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1. Outline of the conjectural picture

An enumerative invariant theory in Algebraic or Differential
Geometry is the study of invariants Iα(τ) which ‘count’
τ -semistable objects E with fixed topological invariants JEK = α in
some geometric problem, usually by means of a virtual class
[Mss

α (τ)]virt for the moduli space Mss
α (τ) of τ -semistable objects

in some homology theory, with Iα(τ) =
∫
[Mss

α (τ)]virt
µα for some

natural cohomology class µα. We call the theory C-linear if the
objects E live in a C-linear additive category A. For example:

Mochizuki-style invariants counting coherent sheaves on
surfaces. (Think of as algebraic Donaldson invariants.)

Donaldson–Thomas invariants of Calabi–Yau or Fano 3-folds.

Donaldson–Thomas type invariants of Calabi–Yau 4-folds.

U(m) Donaldson invariants of 4-manifolds.

Invariants counting representations of quivers Q.
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I conjecture that many such theories share a common universal
structure. Here is an outline of this structure:

(a) We form two moduli stacks M,Mpl of all objects E in A,
where M is the usual moduli stack, and Mpl the ‘projective
linear’ moduli stack of objects E modulo ‘projective
isomorphisms’, i.e. quotient by λ idE for λ ∈ Gm or U(1).

(b) We are given a quotient K0(A)� K (A), where K (A) is the
lattice of topological invariants JEK of E (e.g. fixed Chern
classes). We split M =

∐
α∈K(A)Mα, Mpl =

∐
α∈K(A)M

pl
α .

(c) There is a symmetric biadditive Euler form
χ : K (A)× K (A)→ Z.

(d) We can form the homology H∗(M),H∗(Mpl) over Q, with
H∗(M) =

⊕
α∈K(A)H∗(Mα), H∗(Mpl) =

⊕
α∈K(A)H∗(M

pl
α ).

Define shifted versions Ĥ∗(M), Ȟ∗(Mpl) by

Ĥn(Mα) = Hn−χ(α,α)(Mα), Ȟn(Mpl
α ) = Hn+2−χ(α,α)(Mpl

α ).

Then previous work by me (later) makes Ĥ∗(M) into a graded
vertex algebra, and Ȟ∗(Mpl) into a graded Lie algebra.
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(e) There is a notion of stability condition τ on A. When
A = coh(X ), this can be Gieseker stability for a polarization
on X . For Donaldson theory for a compact oriented
4-manifold X with b2+(X ) = 1, the stability condition is the
splitting H2

dR(X ,R) = H2
+(X )⊕H2

−(X ) induced by a metric g .
For each α ∈ K (A) we can form moduli spaces
Mst

α (τ) ⊆Mss
α (τ) of τ -(semi)stable objects in class α. Here

Mst
α (τ) is a substack of Mpl

α , and has the structure of a
‘virtual oriented manifold’ (in Algebraic Geometry, it may be a
C-scheme with perfect obstruction theory; in Differential
Geometry, under genericness it may be an oriented manifold).
Also Mss

α (τ) is compact (proper). Thus, if Mst
α (τ) =Mss

α (τ)
we have a virtual class [Mss

α (τ)]virt, which we regard as an
element of H∗(Mpl

α ). The virtual dimension is
vdimR[Mss

α (τ)]virt = 2− χ(α, α), so [Mss
α (τ)]virt lies in

Ȟ0(Mpl
α ) ⊂ Ȟ0(Mpl), which is a Lie algebra by (b).

We can prove all of (a)–(e) already in the cases we care about.

4 / 26 Dominic Joyce, Oxford University Universal structures in enumerative invariant theories



Outline of the conjectural picture
Vertex algebras and Lie algebras

Enumerative invariants

Here is the conjectural part (mostly proved now) of the picture:

(f) For many theories, there is a problem defining the invariants
[Mss

α (τ)]virt when Mst
α (τ) 6=Mss

α (τ), i.e. when the moduli
spaces Mss

α (τ) contain strictly τ -semistable points (in gauge
theory, these are reducible connections).
We conjecture there is a systematic way to define [Mss

α (τ)]virt
in homology over Q (not Z) in these cases. (In gauge theory,
this requires a condition analogous to b2+ > 1.)

