Orientations on moduli spaces of coherent sheaves on Calabi–Yau 4-folds. I

Dominic Joyce, Oxford University

Kansas M-seminar, 24 April 2025.

Based on arXiv:2503.20456, Joint work with Markus Upmeier.

These slides available at http://people.maths.ox.ac.uk/~joyce/.

Main reference:

D. Joyce and M. Upmeier, *Bordism categories and orientations of moduli spaces*, arXiv:2503.20456, 2025.

Other references:

D. Borisov and D. Joyce, Virtual fundamental classes for moduli spaces of sheaves on Calabi–Yau four-folds, Geometry and Topology 21 (2017), 3231–3311. arXiv:1504.00690.

Y. Cao, J. Gross and D. Joyce, *Orientability of moduli spaces of* Spin(7)-*instantons and coherent sheaves on Calabi–Yau* 4-folds, Adv. Math. 368 (2020). arXiv:1811.09658.

J. Oh and R.P. Thomas, *Counting sheaves on Calabi–Yau* 4-*folds. I*, Duke Math. J. 172 (2023), 1333–1409. arXiv:2009.05542.

M. Upmeier, *Bordism invariance of orientations and real APS index theory*, Adv. Math. 461 (2025), no. 110048. arXiv:2312.06818.

Let X be a projective Calabi–Yau 4-fold over \mathbb{C} , and \mathcal{M} be a derived moduli scheme or stack of coherent sheaves (or perfect complexes) on X, in the sense of Toën–Vezzosi. Then \mathcal{M} has a -2-shifted symplectic structure ω in the sense of Pantev–Toën–Vaquié–Vezzosi arXiv:1111.3209. Writing $\mathbb{L}_{\mathcal{M}}, \mathbb{T}_{\mathcal{M}}$ for the (co)tangent complex of \mathcal{M} , the inner product with ω gives a quasi-isomorphism $\omega \cdot : \mathbb{T}_{\mathcal{M}} \to \mathbb{L}_{\mathcal{M}}[-2]$. This is a geometric incarnation of Serre duality: for a point $E \in \mathcal{M}$ corresponding to $E \in \operatorname{coh}(X)$, we have $H^{i}(\mathbb{T}_{\mathcal{M}}|_{F}) \cong \operatorname{Ext}^{i+1}(E, E)$ and $H^{i}(\mathbb{L}_{\mathcal{M}}|_{F}) \cong \operatorname{Ext}^{1-i}(E, E)^{*}$, and the isomorphism $\mathbb{T}_{\mathcal{M}} \cong \mathbb{L}_{\mathcal{M}}[-2]$ corresponds at *E* to the Serre duality isomorphism $\operatorname{Ext}^{i}(E, E) \cong \operatorname{Ext}^{4-i}(E, E)^{*}$, since $K_{X} \cong \mathcal{O}_{X}$.

Let (S, ω) be a -2-shifted symplectic derived \mathbb{C} -scheme. Brav-Bussi-Joyce arXiv:1305.6302 proved a 'Darboux Theorem' showing that (S, ω) is Zariski locally described by charts of the form (V, E, Q, s), where V is a smooth \mathbb{C} -scheme, $E \to V$ a vector bundle, $Q \in H^0(S^2E^*)$ is a non-degenerate quadratic form on E, and $s \in H^0(E)$ is a section of E which is isotropic, that is, Q(s, s) = 0. Then S is locally modelled on $X = s^{-1}(0) \subset V$, with $\mathbb{L}_{S}|_{X} \simeq [TV|_{X} \xrightarrow{ds} E|_{X} \xrightarrow{(ds)^* \circ Q} T^*V|_{X}].$

Borisov–Joyce arXiv:1504.00690 defined a notion of *orientation* for a -2-shifted symplectic derived \mathbb{C} -scheme or stack (\mathcal{S}, ω) . The equivalence $\omega \cdot : \mathbb{T}_{\mathcal{S}} \to \mathbb{L}_{\mathcal{S}}[-2]$ induces an isomorphism of determinant line bundles det $\omega : \det \mathbb{T}_{\mathcal{S}} \to \det \mathbb{L}_{\mathcal{S}}$, where $\det \mathbb{T}_{\mathcal{S}} = (\det \mathbb{L}_{\mathcal{S}})^*$. An orientation is an isomorphism $\phi : \mathcal{O}_{\mathcal{S}} \to \det \mathbb{L}_{\mathcal{S}}$ with det $\omega = \phi \circ \phi^*$. On a chart (V, E, Q, s), this corresponds to an orientation of the quadratic form (E, Q) on $s^{-1}(0)$.

