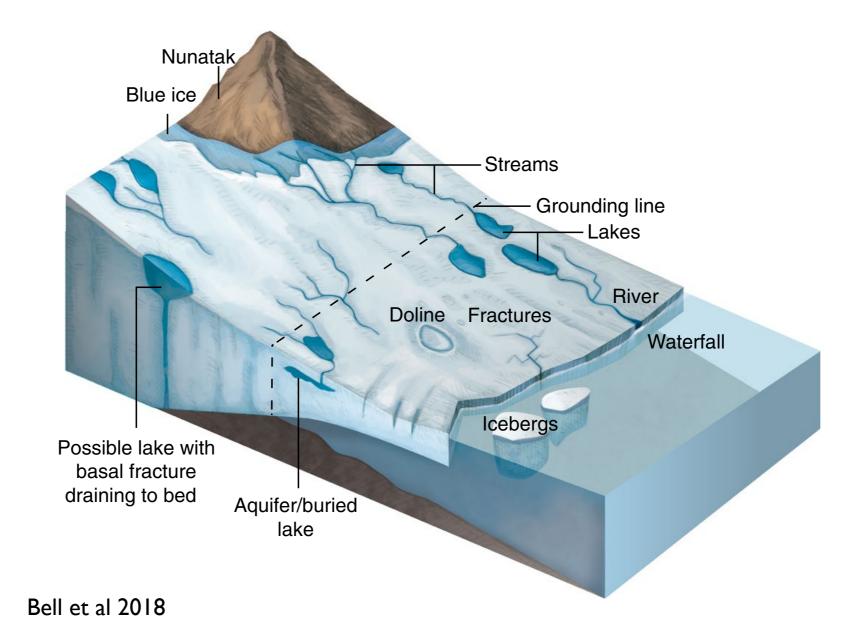
Surface melting ~ I m/y



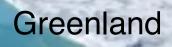
Greenland hydrology



Antarctic hydrology

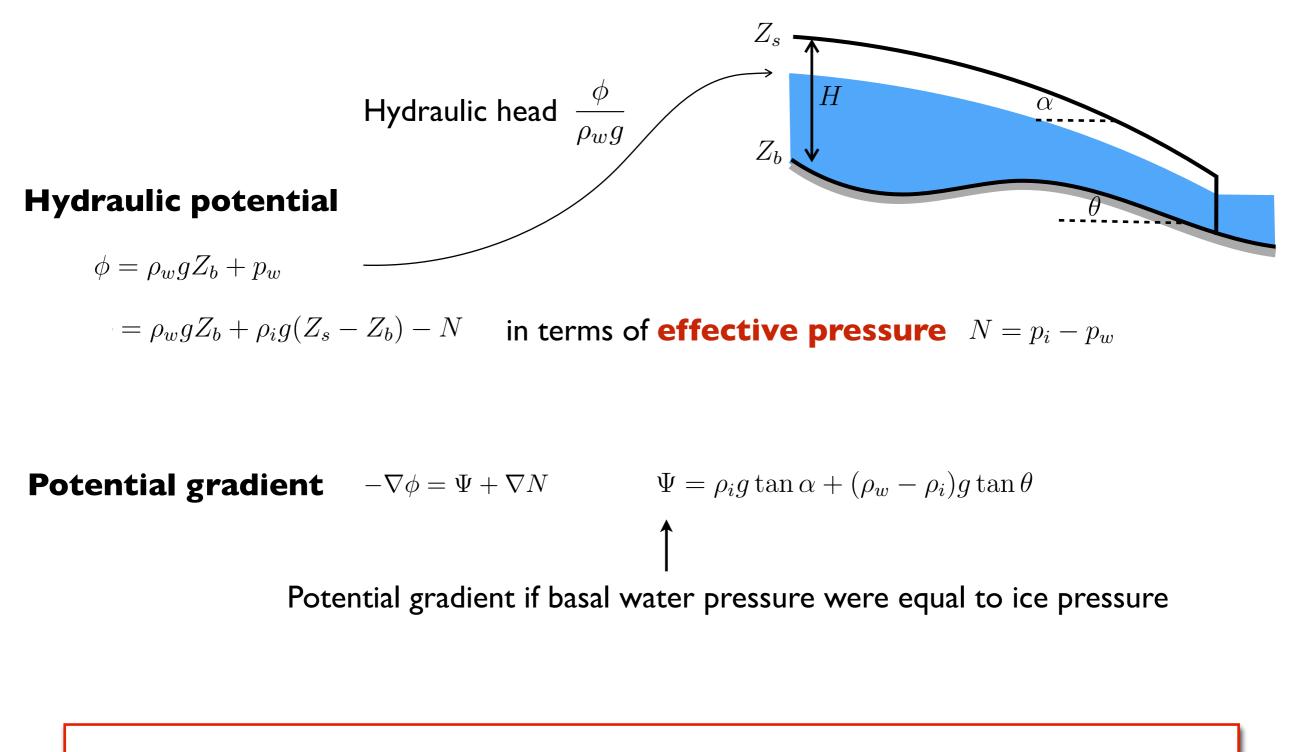


Laura Stevens



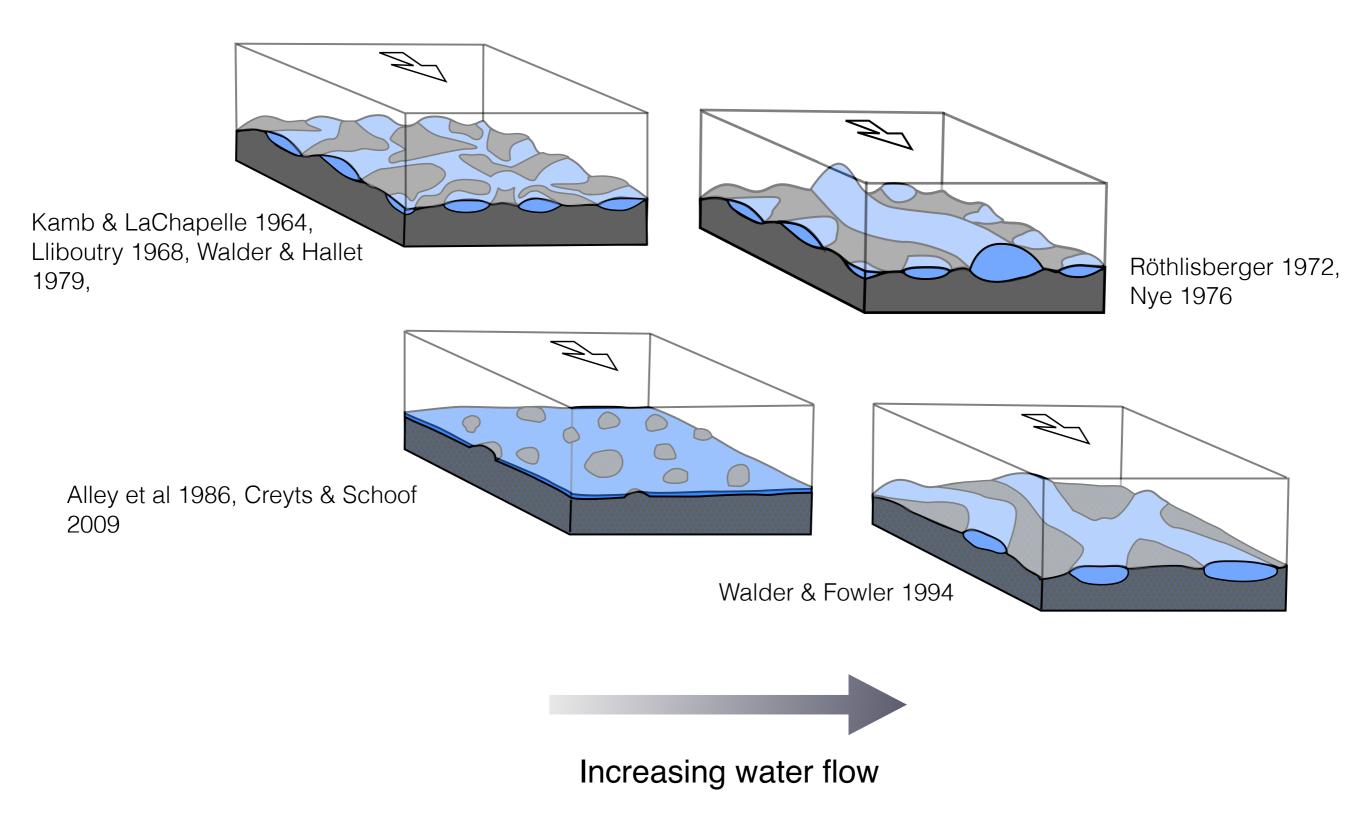
Adam Scott / Frozen Planet

Pressurised subglacial water



Predominant control on water flow direction comes from **ice surface slope**

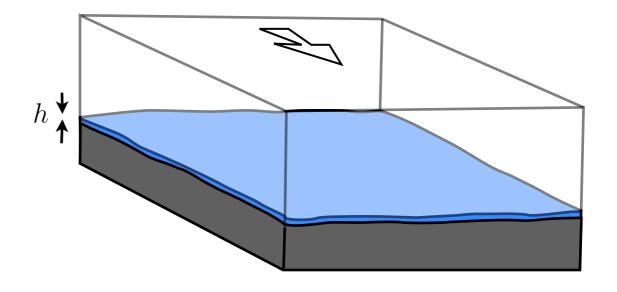
Subglacial drainage systems



Weertman I 972, Walder 1982

Weertman suggested water could flow as a **film**

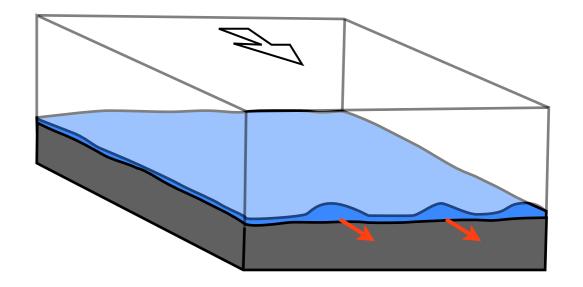