(g) If τ, τ̃ are stability conditions and α ∈ K (A), we expect that

[Mss
α (τ̃)]virt =

∑
α1+···+αn=α

Ũ(α1, . . . , αn; τ, τ̃) ·
[[
. . .
[
[Mss

α1
(τ)]virt,

[Mss
α2

(τ)]virt
]
, . . .

]
, [Mss

αn
(τ)]virt

]
, (1)

where Ũ(−) are combinatorial coefficients defined in my
previous work on wall-crossing formulae for motivic invariants,
and [ , ] is the Lie bracket on Ȟ0(Mpl) from (b).

(h) We can often give an explicit, inductive definition of the
[Mss

α (τ)]virt using (1) and the method of pair invariants.
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In the Algebraic Geometry case, the theory above is appropriate in
cases when the natural obstruction theories on moduli spaces
Mss

α (τ) =Mst
α (τ) are perfect in [−1, 0]. There are two situations

when this is not true/not what we want, so we modify the picture:

(i) When A = coh(X ) or Db coh(X ) for X a Calabi–Yau 3-fold,
the natural obstruction theory on Mss

α (τ) has terms in degree
−2 from Ext3(E ,E ). We can remove these by taking
trace-free Ext to define Donaldson–Thomas invariants,
changing the real virtual dimension by 2.
To include these in the theory, for A odd Calabi–Yau we can
modify (d) above to make Ĥ∗(M) into a graded vertex Lie
algebra (with grading changed by 2) and Ȟ∗(Mpl) into a
graded Lie algebra (with grading changed by 2), as before.
So we can include Donaldson–Thomas theory in our picture.
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(j) Let X be a projective surface with h0,2(X ) > 0, i.e. b2+ > 1,
and consider moduli spaces Mss

α (τ) =Mst
α (τ) of Gieseker

stable sheaves in coh(X ) for rankα > 0. Then the natural
obstruction theory on Mss

α (τ) has a factor H0,2(X )∗ in degree
−1 which forces [Mss

α (τ)]virt = 0. So our theory works, but is
boring, as the invariants are zero.
By deleting H0,2(X )∗ from the obstruction theory, we can
define reduced invariants [Mss

α (τ)]red, which may be nonzero.
I have a general version of (f)–(h) above for reduced
invariants, in which a trivial bundle of rank oα is deleted from
obstruction theories on Mss

α (τ), so that
[Mss

α (τ)]red ∈ Ȟ2oα(Mpl
α ). The wall-crossing formula (1) for

[Mss
α (τ̃)]red is modified by only summing over α1, . . . , αn with

α = α1 + · · ·+ αn and oα = oα1 + · · ·+ oαn . This theory can
handle algebraic Donaldson invariants when b2+ > 1, and
categories combining Donaldson and Seiberg–Witten
invariants (L-Bradlow pairs).
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In Gross–Joyce–Tanaka 2005.05637 we prove our conjectures when
A = mod-CQ is the category of representations of a quiver Q
without oriented cycles, and stability conditions τ are slope stability.

In work in progress, I have nearly finished proving the conjectures
for a wide range of situations in Algebraic Geometry in which
virtual classes are defined using Behrend–Fantechi perfect
obstruction theories. This includes invariants counting coherent
sheaves on curves, surfaces and Fano 3-folds.

I hope that my proof will also extend to Calabi–Yau 4-fold virtual
classes (Borisov–Joyce/Oh–Thomas) without a huge amount of work.
This would give a theory of Donaldson–Thomas type invariants for
Calabi–Yau 4-folds.

