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Introduction

1. Introduction

Let X be a complex projective surface, with geometric genus

pg = dim H°(Kx). We usually restrict to p; > 0, that is,

b3 (X) > 1. Let & € K2, ,(X) be a topological K-theory class on X.
We often write k = (r, a, k) for r = rank k, a = c1(k) € H*(X,Z)
and k = chy(k) € 3Z with [ a® 4+ 2k € 2Z, and usually restrict to
r > 0. Choose a Kahler class w on X. Then we can define Gieseker
(semi)stability T of coherent sheaves on X using w, and can form
moduli stacks M5 (1) C M3¥(7) of 7-(semi)stable coherent
sheaves on X with class . Here M3'(7) has a Behrend—Fantechi
obstruction theory (which is reduced if pg > 0) and M3*(7) has a
projective coarse moduli scheme. Thus, if M5(7) = M(7) (if
there are no strictly 7-semistable sheaves in class ) then M3(7)
is proper with a B—F obstruction theory, and so has a virtual class
[MEE(T)]vire in Ho(M3P(7),Z). In nice cases (e.g. Hilbert schemes)
M3 (7) is smooth and [MP(7)]virt = [M3(7)]fund is the
fundamental class of M$’(7) as a compact complex manifold.
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We can construct many universal cohomology classes Sj on

MP (1) — in the case when M;3(7) is a fine moduli space, by
Sj = chy(U)\ejx for U — X x M3(7) the universal sheaf and ej,
a basis element for Hy(X, Q). Then we can form enumerative
invariants lp = f[Mff(T)]virc P(Sj«i) for any polynomial P(Sj) in
these universal classes homogeneous of the correct dimension.
There is a huge literature by many authors studying invariants of
this kind for particular x (e.g. rank r = 2) and P(Sjq). They
include Donaldson invariants of the underlying oriented 4-manifold
X, K-theoretic Donaldson invariants, Vafa—Witten invariants
(instanton branch), Segre integrals, Verlinde integrals, virtual Euler
characteristics and x,-genera of M3(7), and so on. Often people
show that these invariants /p can be encoded in generating
functions of a nice form. There are also many open conjectures like
this by Gottsche, Kool and others. In fact, for rank r > 1 and
c1(X) # 0 there are lots of conjectures and few theorems.
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| will report on a project which in some sense determines all
possible invariants Ip = f[Mf‘f(T)]virt P(Sju), as it determines the
virtual classes [M}?(7)]virt. We give an expression for [M3(7)]virt
in terms of non-explicit universal functions in infinitely many
variables ry, r1, ..., depending on the rank r of k, with coefficients
in a number field F, C C. This proves at least the structural part
of many conjectures in the literature (i.e. it gives the shape and
symmetries of the invariants’ generating function, but may not
determine the particular power series appearing in it).

This is an application of my Monster Wall Crossing Formula paper
arXiv:2111.04694, which defined enumerative invariants in very
general settings and proved they satisfy a WCF. Today | am going
to try to explain just the statement of the main theorem in the
case pg > 0. | may not have time to talk about the proof.
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2. Set up of the problem

For reasons explained in a moment, we work with moduli stacks of
objects in the derived category D coh(X), rather than objects in
coh(X). Write M for the moduli stack of objects in D? coh(X), a
higher C-stack. It has a splitting M = HﬁeK&p(X) M, with M,

the substack of E® with class [E®] = k. There is a morphism

& M x M — M acting by ([E®],[F°*]) — [E® @ F*] on C-points.
Now G, acts on objects E® in D coh(X) with A € G, acting as
Aidge : E®* — E®. This induces an action ¥ : [x/Gp] x M — M
of the group stack [*/G,] on M. We write MP! = M /[/G ] for
the quotient, called the ‘projective linear’ moduli stack. It has a
splitting MP! = HRGKPOP(X) ME with MEP = M, /[+/G ). There

is a morphism M — MP! which is a [*/G p,]-fibration on M \ {[0]}.
We consider 7-(semi)stable moduli stacks M5'(7) € M(7) to be
open substacks of MP!. This is because 7-stable sheaves E have
Aut(E) = G, so quotienting by G, gives M3 (7) trivial isotropy
groups, that is, M5'(7) is actually a C-scheme, not an Artin stack.
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Theorem 1 (Jacob Gross arXiv:1907.03269)

Let X be a connected complex projective surface. Write M for the
moduli stack of objects in D? coh(X) and K2, (X) for the
semi-topological K-theory of X (equal to
Image(K°(coh(X)) — Kt%p(X)) for X a surface). Then

M = I1eko, (x) Mx with M,; connected, and
H. (M, Q) = Sym” (H"(X, Q) &g £°Q[t*])2g

N\ (H(X, Q) @ tQ[t?]). (2.1)
A similar equation holds for cohomology H*(M,, Q).

