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1. D-T type invariants for Calabi–Yau 4-folds

Let X be a projective Calabi–Yau 4-fold over C, and M be a
derived moduli scheme or stack of coherent sheaves (or perfect
complexes) on X , in the sense of Toën–Vezzosi. Then M has a
−2-shifted symplectic structure ω in the sense of
Pantev–Toën–Vaquié–Vezzosi arXiv:1111.3209. Writing LM,TM
for the (co)tangent complex of M, the inner product with ω gives
a quasi-isomorphism ω · : TM → LM[−2]. This is a geometric
incarnation of Serre duality: for a point E ∈ M corresponding to
E ∈ coh(X ), we have H i (TM|E ) ∼= Exti+1(E ,E ) and
H i (LM|E ) ∼= Ext1−i (E ,E )∗, and the isomorphism
TM ∼= LM[−2] corresponds at E to the Serre duality isomorphism
Exti (E ,E ) ∼= Ext4−i (E ,E )∗, since KX

∼= OX .
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Let (S, ω) be a −2-shifted symplectic derived C-scheme.
Brav–Bussi–Joyce arXiv:1305.6302 proved a ‘Darboux Theorem’
showing that (S, ω) is Zariski locally described by charts of the
form (V ,E ,Q, s), where V is a smooth C-scheme, E → V a
vector bundle, Q ∈ H0(S2E ∗) is a non-degenerate quadratic form
on E , and s ∈ H0(E ) is a section of E which is isotropic, that is,
Q(s, s) = 0. Then S is locally modelled on X = s−1(0) ⊂ V , with

LS|X ≃
[
TV |X
−2

ds // E |X
−1

(ds)∗◦Q // T ∗V |X
0

]
.

Borisov–Joyce arXiv:1504.00690 defined a notion of orientation for
a −2-shifted symplectic derived C-scheme or stack (S, ω). The
equivalence ω · : TS → LS[−2] induces an isomorphism of
determinant line bundles detω : detTS → detLS, where
detTS = (detLS)

∗. An orientation is an isomorphism
ϕ : OS → detLS with detω = ϕ ◦ ϕ∗. On a chart (V ,E ,Q, s), this
corresponds to an orientation of the quadratic form (E ,Q) on s−1(0).
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Borisov–Joyce showed that if (S, ω) is a separated −2-shifted
symplectic derived C-scheme, we can give the complex analaytic
space San the structure of a C∞ derived manifold Sdm, of
dimension vdimR Sdm = vdimC S = 1

2 vdimR S. Orientations
for (S, ω) correspond to orientations of Sdm. If S is also proper then
Sdm is compact, and has a virtual class [Sdm]virt ∈ HvdimC S(San,Z).
They proposed to use this to define Donaldson–Thomas type ‘DT4
invariants’ of Calabi–Yau 4-folds, ‘counting’ semistable moduli
schemes Mss

α (τ) of coherent sheaves on a Calabi–Yau 4-fold X .
For an oriented −2-shifted symplectic derived C-scheme (S, ω),
Oh–Thomas arXiv:2009.05542 gave an alternative definition of the
virtual class [S ]virt in Chow homology A 1

2
vdimC S(S), in the style of

Behrend–Fantechi. In charts (V ,E ,Q, s), this involves taking the
Euler class of (E ,Q), and showing it can be localized to s−1(0).
DT4 invariants are now a very active field, see work by Bojko, Cao,
Kiem, Kool, Leung, Maulik, Oberdieck, Park, Toda, . . . .
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These two talks will discuss the following:

Question

Let X be a projective Calabi–Yau 4-fold over C, and M the
moduli stack of coherent sheaves (or perfect complexes) on X , with
its −2-shifted symplectic structure ω. Is (M, ω) orientable, in the
sense of Borisov–Joyce? If so, maybe after choosing some data on
X , is there some way to construct a canonical orientation on M?

