PTVV's shifted symplectic geometry A 'Darboux theorem' for shifted symplectic schemes Extension to shifted symplectic derived Artin stacks

Shifted Symplectic Derived Algebraic Geometry and generalizations of Donaldson–Thomas Theory

Lecture 2 of 3: PTVV's shifted symplectic geometry. D-critical loci and perverse sheaves

Dominic Joyce, Oxford University KIAS, Seoul, July 2018

These slides, and references, etc., available at http://people.maths.ox.ac.uk/~joyce

PTVV's shifted symplectic geometry A 'Darboux theorem' for shifted symplectic schemes Extension to shifted symplectic derived Artin stacks

3. Shifted symplectic geometry References for §3

T. Pantev, B. Toën, M. Vaquié and G. Vezzosi, *Shifted symplectic structures*, Publ. Math. I.H.E.S. 117 (2013), 271–328. arXiv:1111.3209.

C. Brav, V. Bussi and D. Joyce, *A Darboux theorem for derived schemes with shifted symplectic structure*, arXiv:1305.6302, 2013.

O. Ben-Bassat, C. Brav, V. Bussi, and D. Joyce, *A 'Darboux Theorem' for shifted symplectic structures on derived Artin stacks, with applications*, Geometry and Topology 19 (2015), 1287–1359. arXiv:1312.0090.

D. Joyce and P. Safronov, *A Lagrangian neighbourhood theorem for shifted symplectic derived schemes*, to appear in Annales de la Faculté des Sciences de Toulouse, 2018. arXiv:1506.04024.

E. Bouaziz and I. Grojnowski, *A d-shifted Darboux theorem*, arXiv:1309.2197, 2013.

39 / 110

Shifted symplectic geometry and Darboux Theorems

D-critical loci and perverse sheaves

Dominic Joyce, Oxford University

PTVV's shifted symplectic geometry A 'Darboux theorem' for shifted symplectic schemes Extension to shifted symplectic derived Artin stacks

Lecture 2: Shifted symplectic geometry, d-critical loci

Classical symplectic geometry

Let M be a smooth manifold. Then M has a tangent bundle and cotangent bundle T^*M . We have k-forms $\omega \in C^{\infty}(\Lambda^k T^*M)$, and the de Rham differential $d_{dR} : C^{\infty}(\Lambda^k T^*M) \to C^{\infty}(\Lambda^{k+1}T^*M)$. A k-form ω is closed if $d_{dR}\omega = 0$.

A 2-form ω on M is nondegenerate if $\omega \cdot : TM \to T^*M$ is an isomorphism. This is possible only if dim M = 2n for $n \ge 0$. A symplectic structure is a closed, nondegenerate 2-form ω on M. Symplectic geometry is the study of symplectic manifolds (M, ω) . A Lagrangian in (M, ω) is a submanifold $i : L \to M$ such that dim L = n and $i^*(\omega) = 0$.

3.1. PTVV's shifted symplectic geometry

Pantev, Toën, Vaquié and Vezzosi (arXiv:1111.3209) defined a version of symplectic geometry in the derived world. Let \mathbf{X} be a derived \mathbb{K} -scheme. The cotangent complex $\mathbb{L}_{\mathbf{X}}$ has exterior powers $\Lambda^{p}\mathbb{L}_{\mathbf{X}}$. The *de Rham differential* $d_{dR} : \Lambda^{p}\mathbb{L}_{\mathbf{X}} \to$ $\Lambda^{p+1}\mathbb{L}_{\mathbf{X}}$ is a morphism of complexes. Each $\Lambda^{p}\mathbb{L}_{\mathbf{X}}$ is a complex, so has an internal differential $d : (\Lambda^{p}\mathbb{L}_{\mathbf{X}})^{k} \to (\Lambda^{p}\mathbb{L}_{\mathbf{X}})^{k+1}$. We have $d^{2} = d_{dR}^{2} = d \circ d_{dR} + d_{dR} \circ d = 0$. A *p*-form of degree *k* on \mathbf{X} for $k \in \mathbb{Z}$ is an element $[\omega^{0}]$ of $H^{k}(\Lambda^{p}\mathbb{L}_{\mathbf{X}}, d)$. A closed *p*-form of degree *k* on \mathbf{X} is an element $[(\omega^{0}, \omega^{1}, \ldots)] \in H^{k}(\bigoplus_{i=0}^{\infty} \Lambda^{p+i}\mathbb{L}_{\mathbf{X}}[i], d + d_{dR})$. There is a projection $\pi : [(\omega^{0}, \omega^{1}, \ldots)] \mapsto [\omega^{0}]$ from closed *p*-forms