Poiseuille flux $Q = \frac{h^3}{12\eta} (\Psi + \nabla N)$



Water flow dissipates energy through heating

 \Rightarrow Leads to an instability

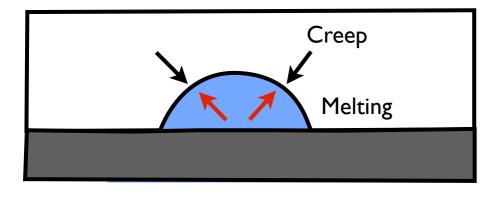




⇒ Flow wants to concentrate in **localized channels / tunnels**

Röthlisberger channels Röthlisberger 1972, Nye 1976

Ice wall **melting** is counteracted by **viscous creep**



Röthlisberger/Nye theory (ignoring pressure dependence of melting temperature)

 $\frac{\partial S}{\partial t} + \frac{\partial Q}{\partial x} = \frac{m}{\rho_w} + M$ $\frac{\partial S}{\partial t} = \frac{m}{\rho_i} - \tilde{A}SN^n$ $mL = Q\left(\Psi + \frac{\partial N}{\partial x}\right)$ $Q = K_c S^{4/3} \left(\Psi + \frac{\partial N}{\partial x}\right)^{1/2}$

water mass conservation

wall evolution

local energy conservation

 $Q = K_c S^{4/3} \left(\Psi + \frac{\partial N}{\partial x} \right)^{1/2}$ momentum conservation (turbulent flow parameterization) Steady state $\Rightarrow \int_{5}^{10}$ $N \approx \left(\frac{K_c^{3/4}}{\rho_c L \tilde{A}}\right)^{1/n} \Psi^{11/8n} Q^{1/4n}$

 $\cdot p_{w}$

Ν

 p_i

0

25

20

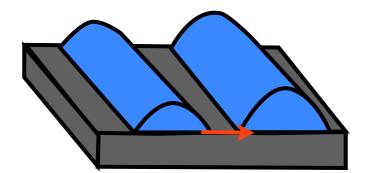
15

×

 $N = p_i - p_w$

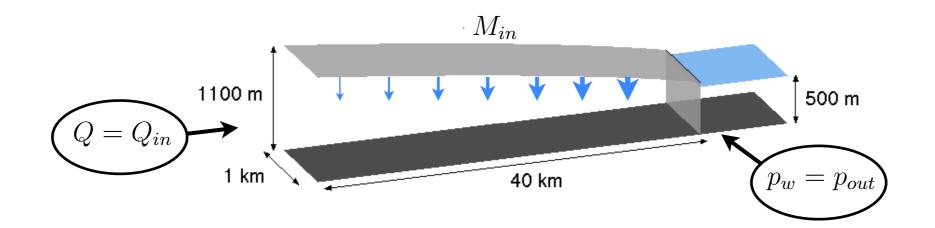
Effective pressure INCREASES with discharge