This is important as without such orientations, we cannot define
DT4 invariants of Calabi–Yau 4-folds.
It makes sense to study orientations on the full moduli stack M,
and then restrict them to the substacks Mst

α (τ) ⊂ Mss
α (τ) ⊂ M

of Gieseker (semi)stable sheaves in Chern character α. If
Mst

α (τ) = Mss
α (τ) then Mss

α (τ) is a proper −2-shifted symplectic
derived C-scheme, so given an orientation, we can form a virtual
class [Mss

α (τ)]virt, and use this to define DT4 invariants as∫
[Mss

α (τ)]virt
Φ for Φ some natural cohomology class on M.
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The Cao–Gross–Joyce orientability theorem is wrong!

Theorem (Cao–Gross–Joyce 2020)

Let X be a compact Calabi–Yau 4-fold. Then the moduli stack M
of perfect complexes on X is orientable.

Unfortunately, there is a mistake in the proof. The theorem itself may
be false, though we don’t have a counterexample. I apologize for this.
Outline of proof in Cao–Gross–Joyce:
Step 1: Let P → X be a principal U(m)-bundle, m ⩾ 4. Define
moduli spaces BP of all connections on P. Define a principal
Z2-bundle OP → BP of orientations on BP , using gauge theory.
Prove OP is trivializable, that is, BP is orientable. (This proof wrong.)
If X is a Spin(7)-manifold, orientations of BP restrict to
orientations of moduli spaces MP of Spin(7)-instantons on P.
Step 2: Define map of topological classifying spaces
Ψ : Mcla

ch=chP → Bcla
P . Show orientations of BP pull back along Ψ

to orientations of Mch=chP . Hence BP orientable implies M
orientable. (This proof is correct, as far as we know.)
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Gauge theory moduli spaces and orientations

Let X be a compact manifold, G a Lie group, and P → X a
principal G -bundle. Write AP for the moduli space of all
connections ∇ on P, an infinite-dimensional affine space,
and BP = AP/GP for the moduli space of connections on P modulo
gauge transformations, as a topological stack, where GP = Aut(P).
Let E • =

(
D : Γ∞(E0) → Γ∞(E1)

)
be an elliptic operator on X ,

for example, the Dirac operator on X if X is spin. Then for each
∇ ∈ AP we have a twisted elliptic operator D∇ : Γ∞(E0 ⊗ ad(P))

→ Γ∞(E1 ⊗ ad(P)). There is a determinant line bundle L̂P → AP

with fibre detD∇=detKer(D∇)⊗detCoker(D∇)
∗ at ∇ ∈ AP , and

a principal Z2-bundle ÔP → AP of orientations on the fibres of L̂.
These are GP -equivariant, and descend to LP → BP and OP → BP .
An orientation on BP is an isomorphism OP

∼= BP × Z2.
Moduli spaces MP of ‘instantons’ – connections on P satisfying a
curvature condition – are subspaces MP ⊂ BP . In good cases,
MP is a smooth manifold, and OP |MP

is the principal Z2-bundle
of orientations on MP in the usual sense. So orientability /
orientations for BP give orientability / orientations for MP .
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How to fix the mistake in Cao–Gross–Joyce

Markus Upmeier and myself have developed a new theory for
studying orientability and canonical orientations for moduli spaces
BP , where X is a compact spin n-manifold with n ≡ 1, 7, 8 mod 8,
and G is a Lie group, and P → X is a principal G -bundle, and BP

is the moduli space (topological stack) of all connections ∇ on P,
and orientations on BP mean orientations of the (positive) Dirac
operator on X twisted by (ad(P),∇). If X is a Spin(7)-manifold,
orientations on BP restrict to orientations on moduli spaces of
Spin(7)-instantons on X . If X is a Calabi–Yau 4-fold and G = U(m),
orientations on BP restrict to Borisov–Joyce orientations on moduli
spaces of rank m algebraic vector bundles on X .
When n = 8 (also n = 7) we give sufficient conditions on X for
orientability of BP for many G , including G = U(m) (necessary
and sufficient if G = E8). If these sufficient conditions hold, the
problem with Step 1 of Cao–Gross–Joyce is fixed, and we deduce
the Cao–Gross–Joyce orientability theorem under this extra
condition. We also specify data (a flag structure) which
determines canonical orientations.

