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1.1. Introduction

Vertex algebras are a very complicated, very rich algebraic
structure coming from Conformal Field Theory in Physics, which
also occur in Moonshine and other areas of Representation Theory.
All interesting vertex algebras are infinite-dimensional.
I will explain a new construction of (graded) vertex algebra
structures on the homology H∗(M) of certain moduli stacks M. It
is extraordinarily general, and produces a huge number of
examples. There are versions in Algebraic Geometry, Differential
Geometry (using topological stacks), and Representation Theory.
There is a functor from (graded) vertex algebras V to (graded) Lie
algebras VLie. Roughly, the Lie algebra H∗(M)Lie is the homology
H∗(M

pl) of the associated ‘projective linear’ moduli stack
Mpl = M/[∗/Gm]. Thus, we have a parallel new construction of
infinite-dimensional (graded) Lie algebras H∗(M

pl).
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This is interesting for lots of reasons, for example:
• Vertex algebras are often rather rigid and have well behaved
representation theory, e.g. their characters may have modular
properties. Use this to understand homology of moduli spaces.
• Hope to explain work of Grojnowski, Nakajima, . . . on
Heisenberg algebra actions on homology of Hilbert schemes.
• Understand correct notion of ‘quantum vertex algebra’?
• Applications to enumerative invariant theories in Algebraic and
Differential Geometry, e.g. counting semistable coherent sheaves
on surfaces, D–T style invariants for Fano 3-folds and C–Y 4-folds,
Casson invariants, Donaldson and S–W invariants of 4-manifolds.
In the AG case, semistable moduli schemes Mst

α (τ) are open
substacks of the projective linear moduli stack Mpl. So a virtual
class for Mst

α (τ) (if stable=semistable in class α) gives an element
[Mst

α (τ)]virt in H∗(M
pl), which is now a Lie algebra. I believe there

is a universal wall-crossing formulae for [Mst
α (τ)]virt under change

of stability condition, in terms of the Lie bracket on H∗(M
pl).
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1.2. Vertex algebras (don’t try to understand this slide.)

Let R be a commutative ring. A vertex algebra over R is an
R-module V equipped with morphisms D(n) : V → V for
n = 0, 1, 2, . . . with D(0) = idV and vn : V → V for all v ∈ V and
n ∈ Z, with vn R-linear in v , and a distinguished element 1 ∈ V
called the identity or vacuum vector, satisfying:
(i) For all u, v ∈ V we have un(v) = 0 for n� 0.
(ii) If v ∈ V then 1−1(v) = v and 1n(v) = 0 for −1 6= n ∈ Z.
(iii) If v ∈ V then vn(1) = D(−n−1)(v) for n < 0 and vn(1) = 0 for
n > 0.
(iv) un(v) =

∑
k>0(−1)k+n+1D(k)(vn+k(u)) for all u, v ∈ V and

n ∈ Z, where the sum makes sense by (i), as it has only finitely
many nonzero terms.
(v) (ul(v))m(w)=

∑
n>0

(−1)n
( l
n

)(
ul−n(vm+n(w))−(−1)lvl+m−n(un(w))

)
for all u, v ,w ∈ V and l ,m ∈ Z, where the sum makes sense by (i).
We can also define graded vertex algebras and vertex superalgebras.

5 / 24 Dominic Joyce, Oxford University Vertex and Lie algebras on the homology of moduli spaces

Introduction
Vertex algebras on homology of moduli stacks

Lie algebras on homology of moduli stacks
Examples

Introduction
Vertex algebras

It is usual to encode the maps un : V → V for n ∈ Z in generating
function form as R-linear maps for each u ∈ V

Y (u, z) : V −→ V [[z , z−1]], Y (u, z) : v 7−→
∑

n∈Z un(v)z−n−1,

where z is a formal variable. The Y (u, z) are called fields, and
have a meaning in Physics. Parts (i)–(v) may be rewritten as
properties of the Y (u, z). One interesting property is this: for all
u, v ,w ∈ V there exist N � 0 depending on u, v such that