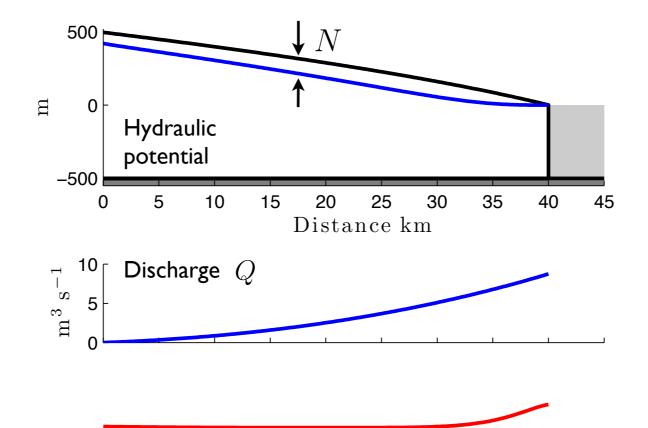
Neighbouring channels compete with one another



 \Rightarrow leads to an arterial network

Röthlisberger channels





Jökulhlaups (Glacial Lake Outburst Floods)

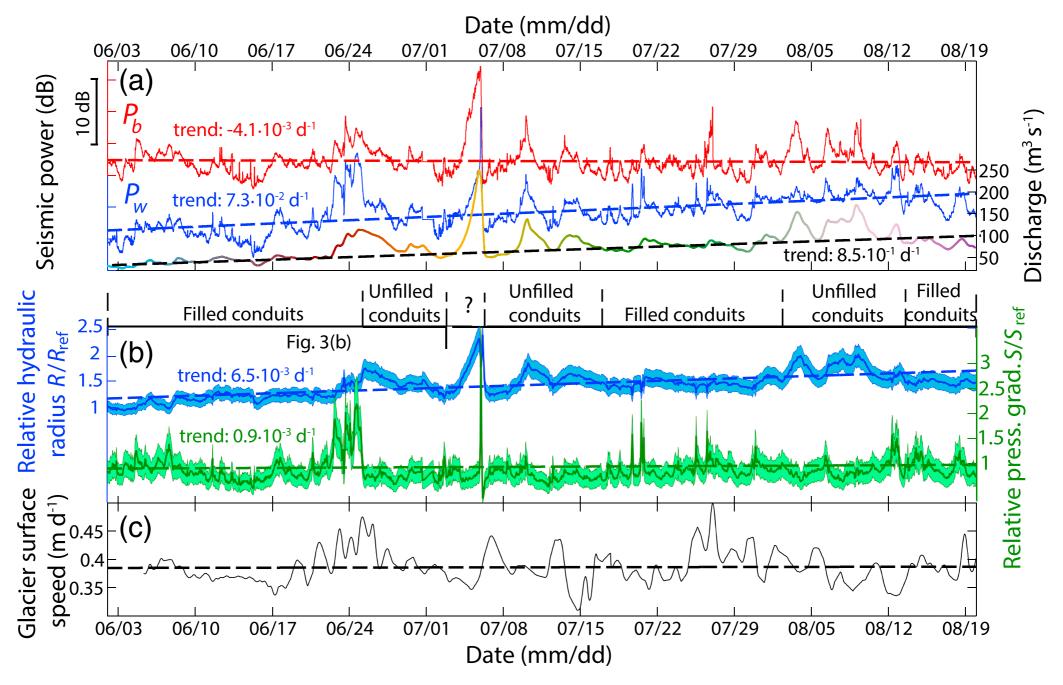
Skeidarársandur, Iceland 1996

Jökulhlaups Nye 1976, Spring & Hutter 1981, Clarke 2003

A significant success of the channel theory is the application to **floods from ice-dammed lakes**