9 / 22 Dominic Joyce, Oxford University Orientations on moduli spaces



2. First look at the methods in the proof
A principal G -bundle P → X is topologically equivalent to a map
ϕP : X → BG , where BG is the classifying space of X . Thus

[X , ϕP ] is an element of the spin bordism group ΩSpin
n (BG ).

Orientability of BP depends on the monodromy of OP → BP

around a loop γ : S1 → BP . Then γ is equivalent to a principal
G -bundle Q → X × S1, giving a map ϕQ : X × S1 → BG , and a

spin bordism class [X × S1, ϕQ ] in ΩSpin
n+1 (BG ). Now ϕQ is

equivalent to a map ψQ : X → LBG , where LBG is the loop space

of BG , so Q determines a bordism class [X , ψQ ] in ΩSpin
n (LBG ),

and [X × S1, ϕQ ] is the image of [X , ψQ ] under a natural map

ΩSpin
n (LBG ) → ΩSpin

n+1 (BG ).

It turns out that orientation problems for BP factor via ΩSpin
n (BG ),

ΩSpin
n+1 (BG ), ΩSpin

n (LBG ) in a certain sense. For given X , we can
show that BP is orientable for all principal G -bundles P → X if

and only if certain ‘bad’ classes α in ΩSpin
n (LBG ) cannot be

written α = [X , ψ]. If there are no bad classes we get orientability
for all X ,P (this often happens for n = 7). We need to compute

ΩSpin
n (BG ), ΩSpin

n+1 (BG ), ΩSpin
n (LBG ) using algebraic topology.
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If ι : G → H is a morphism of Lie groups of ‘complex type’, and
P → X is a principal G -bundle, then Q = (P ×H)/G is a principal
H-bundle, and an orientation for BQ induces one for BP . Using
complex type morphisms SU(8) ↪→ E8 and SU(m) ↪→ SU(m′) for
m ⩽ m′, we can show that if X is a spin 8-manifold then
orientability of BQ for all principal E8-bundles Q → X implies
orientability of BP for all principal U(m)-bundles P → X . Thus, to
solve the CY4 orientability problem, it is enough to understand
orientability for E8-bundles.
There is a 16-connected map BE8 → K (Z, 4), where K (Z, 4) is the
Eilenberg–MacLane space classifying H4(−,Z), so
ΩSpin
n (BE8) ∼= ΩSpin

n (K (Z, 4)) for n < 16, and
ΩSpin
n (LBE8) ∼= ΩSpin

n (LK (Z, 4)) for n < 15. Using this, we can
reduce orientability questions for E8-bundles to conditions that can
be computed using cohomology and cohomology operations on X ,
in particular Steenrod squares. The proofs involve lots of
complicated calculations of bordism groups in Algebraic Topology,
spectral sequences, etc.
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3. Statement of main results: orientability

I’ll explain only results in 8 dimensions relevant to DT4 invariants,
and a bit extra on Spin(7) instantons. They are part of a bigger
theory, which also includes results on orientability of moduli spaces
of submanifolds, such as Cayley 4-folds in Spin(7)-manifolds.
Let X be a compact oriented spin 8-manifold. Impose the condition:
(*) Let α ∈ H3(X ,Z), and write ᾱ ∈ H3(X ,Z2) for its mod 2

reduction, and Sq2(ᾱ) ∈ H5(X ,Z2) for its Steenrod square.
Then

∫
X ᾱ ∪ Sq2(ᾱ) = 0 in Z2 for all α ∈ H3(X ,Z).