(y − z)NY (u, y)Y (v , z)w = (y − z)NY (v , z)Y (u, y)w . (1)

There may be a V -valued rational function R(y , z) with poles
when y = 0, z = 0 and y = z , such that the l.h.s. of (1) is a
formal Laurent series convergent to R(y , z) when 0 < |y | < |z |,
and the r.h.s. converges to R(y , z) when 0 < |z | < |y |.
Think of u ∗z v = Y (u, z)v as a multiplication on V depending on
a complex variable z , with poles at z = 0. Very roughly, V is a
commutative associative algebra under ∗z , with identity 1, except
the formal power series and poles make everything more complicated.
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Any commutative algebra (V ,1, ·) with derivation D is a vertex
algebra, with Y (u, z)v = (ezDu) · v , so no poles, where
un(v) =

(
1

(n+1)!D
n+1u

)
· v for n > −1, and un(v) = 0 for n < −1.

We call such V a commutative vertex algebra. All
non-commutative vertex algebras are infinite-dimensional, so even
the simplest nontrivial examples are large, complicated objects,
which are difficult to write down.
Let R be a field of characteristic zero. A vertex operator algebra
(VOA) over R is a vertex algebra V over R, with a distinguished
conformal element ω ∈ V and a central charge cV ∈ R, such that
writing Ln = ωn+1 : V∗ → V∗, the Ln define an action of the
Virasoro algebra on V∗, with central charge cV , and L−1 = D(1).
VOAs are important in Physics. We will give a geometric
construction of vertex algebras, but often they will not be VOAs.
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If V is a (graded/super) vertex algebra then V /〈D(k)(V ), k > 1〉
is a (graded/super) Lie algebra, with Lie bracket[
u+〈D(k)(V ), k>1〉, v+〈D(k)(V ), k>1〉

]
=u0(v)+〈D(k)(V ), k>1〉.

Vertex algebras were introduced in mathematics by Borcherds, who
noticed that certain infinite-dimensional Lie algebras important in
Representation Theory were constructed as V /〈D(k)(V ), k > 1〉.
For example, Kac–Moody Lie algebras are (Lie subalgebras of) the
Lie algebras associated to lattice vertex algebras.
Vertex algebras are used in Representation Theory, both of
infinite-dimensional Lie algebras, and in Moonshine – the Monster
may be characterized as the symmetry group of a certain
infinite-dimensional vertex algebra.
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We explain the Algebraic Geometry version first. Let K be a field,
and A a K-linear abelian category satisfying some conditions, e.g.
A could be the category mod-KQ of representations of a quiver
Q, or the category coh(X ) of coherent sheaves on a smooth
projective K-scheme X . Write M for the moduli stack of objects in
A, which should be an Artin K-stack, locally of finite type.
Suppose we have a homology theory H∗(−) of Artin K-stacks over
a commutative ring R (e.g. R = Q), satisfying some axioms.
Given some extra data on M, we will define a vertex algebra
structure on the homology H∗(M). We also define a graded Lie
bracket [ , ] on either a modification H∗(M)t=0 of H∗(M), or the
homology H∗(M

pl) of a modification Mpl = M/[∗/Gm] of M,
making H∗(M

pl) into a graded Lie (super)algebra (with a
nonstandard grading).
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The extra data we need

We need some extra data, a perfect complex Θ• on M×M
satisfying some assumptions; the formulae for for the vertex and
Lie algebra structures involve rankΘ• and Chern classes ci (Θ•).
We also need signs εα,β related to ‘orientation data’ for A.
For graded antisymmetry of [ , ] we need σ∗(Θ•) ∼= (Θ•)∨[2n] for
some n ∈ Z, where σ : M×M→M×M exchanges the factors,
as then ci (σ