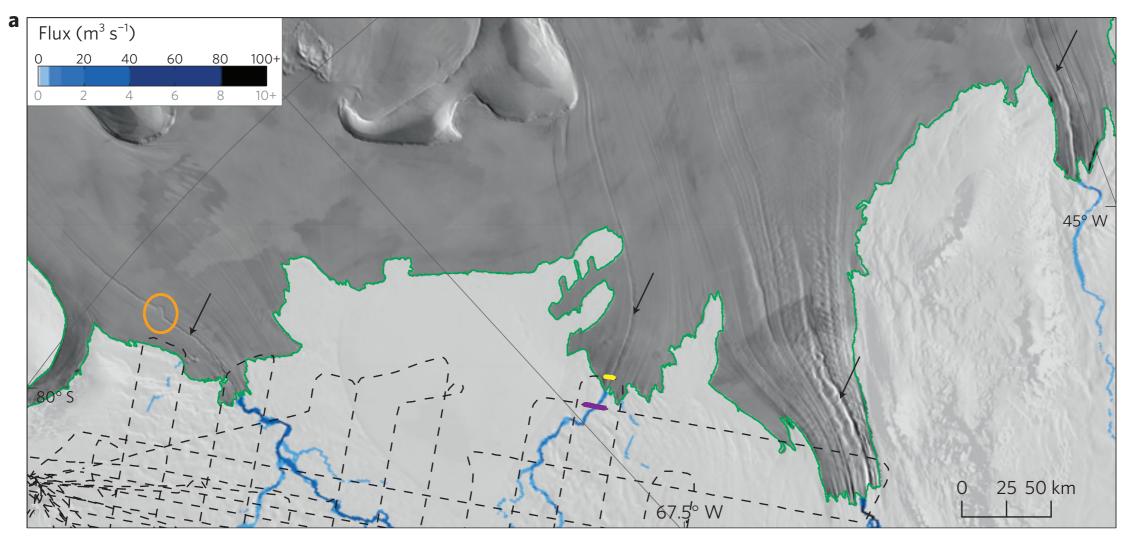
 $\frac{\partial S}{\partial t} = \frac{S^{4/3} \Psi^{3/2}}{\rho_i L} - \tilde{A} S N^n$ Combine **channel evolution** equation with a **lake filling** equation $-\frac{A_L}{\rho_w q} \frac{\partial N}{\partial t} = m_L - Q$ 6 1972 5 hydrograph model 4 $Q (10^3 \text{ m}^3 \text{ s}^{-1})^3$ 2 1 0 = 0.05 0.1 0.15 0.2 0 t (year) Fowler 2009

Seismic detection of Röthlisberger channels



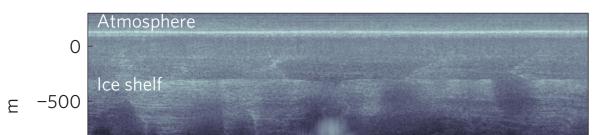
Gimbert et al 2016 - Mendenhall Glacier, Alaska

Evidence for channelised water flow beneath grounding lines



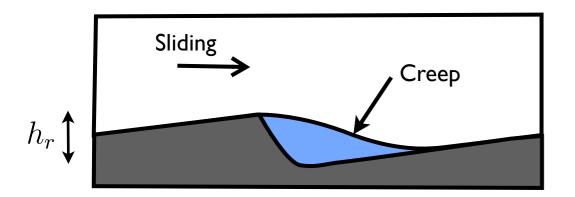
Le Brocq et al 2013

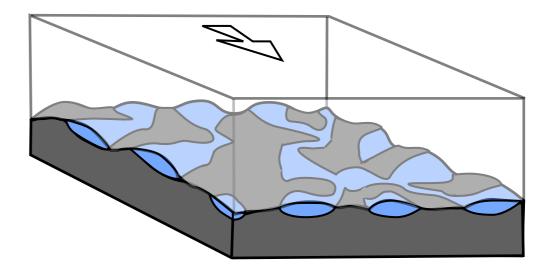
Localised subglacial out flow initiates plumes and ice-shelf channels



Linked cavities Walder 1986, Kamb 1987

Cavities grow through sliding over bedrock





Model

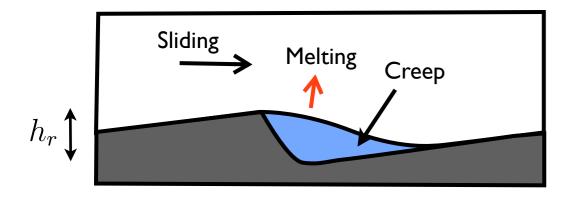
$$\frac{\partial S}{\partial t} = U_b h_r - \tilde{A} \hat{S} N^n$$

Approximate steady-state relationship

Cavity size is controlled by parameter
$$\Lambda = \frac{U_b}{N^n}$$
 i.e. depends on effective pressure **and** sliding speed