There is a projection $\pi : [(\omega^0, \omega^1, \ldots)] \mapsto [\omega^0]$ from closed *p*-forms $[(\omega^0, \omega^1, \ldots)]$ of degree *k* to *p*-forms $[\omega^0]$ of degree *k*.

Dominic Joyce, Oxford University Lecture 2: Shifted symplectic geometry, d-critical loci

Shifted symplectic geometry and Darboux Theorems D-critical loci and perverse sheaves **PTVV's shifted symplectic geometry** A 'Darboux theorem' for shifted symplectic schemes Extension to shifted symplectic derived Artin stacks

Nondegenerate 2-forms and symplectic structures

Let $[\omega^0]$ be a 2-form of degree k on X. Then $[\omega^0]$ induces a morphism $\omega^0 : \mathbb{T}_X \to \mathbb{L}_X[k]$, where $\mathbb{T}_X = \mathbb{L}_X^{\vee}$ is the tangent complex of X. We call $[\omega^0]$ nondegenerate if $\omega^0 : \mathbb{T}_X \to \mathbb{L}_X[k]$ is a quasi-isomorphism.

If **X** is a derived scheme then the complex $\mathbb{L}_{\mathbf{X}}$ lives in degrees $(-\infty, 0]$ and $\mathbb{T}_{\mathbf{X}}$ in degrees $[0, \infty)$. So $\omega^0 : \mathbb{T}_{\mathbf{X}} \to \mathbb{L}_{\mathbf{X}}[k]$ can be a quasi-isomorphism only if $k \leq 0$, and then $\mathbb{L}_{\mathbf{X}}$ lives in degrees [k, 0] and $\mathbb{T}_{\mathbf{X}}$ in degrees [0, -k]. If k = 0 then **X** is a smooth classical K-scheme, and if k = -1 then **X** is quasi-smooth. A closed 2-form $\omega = [(\omega^0, \omega^1, \ldots)]$ of degree k on **X** is called a *k-shifted symplectic structure* if $[\omega^0] = \pi(\omega)$ is nondegenerate. Although the details are complex, PTVV are following a simple recipe for translating some piece of geometry from smooth manifolds/smooth classical schemes to derived schemes:

- (i) replace manifolds/smooth schemes X by derived schemes X.
- (ii) replace vector bundles TX, T^*X , $\Lambda^p T^*X$,... by complexes \mathbb{T}_X , \mathbb{L}_X , $\Lambda^p \mathbb{L}_X$,
- (iii) replace sections of TX, T^*X , $\Lambda^p T^*X$,... by cohomology classes of the complexes \mathbb{T}_X , \mathbb{L}_X , $\Lambda^p \mathbb{L}_X$,..., in degree $k \in \mathbb{Z}$.
- (iv) replace isomorphisms of vector bundles by quasi-isomorphisms of complexes.

Note that in (iii), we can specify the degree $k \in \mathbb{Z}$ of the cohomology class (e.g. $[\omega] \in H^k(\Lambda^p \mathbb{L}_{\mathbf{X}})$), which doesn't happen at the classical level.