∗(Θ•)) = (−1)ici (Θ•).
In our examples there is a natural perfect complex Ext• on M×M
with H i (Ext• |([E ],[F ])) ∼= ExtiA(E ,F ) for E ,F ∈ A and i ∈ Z. If A
is a 2n-Calabi–Yau category then σ∗((Ext•)∨) ∼= Ext•[2n], and we
put Θ• = (Ext•)∨. Otherwise we put Θ• = (Ext•)∨+σ∗(Ext•)[2n].
Thus examples split into ‘even Calabi–Yau’ and ‘general’ vertex
algebras.
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More detail on the basic set-up

Let K (A) be a quotient group of the Grothendieck group K0(A) of
A such that M =

∐
α∈K(A)Mα, with Mα the moduli stack of

objects E ∈ A in class α in K (A), an open and closed substack in M.
We suppose we are given a biadditive map χ : K (A)× K (A)→ Z
called the Euler form, with χ(α, β) = χ(β, α). The restriction
Θ•α,β = Θ•|Mα×Mβ

should have rankΘ•α,β = χ(α, β).
There should be an Artin stack morphism Φ : M×M→M
mapping Φ(K) : ([E ], [F ]) 7→ [E ⊕ F ] on K-points, from direct sum
in A. It is associative and commutative. In perfect complexes on
Mα ×Mβ ×Mγ for α, β, γ ∈ K (A) we should have

(Φα,β × idMγ )∗(Θ•α+β,γ) ∼= Π∗Mα×Mγ
(Θ•α,γ)⊕ Π∗Mβ×Mγ

(Θ•β,γ),

needed for the graded Jacobi identity for [ , ], and corresponding to

ExtiA(E ⊕ F ,G )∗ ∼= ExtiA(E ,G )∗ ⊕ ExtiA(F ,G )∗.
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The stack [∗/Gm] and morphism Ψ

Write Gm = K \ {0} as an algebraic K-group under multiplication,
and [∗/Gm] for the quotient stack, where ∗ = SpecK is the point.
If S is an Artin K-stack and s ∈ S(K) a K-point there is an
isotropy group IsoS(s), an algebraic K-group. We have
IsoM([E ]) ∼= Aut(E ) for E ∈ A. There is a natural morphism
Gm → Aut(E ) mapping λ 7→ λ · idE ∈ Aut(E ) ⊂ HomA(E ,E ).
There should be an Artin stack morphism Ψ : [∗/Gm]×M→M
mapping (∗, [E ]) 7→ [E ] on K-points, and acting on isotropy groups by

Ψ∗ : Iso[∗/Gm]×M(∗, [E ]) ∼= Gm ×Aut(E ) −→ IsoM([E ]) ∼= Aut(E ),

Ψ∗ : (λ, µ) 7−→ (λ · idE ) ◦ µ.
Here [∗/Gm] is a group stack, and Ψ is an action of [∗/Gm] on
M, which is free except over [0] ∈M. This Ψ encodes the natural
morphisms Gm → IsoM([E ]) for all [E ] ∈M(K).
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We require a compatibility between Ψ and Θ•, roughly that

(Ψ× idM)∗(Θ•) ∼= Π∗[∗/Gm]
(L)⊗ Π∗M×M(Θ•)

where L is the line bundle on [∗/Gm] associated to the obvious
representation of Gm on K. This corresponds to λ idE ∈ Aut(E )
acting by multiplication by λ ∈ Gm on Exti (E ,F )∗.

We should be given εα,β = ±1 for α, β ∈ K (A) satisfying

εα,β · εβ,α = (−1)χ(α,β)+χ(α,α)χ(β,β),

εα,β · εα+β,γ = εα,β+γ · εβ,γ .
They are needed to correct signs in defining [ , ]. Such εα,β always
exist. They are related to ‘orientation data’ as follows: if we have
chosen ‘orientations’ for Mα,Mβ,Mα+β, then εα,β should be the
natural sign comparing the orientations at [E ] ∈Mα(K),
[F ] ∈Mβ(K) and [E ⊕ F ] = Φ([E ], [F ]) ∈Mα+β(K). (See work
by Cao–Gross–Joyce–Tanaka–Upmeier on orienting Mα, in
arXiv:1811.01096, arXiv:1811.02405, arXiv:1811.09658.)
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The homology of [∗/Gm], and its action on H∗(M)

Let H∗(−) be a homology theory of Artin K-stacks over a
commutative ring R, satisfying some natural axioms. Then

Hi ([∗/Gm]) ∼=

{
R, i = 0, 2, 4, 6, . . . ,

0 otherwise.