Theorem 1

Suppose X satisfies condition (∗), and let G be a compact Lie
group on the list, for all m ⩾ 1

E8, E7, E6, G2, Spin(3), SU(m), U(m), Spin(2m). (1)

Then BP is orientable for every principal G -bundle P → X .
For G = E8, this holds if and only if (∗) holds.

We do this by applying our general orientability theory for G = E8

by studying ΩSpin
n (K (Z, 4)) and ΩSpin

n (LK (Z, 4)). The other cases
are deduced from G = E8 using complex type morphisms.
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The case G = U(m) and Step 2 of Cao–Gross–Joyce implies:

Corollary 2

Suppose a Calabi–Yau 4-fold X satisfies condition (∗). Then the
moduli stack M of perfect complexes on X is orientable in the
sense of Borisov–Joyce 2017.

Example

Let X ⊂ CP5 be a smooth sextic. Then H3(X ,Z) = 0 by the
Lefschetz Hyperplane Theorem. So (∗) and Corollary 2 hold.

Corollary 3

Suppose a compact Spin(7)-manifold (X ,Ω) satisfies condition
(∗), and G lies on the list (1), and P → X is a principal G -bundle.
Then the moduli space Mirr

P of irreducible Spin(7)-instanton
connections on P is orientable. (Here Mirr

P is a smooth manifold if
Ω is generic, and a derived manifold otherwise.)
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4. Statement of main results: canonical orientations

Suppose now that (∗) holds, so we have orientability of moduli
spaces BP or M on X . What extra choices do we need to make
on X to define canonical orientations on BP or M?

Definition

Let X be a spin 8-manifold, and P → X a principal G -bundle, and
OP → BP be the orientation bundle. Define the normalized
orientation bundle ǑP → BP by ǑP = OP ⊗Z2 Or(OX×G |[∇0]),
where Or(OX×G |[∇0]) is the Z2-torsor of orientations of BX×G for
the trivial G -bundle X × G → X at the trivial connection ∇0.
A trivialization of Or(OX×G |[∇0]) is an orientation for ind( /D

+
X )⊗ g,

where /D
+
X is the positive Dirac operator of X , ind( /D

+
X ) its

orientation torsor as a Fredholm operator, g the Lie algebra of G .

We show normalized orientations on BP are determined by a choice
of flag structure (next slide). Orientations on BP also need

an orientation on ind( /D
+
X )⊗g. If X is a Calabi–Yau 4-fold, there is a

natural orientation for ind( /D
+
X ), so we don’t need this second choice.
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Flag structures – first idea

Joyce 2018 and Joyce–Upmeier 2023 introduced flag structures on
7-manifolds, and used them to define orientations on moduli spaces
of associative 3-folds and G2-instantons on compact G2-manifolds.
We define a related (but more complicated) notion of flag
structure F for compact spin 8-manifolds X satisfying condition
(∗), as a choice of natural trivialization of an orientation functor
associated to X (more details later). We can write a flag structure
F as (Fα : α ∈ H4(X ,Z)), where each Fα lies in a Z2-torsor. Thus,
the set of flag structures on X is a torsor for Map(H4(X ,Z),Z2).
By imposing extra conditions we can cut this down to a finite
choice of flag structures.
If X is a Calabi–Yau 4-fold, the orientation on M at a perfect
complex [E•] ∈ M depends on Fα for α = c2(E•)− c1(E•)2.
There is a canonical choice for F0. Hence, if c2(E•)− c1(E•)2 = 0,
there is a canonical choice of orientation on the connected
component of M containing E•. Thus we deduce:
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Theorem 4

Suppose a Calabi–Yau 4-fold X satisfies condition (∗). Choose a
flag structure F on X . Then we can construct a canonical
orientation on the moduli stack M of perfect complexes on X .
On the open and closed substack Mc2−c21=0 ⊂ M of perfect

complexes E• with c2(E•)− c1(E•)2 = 0, we can define the
canonical orientation without choosing a flag structure.

