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Satellite-derived ice surface speeds
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GPS and borehole-derived ice speeds
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What controls how fast a glacier or ice sheet slides!?

What physical processes enable it to slide?

How do we describe sliding in an ice-sheet model?



Sliding law / Friction law

Stokes flow 0=-Vp+V - -7+ pg

V.ou=0
To calculate ice flow we need a basal boundary condition u , Th Uy
which relates basal shear stress 7, = |7;| and basal speed U, = |u| R , ---------- -

Ty — f(Ub, .. )

This is a parameterization of unresolved processes close to the bed. u

Historically thought of as sliding’ law U, = F(7,...)

—> May be multi-valued Shallow ice approximation 7, ~ —p;,gHVZ;

Modern view point 7, = f(U,,...)



Numerical ice-sheet models

Many numerical models use a friction law of the form | 7, = C|u,

The coefficient C = C(z,y) is usually
treated as a fitting parameter(s), chosen
to achieve a good fit with observations of
surface velocities.
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But the coefficient reflects properties of the bed that may vary with time.

=> We want to understand what physical processes govern the friction law.



Overview

Shear stress 7;, 4

uN

>
Sliding speed u,,

Hard-bed sliding Sliding with cavitation Soft-bed sliding

u, 1/n
7, = Cuy’ Tb=,uN< ) 7, = uN

U, + AN"



Hard-bed sliding



Hal"d-bed Slldlng Weertman 1957

Tbl\r:l> Uy

A film of water exists between ice and the underlying bedrock (a few microns thick).

Microscopically, free slip is allowed (i.e. 7 micro =0 ).

Macroscopic resistance comes from the roughness of the bedrock (7 = f(Us) ).

Flow over roughness occurs via regelation and viscous (plastic) deformation.



Viscous flow and regelation
The ice deforms viscously around obstacles in the bed

Dimensional analysis, using Glen’s flow law
! I a Uy ~ (O;f) s

V= —
< > ¢

X

Ice

‘roughness’

Regelation: pressure difference across obstacles causes a temperature difference

- results in upstream melting and downstream freezing

high p low p

low T water flow high T .
Balance of conductive / latent heat flow

kI' \ 7
Up =
" (Pz‘La) v

melting refreezing




Viscous flow and regelation

Combining these two mechanisms:

4

effective for LARGE bumps

effective for SMALL bumps

There is a ‘controlling obstacle size’ for which stress / speed cross over: a oc U, "1/ "+V

2/(n+1
=> Weertman sliding law | m=1v> RU/"Y | R

oL \ V(D
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SIiding with cavitation uiboutry 1968, Iken 1981, 1983
‘pi
Tb15> Uy

Cavitation occurs when pressure on downstream face of bumps reduces to critical level p.

For steady-state cavities, friction law becomes dependent on effective pressure N = p, — p.

; (Macroscopic) ice
= | n=f(U,N) i ( pic)
normal stress

lken suggested there should be a maximum shear stress

To A associated with cavities ‘drowning’ the bed roughness.

N\/




SI |d|ng Wlth cavitation Buddetal 1979, Fowler 1986, Schoof 2005, Gagliardini et al 2007, Helanow et al 2019

Fowler suggested cavities never really ‘drown’ bed - stress is just transferred to larger bumps

—— o/ N A

—=> ‘Generalized’ Weertman law / Budd law | 7, = CUy N* \
‘)

U,/N"
Schoof suggested an alternative with a maximum shear stress /N A
o= s======s
=> Regularised ‘Coulomb’ law | ~2 = L o N
5 N ~ "\ U, + \AN®
)



LabO I"atO I")’ eXPe I"iments Ilverson & Zoet 2015
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ield measurements
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Some field work shows a definite relationship between ice speed
and borehole water pressure eg Bindschadler 1983, lken & Bindschadler 1986

However, a consistent relationship is not always observed
eg. Sugiyama & Gudmundsson 2004, Harper et al 2007, Howat et al 2008, Fudge et al 2009
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Field measurements

Measurements from west Greenland suggest diurnal variations in ice velocity correlate with
water pressure in moulins, but are out of phase with pressure in boreholes.
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Soft-bed sliding



Laboratory experiments zoet s iverson 2020
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lce-sheet modelling and basal inversions









Inverse methods

Forward model eg SSA

Oh
a‘i’V(hu)—CL

40u 4 90v Qu 4 Dv
0=—pghVs —Clu/"tu+V-(aT) T=n| 5 o% 3 %,
Maps input parameters to outputs F: P —Y

Running the model gives y = F(p) which we can compare with observations yous

Inverse methods used to find input parameters that best fit observations

(or to find a ‘posterior’ probability distribution)

. . 1
Minimise a cost function J(p) = 5 /Q Y — Yors)® dS + R(p)




Inferred basal friction coefficient
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Note: the ‘correct’ friction law and value of coefficients depend on the resolution of your model
(the friction law is to describe unresolved processes!)



Summary

Shear stress 7, ,

UN

>
Sliding speed U,

Hard-bed sliding Sliding with cavitation Soft-bed sliding

u, I/n
7, = Cuf 7= N (%) 1, = uN



The importance of ‘form drag’

The sliding law needs to account for all sub-grid
scale ‘roughness’.

That often includes larger scales than those for
which cavitation / bed deformation are relevant.

Uy
l/lb + ﬂNn

T T

Small-scale cavitation  Larger-scale

1/n

/ bed deformation form drag
Shear
b
stress
J Increased
water pressure
UN

Sliding speed u;,