(This holds as the ‘classifying space’ of [∗/Gm] is KP∞.) So we
may write H∗([∗/Gm]) ∼= R[t], for t a formal variable of degree 2,
such that tn is a basis element for H2n([∗/Gm]).
Let Ω : [∗/Gm]× [∗/Gm]→ [∗/Gm] be the stack morphism
induced by the group morphism ω : Gm ×Gm → Gm mapping
ω : (λ, µ) 7→ λµ. Define ? : H∗([∗/Gm])× H∗([∗/Gm])→ H∗([∗/Gm])
by ζ ? η = H∗(Ω)(ζ � η). Then ? makes H∗([∗/Gm]) ∼= R[t] into a
commutative R-algebra, with tm ? tn =

(m+n
m

)
tm+n.

Define � : H∗([∗/Gm])× H∗(M)→ H∗(M) by ζ � θ = H∗(Ψ)(ζ � θ).
Then � makes H∗(M) into a module over H∗([∗/Gm]) ∼= R[t].
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Bilinear operations un(v) on H∗(M) and vertex algebras

Let α, β ∈ K (A) and a, b > 0, n ∈ Z. Define an R-bilinear operation
Ha(Mα)× Hb(Mβ) −→ Ha+b−2n−2χ(α,β)−2(Mα+β)

by, for all u ∈ Ha(Mα) and v ∈ Hb(Mβ),

un(v) =
∑

i>0: 2i6a+b,
i>n+χ(α,β)+1

εα,β(−1)aχ(β,β) ·
Ha+b−2n−2χ(α,β)−2(Φα,β ◦ (Ψα × idMβ

))(
t i−n−χ(α,β)−1 �

[
(u � v) ∩ ci ([Θ•α,β])

])
,

(2)

where tk ∈ H2k([∗/Gm]) as above. Define D(k)(u) = tk � u, and
let the vacuum vector 1 be 1 ∈ H0(M0).

Theorem

All this makes H∗(M) =
⊕

α∈K(A)H∗(Mα) into a graded vertex
superalgebra over R, with the shifted grading

H̃i (Mα) = Hi−χ(α,α)(Mα).
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The proof uses properties of Chern classes, and combinatorial
identities.
When R is a Q-algebra, for u ∈ Ha(Mα) and v ∈ Hb(Mβ), we can
rewrite (2) using Chern characters chj(−) in the suggestive form

Y (u, z)v =
∑

n∈Z un(v)z−n−1

= εα,β(−1)aχ(β,β)zχ(α,β) · H∗
(
Φα,β ◦ (Ψα × idMβ

)
){(∑

i>0
z i t i
)
�
[
(u�v)∩exp

(∑
j>1

(−1)j−1(j−1)!z−j chj([Θ•α,β])
)]}

.

Question

What is the interpretation of these vertex algebras in Physics?
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3. Lie algebras on homology of moduli stacks

There are many different versions of our Lie algebra construction.
Here is one of the simplest, which is well known in the theory of
vertex algebras. Write It = 〈t, t2, t3, . . .〉R for the ideal in
H∗([∗/Gm]) = R[t] spanned over R by all positive powers of t. For
each α ∈ K (A), define

H∗(Mα)t=0 = H∗(Mα)/(It � H∗(Mα)),

using the representation � of (R[t], ?) on H∗(Mα). Now define

[ , ]t=0 : Ha(Mα)t=0 × Hb(Mβ)t=0 −→ Ha+b−2χ(α,β)−2(Mα+β)t=0

by
[
u+(It �H∗(Mα)), v+(It �H∗(Mβ))

]t=0
=u0(v)+(It �H∗(Mα+β)).
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Define an alternative grading on H∗(Mα)t=0 by

Ȟi (Mα)t=0 = Hi+2−χ(α,α)(Mα)t=0.