43 / 110

Dominic Joyce, Oxford University Lecture 2: Shifted symplectic geometry, d-critical loci

Shifted symplectic geometry and Darboux Theorems D-critical loci and perverse sheaves **PTVV's shifted symplectic geometry** A 'Darboux theorem' for shifted symplectic schemes Extension to shifted symplectic derived Artin stacks

Calabi–Yau moduli schemes and moduli stacks

PTVV prove that if Y is a Calabi–Yau *m*-fold over \mathbb{K} and \mathcal{M} is a derived moduli scheme or stack of (complexes of) coherent sheaves on Y, then \mathcal{M} has a (2 - m)-shifted symplectic structure ω . This suggests applications — lots of interesting geometry concerns Calabi–Yau moduli schemes, e.g. Donaldson–Thomas theory. We can understand the associated nondegenerate 2-form $[\omega^0]$ in terms of *Serre duality*. At a point $[E] \in \mathcal{M}$, we have $h^i(\mathbb{T}_{\mathcal{M}})|_{[E]} \cong \operatorname{Ext}^{i-1}(E, E)$ and $h^i(\mathbb{L}_{\mathcal{M}})|_{[E]} \cong \operatorname{Ext}^{1-i}(E, E)^*$. The Calabi–Yau condition gives $\operatorname{Ext}^i(E, E) \cong \operatorname{Ext}^{m-i}(E, E)^*$, which corresponds to $h^{i+1}(\mathbb{T}_{\mathcal{M}})|_{[E]} \cong h^{i+1}(\mathbb{L}_{\mathcal{M}}[2-m])|_{[E]}$. This is the cohomology at [E] of the quasi-isomorphism $\omega^0: \mathbb{T}_{\mathcal{M}} \to \mathbb{L}_{\mathcal{M}}[2-m]$.

PTVV's shifted symplectic geometry A 'Darboux theorem' for shifted symplectic schemes Extension to shifted symplectic derived Artin stacks

Lagrangians and Lagrangian intersections

Let (\mathbf{X}, ω) be a *k*-shifted symplectic derived scheme or stack. Then Pantev et al. define a notion of Lagrangian \mathbf{L} in (\mathbf{X}, ω) , which is a morphism $\mathbf{i} : \mathbf{L} \to \mathbf{X}$ of derived schemes or stacks together with a homotopy $\mathbf{i}^*(\omega) \sim 0$ satisfying a nondegeneracy condition, implying that $\mathbb{T}_{\mathbf{L}} \simeq \mathbb{L}_{\mathbf{L}/\mathbf{X}}[k-1]$. If \mathbf{L}, \mathbf{M} are Lagrangians in (\mathbf{X}, ω) , then the fibre product $\mathbf{L} \times_{\mathbf{X}} \mathbf{M}$ has a natural (k-1)-shifted symplectic structure. If (S, ω) is a classical smooth symplectic scheme, then it is a 0-shifted symplectic derived scheme in the sense of PTVV, and if $L, \mathbf{M} \subset S$ are classical smooth Lagrangian subschemes, then they are Lagrangians in the sense of PTVV. Therefore the (derived) Lagrangian intersection $L \cap \mathbf{M} = L \times_S \mathbf{M}$ is a -1-shifted symplectic derived scheme.

45 / 110

Dominic Joyce, Oxford University Lecture 2: Shifted symplectic geometry, d-critical loci

Shifted symplectic geometry and Darboux Theorems D-critical loci and perverse sheaves **PTVV's shifted symplectic geometry** A 'Darboux theorem' for shifted symplectic schemes Extension to shifted symplectic derived Artin stacks