It is a complete mystery to me why vertex algebras appear in this
problem. I reinvented the Borcherds definition of vertex algebra
when I was trying to write down the Lie bracket [ , ] on H∗(Mpl)
in the wall-crossing formula (1) – at the time I didn’t know what a
vertex algebra was. Maybe there is a Physics explanation?
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Remarks on counting strictly τ -semistables

When Mst
α (τ) =Mss

α (τ), the virtual classes [Mss
α (τ)]virt are

defined using a geometric structure on Mss
α (τ) (e.g. smooth

C-schemes, or C-schemes with perfect obstruction theories, or
−2-shifted symplectic derived schemes) by a known construction.
When Mst

α (τ) 6=Mss
α (τ), we currently have no definition of

[Mss
α (τ)]virt in terms of a geometric structure on Mss

α (τ).
For quivers, our proof works by showing that there are unique
[Mss

α (τ)]virt when Mst
α (τ) 6=Mss

α (τ), extending the given ones when
Mst

α (τ) =Mss
α (τ), which also satisfy the wall-crossing formula (1).

So the definition involves all stability conditions, not just one.
For motivic invariants, e.g. Joyce–Song Donaldson–Thomas
invariants of Calabi–Yau 3-folds, there is a theory on how to count
strictly τ -semistables (Joyce 2003-2008). It is a complicated mess,
and uses rational weights. It is not directly applicable here, but
motivates (1).
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2. Vertex and Lie algebras on homology of moduli stacks
2.1. Vertex algebras (don’t try to understand this slide.)

Let R be a commutative ring. A vertex algebra over R is an
R-module V equipped with morphisms D(n) : V → V for
n = 0, 1, 2, . . . with D(0) = idV and vn : V → V for all v ∈ V and
n ∈ Z, with vn R-linear in v , and a distinguished element 1 ∈ V
called the identity or vacuum vector, satisfying:
(i) For all u, v ∈ V we have un(v) = 0 for n� 0.
(ii) If v ∈ V then 1−1(v) = v and 1n(v) = 0 for −1 6= n ∈ Z.
(iii) If v ∈V then vn(1)=D(−n−1)(v) for n<0 and vn(1)=0 for n>0.
(iv) un(v) =

∑
k>0(−1)k+n+1D(k)(vn+k(u)) for all u, v ∈ V and

n ∈ Z, where the sum makes sense by (i), as it has only finitely
many nonzero terms.
(v) (ul(v))m(w)=

∑
n>0

(−1)n
( l
n

)(
ul−n(vm+n(w))−(−1)lvl+m−n(un(w))

)
for all u, v ,w ∈ V and l ,m ∈ Z, where the sum makes sense by (i).
We can also define graded vertex algebras and vertex superalgebras.
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It is usual to encode the maps un : V → V for n ∈ Z in generating
function form as R-linear maps for each u ∈ V

Y (u, z) : V −→ V [[z , z−1]], Y (u, z) : v 7−→
∑

n∈Z un(v)z−n−1,

where z is a formal variable. The Y (u, z) are called fields, and
have a meaning in Physics. Parts (i)–(v) may be rewritten as
properties of the Y (u, z). One interesting property is this: for all
u, v ,w ∈ V there exist N � 0 depending on u, v such that

(y − z)NY (u, y)Y (v , z)w = (y − z)NY (v , z)Y (u, y)w . (2)

There may be a V -valued rational function R(y , z) with poles
when y = 0, z = 0 and y = z , such that the l.h.s. of (2) is a
formal Laurent series convergent to R(y , z) when 0 < |y | < |z |,
and the r.h.s. converges to R(y , z) when 0 < |z | < |y |.
Think of u ∗z v = Y (u, z)v as a multiplication on V depending on
a complex variable z , with poles at z = 0. Very roughly, V is a
commutative associative algebra under ∗z , with identity 1, except
the formal power series and poles make everything more complicated.
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Any commutative algebra (V ,1, ·) with derivation D is a vertex
algebra, with Y (u, z)v = (ezDu) · v , so no poles, where
un(v) =

(
1

(n+1)!D
n+1u

)
· v for n > −1, and un(v) = 0 for n < −1.