This says we can describe H,(M) completely explicitly. It is why
we take M to be the moduli stack of objects in D? coh(X): we do
not have an explicit description of the homology of the moduli
stack of objects in coh(X).
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Definition
Let X, M, M, be as in Theorem 1, and write U}, — X x M, for
the universal complex Write bX = b*(X) for k =0,...,4, and
choose bases (eJk) for Hx(X,Q) with e;p =1 and e1s = [X].
Write (Ejk)jzl for the dual basis for H*(X, Q). For | > k/2 define
Sjkl € H?=k(M,,) by Sjk = chy(U?)\ejk. Regard Sj as of degree
2/ — k, and as an even (odd) variable if k is even (odd). Then
Theorem 1 shows H*(M,) is the graded polynomial superalgebra
H* (M) 2 Q[Siw : 0< k<2m, 1<j< b5 1>k/2. (22)
We also give a dual description of homology H.(M,;) by
H (M,) = " @ Q[spy : 0<k<2m, 1< <bX, I>k/2], (23)
where e” is a formal symbol to remember «, and

—m ;
m =l H mjk/!, mjk/fmjk, a”J,k, /,
(11 55) - (= I s
; Jki ; jkl -
4,k Jsk

Jikil
0, otherwise.
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This pairing has the property that if & : M x M — M maps
([E®],[F°*]) = [E® @ F*] then

H*(d))(e”P(sjk,) X e/\Q(sjk/)) = eﬁ+>\P(5jk/)Q(5jk,)

for polynomials P, Q. Also — N Sj acts as %W.

It is helpful to write e = e2.k MikSK(K/2) for variables skl with [=k/2.
It will be convenient to restrict to sheaves of positive rank Write
Mo = H,{GKM(X) rk,{>0 M., and similarly for MY k>0 Then
M>o : Muso — Mrk>0 induces a surjective morphism
H.(Myx>0) — (./\/lrk>0) It turns out this induces an
isomorphism from Ker(— N S101) to H, (Mrk>0) where

Ker(— N Si01) is functions independent of sjp1. Thus we identify

Hi(MPbo) = P et 92 @Qlsy : 0<k<2m, 1<j<b¥,
ReKS (k>0 [>k/2, (jok, 1) # (1,0,1)]. (2.4)
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Thus, if x satisfies rank x > 0 and M3*(7) = M(7) we have
[MZS(T)]Virt € H2+2pg—2x(m,n)(Mgl? Q) = em@[sjk/v (./7 k, I) A (17 0, 1)]>
where x : K& (X) x K (X) = Z is the symmetrized Euler form.
We write [MP(7)]vire = €*Py(Sjki), for Pi(sjki) a Q-polynomial in
the infinitely many graded variables sj, homogeneous of degree

2 +2pg — 2x(k, k). Our mission, should we choose to accept it, is
to compute the polynomials Py (sj«) (or better, generating
functions encoding the Py(sjx)) as explicitly as possible. Knowing
PH(SJ'/(/) tells us Ip = jiMZS(T)]virt P(Sjk/) for all P(SJ';(/).

My Monster WCF paper defines invariants [M$(7)]iny in rational
homology H.(MP!, Q) for all classes x, not just those with
stable=semistable, with [M(7)]iny = [M(7)]virs in Ho(MPL, Z)
when M3 (1) = M5(7). These [M(7)]iny satisfy identities (Wall
Crossing Formulae) which are powerful tools for computations. We
aim to compute [M$(7)]inv for all x with rank x > 0.
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Donaldson invariants are defined when rk x = 2 as integrals
f[MZS(T)]inV Q(S102, Sj22 : j = 1,..., b?) of polynomials Q in

Si02 € H*(M,,) and Sj € H?(M,). So they are determined by
taking P.(sjir) and setting sy = 0 if (j, k, /) # (1,0,2) or (4,2,2).