Examples of Lagrangians

Let (\mathbf{X}, ω) be k-shifted symplectic, and $\mathbf{i}_a : \mathbf{L}_a \to \mathbf{X}$ be Lagrangian in \mathbf{X} for a = 1, ..., d. Then Ben-Bassat (arXiv:1309.0596) shows $\mathbf{L}_1 \times_{\mathbf{X}} \mathbf{L}_2 \times_{\mathbf{X}} \cdots \times_{\mathbf{X}} \mathbf{L}_d \longrightarrow (\mathbf{L}_1 \times_{\mathbf{X}} \mathbf{L}_2) \times \cdots \times (\mathbf{L}_{d-1} \times_{\mathbf{X}} \mathbf{L}_d) \times (\mathbf{L}_d \times_{\mathbf{X}} \mathbf{L}_1)$

is Lagrangian, where the r.h.s. is (k-1)-shifted symplectic by PTVV. This is relevant to defining 'Fukaya categories' of complex symplectic manifolds.

Let Y be a Calabi–Yau *m*-fold, so that the derived moduli stack \mathcal{M} of coherent sheaves (or complexes) on Y is (2-m)-shifted symplectic by PTVV, with symplectic form ω . We expect (Oren Ben-Bassat, work in progress) that

 $\boldsymbol{\mathcal{E}xact} \stackrel{\pi_1 \times \pi_2 \times \pi_3}{\longrightarrow} (\boldsymbol{\mathcal{M}}, \omega) \times (\boldsymbol{\mathcal{M}}, -\omega) \times (\boldsymbol{\mathcal{M}}, \omega)$

is Lagrangian, where $\mathcal{E}xact$ is the derived moduli stack of short exact sequences in $\operatorname{coh}(Y)$ (or distinguished triangles in $D^b \operatorname{coh}(Y)$). This is relevant to Cohomological Hall Algebras.

PTVV's shifted symplectic geometry A 'Darboux theorem' for shifted symplectic schemes Extension to shifted symplectic derived Artin stacks

Summary of the story so far

- Derived schemes behave better than classical schemes in some ways – they are analogous to smooth schemes, or manifolds.
 So, we can extend stories in smooth geometry to derived schemes. This introduces an extra degree k ∈ Z.
- PTVV define a version of ('*k*-shifted') symplectic geometry for derived schemes. This is a new geometric structure.
- 0-shifted symplectic derived schemes are just classical smooth symplectic schemes.
- Calabi–Yau *m*-fold moduli schemes and stacks are (2 – *m*)-shifted symplectic. This gives a *new geometric structure* on Calabi–Yau moduli spaces – relevant to Donaldson–Thomas theory and its generalizations.
- One can go from k-shifted symplectic to (k 1)-shifted symplectic by taking intersections of Lagrangians.

47 / 110

Dominic Joyce, Oxford University Lecture 2: Shifted symplectic geometry, d-critical loci

Shifted symplectic geometry and Darboux Theorems D-critical loci and perverse sheaves PTVV's shifted symplectic geometry A 'Darboux theorem' for shifted symplectic schemes Extension to shifted symplectic derived Artin stacks

3.2. A 'Darboux theorem' for shifted symplectic schemes

Theorem 3.1 (Brav, Bussi and Joyce arXiv:1305.6302)

Suppose (\mathbf{X}, ω) is a k-shifted symplectic derived \mathbb{K} -scheme for k < 0. If $k \not\equiv 2 \mod 4$, then each $x \in \mathbf{X}$ admits a Zariski open neighbourhood $\mathbf{Y} \subseteq \mathbf{X}$ with $\mathbf{Y} \simeq \operatorname{Spec}(A, d)$ for (A, d) an explicit cdga generated by graded variables x_j^{-i}, y_j^{k+i} for $0 \leq i \leq -k/2$, and $\omega|_{\mathbf{Y}} = [(\omega^0, 0, 0, \ldots)]$ where x_j^l, y_j^l have degree l, and $\omega^0 = \sum_{i=0}^{[-k/2]} \sum_{j=1}^{m_i} d_{dR} y_j^{k+i} d_{dR} x_j^{-i}$.

Also the differential d in (A, d) is given by Poisson bracket with a Hamiltonian H in A of degree k + 1.