The second part resolves a paradox. There are several conjectures in
the literature by Bojko, Cao, Kool, Maulik, Toda, . . . , of the form

Conventional invariants of X ≃ DT4 invariants of X , (2)

where the left hand side, involving Gromov–Witten invariants etc.,
needs no choice of orientation, but the right hand side needs a
Borisov–Joyce orientation to determine the sign. All these
conjectures are really about sheaves on points and curves —
Hilbert schemes of points, MNOP, DT-PT, etc. — and so involve
only complexes E• with c2(E•)− c1(E•)2 = 0 in H4(X ,Z).
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5. Picard groupoids and bordism categories

Definition

A Picard groupoid (G,⊗,1) is a groupoid G with a monoidal
structure ⊗ : G ⊗ G → G which is symmetric and associative up to
coherent natural isomorphisms (not included in the notation), and
an identity object 1 such that 1⊗ X ∼= X ⊗ 1 ∼= X for all X ∈ G,
such that for every X ∈ G there exists Y ∈ G with X ⊗ Y ∼= 1.

Picard groupoids are classified up to equivalence by triples
(π0, π1, q), where π0, π1 are abelian groups and q : π0 → π1 is a
map which is both linear and quadratic. To (G,⊗,1) we associate
the abelian groups π0 of isomorphism classes [X ] of objects X ∈ G
with multiplication [X ] · [Y ] = [X ⊗ Y ], and π1 = AutG(1).
Symmetric monoidal functors F : (G,⊗,1) → (G′,⊗,1′) are
functors F : G → G′ preserving all the structure. They are
classified up to monoidal natural isomorphism by group morphisms
f0 : π0 → π′0 and f1 : π1 → π′1 with q′ ◦ f0 = f1 ◦ q.
We could call Picard groupoids abelian 2-groups, as they are a
2-categorical notion of abelian group.
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Our theory uses special examples of Picard groupoids we call
bordism categories. Here is an example.

Example

Let G be a Lie group, and n ⩾ 0. Define a Picard groupoid
BordSpinn (BG ) to have objects pairs (X ,P) of a compact spin
n-manifold X and a principal G -bundle P → X , and morphisms
[Y ,Q] : (X0,P0) → (X1,P1) to be equivalence classes [Y ,Q] of a
compact spin (n + 1)-manifold Y with boundary ∂Y = −X0 ⨿ X1

and a principal G -bundle Q → Y with Q|∂Y = P0 ⨿ P1, where the
equivalence involves (n + 2)-dimensional bordisms. The
composition of [Y ,Q] : (X0,P0) → (X1,P1) and
[Y ′,Q ′] : (X1,P1) → (X2,P2) is [Y ⨿X1 Y

′,Q ⨿P1 Q
′]. The

monoidal structure is disjoint union,
(X ,P)⊗ (X ′,P ′) = (X ⨿ X ′,P ⨿ P ′).

The classifying data is π0 = ΩSpin
n (BG ), π1 = ΩSpin

n+1(BG ), and

q : [X ,P] 7→ [X × S1nb,P × S1nb], where S1nb is S1 with the

non-bounding spin structure. Here ΩSpin
∗ (−) is spin bordism, a

generalized homology theory, and BG is the classifying space.
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Example

The groupoid Z2-tor of Z2-torsors is a Picard groupoid with
π0 = 0 and π1 = Z2.
The groupoid s-Z2-tor of super Z2-torsors (Z2-graded Z2-torsors)
is a Picard groupoid with π0 = π1 = Z2 and q = id : Z2 → Z2.

Example

(a) Suppose n ≡ 1, 7 mod 8. We can define a symmetric monoidal

functor F : BordSpinn (BG ) → Z2-tor which maps (X ,P) to the
Z2-torsor of orientations onAP defined using theDirac operator /DX .
(b) Suppose n ≡ 0 mod 8. We can define a symmetric monoidal

functor F : BordSpinn (BG ) → s-Z2-tor which maps (X ,P) to the
Z2-torsor of orientations on AP defined using the positive Dirac
operator /D

+
X , Z2-graded in degree ind( /D

+
X ⊗ ad(P)) mod 2.