This illustrates the fact that Donaldson invariants, and other
invariants in the literature, are just a small slice of the information
in [M3(7)]iny, which depends on infinitely many variables. To use
my WCF, we usually have to compute with the whole of
[MS3(7)]inv, not just small pieces like Donaldson invariants.

There is an important difference between p; = 0 and p; > 0. If
pg =0 (i.e. b3 = 1) then [M¥(7)]iny depends on the Kahler form
w used to define 7, but if pg > 0 (i.e. b3 > 1) it is independent.
For pg > 0 we define [M}*(7)]inv using reduced obstruction
theories. The WCF for p; = 0 and pg > 0 are different (there are
more terms when pg = 0). Today | discuss only pg > 0. The case
pg = 0 is more difficult, as it involves (naively) non-convergent sums.
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3. The main results. 3.1. Normalizing ¢i(k)

Let L — X be a line bundle with ¢1(L) = A € H?(X,Z). Then
— ® L: DPcoh(X) — DPcoh(X) is an equivalence inducing an
isomorphism M, — M,.g]- Under the isomorphism
H, (M., Q) = Q[sjx], this is identified with an algebra
isomorphism Q) : Q[sjx] — Q[sji/] acting on generators by

Q= sjg — Z Aj';(k,Sj’k’l’a

' K120 — k=21 — k!

where (Aj.,/(k/) is the matrix of —® L on K2 (X), and is polynomial in
A. Thus Q) makes sense for A € H2(X,Q), as well as \ € H*(X,Z).
We have Q, (M (7)]inv) = [MZ517(7T)linv. So for k= (r, a, k)
with r >0, we find it helpful to consider Q_, /,([M{7 , )(T)]inv)-
Effectively, we are tensoring by a ‘fractional line bundle’ L
with ¢1(L) = —a/r, to modify k = (r, , k) so that it has ¢;(x) = 0.
The advantage is that formulae for Q_, / ([M{7 , )(7)]inv) are nearly
independent of « (they depend on [, aU B mod r for § € SW(X)).
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3.2. The universal variables r;. The number field [,

We want to give an expression for Q([M3(7)]inv) involving
universal functions independent of X, and of the bases (ej) for
Hi(X,Q) and (ej) for H¥(X, Q) which determine the
(co)homology variables Sil» Sjki- To do this we will use ‘universal
variables’ r; where r; € H*(X,Q) ® Q[sjx] for 0,1,... are given by

r = Z )\j:{(k,ej/k/ X Sikl I = 1, 2, ey (31)

L ik K 12k )2
with ()\j.kk ) the inverse matrix of (a, 8) — [y, a U S on H*(X).
We write r = (ro, r1, 2, . . .).
For r > 1 (the rank of k) define a number field F, C C by

Q, r=1or2,
F, = { Qex], r>3isodd,

=
Q[e*], r >3 is even.
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3.3. The main theorem

When pg > 0, for r > 1 and (r,a, k) € K (X) there is a formula
ss vdim M58 T
Qo (MG (M) = [a (et (7] (3.2)

do(X X)2 b
Z ﬂ-p[xt 2 )'77[)(61( 2 H Crfigfuﬂb'
B1ye-sBr—1 1<a<b<r—1
EH?(X,Z)1: r—1
saESWO0. <2200 T (SWi(lsa)ors™™) -
a=1

a=1,...,r—1

00 UX A(Bi, - Byr, c1(X), tda(X), g, r)}

Here [M{3 ., k)(7)]ta is the ‘fixed determinant’ invariant, equal to

[M?ia,k)('r)]inv when bt (X) =0, and PrsTry Cr,aba Gr, gr,a € Fr\{0}7
and A, is a universal function independent of X, and SW(sg,) €Z
are Seiberg—Witten invariants of X. Furthermore:
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Theorem 2 (Continued)
(i) pr= il

27ib

ra € {e r 1< b<r} isa nontrivial r'" root of unity.

i) 6
(ii) ¢, € {eZT' 1< b r} is an rth root of unity.
)
)

(iv) nr and G ab for1<a< b < r lieinF,\ {0}.