We call such V a commutative vertex algebra. All
non-commutative vertex algebras are infinite-dimensional, so even
the simplest nontrivial examples are large, complicated objects,
which are difficult to write down.
Let R be a field of characteristic zero. A vertex operator algebra
(VOA) over R is a vertex algebra V over R, with a distinguished
conformal element ω ∈ V and a central charge cV ∈ R, such that
writing Ln = ωn+1 : V∗ → V∗, the Ln define an action of the
Virasoro algebra on V∗, with central charge cV , and L−1 = D(1).
VOAs are important in Physics. We will give a geometric
construction of vertex algebras, but often they will not be VOAs.
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If V is a (graded/super) vertex algebra then V /〈D(k)(V ), k > 1〉
is a (graded/super) Lie algebra, with Lie bracket[
u+〈D(k)(V ), k>1〉, v+〈D(k)(V ), k>1〉

]
=u0(v)+〈D(k)(V ), k>1〉.

Vertex algebras were introduced in mathematics by Borcherds, who
noticed that certain infinite-dimensional Lie algebras important in
Representation Theory were constructed as V /〈D(k)(V ), k > 1〉.
For example, Kac–Moody Lie algebras are (Lie subalgebras of) the
Lie algebras associated to lattice vertex algebras.
Vertex algebras are used in Representation Theory, both of
infinite-dimensional Lie algebras, and in Moonshine – the Monster
may be characterized as the symmetry group of a certain
infinite-dimensional vertex algebra.
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2.2. Vertex and Lie algebras on homology of moduli stacks

We will explain the Algebraic Geometry version of our theory. Let
A be a C-linear abelian or triangulated category from Algebraic
Geometry or Representation Theory, e.g. A = coh(X ) or Db coh(X )
for X a smooth projective C-scheme, or A = mod-CQ or Db mod-CQ.
Write M for the moduli stack of objects in A, which is an Artin
C-stack in the abelian case, and a higher C-stack in the
triangulated case. There is a morphism Φ :M×M→M acting
by ([E ], [F ])→ [E ⊕ F ] on C-points.
Now Gm acts on objects E in A with λ ∈ Gm acting as
λ idE : E → E . This induces an action Ψ : [∗/Gm]×M→M of
the group stack [∗/Gm] on M. We write Mpl =M/[∗/Gm] for
the quotient, called the ‘projective linear’ moduli stack. There is a
morphism M→Mpl which is a [∗/Gm]-fibration on M\ {[0]}.
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We need some extra data:

A quotient K0(A)� K (A) giving splittings
M =

∐
α∈K(A)Mα, Mpl =

∐
α∈K(A)M

pl
α .

A symmetric biadditive Euler form χ : K (A)× K (A)→ Z.

A perfect complex Θ• on M×M satisfying some
assumptions, including rankΘ•|Mα×Mβ

= χ(α, β).
If A is a 4-Calabi–Yau category, and we will use Borisov–Joyce
virtual classes, we take Θ• = (Ext•)∨, where Ext• →M×M
is the Ext complex. Otherwise we take Θ• = (Ext•)∨ ⊕
σ∗(Ext•), where σ :M×M→M×M swaps the factors.

Signs εα,β ∈ {±1} for α, β ∈ K (A) with εα,β · εα+β,γ =
εα,β+γ · εβ,γ and εα,β · εβ,α = (−1)χ(α,β)+χ(α,α)χ(β,β).
(These compare orientations on Mα,Mβ,Mα+β.)

Then we can make the homology H∗(M), with grading shifted to
Ĥ∗(M) as above, into a graded vertex algebra.
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Writing H∗([∗/Gm]) = Q[t] with deg t = 2, the state-field
correspondence Y (z) is given by, for u ∈ Ha(Mα), v ∈ Hb(Mβ)

Y (u, z)v = εα,β(−1)aχ(β,β)zχ(α,β) · H∗
(
Φ ◦ (Ψ× id)

)
(2){(∑

i>0
z i t i
)
�
[
(u�v)∩exp

(∑
j>1

(−1)j−1(j−1)!z−j chj([Θ•])
)]}

.