Thus we can encode orientations of moduli spaces in orientation
functors between Picard groupoids. This is not obvious. It depends
on a bordism-invariance property of indices and determinants of
Dirac operators proved in Upmeier arXiv:2312.06818.
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Example

Let (X , g) be a compact spin n-manifold, and G be a Lie group.

Define a subcategory BordSpinX (BG ) of BordSpinn (BG ) to have
objects (X ,P) for X the fixed spin n-manifold and varying P, and
to have morphisms [X × [0, 1],Q] for Y = X × [0, 1] the fixed spin
(n + 1)-manifold with boundary, and varying Q. Write

inc : BordSpinX (BG ) ↪→ BordSpinn (BG ) for the inclusion functor.
Suppose n ≡ 1, 7, 8 mod 8, and write
FX = F ◦ inc : BordSpinX (BG ) → Z2-tor, where for n ≡ 8 we
compose with s-Z2-tor → Z2-tor forgetting Z2-gradings.

Then a choice of orientation for BP for each principal G -bundle
P → X , invariant under isomorphisms P ∼= P ′, is equivalent to a
natural isomorphism η : FX ⇒ 1X , where 1X is the constant
functor with value Z2. Hence, BP is orientable for every principal
G -bundle P → X if and only if the functor
FX : BordSpinX (BG ) → Z2-tor is trivializable.
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To see why this is true, note that BP = AP/GP , where AP is the
infinite-dimensional affine space of connections on P → X , and
GP = Aut(P) is the gauge group. Here AP is always orientable,
with exactly two orientations, as it is contractible. So BP is
orientable if and only if the group GP acts trivially on the Z2-torsor
of orientations on AP .
Given an element γ ∈ Aut(P), we can define a morphism
[X × [0, 1],Q] : (X ,P) → (X ,P) in

BordSpinX (BG ) ⊂ BordSpinn (BG ) by taking Q to be P × [0, 1] with
identifications idP : P × {0} → P and γ : P × {1} → P. All
morphisms [X × [0, 1],Q] : (X ,P) → (X ,P) are of this form. So
GP acts trivially on the Z2-torsor of orientations on AP if and only
if FX is trivializable over the object (X ,P).
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The orientation functor F : BordSpinn (BG ) → Z2-tor or s-Z2-tor is

classified by morphisms F0 : Ω
Spin
n (BG ) → 0 or Z2 and

F1 : Ω
Spin
n+1(BG ) → Z2. For a fixed compact spin n-manifold X , we

can show that FX is trivializable (hence, BP is orientable for all
principal G -bundles P → X ) if and only if there does not exist an

element of the form [X × S1b,Q] ∈ ΩSpin
n+1(BG ) with

F1([X × S1b,Q]) ̸= 0 in Z2. We can also write this in terms of

[X ,Q] ∈ ΩSpin
n (LBG ) with F1 ◦ ξ([X ,Q]) ̸= 0, where

LBG = MapC0(S1,BG ) is the free loop space and

ξ : ΩSpin
n (LBG ) → ΩSpin

n+1(BG ) maps ξ : [X ,Q] 7→ [X × S1b,Q]. If

F1 ◦ ξ : ΩSpin
n (LBG ) → Z2 is identically zero then BP is orientable

for all compact spin n-manifolds X and principal G -bundles P → X .
We can use Algebraic Topology and spectral sequences to compute
bordism groups such as ΩSpin

n (BG ),ΩSpin
n (LBG ), and morphisms

such as ξ : ΩSpin
n (LBG ) → ΩSpin

n+1(BG ), and F0 : Ω
Spin
n (BG ) → Z2

and F1 : Ω
Spin
n+1(BG ) → Z2 which classify orientation functors. Then

we can use these to prove theorems on orientability and canonical
orientations. I’ll tell you more about all this next week.
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