Borisov–Joyce showed that if (S, ω) is a separated -2-shifted symplectic derived \mathbb{C} -scheme, we can give the complex analaytic space $S_{\rm an}$ the structure of a C^{∞} derived manifold $S_{\rm dm}$, of dimension $\operatorname{vdim}_{\mathbb{R}} \mathcal{S}_{dm} = \operatorname{vdim}_{\mathbb{C}} \mathcal{S} = \frac{1}{2} \operatorname{vdim}_{\mathbb{R}} \mathcal{S}$. Orientations for (\boldsymbol{S}, ω) correspond to orientations of \mathcal{S}_{dm} . If \boldsymbol{S} is also proper then \mathcal{S}_{dm} is compact, and has a virtual class $[\mathcal{S}_{dm}]_{virt} \in \mathcal{H}_{vdimc} \mathcal{S}(\mathcal{S}_{an}, \mathbb{Z}).$ They proposed to use this to define Donaldson-Thomas type 'DT4 invariants' of Calabi-Yau 4-folds, 'counting' semistable moduli schemes $\mathcal{M}^{ss}_{\alpha}(\tau)$ of coherent sheaves on a Calabi–Yau 4-fold X. For an oriented -2-shifted symplectic derived \mathbb{C} -scheme (\mathcal{S}, ω) , Oh-Thomas arXiv:2009.05542 gave an alternative definition of the virtual class $[\mathcal{S}]_{\text{virt}}$ in Chow homology $A_{\frac{1}{2} \text{ vdim}_{\mathbb{C}}} \mathcal{S}(S)$, in the style of Behrend–Fantechi. In charts (V, E, Q, s), this involves taking the Euler class of (E, Q), and showing it can be localized to $s^{-1}(0)$. DT4 invariants are now a very active field, see work by Bojko, Cao, Kiem, Kool, Leung, Maulik, Oberdieck, Park, Toda,

These two talks will discuss the following:

Question

Let X be a projective Calabi–Yau 4-fold over \mathbb{C} , and \mathcal{M} the moduli stack of coherent sheaves (or perfect complexes) on X, with its -2-shifted symplectic structure ω . Is (\mathcal{M}, ω) orientable, in the sense of Borisov–Joyce? If so, maybe after choosing some data on X, is there some way to construct a canonical orientation on \mathcal{M} ?

This is important as without such orientations, we cannot define DT4 invariants of Calabi–Yau 4-folds.

It makes sense to study orientations on the full moduli stack \mathcal{M} , and then restrict them to the substacks $\mathcal{M}^{\mathrm{st}}_{\alpha}(\tau) \subset \mathcal{M}^{\mathrm{ss}}_{\alpha}(\tau) \subset \mathcal{M}$ of Gieseker (semi)stable sheaves in Chern character α . If $\mathcal{M}^{\mathrm{st}}_{\alpha}(\tau) = \mathcal{M}^{\mathrm{ss}}_{\alpha}(\tau)$ then $\mathcal{M}^{\mathrm{ss}}_{\alpha}(\tau)$ is a proper -2-shifted symplectic derived \mathbb{C} -scheme, so given an orientation, we can form a virtual class $[\mathcal{M}^{\mathrm{ss}}_{\alpha}(\tau)]_{\mathrm{virt}}$, and use this to define DT4 invariants as $\int_{[\mathcal{M}^{\mathrm{ss}}_{\alpha}(\tau)]_{\mathrm{virt}}} \Phi$ for Φ some natural cohomology class on \mathcal{M} .

The Cao–Gross–Joyce orientability theorem is wrong!

Theorem (Cao–Gross–Joyce 2020)

Let X be a compact Calabi–Yau 4-fold. Then the moduli stack \mathcal{M} of perfect complexes on X is orientable.