The identity 1 is 1 ∈ H0(M0). Define ezD : Ȟ∗(M)→ Ȟ∗(M)[[z ]]
by Y (v , z)1 = ezDv . Then (Ȟ∗(M),1, ezD ,Y ) is a graded vertex
algebra, so Ȟ∗+2(M)/D(Ȟ∗(M)) is a graded Lie algebra. In the
abelian category case at least, there is a canonical isomorphism
Ȟ∗(Mpl) ∼= Ȟ∗+2(M)/D(Ȟ∗(M)). This makes Ȟ∗(Mpl) into a
graded Lie algebra, and Ȟ0(Mpl) into a Lie algebra.
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Remarks

• One can often write down Ȟ∗(M) and Ȟ∗(Mpl) with their
algebraic structures explicitly. The answer is usually simpler in the
derived category case. For example, my student Jacob Gross
showed that if a smooth projective C-scheme X is a curve, surface,
or toric variety, and M is the moduli stack of Db coh(X ), then

Ĥ∗(M,Q) ∼= Q[K 0
sst(X )]⊗Q Sym∗

(
K 0(X an)⊗Z t2Q[t2]

)
⊗Q

∧
∗(K 1(X an)⊗Z tQ[t2]

)
, (3)

with a super-lattice vertex algebra structure. Thus we can use this
for explicit computations in examples, as well as for abstract theory.
• It helps to study [Mss

α (τ)]virt in coh(X ) using H∗(M), H∗(Mpl)
for Db coh(X ), so we can use the presentation (3).
• Although Lie algebras are much simpler than vertex algebras, it is
difficult to write down the Lie bracket on Ȟ∗(Mpl) explicitly: the
best way seems to be via the vertex algebra structure on Ĥ∗(M).
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3. Enumerative invariants
3.1. Virtual classes of moduli spaces

The vertex and Lie algebras Ĥ∗(M), Ȟ∗(Mpl) above work for M
the moduli stack of objects in coh(X ) or Db coh(X ) for X a smooth
projective C-scheme of any dimension. However, defining virtual
classes [Mss

α (τ)]virt when Mst
α (τ)=Mss

α (τ) is much more restrictive:

If dimA = 1, say if A = mod-CQ or A = coh(X ) for X a
curve, then Mss

α (τ) is a smooth projective C-scheme, and has
a fundamental class [Mss

α (τ)]fund.
If dimA = 2, say if A = mod-CQ/I or A = coh(X ) for X a
surface, then Mss

α (τ) is a projective C-scheme with obstruction
theory, and has a Behrend–Fantechi virtual class [Mss

α (τ)]virt.
If A = coh(X ) for X a Calabi–Yau or Fano 3-fold, one can
also define Behrend–Fantechi virtual classes [Mss

α (τ)]virt.
If A = coh(X ) for X a Calabi–Yau 4-fold, Borisov–Joyce
define a different kind of virtual class [Mss

α (τ)]virt, with half
the expected dimension of the Behrend–Fantechi class.
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On moduli stacks and moduli schemes

There are two main ways of forming moduli spaces in Algebraic
Geometry: as schemes or stacks. An important difference is that if
M is a moduli stack of objects E , then automorphism groups are
remembered in the isotropy groups of M by IsoM([E ]) = Aut(E ),
but moduli schemes forget automorphism groups.
Our moduli stacks M,Mpl differ in that their isotropy groups are
IsoM([E ]) = Aut(E ), but IsoMpl([E ]) = Aut(E )/(Gm · idE ).
If E is τ -stable then Aut(E ) = Gm · idE , so IsoMpl([E ]) = {1}.
Because of this, the τ -stable moduli scheme Mst

α (τ) is actually an
open substack inMpl (but notM). This makesMpl useful for us.
The τ -semistable moduli scheme Mss

α (τ) has the good property
that it is usually compact (proper). But it has the bad properties
that it does not map to Mpl or M, and the obstruction theory (or
other nice structure) on Mst

α (τ) does not extend to Mss
α (τ), so we

cannot define a virtual class [Mss
α (τ)]virt unless Mst

α (τ) =Mss
α (τ).
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3.2. The case of quivers

Let Q = (Q0,Q1, h, t) be a quiver, with finite sets Q0 of vertices
and Q1 of edges, and head and tail maps h, t : Q1 → Q0. Then we
have a C-linear abelian category mod-CQ of representations
(Vv , ρe) of Q, comprising a finite-dimensional C-vector space Vv

for each v ∈ Q0 and a linear map ρe : Vt(e) → Vh(e) for each e ∈ Q1.