v) A, lies in the quotient of F [ﬁl,...,ﬁr 1, c1(X), tda(X),
10,11, r2, - - -J[[qllg>0 by an ideal generated by things like
c1(X)3, ci(X) Utda(X),. ... Here to regard A, as
independent of X, we just consider (3,, c1(X), ... to be formal
variables. But when we fix a surface X, then we regard
A(Br,...1) as lying in H*(X, Q) @ Qlsjul[[q]], where
Ba, c1(X), tda(X) € H*(X, Q) are the given values, and
€ H*(X,Q) ® Q[sj] are as in (3.1). Then [, Ar(---)
applies [, : H*(X,Q) — Q so that
Jx Ar(--+) € Qlsjalllallgo- B

Note that o appears in (3.2) only through [¢" ™ e m (™R 3nd
qb[x aUcl(X)’ arf);auﬁa

,and so via [y aUc(X), [y aU B, mod r.
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3.4. Example: Hilbert schemes

For rank r =1, fixed determinant moduli spaces M{; , () are
basically Hilbert schemes Hilb"(X). Also there are no
Seiberg—Witten terms in (3.2). In this case we can rewrite and
strengthen Theorem 2 to give:

Writing u = (u2, us, . . .), there exists a formal function H(ci, ¢z, u)
in Qus, ua, .. .][[e""2, c1, c2]], defined uniquely as the solution to a
p.d.e., such that for any complex projective surface X we have

> q"[Hilb"(X)]funa (3.3)

fixp[/}((ro + H(c1(X), (X)), o — log q, 13, 12, .. ))]

We can compute H(cy, ¢z, u) up to some order in e "2, c1, ¢p using
Mathematica. If an algebraic group G acts on X, equation (3.3)
also holds in equivariant homology HE(M).
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An application: Virasoro constraints

The following is a minor extension of work by Arkadij Bojko,
Woonam Lim, and Miguel Moreira.

Theorem 4

Hilbert schemes [Hilb"(X)]suna satisfy ‘Virasoro constraints’ (some
complicated identities) for all complex projective surfaces X.

Previously this was known for X with b!(X) = 0 (Moreira 2021).

Sketch proof.

By MOOP 2020, Virasoro constraints hold for [Hilb"(X)]guna for X
projective toric. When X = CP? and CP* x CP?, this implies
H(ci, c2, u) in Theorem 3 satisfies a large family of p.d.e.s. These
p.d.e.s then imply Virasoro for all X. This works when b'(X) > 0
as the odd variables s are packaged inside even variables r;. []

| expect to deduce Virasoro constraints for sheaf counting invariants
for all projective surfaces X, following Bojko—Lim—Moreira 2022.
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3.5. Example: Donaldson invariants in arbitrary rank

Let L € H*(X,Q), and write L =Y ", Licjp. The rank r

Donaldson invariants of X are
2

b
D()i,a,k)(L + upt) = / . exp (ijl L;Sj22 + S102 U)-
[M(,,ayk)(T)]fd

vdim M T
D()I<’,Oé7k)(l_ + upt) — [q (r,a,k)( )fd:| (34)
Z rzprfxtdz(X)ner c1(X)2¢[X alUc (X) H Cr{);fauﬁb
B1ye-Br—1 1<ag<bgsr—1

€H2(XZ)11 r—1 ) ) )
SW(X . 1
2%16 ,r_) H (SW([sg ])0 ) exp [q < /XL —l—ru)
—|—q</LU CCl +Zcraﬁa >:|

Here C;, C;, € F,. The exp[- - -] term comes from the terms in
q°r2,G%r, qci(x) U ry, B, U ra in A, just r + 2 coefficients.
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3.6. Symmetries of the generating function
Here is (3.2) again:

Q—a/r([M?i,a,k)(T)]fd) — [quun/\/l(rak)( )fd]
Z 2. prfx td2(X) nrfx a(X)? H Cr{);fauﬁb ‘