Unfortunately, there is a mistake in the proof. The theorem itself may be false, though we don't have a counterexample. I apologize for this. Outline of proof in Cao–Gross–Joyce: **Step 1:** Let $P \to X$ be a principal U(m)-bundle, $m \ge 4$. Define moduli spaces \mathcal{B}_P of all connections on P. Define a principal \mathbb{Z}_2 -bundle $\mathcal{O}_P \to \mathcal{B}_P$ of orientations on \mathcal{B}_P , using gauge theory. Prove O_P is trivializable, that is, \mathcal{B}_P is orientable. (This proof wrong.) If X is a Spin(7)-manifold, orientations of \mathcal{B}_P restrict to orientations of moduli spaces \mathcal{M}_P of Spin(7)-instantons on P. **Step 2:** Define map of topological classifying spaces $\Psi: \mathcal{M}_{ch=ch P}^{cla} \to \mathcal{B}_{P}^{cla}$. Show orientations of \mathcal{B}_{P} pull back along Ψ to orientations of $\mathcal{M}_{ch=chP}$. Hence \mathcal{B}_P orientable implies \mathcal{M} orientable. (This proof is correct, as far as we know.)

Gauge theory moduli spaces and orientations

Let X be a compact manifold, G a Lie group, and $P \rightarrow X$ a principal G-bundle. Write \mathcal{A}_P for the moduli space of all connections ∇ on P, an infinite-dimensional affine space, and $\mathcal{B}_P = \mathcal{A}_P / \mathcal{G}_P$ for the moduli space of connections on P modulo gauge transformations, as a topological stack, where $\mathcal{G}_P = \operatorname{Aut}(P)$. Let $E^{\bullet} = (D : \Gamma^{\infty}(E_0) \to \Gamma^{\infty}(E_1))$ be an elliptic operator on X, for example, the Dirac operator on X if X is spin. Then for each $\nabla \in \mathcal{A}_P$ we have a twisted elliptic operator $D_{\nabla} : \Gamma^{\infty}(E_0 \otimes \mathrm{ad}(P))$ $\to \Gamma^{\infty}(E_1 \otimes \mathrm{ad}(P))$. There is a determinant line bundle $\hat{L}_P \to \mathcal{A}_P$ with fibre det $D_{\nabla} = \det \operatorname{Ker}(D_{\nabla}) \otimes \det \operatorname{Coker}(D_{\nabla})^*$ at $\nabla \in \mathcal{A}_P$, and a principal \mathbb{Z}_2 -bundle $\hat{O}_P \to \mathcal{A}_P$ of orientations on the fibres of \hat{L} . These are \mathcal{G}_P -equivariant, and descend to $L_P \to \mathcal{B}_P$ and $\mathcal{O}_P \to \mathcal{B}_P$. An orientation on \mathcal{B}_P is an isomorphism $\mathcal{O}_P \cong \mathcal{B}_P \times \mathbb{Z}_2$. Moduli spaces \mathcal{M}_P of 'instantons' – connections on P satisfying a curvature condition – are subspaces $\mathcal{M}_P \subset \mathcal{B}_P$. In good cases, \mathcal{M}_P is a smooth manifold, and $\mathcal{O}_P|_{\mathcal{M}_P}$ is the principal \mathbb{Z}_2 -bundle of orientations on \mathcal{M}_P in the usual sense. So orientability / orientations for \mathcal{B}_P give orientability / orientations for \mathcal{M}_P .

How to fix the mistake in Cao-Gross-Joyce

Markus Upmeier and myself have developed a new theory for studying orientability and canonical orientations for moduli spaces \mathcal{B}_P , where X is a compact spin *n*-manifold with $n \equiv 1, 7, 8 \mod 8$, and G is a Lie group, and $P \rightarrow X$ is a principal G-bundle, and \mathcal{B}_P is the moduli space (topological stack) of all connections ∇ on P, and orientations on \mathcal{B}_P mean orientations of the (positive) Dirac operator on X twisted by $(ad(P), \nabla)$. If X is a Spin(7)-manifold, orientations on \mathcal{B}_P restrict to orientations on moduli spaces of Spin(7)-instantons on X. If X is a Calabi–Yau 4-fold and G = U(m), orientations on \mathcal{B}_P restrict to Borisov–Joyce orientations on moduli spaces of rank m algebraic vector bundles on X. When n = 8 (also n = 7) we give sufficient conditions on X for orientability of \mathcal{B}_P for many G, including G = U(m) (necessary and sufficient if $G = E_8$). If these sufficient conditions hold, the problem with Step 1 of Cao-Gross-Joyce is fixed, and we deduce the Cao-Gross-Joyce orientability theorem under this extra condition. We also specify data (a *flag structure*) which determines canonical orientations.