Then using χ(α, β) = χ(β, α) we find that [ , ]t=0 maps

[ , ]t=0 : Ȟã(Mα)t=0 × Ȟb̃(Mβ)t=0 −→ Ȟã+b̃(Mα+β)t=0.

Using identities on the un(v), we find that if u ∈ Ȟã(Mα)t=0,
v ∈ Ȟb̃(Mβ)t=0 and w ∈ Ȟc̃(Mγ)t=0 then

[v , u]t=0 = (−1)ãb̃+1[u, v ]t=0,

(−1)c̃ ã[[u, v ]t=0,w ]t=0 + (−1)ãb̃[[v ,w ]t=0, u]t=0

+(−1)b̃c̃ [[w , u]t=0, v ]t=0 = 0.

That is, [ , ]t=0 is a graded Lie bracket on
Ȟ∗(M)t=0 =

⊕
α∈K(A) Ȟ∗(Mα)t=0, as we want.

18 / 24 Dominic Joyce, Oxford University Vertex and Lie algebras on the homology of moduli spaces



Introduction
Vertex algebras on homology of moduli stacks

Lie algebras on homology of moduli stacks
Examples

The ‘projective linear’ Lie algebra

A disadvantage of the ‘t = 0’ version is that H∗(M)t=0 is not
presented as the homology of a nice space. The ‘projective linear’
version corrects this. Recall that [∗/Gm] is a group stack, and
Ψ : [∗/Gm]×M→M is an action of [∗/Gm] on M, which is free
on M′ = M \ {[0]}. We can form a quotient Mpl = M′/[∗/Gm]
called the ‘projective linear moduli stack’, with a morphism
Πpl : M′ →Mpl which is a principal [∗/Gm]-bundle.
Then K-points of Mpl are isomorphism classes [E ] of nonzero
E ∈ A, and isotropy groups are

IsoMpl([E ]) ∼= Aut(E )/(Gm · idE ).

That is, we make Mpl from M′ by quotienting out Gm from each
isotropy group, a process called ‘rigidification’. For moduli of
stable coherent sheaves, the stable moduli scheme is the
rigidification of the stable moduli stack.
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Under some assumptions (including R a Q-algebra) we can show
that H∗(Πpl) : H∗(M

′)→ H∗(M
pl) induces an isomorphism

H∗(M
′)t=0 ∼= H∗(M

pl). Thus, the Lie bracket [ , ]t=0 on
H∗(M

′)t=0 induces a Lie bracket [ , ]pl on H∗(M
pl). Actually, even

without an isomorphism H∗(M
′)t=0 ∼= H∗(M

pl) we can define a
graded Lie bracket [ , ]pl on H∗(M

pl) in a different way.
Here [ , ]pl is graded for the alternative grading

Ȟi (M
pl
α ) = Hi+2−χ(α,α)(M

pl
α ).

We should interpret 2− χ(α, α) as the (homological) virtual
dimension of Mpl

α , where the 2 is the (real) dimension of Gm,
which we quotiented from the isotropy groups to make Mpl.
There is also a triangulated category version of the construction,
using higher stacks, which we can apply to moduli of objects in
categories such as Db coh(X ) for X a smooth projective K-scheme.
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4. Examples

Let Q = (Q0,Q1, h, t) be a quiver and K = C, and apply our
constructions to the abelian category A = mod-CQ and the
triangulated category T = Db mod-CQ. Write
K (A) = K (T ) = ZQ0 for the lattice of dimension vectors. Define
χ : K (A)× K (A)→ Z by χ(d , e) =