B1y-sBr—1 1<a<b<r—1
GHQ(X Z)1 L.
LESW(X Ucr (X UBa
:“’;6 1.1 ) ¢fxa Cl ) H SW [553])9{);& 8 ) .
a=1

exp UX ABr, - Bt c1(X), tda(X), . r)}

This has an obvious symmetry group S,_1 by permutation of
B1,...,8r—1. Less obvious, if 3 is a Seiberg—Witten class then so
is —c1(X) — B, with SW([s_¢,(x)—g]) = (—1)Jx =¥ SW([s4]).
So replacing 2 by —c1(X) — B, and p, by —p,, gives a
Zoy-symmetry for a=1,...,r — 1. This gives a symmetry group
N=5_1x Zg_l acting on choices of pr, 0, ¢r,0r a,Cr ap, A
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Symmetries of the generating function

(a) It turns out that the data p;, 7, ¢, 0r, 2, Cr.ab, Ar is unique up
to this action of ', = 5,1 x Zg’l. We can conjugate everything
by an element of the Galois group Gal([F,); this is equivalent to
the action of an element of I',, giving a morphism Gal(F,) — T,.
(b) We can use the I',-action to standardize the constants

PrsNrs @r, 0r 2, Cr ap: after applying an element of ', we can take

2mia
pr:%v ¢r:1a 9,’73:6', a=1,...,r—1L
There are also conjectural values for 7, (, 5 due to Gottsche
2021, but | haven't proved these yet, except for small r.

(c) If ris odd then vdim M?ls,7a7k)(7')fd is always even. Then all

q°dd terms in the whole sum (3.2) are zero, even though individual
terms in the sum can have nonzero g°d terms.

(d) vdim MG, (1) = Jx aUc(X)+ [y tda(X) mod 2 if r

is even. If n# [, aUcr(X)+ [ td2(X) mod 2 then g” terms in
the whole sum (3.2) are zero.

(e) Parts (c),(d) give an extra Z, symmetry of (3.2) under ¢ — —q.
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3.7. Sketch of the proof: rank 1 case

First | prove the rank 1 case, Theorem 3 on Hilbert schemes.

Define Hilb(X, q) = >0 ¢"[Hilb"(X)]funa € Q[siw/][[g]]- Using
Ellingsrud—Gottsche—Lehn 2001 | show that

Hilb(X,q) =1+q(---), (3.5)
2 Hilb(X, q) =
9q ) Stk /2=t 7

R re - — — U0 e X s
e {Z exp[ j,wyk,ﬂz (7= (k+ k) 2)1 " 5’“]

I'>k'/2: 1" >(k+k') /2
0 0 .
o exp {—22 e1a X 95 + -k,z (=1 X @} - Hilb(X, q)}7 (3.6)
Joky I>k/2
where (pj:;k/) is the inverse Mukai pairing. Then | show that (3.3)
is the unique solution to (3.5)—(3.6), where H(c1, ¢z, u) is the
solution to a p.d.e. derived from (3.5)—(3.6).
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3.8. Constructing invariants by induction on rank

There is a method to compute invariants [M(7 , ) (7)]inv by
induction on the rank r = 1,2, ... starting from rank 1 data. This
is due to Mochizuki 2009 in the algebraic case, and is the analogue
of the construction of Donaldson invariants from Seiberg—Witten
invariants. Fix a line bundle L — X, and define an auxiliary abelian
category A with objects (V, E, ¢), where V is a finite-dimensional
C-vector space, E € coh(X), and ¢ : V ®c L — E is a morphism.
Write the class of (E, V,¢) as [E, V,¢] = ((r, a, k), d) where

[E] = (r,, k) and dim¢ V' = d. Starting from 7 on coh(X) we
define a 1-parameter family of stability conditions 7 on A for

t € [0,00). Thus we get semistable moduli stacks M??r,a,k),d)(%t)
of objects in A. My theory defines ‘pair invariants’

[ ??r,a,k),d)(%t)]inv (at least when r > 0 and d = 0, 1) satisfying a
wall-crossing formula under change of stability condition 7.
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It turns out that:

When d =0, M({, , s).0)(Tt) = M7, (7). Thus the sheaf
invariants [M{} , y(7)]inv are pair invariants with d = 0.
If r=1, M((l,a,k), )(7‘t) is independent of t and may be

written using Seiberg—Witten invariants and Hilbert schemes.
Ifr>1,d=1and t > 0 then M??rak)l)(%t) =0, so