2. First look at the methods in the proof

A principal G-bundle $P \rightarrow X$ is topologically equivalent to a map $\phi_P: X \to BG$, where BG is the classifying space of X. Thus $[X, \phi_P]$ is an element of the spin bordism group $\Omega_n^{\text{Spin}}(BG)$. Orientability of \mathcal{B}_P depends on the monodromy of $\mathcal{O}_P \to \mathcal{B}_P$ around a loop $\gamma: \mathcal{S}^1 \to \mathcal{B}_P$. Then γ is equivalent to a principal *G*-bundle $Q \to X \times S^1$, giving a map $\phi_Q : X \times S^1 \to BG$, and a spin bordism class $[X \times S^1, \phi_Q]$ in $\Omega_{n+1}^{\text{Spin}}(BG)$. Now ϕ_Q is equivalent to a map $\psi_Q: X \to \mathcal{L}BG$, where $\mathcal{L}BG$ is the loop space of BG, so Q determines a bordism class $[X, \psi_Q]$ in $\Omega_n^{\text{Spin}}(\mathcal{L}BG)$, and $[X \times S^1, \phi_Q]$ is the image of $[X, \psi_Q]$ under a natural map $\Omega_n^{\mathrm{Spin}}(\mathcal{L}BG) \to \Omega_{n+1}^{\mathrm{Spin}}(BG).$

It turns out that orientation problems for \mathcal{B}_P factor via $\Omega_n^{\text{Spin}}(BG)$, $\Omega_{n+1}^{\text{Spin}}(BG)$, $\Omega_n^{\text{Spin}}(\mathcal{L}BG)$ in a certain sense. For given X, we can show that \mathcal{B}_P is orientable for all principal G-bundles $P \to X$ if and only if certain 'bad' classes α in $\Omega_n^{\text{Spin}}(\mathcal{L}BG)$ cannot be written $\alpha = [X, \psi]$. If there are no bad classes we get orientability for all X, P (this often happens for n = 7). We need to compute $\Omega_n^{\text{Spin}}(BG)$, $\Omega_{n+1}^{\text{Spin}}(BG)$, $\Omega_n^{\text{Spin}}(\mathcal{L}BG)$ using algebraic topology.

If $\iota: G \to H$ is a morphism of Lie groups of 'complex type', and $P \to X$ is a principal *G*-bundle, then $Q = (P \times H)/G$ is a principal *H*-bundle, and an orientation for \mathcal{B}_Q induces one for \mathcal{B}_P . Using complex type morphisms $SU(8) \hookrightarrow E_8$ and $SU(m) \hookrightarrow SU(m')$ for $m \leq m'$, we can show that if X is a spin 8-manifold then orientability of \mathcal{B}_Q for all principal E_8 -bundles $Q \to X$ implies orientability of \mathcal{B}_P for all principal U(m)-bundles $P \to X$. Thus, to solve the CY4 orientability problem, it is enough to understand orientability for E_8 -bundles.

There is a 16-connected map $BE_8 \to K(\mathbb{Z}, 4)$, where $K(\mathbb{Z}, 4)$ is the Eilenberg–MacLane space classifying $H^4(-,\mathbb{Z})$, so $\Omega_n^{\text{Spin}}(BE_8) \cong \Omega_n^{\text{Spin}}(K(\mathbb{Z}, 4))$ for n < 16, and $\Omega_n^{\text{Spin}}(\mathcal{L}BE_8) \cong \Omega_n^{\text{Spin}}(\mathcal{L}K(\mathbb{Z}, 4))$ for n < 15. Using this, we can reduce orientability questions for E_8 -bundles to conditions that can be computed using *cohomology* and *cohomology operations* on X, in particular Steenrod squares. The proofs involve lots of complicated calculations of bordism groups in Algebraic Topology, spectral sequences, etc.

3. Statement of main results: orientability

I'll explain only results in 8 dimensions relevant to DT4 invariants, and a bit extra on Spin(7) instantons. They are part of a bigger theory, which also includes results on orientability of moduli spaces of submanifolds, such as Cayley 4-folds in Spin(7)-manifolds. Let X be a compact oriented spin 8-manifold. Impose the condition: (*) Let $\alpha \in H^3(X, \mathbb{Z})$, and write $\bar{\alpha} \in H^3(X, \mathbb{Z}_2)$ for its mod 2 reduction, and Sq²($\bar{\alpha}$) $\in H^5(X, \mathbb{Z}_2)$ for its Steenrod square. Then $\int_X \bar{\alpha} \cup$ Sq²($\bar{\alpha}$) = 0 in \mathbb{Z}_2 for all $\alpha \in H^3(X, \mathbb{Z})$.