Drainage system stability

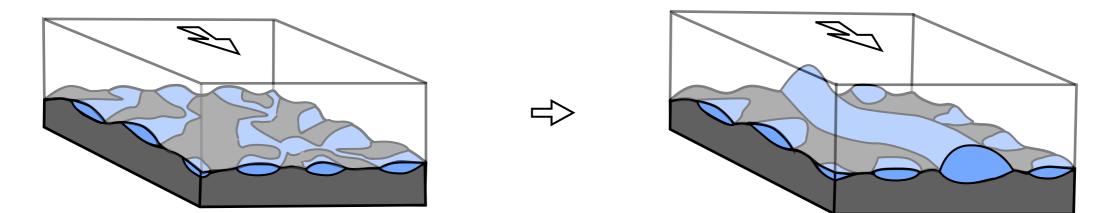
Energy is still dissipated by water flow



$$\frac{\partial S}{\partial t} = \frac{m}{\rho_i} + U_b h_r - \tilde{A} S N^n$$

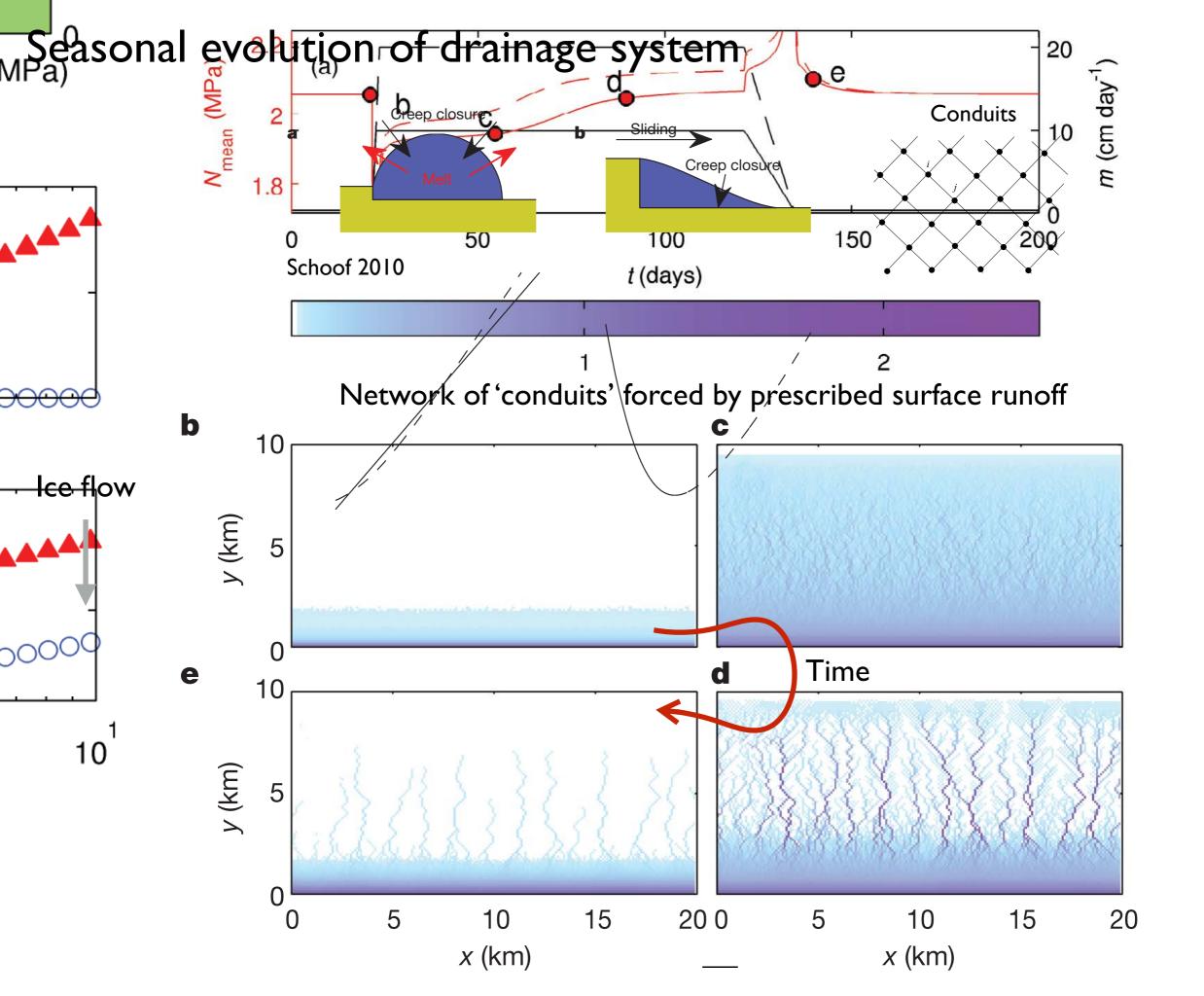
A linked cavity system can become unstable to produce channels