The dimension vector of (Vv , ρe) is d ∈ NQ0 , where d (v) = dimVv .
We can work out our theory very explicitly for A = mod-CQ. We
take K (A) = ZQ0 . Then M =

∐
d∈NQ0Md , Mpl =

∐
d∈NQ0M

pl
d ,

where Md = [Rd/GLd ], Mpl
d = [Rd/PGLd ] with

Rd =
∏

e∈Q1
Hom(Ct(d (e)),Ch(d (e))), GLd =

∏
v∈Q0

GL(d (v)),

and PGLd = GLd /Gm. Hence H∗(Md ) ∼= H∗(B GLd ) and

H∗(Mpl
d ) ∼= H∗(B PGLd ), which we can write explicitly.

20 / 26 Dominic Joyce, Oxford University Universal structures in enumerative invariant theories



Outline of the conjectural picture
Vertex algebras and Lie algebras

Enumerative invariants

Virtual classes of moduli spaces
The case of quivers
Sketch proof of Theorems 1 and 2

Slope stability conditions

Fix µv ∈ R for all v ∈ Q0. Define µ : NQ0 \ {0} → R by

µ(d ) =
(∑

v∈Q0
µvd (v)

)/(∑
v∈Q0

d (v)
)
.

We call µ a slope function. An object 0 6= E ∈ mod-CQ is called
µ-semistable (or µ-stable) if whenever 0 6= E ′ ( E is a subobject
we have µ(dimE ′) > µ(dimE ) (or µ(dimE ′) > µ(dimE )).

Recall that Mpl
d = [Rd/PGLd ] as a quotient stack. King (1994)

showed that there is a linearization θ of the action of PGLd on
Rd , such that a C-point [E ] ∈ [Rd/PGLd ] is µ-(semi)stable in
mod-CQ iff the corresponding point in Rd is GIT (semi)stable.
Hence there are moduli schemes Mst

d (µ) ⊆Mss
d (µ) which are the

GIT (semi)stable quotients Rd//
st
θ PGLd ⊆ Rd//

ss
θ PGLd .

If Q has no oriented cycles then a Gm subgroup of PGLd acts on
Rd with positive weights, so Mss

d (µ) = Rd//
ss
θ PGLd is a

projective C-scheme. Also Mst
d (µ) = Rd//

st
θ PGLd is a smooth

quasi-projective C-scheme, an open substack of Mpl
d = [Rd/PGLd ].
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Thus, if Q has no oriented cycles, and µ is a slope function on
mod-CQ, and d ∈ NQ0 \ {0} with Mst

d (µ) =Mss
d (µ), then

Mss
d (µ) is a smooth projective C-scheme and an open substack of

Mpl
d , and has a fundamental class [Mss

d (µ)]fund in H∗(Mpl
d ). It

has dimension 2− χ(d ,d ), where χ : ZQ0 × ZQ0 → Z is

χ(d , e) = 2
∑

v∈Q0

d (v)e(v)−
∑

e∈Q1

(d (h(e))e(t(e))+d (t(e))e(h(e))).

Theorem 1 (Gross–Joyce–Tanaka 2005.05637.)

Let Q be a quiver with no oriented cycles. Then for all slope
functions µ on mod-CQ and d ∈ NQ0 \ {0}, there exist unique

classes [Mss
d (µ)]virt ∈ H2−χ(d ,d )(M

pl
d ) = Ȟ0(Mpl

d ) such that:

(i) If Mst
d (µ) =Mss

d (µ) then [Mss
d (µ)]virt = [Mss

d (µ)]fund.

(ii) The [Mss
d (µ)]virt transform according to the wall-crossing

formula (1) above in the Lie algebra Ȟ0(Mpl) under change
of stability condition.
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We also prove:

Theorem 2 (Gross–Joyce–Tanaka 2005.05637.)