Theorem 1

Suppose X satisfies condition (*), and let G be a compact Lie group on the list, for all $m \ge 1$

 E_8 , E_7 , E_6 , G_2 , Spin(3), SU(*m*), U(*m*), Spin(2*m*). (1) Then \mathcal{B}_P is orientable for every principal *G*-bundle $P \to X$. For $G = E_8$, this holds if and only if (*) holds.

We do this by applying our general orientability theory for $G = E_8$ by studying $\Omega_n^{\text{Spin}}(\mathcal{K}(\mathbb{Z},4))$ and $\Omega_n^{\text{Spin}}(\mathcal{LK}(\mathbb{Z},4))$. The other cases are deduced from $G = E_8$ using complex type morphisms.

The case G = U(m) and Step 2 of Cao–Gross–Joyce implies:

Corollary 2

Suppose a Calabi–Yau 4-fold X satisfies condition (*). Then the moduli stack \mathcal{M} of perfect complexes on X is orientable in the sense of Borisov–Joyce 2017.

Example

Let $X \subset \mathbb{CP}^5$ be a smooth sextic. Then $H^3(X,\mathbb{Z}) = 0$ by the Lefschetz Hyperplane Theorem. So (*) and Corollary 2 hold.

Corollary 3

Suppose a compact Spin(7)-manifold (X, Ω) satisfies condition (*), and G lies on the list (1), and $P \to X$ is a principal G-bundle. Then the moduli space \mathcal{M}_P^{irr} of irreducible Spin(7)-instanton connections on P is orientable. (Here \mathcal{M}_P^{irr} is a smooth manifold if Ω is generic, and a derived manifold otherwise.)

4. Statement of main results: canonical orientations

Suppose now that (*) holds, so we have orientability of moduli spaces \mathcal{B}_P or \mathcal{M} on X. What extra choices do we need to make on X to define *canonical orientations* on \mathcal{B}_P or \mathcal{M} ?

Definition

Let X be a spin 8-manifold, and $P \to X$ a principal G-bundle, and $O_P \to \mathcal{B}_P$ be the orientation bundle. Define the *normalized orientation bundle* $\check{O}_P \to \mathcal{B}_P$ by $\check{O}_P = O_P \otimes_{\mathbb{Z}_2} \operatorname{Or}(O_{X \times G}|_{[\nabla_0]})$, where $\operatorname{Or}(O_{X \times G}|_{[\nabla_0]})$ is the \mathbb{Z}_2 -torsor of orientations of $\mathcal{B}_{X \times G}$ for the trivial G-bundle $X \times G \to X$ at the trivial connection ∇_0 . A trivialization of $\operatorname{Or}(O_{X \times G}|_{[\nabla_0]})$ is an orientation for $\operatorname{ind}(\mathcal{D}_X^+) \otimes \mathfrak{g}$, where \mathcal{D}_X^+ is the positive Dirac operator of X, $\operatorname{ind}(\mathcal{D}_X^+)$ its orientation torsor as a Fredholm operator, \mathfrak{g} the Lie algebra of G.

We show normalized orientations on \mathcal{B}_P are determined by a choice of *flag structure* (next slide). Orientations on \mathcal{B}_P also need an orientation on $\operatorname{ind}(\mathcal{D}_X^+) \otimes \mathfrak{g}$. If X is a Calabi–Yau 4-fold, there is a natural orientation for $\operatorname{ind}(\mathcal{D}_X^+)$, so we don't need this second choice.

14 / 22

Flag structures – first idea

Joyce 2018 and Joyce–Upmeier 2023 introduced flag structures on 7-manifolds, and used them to define orientations on moduli spaces of associative 3-folds and G_2 -instantons on compact G_2 -manifolds. We define a related (but more complicated) notion of flag structure F for compact spin 8-manifolds X satisfying condition (*), as a choice of natural trivialization of an orientation functor associated to X (more details later). We can write a flag structure F as $(F_{\alpha} : \alpha \in H^4(X, \mathbb{Z}))$, where each F_{α} lies in a \mathbb{Z}_2 -torsor. Thus, the set of flag structures on X is a torsor for $Map(H^4(X, \mathbb{Z}), \mathbb{Z}_2)$. By imposing extra conditions we can cut this down to a finite choice of flag structures.