If $k \equiv 2 \mod 4$, we have two statements, one étale local with ω^0 standard, and one Zariski local with the components of ω^0 in the degree k/2 variables depending on some invertible functions.

Sketch of the proof of Theorem 3.1

Suppose (\mathbf{X}, ω) is a *k*-shifted symplectic derived K-scheme for k < 0, and $x \in \mathbf{X}$. Then $\mathbb{L}_{\mathbf{X}}$ lives in degrees [k, 0]. We first show that we can build Zariski open $x \in \mathbf{Y} \subseteq \mathbf{X}$ with $\mathbf{Y} \simeq \operatorname{Spec}(A, d)$, for $A = \bigoplus_{i \leq 0} A^i$, d a cdga over K with A^0 a smooth K-algebra, and such that A is freely generated over A^0 by graded variables x_j^{-i}, y_j^{k+i} in degrees $-1, -2, \ldots, k$. We take dim A^0 and the number of x_j^{-i}, y_j^{k+i} to be minimal at x. Using theorems about periodic cyclic cohomology, we show that on $Y \simeq \operatorname{Spec}(A, d)$ we can write $\omega|_Y = [(\omega^0, 0, 0, \ldots)]$, for ω^0 a 2-form of degree k with $d\omega^0 = d_{dR}\omega^0 = 0$. Minimality at x implies ω^0 is strictly nondegenerate near x, so we can change variables to write $\omega^0 = \sum_{i,j} d_{dR} y_j^{k+i} d_{dR} x_j^{-i}$. Finally, we show d in (A, d) is a symplectic vector field, which integrates to a Hamiltonian H.

When k = -1 the Hamiltonian H in the theorem has degree 0. Then Theorem 3.1 reduces to:

Corollary 3.2

Suppose (\mathbf{X}, ω) is a -1-shifted symplectic derived \mathbb{K} -scheme. Then (\mathbf{X}, ω) is Zariski locally equivalent to a derived critical locus $\operatorname{Crit}(H : U \to \mathbb{A}^1)$, for U a smooth classical \mathbb{K} -scheme and $H : U \to \mathbb{A}^1$ a regular function. Hence, the underlying classical \mathbb{K} -scheme $X = t_0(\mathbf{X})$ is Zariski locally isomorphic to a classical critical locus $\operatorname{Crit}(H : U \to \mathbb{A}^1)$. Combining this with results of Pantev et al. from §2 gives interesting consequences in classical algebraic geometry:

Corollary 3.3

Let Y be a Calabi–Yau 3-fold over \mathbb{K} and \mathcal{M} a classical moduli \mathbb{K} -scheme of coherent sheaves, or complexes of coherent sheaves, on Y. Then \mathcal{M} is Zariski locally isomorphic to the critical locus $\operatorname{Crit}(H: U \to \mathbb{A}^1)$ of a regular function on a smooth \mathbb{K} -scheme.

Here we note that $\mathcal{M} = t_0(\mathcal{M})$ for \mathcal{M} the corresponding derived moduli scheme, which is -1-shifted symplectic by PTVV. A complex analytic analogue of this for moduli of coherent sheaves was proved using gauge theory by Joyce and Song arXiv:0810.5645 (§1, key idea 3), and for moduli of complexes was claimed by Behrend and Getzler.

Note that the proof of the corollary is wholly algebro-geometric.

Dominic Joyce, Oxford University Lecture 2: Shifted symplectic geometry, d-critical loci

Shifted symplectic geometry and Darboux Theorems D-critical loci and perverse sheaves PTVV's shifted symplectic geometry A 'Darboux theorem' for shifted symplectic schemes Extension to shifted symplectic derived Artin stacks

As intersections of algebraic Lagrangians are -1-shifted symplectic, we also deduce:

Corollary 3.4

Let (S, ω) be a classical smooth symplectic \mathbb{K} -scheme, and $L, M \subseteq S$ be smooth algebraic Lagrangians. Then the intersection $L \cap M$, as a \mathbb{K} -subscheme of S, is Zariski locally isomorphic to the critical locus $\operatorname{Crit}(H : U \to \mathbb{A}^1)$ of a regular function on a smooth \mathbb{K} -scheme.