eg. if discharge becomes sufficiently large, or sliding speed sufficiently low

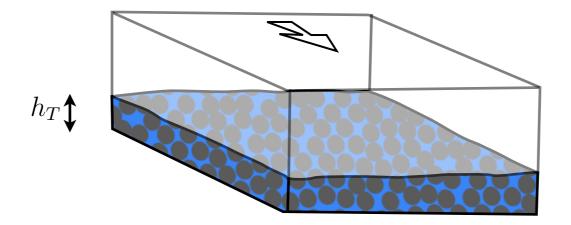


Conversely, a channel can become unstable to cavities

eg. if discharge low, or sliding speed sufficiently high



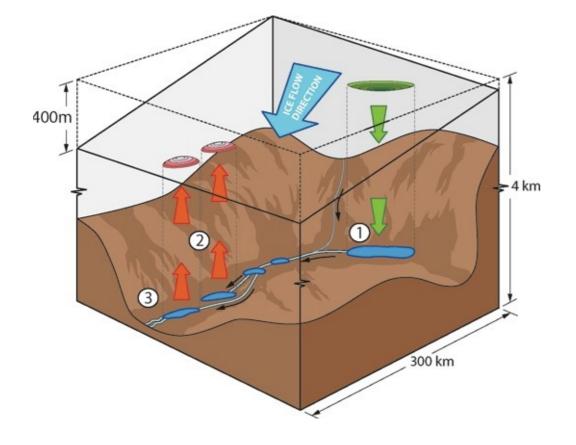
Drainage through sediments

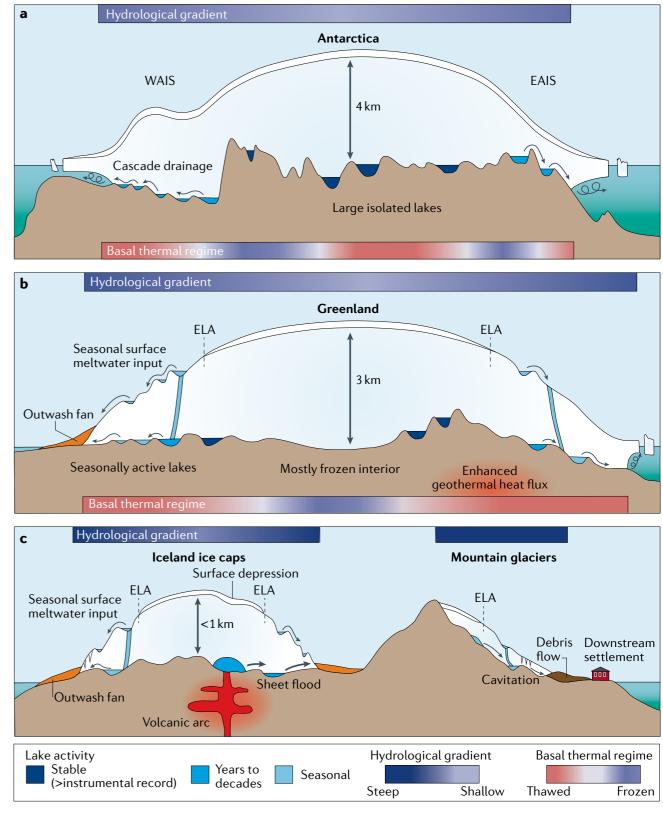


Subglacial lakes

Hundreds of lakes have been detected using radar and satellite observations.

At least some 'active' lakes seem to grow and drain periodically - jökulhlaup-like behaviour?





Livingstone et al 2022

Hydrology in ice-sheet models

See Flowers 2015 review.