If X is a Calabi–Yau 4-fold, the orientation on \mathcal{M} at a perfect complex $[\mathcal{E}^{\bullet}] \in \mathcal{M}$ depends on F_{α} for $\alpha = c_2(\mathcal{E}^{\bullet}) - c_1(\mathcal{E}^{\bullet})^2$. There is a canonical choice for F_0 . Hence, if $c_2(\mathcal{E}^{\bullet}) - c_1(\mathcal{E}^{\bullet})^2 = 0$, there is a canonical choice of orientation on the connected component of \mathcal{M} containing \mathcal{E}^{\bullet} . Thus we deduce:

Theorem 4

Suppose a Calabi–Yau 4-fold X satisfies condition (*). Choose a flag structure F on X. Then we can construct a canonical orientation on the moduli stack \mathcal{M} of perfect complexes on X. On the open and closed substack $\mathcal{M}_{c_2-c_1^2=0} \subset \mathcal{M}$ of perfect complexes \mathcal{E}^{\bullet} with $c_2(\mathcal{E}^{\bullet}) - c_1(\mathcal{E}^{\bullet})^2 = 0$, we can define the canonical orientation without choosing a flag structure.

The second part resolves a paradox. There are several conjectures in the literature by Bojko, Cao, Kool, Maulik, Toda, ..., of the form

Conventional invariants of $X \simeq \text{DT4}$ invariants of X, (2)

where the left hand side, involving Gromov–Witten invariants etc., needs no choice of orientation, but the right hand side needs a Borisov–Joyce orientation to determine the sign. All these conjectures are really about sheaves on points and curves — Hilbert schemes of points, MNOP, DT-PT, etc. — and so involve only complexes \mathcal{E}^{\bullet} with $c_2(\mathcal{E}^{\bullet}) - c_1(\mathcal{E}^{\bullet})^2 = 0$ in $H^4(X, \mathbb{Z})$.

5. Picard groupoids and bordism categories

Definition

A *Picard groupoid* $(\mathcal{G}, \otimes, \mathbb{1})$ is a groupoid \mathcal{G} with a monoidal structure $\otimes : \mathcal{G} \otimes \mathcal{G} \to \mathcal{G}$ which is symmetric and associative up to coherent natural isomorphisms (not included in the notation), and an identity object $\mathbb{1}$ such that $\mathbb{1} \otimes X \cong X \otimes \mathbb{1} \cong X$ for all $X \in \mathcal{G}$, such that for every $X \in \mathcal{G}$ there exists $Y \in \mathcal{G}$ with $X \otimes Y \cong \mathbb{1}$.

Picard groupoids are classified up to equivalence by triples (π_0, π_1, q) , where π_0, π_1 are abelian groups and $q: \pi_0 \to \pi_1$ is a map which is both linear and quadratic. To $(\mathcal{G}, \otimes, 1)$ we associate the abelian groups π_0 of isomorphism classes [X] of objects $X \in \mathcal{G}$ with multiplication $[X] \cdot [Y] = [X \otimes Y]$, and $\pi_1 = \operatorname{Aut}_{\mathcal{G}}(\mathbb{1})$. Symmetric monoidal functors $F : (\mathcal{G}, \otimes, \mathbb{1}) \to (\mathcal{G}', \otimes, \mathbb{1}')$ are functors $F : \mathcal{G} \to \mathcal{G}'$ preserving all the structure. They are classified up to monoidal natural isomorphism by group morphisms $f_0: \pi_0 \to \pi'_0$ and $f_1: \pi_1 \to \pi'_1$ with $q' \circ f_0 = f_1 \circ q$. We could call Picard groupoids abelian 2-groups, as they are a 2-categorical notion of abelian group.

Dominic Joyce, Oxford University Orientations on moduli spaces

Our theory uses special examples of Picard groupoids we call *bordism categories*. Here is an example.