∑
v ,w∈Q0

avwd (v)e(w),

where avw = 2δvw − nvw − nwv , for nvw the number of edges
v• → w•

in Q, so that A = (avw )v ,w∈Q0 is the generalized Cartan matrix of
Q. Write M and M for the (higher) moduli stacks of objects in A
and T . Then we can work everything out very explicitly. We find:
• The vertex algebra H∗(M) is the lattice vertex algebra of (ZQ0 , χ).
• The full Lie algebra Ȟ∗(M

pl) is rather large, but (for Q with no
vertex loops) Ȟ0(Mpl) contains the derived Kac–Moody algebra g′(A)
with Cartan matrix A, with Ȟ0(Mpl) = g′(A) if A is positive definite.
Similarly, Ȟ0(Mpl) contains/equals the positive part n+ of g′(A).
• If Q = • has one vertex and no edges then Ȟ0(Mpl) ∼= sl(2,C).
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Let X be a smooth projective C-scheme, and apply our theory to
the abelian category A = coh(X ), with moduli stack M, and the
triangulated category T = Db coh(X ), with moduli stack M. We
either take X to be 2n-Calabi–Yau and set Θ• = (Ext•)∨, or we set
Θ• = (Ext•)∨ + σ∗(Ext•) for any X . Note that if X is
(2n + 1)-Calabi–Yau this gives ci (Θ•) = 0, so our vertex algebras
and Lie algebras are abelian, and boring.
I haven’t worked out the details yet, but here are some highlights:
• For some nice classes of X (e.g. curves, some surfaces) we can
compute H∗(M) fairly explicitly as a vertex algebra. It is the tensor
product of a lattice-type vertex algebra defined using K 0(X ) or
Heven(X ), and a fermion vertex algebra defined using K 1(X ) or
Hodd(X ). For general X we can produce vertex algebra morphisms
from H∗(M),H∗(M) to an explicit vertex algebra of this type.
• The Heisenberg algebra acting on homology of Hilbert schemes
in Grojnowski–Nakajima should appear as a Lie subalgebra of
Ȟ∗(M

pl
dim 0) for dimension 0 sheaves and complexes on X .
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• When X is a Calabi–Yau 4-fold, one can define
Donaldson–Thomas type invariants ‘counting’ moduli spaces
Mss(α) of (semi)stable coherent sheaves on X (Borisov–Joyce,
Cao–Leung). We can think of these (i.e. the virtual classes of the
moduli spaces) as taking values in H∗(M

pl).
I have a conjecture that the wall-crossing formula for these DT4
invariants under change of stability condition may be written using
the Lie bracket [ , ]pl on H∗(M

pl), using the same universal
wall-crossing formula in a Lie algebra that appears in my previous
work on motivic and DT3 invariants.
The way I discovered the vertex algebra structure on H∗(M) was
while trying to write down this Lie bracket [ , ]pl, I accidentally
reinvented the Borcherds definition of vertex algebra, without
knowing what these were at the time.
I expect the same wall-crossing formula will also work for Mochizuki
invariants counting semistable coherent sheaves on surfaces, and
other classes of enumerative invariants with wall-crossing.
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The Differential Geometric version

Let X be a compact manifold with a real elliptic complex E •, e.g. for
Donaldson theory on an oriented Riemannian 4-manifold (X , g) take

E • =
(
0 −→ Γ(Λ0T ∗X )

d−→ Γ(Λ1T ∗X )
d+−→ Γ(Λ2

+T
∗X ) −→ 0

)
.

Define a topological stack M to be either:

(a) The moduli stack of all connections ∇P on all U(n)-bundles
P → X , all n > 0, satisfying a curvature condition F∇+ = 0.

(b) Moduli stack of U(n)-connections, with no curvature condition.
(c) The topological space MapC0(X ,BU × Z).

After choosing an ‘orientation’ on M (what you need to orient
instanton moduli spaces, corresponding to εα,β before) we can
define a vertex algebra structure on H∗(M), and a Lie algebra
structure on Mpl. Here if MP is a quotient stack [AP/GP ] then

Mpl
P = [AP/GplP ], where U(1) ⊂ Z (GP) acts trivially on AP with

GplP = GP/U(1), and H∗(MP) ∼= HGP∗ (AP), H∗(M
pl
P ) ∼= HG

pl
P∗ (AP)

using equivariant homology.
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