[./\/l(?ra k),d)(7t)]inv = 0. Thus wall-crossing from t >> 0 to
t = 0 gives a WCF of the general form
[M{{+ .k),1)(70)]inv = sum of repeated Lie brackets of
M3 g0y 1y i and (MG oy (7 for 7" <,
using a Lie bracket on H, (Mp ) from my vertex algebra theory.
If L= Ox(—N) for N >> 0 we can recover [M{} , y(7)]inv
frorT1 [M??r,a,k),l)(TO)]an
By induction we may now compute [M(7 | )(7)]inv =
[ ??r—&-l,a,k),l)(%o)]inv = | ?Z—l,a,k)(T)]inv =
Thus, we can compute [M(7 , 41(7)]iny for r > 1 in terms of
classes of Hilb"(X), Pic®(X) and Seiberg-Witten invariants.
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In the representation (2.4), with (Nj:;(k/) the matrix of the symmetrized
Mukai pairing, we may write the Lie bracket on H*(Mﬁ;o) as

[e”u(si), €’ V(S{/k///)]rk>0 = Res, [(—1)X(a’ﬁ)z>‘(“’ﬂ)+’<(ﬂ’“)~

{ex”( ij-ﬁ (Zslk D D5 ))
exp( r;:jﬁ ( Z S/k/(/'+1)a - )) (3.7)

I k/ II
exp(f S (D T (koK) 2= 1)

ok’ K o2 o o,
) (e U(Sjk/) . eB V(Sj/k/,/))}

I>k/2, I'>K' )2 lek
J

[ ’
/ S 1=Sj) :| N
aSjklaSJ-/k/,/ il = Sjkl
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3.9. Changing the generating function to the right form

Equation (3.7) is a complicated mess. What this means in practice:
if you suppose (3.2) holds in rank r, and you use this to compute
the generating function of invariants in rank r + 1 using the
inductive method, computing the Lie brackets using (3.7), and you
get to the end without dying, the result does not look like (3.2) in
rank r + 1. Instead, it gives you a really complicated residue in an
extra formal variable z, which depends on the line bundle L — X,
even though the answer [M(7_; | (7]t is independent of L.
Worse, you can't use one L for the whole generating function, L
must be more and more negative as the power of g increases.

The most difficult part of the proof is to show this residue can

actually be written in the form (3.2) for rank r + 1.

Dominic Joyce, Oxford University Structure of invariants counting coherent sheaves on surfaces



The main results

To do this we change variables in the residue from z to another
formal variable y. Then it turns out that there exists a smooth
projective curve ¥, meromorphic functions xi,..., X,y :

Y — CU{oo}, and points 09,0 € X with y(o;) = i, such that:

@ The group .41 acts on X, and y is [ ,1-invariant and gives
an isomorphism X /I, = CU {oco}. Thus, any
[y +1-invariant meromorphic function on X is actually a
rational function of y € CU {oo}.

o Every part of the residue Res,(y 1 W) which will define the
generating function (3.2) in rank r + 1 lifts to the curve ¥, as
the Laurent expansion at o, €  of a QQ-rational function in
X1,...,Xr, ¥, in the local coordinate y.

@ The entire sum y LW inside Resy(y*1 W) is I, 11-invariant,
although the components are not. Thus, the entire sum is a
rational function of y € CU {oo}. It turns out to have a
simple pole at y = 0, and no other poles in C. Thus
Res, (yW) = W|,—o, or equivalently, W/|,,.

Dominic Joyce, Oxford University Structure of invariants counting coherent sheaves on surfaces



The main results

@ Thus, we are dealing with meromorphic functions on ¥, which
are presented initially as formal Laurent series in y near
Oso € L. We want instead to evaluate these meromorphic
functions at 0g € ¥, and this evaluation gives (3.2) and the
data Pr+1,Nr+1, ¢r+17 9r+1,ay Cr—l—l,aba Ar+1-

e y~1(0) is a free I, 1-orbit in ¥, and ¢ € y~1(0) is chosen
arbitrarily. Different choices give different data
Prs1, - - -5 Ary1, differing by the action of I',41.

e All terms in (3.2) come from Q-rational functions in
X1,...,Xr, y in X. But when we evaluate these at og € ¥,
which is not a Q-point for r +1 > 2, we get coefficients in F, ;.

@ The curve ¥ can be written completely explicitly, though in a
complicated way. This enables me to compute
Fri1, pro1s @ret, 0rq1,a explicitly.
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