In real or complex symplectic geometry, where the Darboux Theorem holds, the analogue of the corollary is easy to prove, but in classical algebraic symplectic geometry we do not have a Darboux Theorem, so the corollary is not obvious.

Outlook for generalizations of Donaldson–Thomas theory

We now know that 3-Calabi–Yau moduli spaces are locally modelled on critical loci, and we have nice geometric structures encoding this (-1-shifted symplectic structures).

There is some interesting geometry associated with critical loci:

- Perverse sheaves of vanishing cycles.
- Motivic Milnor fibres.
- Categories of matrix factorizations.

It seems natural to try and construct global structures on 3-Calabi–Yau moduli spaces, which are locally modelled on perverse vanishing cycles, motivic Milnor fibres, or matrix factorizations. This leads to questions of *categorification* of Donaldson–Thomas theory, and *motivic Donaldson–Thomas invariants*.

3.3. Extension to shifted symplectic derived Artin stacks

In Ben-Bassat, Bussi, Brav and Joyce arXiv:1312.0090 we extend the material of §3.2 from (derived) schemes to (derived) Artin stacks. We call a derived stack X a *derived Artin stack* X if it is 1-geometric, and the associated classical (higher) stack $X = t_0(X)$ is 1-truncated, all in the sense of Toën and Vezzosi. Then the cotangent complex \mathbb{L}_X lives in degrees $(-\infty, 1]$, and $X = t_0(X)$ is a classical Artin stack (in particular, not a higher stack). A derived Artin stack X admits a smooth atlas $\varphi : U \to X$ with Ua derived scheme. If Y is a smooth projective scheme and \mathcal{M} is a derived moduli stack of coherent sheaves F on Y, or of complexes F^{\bullet} in $D^b \operatorname{coh}(Y)$ with $\operatorname{Ext}^{\leq 0}(F^{\bullet}, F^{\bullet}) = 0$, then \mathcal{M} is a derived Artin stack.

A 'Darboux Theorem' for atlases of derived stacks

Theorem 3.5 (Ben-Bassat, Bussi, Brav, Joyce, arXiv:1312.0090)

Let $(\mathbf{X}, \omega_{\mathbf{X}})$ be a k-shifted symplectic derived Artin stack for k < 0, and $p \in \mathbf{X}$. Then there exist 'standard form' affine derived schemes $\mathbf{U} = \operatorname{Spec} A$, $\mathbf{V} = \operatorname{Spec} B$, points $u \in \mathbf{U}$, $v \in \mathbf{V}$ with A, B minimal at u, v, morphisms $\varphi : \mathbf{U} \to \mathbf{X}$ and $\mathbf{i} : \mathbf{U} \to \mathbf{V}$ with $\varphi(u) = p$, $\mathbf{i}(u) = v$, such that φ is smooth of relative dimension $\dim H^1(\mathbb{L}_{\mathbf{X}}|_p)$, and $t_0(\mathbf{i}) : t_0(\mathbf{U}) \to t_0(\mathbf{V})$ is an isomorphism on classical schemes, and $\mathbb{L}_{\mathbf{U}/\mathbf{V}} \simeq \mathbb{T}_{\mathbf{U}/\mathbf{X}}[1-k]$, and a 'Darboux form' k-shifted symplectic form ω_B on $\mathbf{V} = \operatorname{Spec} B$ such that $\mathbf{i}^*(\omega_B) \sim \varphi^*(\omega_{\mathbf{X}})$ in k-shifted closed 2-forms on \mathbf{U} .