Example

Let G be a Lie group, and $n \ge 0$. Define a Picard groupoid $\mathfrak{Botd}_n^{\mathrm{Spin}}(BG)$ to have objects pairs (X, P) of a compact spin *n*-manifold X and a principal G-bundle $P \rightarrow X$, and morphisms $[Y, Q] : (X_0, P_0) \rightarrow (X_1, P_1)$ to be equivalence classes [Y, Q] of a compact spin (n + 1)-manifold Y with boundary $\partial Y = -X_0 \amalg X_1$ and a principal G-bundle $Q \to Y$ with $Q|_{\partial Y} = P_0 \amalg P_1$, where the equivalence involves (n + 2)-dimensional bordisms. The composition of $[Y, Q] : (X_0, P_0) \rightarrow (X_1, P_1)$ and $[Y', Q'] : (X_1, P_1) \to (X_2, P_2)$ is $[Y \amalg_{X_1} Y', Q \amalg_{P_1} Q']$. The monoidal structure is disjoint union, $(X, P) \otimes (X', P') = (X \amalg X', P \amalg P').$

The classifying data is $\pi_0 = \Omega_n^{\text{Spin}}(BG)$, $\pi_1 = \Omega_{n+1}^{\text{Spin}}(BG)$, and $q: [X, P] \mapsto [X \times S_{nb}^1, P \times S_{nb}^1]$, where S_{nb}^1 is S^1 with the non-bounding spin structure. Here $\Omega_*^{\text{Spin}}(-)$ is *spin bordism*, a generalized homology theory, and *BG* is the classifying space.

Example

The groupoid \mathbb{Z}_2 -tor of \mathbb{Z}_2 -torsors is a Picard groupoid with $\pi_0 = 0$ and $\pi_1 = \mathbb{Z}_2$. The groupoid s- \mathbb{Z}_2 -tor of super \mathbb{Z}_2 -torsors (\mathbb{Z}_2 -graded \mathbb{Z}_2 -torsors) is a Picard groupoid with $\pi_0 = \pi_1 = \mathbb{Z}_2$ and $q = \mathrm{id} : \mathbb{Z}_2 \to \mathbb{Z}_2$.

Example

(a) Suppose $n \equiv 1,7 \mod 8$. We can define a symmetric monoidal functor $F : \mathfrak{Botd}_n^{\mathrm{Spin}}(BG) \to \mathbb{Z}_2$ -tor which maps (X, P) to the \mathbb{Z}_2 -torsor of orientations on \mathcal{A}_P defined using the Dirac operator \mathcal{D}_X . (b) Suppose $n \equiv 0 \mod 8$. We can define a symmetric monoidal functor $F : \mathfrak{Botd}_n^{\mathrm{Spin}}(BG) \to \mathrm{s-}\mathbb{Z}_2$ -tor which maps (X, P) to the \mathbb{Z}_2 -torsor of orientations on \mathcal{A}_P defined using the positive Dirac operator \mathcal{D}_X^+ , \mathbb{Z}_2 -graded in degree $\mathrm{ind}(\mathcal{D}_X^+ \otimes \mathrm{ad}(P)) \mod 2$.

Thus we can encode orientations of moduli spaces in *orientation functors* between Picard groupoids. This is not obvious. It depends on a bordism-invariance property of indices and determinants of Dirac operators proved in Upmeier arXiv:2312.06818.

Example

Let (X, g) be a compact spin *n*-manifold, and *G* be a Lie group. Define a subcategory $\mathfrak{Botd}_X^{\operatorname{Spin}}(BG)$ of $\mathfrak{Botd}_n^{\operatorname{Spin}}(BG)$ to have objects (X, P) for *X* the fixed spin *n*-manifold and varying *P*, and to have morphisms $[X \times [0, 1], Q]$ for $Y = X \times [0, 1]$ the fixed spin (n+1)-manifold with boundary, and varying *Q*. Write inc : $\mathfrak{Botd}_X^{\operatorname{Spin}}(BG) \hookrightarrow \mathfrak{Botd}_n^{\operatorname{Spin}}(BG)$ for the inclusion functor. Suppose $n \equiv 1, 7, 8 \mod 8$, and write $F_X = F \circ \operatorname{inc} : \mathfrak{Botd}_X^{\operatorname{Spin}}(BG) \to \mathbb{Z}_2$ -tor, where for $n \equiv 8$ we compose with s- \mathbb{Z}_2 -tor $\to \mathbb{Z}_2$ -tor forgetting \mathbb{Z}_2 -gradings.