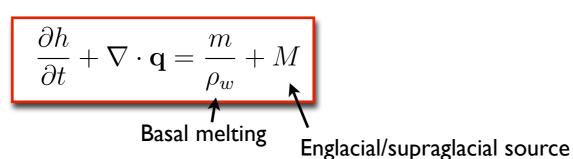
On a large scale, distributed systems are described as a 'sheet' flow

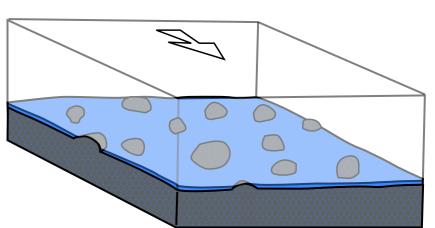
Average water depth h Average water pressure p_w

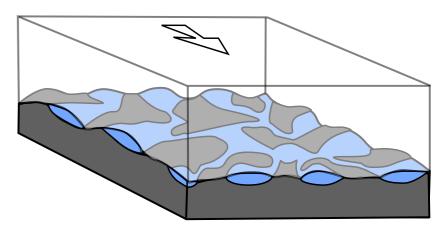
 $\mathbf{q} = -Kh^{\alpha}\nabla\phi$

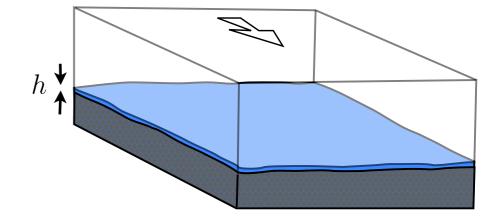
Average water flux

Mass conservation









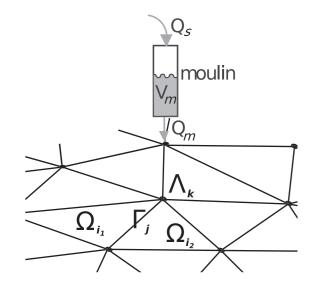
+ some additional ingredient to determine water pressure

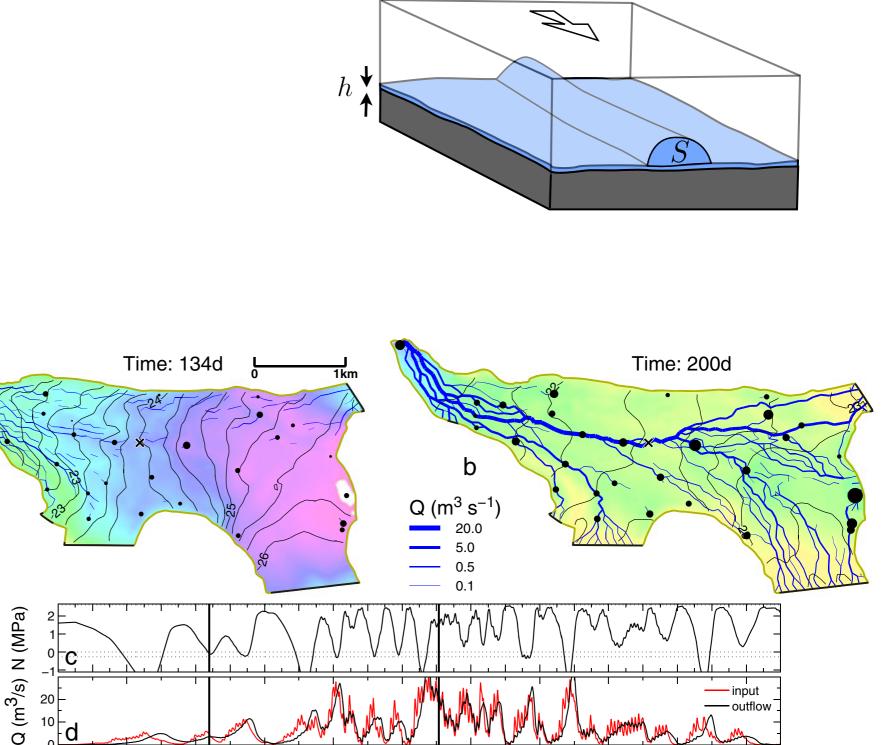
eg. water pressure = ice pressure ('routing model'), or an equation for the evolution of the sheet permeability

+ potential to couple to sliding law

Hydrology in ice-sheet models

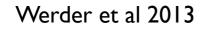
Some models couple a distributed 'sheet' with discrete conduits (eg. GLaDS)





input

outflow



N (MPa)

а

-1

90

time (d)

Summary

Uniform water film is **unstable**.

Röthlisberger channels form arterial networks.

Distributed flow in **linked cavities** or **sediments** is possible.

On a large scale, the drainage system can be modelled as a **water layer** with variable thickness and permeability.

Evolution of the drainage system has important consequences for ice dynamics (seasonal/diurnal velocity changes, surges, ice streams, grounding line dynamics)

M