There is a notion of morphism of quivers λ : Q → Q ′, which
induces a functor λ∗ : mod-CQ → mod-CQ ′, and morphisms of
vertex algebras Ω : Ĥ∗(M)→ Ĥ∗(M′) and of Lie algebras
Ωpl : Ȟ∗(Mpl)→ Ȟ∗(M′pl). If µ′ is a slope function on mod-CQ ′
then µ = µ ◦ λ∗ is a slope function on mod-CQ. Then for each
d ∈ NQ0 \ {0} with λ∗(d ) = d ′ ∈ NQ′

0 \ {0}, the virtual classes
[Mss

d (µ)]virt of Theorem 1 satisfy∏
v∈Q0

d (v)! · Ωpl
(
[Mss

d (µ)]virt
)

=
∏

v ′∈Q′
0
d ′(v ′)! · [M′ssd ′ (µ′)]virt.
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3.3. Sketch proof of Theorems 1 and 2

We call a slope function µ decreasing if for all edges
v• e−→ w• in Q

we have µv > µw . Such µ exist if and only if Q has no oriented
cycles. If µ is decreasing, for each d ∈ NQ0 \ {0}, either:

(a) d = δv for some v ∈ Q0, that is, d (v) = 1 and d (w) = 0 for
w 6= v . Then Mst

d (µ) =Mss
d (µ) is a single point ∗.

(b) d = nδv for some v ∈ Q0 and n > 1. Then Mst
d (µ) = ∅ and

Mss
d (µ)∼=[∗/PGL(n,C)]. Note that 2−χ(d ,d )=2−2n2<0.

(c) d 6= nδv for any v ∈ Q0, n > 1. Then Mst
d (µ) =Mss

d (µ) = ∅.
Hence the classes [Mss

d (µ)]virt in Theorem 1 must be

[Mss
d (µ)]virt =

{
1 ∈ H0(Mpl

d ) ∼= R, d = δv , v ∈ Q0,

0, otherwise,
(4)

as in case (b) [Mss
d (µ)]virt ∈ H<0(Mpl

d ) = 0.
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Equation (4) for some fixed decreasing µ, and the wall-crossing
formula in Theorem 1(ii) from µ to µ̇, then determine unique
classes [Mss

d (µ̇)]virt for all slope functions µ̇ on mod-CQ. We
prove these satisfy Theorem 1(ii) for wall-crossing from µ̇ to µ̈, for
any two slope functions µ̇, µ̈, by an associativity property of the
wall-crossing formula proved in my 2003 work on motivic invariants.
So far we have constructed classes [Mss

d (µ)]virt as in Theorem 1,
satisfying Theorem 1(ii), but we do not yet know they satisfy (i).
Next we prove these classes [Mss

d (µ)]virt satisfy Theorem 2, using
the fact that since Ωpl : Ȟ∗(Mpl)→ Ȟ∗(M′pl) is a Lie algebra
morphism, it takes the wall-crossing formula (1) in Ȟ∗(Mpl) used
to define [Mss

d (µ)]virt to an identity in Ȟ∗(M′pl). The factors∏
v d (v)!,

∏
v ′ d ′(v ′)! arise because of a combinatorial identity

relating the number of different ways of splitting d = d 1 + · · ·+ d n

in NQ0 \ {0}, and d ′ = d ′1 + · · ·+ d ′n in NQ′
0 \ {0}.
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Finally we show the [Mss
d (µ)]virt satisfy Theorem 1(i). This is the

most difficult part. If d (v) ∈ {0, 1} and Q is a tree, we deduce the
result using results of Joyce–Song on Donaldson–Thomas type
invariants for quivers. Then we build up to progressively more
general Q,d using Theorem 2 in different ways.
I am currently writing up a proof for the general case of
Behrend–Fantechi obstruction theories in Algebraic Geometry,
which include quivers as a special case. The methods are different,
and a lot more complicated. In brief, I can prove the WCF (1) in
some special cases (‘simple walls’) using Gm-localization and
‘master spaces’. Starting with invariants in an exact category A, I
consider invariants in auxiliary categories B in exact sequences

0 // A // B // mod-CQ // 0.

I can find enough ‘simple’ wall-crossings in such categories B to
force the invariants in A to be well defined and satisfy (1).
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