Then a choice of orientation for \mathcal{B}_P for each principal *G*-bundle $P \to X$, invariant under isomorphisms $P \cong P'$, is equivalent to a natural isomorphism $\eta : F_X \Rightarrow \mathbb{1}_X$, where $\mathbb{1}_X$ is the constant functor with value \mathbb{Z}_2 . Hence, \mathcal{B}_P is orientable for every principal *G*-bundle $P \to X$ if and only if the functor $F_X : \mathfrak{Bord}_X^{\mathrm{Spin}}(BG) \to \mathbb{Z}_2$ -tor is trivializable.

To see why this is true, note that $\mathcal{B}_P = \mathcal{A}_P / \mathcal{G}_P$, where \mathcal{A}_P is the infinite-dimensional affine space of connections on $P \rightarrow X$, and $\mathcal{G}_P = \operatorname{Aut}(P)$ is the gauge group. Here \mathcal{A}_P is always orientable, with exactly two orientations, as it is contractible. So \mathcal{B}_P is orientable if and only if the group \mathcal{G}_P acts trivially on the \mathbb{Z}_2 -torsor of orientations on \mathcal{A}_{P} . Given an element $\gamma \in Aut(P)$, we can define a morphism $[X \times [0,1], Q] : (X, P) \rightarrow (X, P)$ in $\mathfrak{Bord}_{\mathcal{Y}}^{\mathrm{Spin}}(BG) \subset \mathfrak{Bord}_{n}^{\mathrm{Spin}}(BG)$ by taking Q to be $P \times [0,1]$ with identifications $\mathrm{id}_P : P \times \{0\} \to P$ and $\gamma : P \times \{1\} \to P$. All morphisms $[X \times [0,1], Q] : (X, P) \rightarrow (X, P)$ are of this form. So \mathcal{G}_P acts trivially on the \mathbb{Z}_2 -torsor of orientations on \mathcal{A}_P if and only if F_X is trivializable over the object (X, P).

The orientation functor $F : \mathfrak{Bord}_n^{\mathrm{Spin}}(BG) \to \mathbb{Z}_2$ -tor or s- \mathbb{Z}_2 -tor is classified by morphisms $F_0: \Omega_n^{\text{Spin}}(BG) \to 0$ or \mathbb{Z}_2 and $F_1: \Omega_{n+1}^{\text{Spin}}(BG) \to \mathbb{Z}_2$. For a fixed compact spin *n*-manifold X, we can show that F_X is trivializable (hence, \mathcal{B}_P is orientable for all principal G-bundles $P \rightarrow X$) if and only if there does not exist an element of the form $[X \times S^1_{\rm b}, Q] \in \Omega^{\rm Spin}_{n+1}(BG)$ with $F_1([X \times S^1_{\rm b}, Q]) \neq 0$ in \mathbb{Z}_2 . We can also write this in terms of $[X, Q] \in \Omega_n^{\text{Spin}}(\mathcal{L}BG)$ with $F_1 \circ \xi([X, Q]) \neq 0$, where $\mathcal{L}BG = \operatorname{Map}_{C^0}(\mathcal{S}^1, BG)$ is the free loop space and $\xi: \Omega^{\mathrm{Spin}}_{n}(\mathcal{L}BG) \to \Omega^{\mathrm{Spin}}_{n+1}(BG) \text{ maps } \xi: [X, Q] \mapsto [X \times \mathcal{S}^{1}_{\mathrm{b}}, Q].$ If $F_1 \circ \xi : \Omega_n^{\text{Spin}}(\mathcal{L}BG) \to \mathbb{Z}_2$ is identically zero then \mathcal{B}_P is orientable for all compact spin *n*-manifolds X and principal G-bundles $P \rightarrow X$. We can use Algebraic Topology and spectral sequences to compute bordism groups such as $\Omega_n^{\text{Spin}}(BG), \Omega_n^{\text{Spin}}(\mathcal{L}BG)$, and morphisms such as $\xi : \Omega_n^{\text{Spin}}(\mathcal{L}BG) \to \Omega_{n+1}^{\text{Spin}}(BG)$, and $F_0 : \Omega_n^{\text{Spin}}(BG) \to \mathbb{Z}_2$ and $F_1: \Omega_{n+1}^{\text{Spin}}(BG) \to \mathbb{Z}_2$ which classify orientation functors. Then we can use these to prove theorems on orientability and canonical orientations. I'll tell you more about all this next week.