55 / 110

Dominic Joyce, Oxford University Lecture 2: Shifted symplectic geometry, d-critical loci

Shifted symplectic geometry and Darboux Theorems D-critical loci and perverse sheaves PTVV's shifted symplectic geometry A 'Darboux theorem' for shifted symplectic schemes Extension to shifted symplectic derived Artin stacks

-1-shifted symplectic derived stacks

When k = -1, (\mathbf{V}, ω_B) is a derived critical locus $\operatorname{Crit}(f : S \to \mathbb{A}^1)$ for S a smooth scheme. Then $t_0(\mathbf{V}) \cong t_0(\mathbf{U})$ is the classical critical locus $\operatorname{Crit}(f : S \to \mathbb{A}^1)$, and $U = t_0(\mathbf{U})$ is a smooth atlas for the Artin stack $X = t_0(\mathbf{X})$. Thus we deduce:

Corollary 3.6

Let $(\mathbf{X}, \omega_{\mathbf{X}})$ be a -1-shifted symplectic derived stack. Then the classical Artin stack $X = t_0(\mathbf{X})$ locally admits smooth atlases $\varphi : U \to X$ with $U = \operatorname{Crit}(f : S \to \mathbb{A}^1)$, for S a smooth scheme and f a regular function.

Corollary 3.7

Suppose Y is a Calabi–Yau 3-fold and \mathcal{M} a classical moduli stack of coherent sheaves F on Y, or of complexes F^{\bullet} in $D^{b} \operatorname{coh}(Y)$ with $\operatorname{Ext}^{<0}(F^{\bullet}, F^{\bullet}) = 0$. Then \mathcal{M} locally admits smooth atlases $\varphi : U \to X$ with $U = \operatorname{Crit}(f : S \to \mathbb{A}^{1})$, for S a smooth scheme.

4. D-critical loci and perverse sheaves References for §4

D. Joyce, A classical model for derived critical loci, J. Diff. Geom.
101 (2015), 289–367. arXiv:1304.4508.
C. Brav, V. Bussi and D. Joyce, A Darboux theorem for derived schemes with shifted symplectic structure, arXiv:1305.6302, 2013.
O. Ben-Bassat, C. Brav, V. Bussi, and D. Joyce, A 'Darboux Theorem' for shifted symplectic structures on derived Artin stacks, with applications, Geom. Top. 19 (2015), 1287–1359. arXiv:1312.0090.
C. Brav, V. Bussi, D. Dupont, D. Joyce, and B. Szendrői, Symmetries and stabilization for sheaves of vanishing cycles, Journal of Singularities 11 (2015), 85–151. arXiv:1211.3259.
V. Bussi, Categorification of Lagrangian intersections on complex symplectic manifolds using perverse sheaves of vanishing cycles, arXiv:1404.1329, 2014.

57 / 110

Dominic Joyce, Oxford University Lecture 2: Shifted symplectic geometry, d-critical loci

Shifted symplectic geometry and Darboux Theorems D-critical loci and perverse sheaves D-critical loci D-critical stacks Categorification using perverse sheaves

4.1. D-critical loci

We will define 'd-critical loci' and 'd-critical stacks', classical truncations of -1-shifted symplectic derived schemes and stacks.

Theorem (Joyce arXiv:1304.4508)

Let X be a classical \mathbb{K} -scheme. Then there exists a canonical sheaf S_X of \mathbb{K} -vector spaces on X, such that if $R \subseteq X$ is Zariski open and $i : R \hookrightarrow U$ is a closed embedding of R into a smooth \mathbb{K} -scheme U, and $I_{R,U} \subseteq \mathcal{O}_U$ is the ideal vanishing on i(R), then

$$\mathcal{S}_X|_R \cong \operatorname{Ker}\left(\frac{\mathcal{O}_U}{I_{R,U}^2} \xrightarrow{\mathrm{d}} \frac{T^*U}{I_{R,U} \cdot T^*U}\right).$$

Also S_X splits naturally as $S_X = S_X^0 \oplus \mathbb{K}_X$, where \mathbb{K}_X is the sheaf of locally constant functions $X \to \mathbb{K}$.

The meaning of the sheaves $\mathcal{S}_X, \mathcal{S}_X^0$

If $X = \operatorname{Crit}(f : U \to \mathbb{A}^1)$ then taking R = X, $i = \operatorname{inclusion}$, we see that $f + I_{X,U}^2$ is a section of \mathcal{S}_X . Also $f|_{X^{\operatorname{red}}} : X^{\operatorname{red}} \to \mathbb{K}$ is locally constant, and if $f|_{X^{\operatorname{red}}} = 0$ then $f + I_{X,U}^2$ is a section of \mathcal{S}_X^0 . Note that $f + I_{X,U} = f|_X$ in $\mathcal{O}_X = \mathcal{O}_U/I_{X,U}$. The theorem means that $f + I_{X,U}^2$ makes sense *intrinsically on* X, without reference to the embedding of X into U.

That is, if $X = \operatorname{Crit}(f : U \to \mathbb{A}^1)$ then we can remember f up to second order in the ideal $I_{X,U}$ as a piece of data on X, not on U. Suppose $X = \operatorname{Crit}(f : U \to \mathbb{A}^1) = \operatorname{Crit}(g : V \to \mathbb{A}^1)$ is written as a critical locus in two different ways. Then $f + I_{X,U}^2$, $g + I_{X,V}^2$ are sections of S_X , so we can ask whether $f + I_{X,U}^2 = g + I_{X,V}^2$. This gives a way to compare isomorphic critical loci in different smooth classical schemes.

59 / 110

Dominic Joyce, Oxford University Lecture 2: Shifted symplectic geometry, d-critical loci

Shifted symplectic geometry and Darboux Theorems D-critical loci and perverse sheaves D-critical loci D-critical stacks Categorification using perverse sheaves

The definition of d-critical loci

Definition (Joyce arXiv:1304.4508)

An (algebraic) d-critical locus (X, s) is a classical K-scheme X and a global section $s \in H^0(\mathcal{S}^0_X)$ such that X may be covered by Zariski open $R \subseteq X$ with an isomorphism $i : R \to \operatorname{Crit}(f : U \to \mathbb{A}^1)$ identifying $s|_R$ with $f + I^2_{R,U}$, for f a regular function on a smooth K-scheme U.

That is, a d-critical locus (X, s) is a \mathbb{K} -scheme X which may Zariski locally be written as a critical locus $\operatorname{Crit}(f : U \to \mathbb{A}^1)$, and the section s remembers f up to second order in the ideal $I_{X,U}$. We also define *complex analytic d-critical loci*, with X a complex analytic space locally modelled on $\operatorname{Crit}(f : U \to \mathbb{C})$ for U a complex manifold and f holomorphic.

D-critical loci D-critical stacks Categorification using perverse sheaves

Orientations on d-critical loci

Theorem (Joyce arXiv:1304.4508)

Let (X, s) be an algebraic d-critical locus and X^{red} the reduced \mathbb{K} -subscheme of X. Then there is a natural line bundle $K_{X,s}$ on X^{red} called the **canonical bundle**, such that if (X, s) is locally modelled on $\text{Crit}(f : U \to \mathbb{A}^1)$ then $K_{X,s}$ is locally modelled on $K_U^{\otimes^2}|_{\text{Crit}(f)^{\text{red}}}$, for K_U the usual canonical bundle of U.

Definition

Let (X, s) be a d-critical locus. An *orientation* on (X, s) is a choice of square root line bundle $K_{X,s}^{1/2}$ for $K_{X,s}$ on X^{red} .

This is related to orientation data in Kontsevich-Soibelman 2008.

61 / 110

Dominic Joyce, Oxford University

Lecture 2: Shifted symplectic geometry, d-critical loci

Shifted symplectic geometry and Darboux Theorems D-critical loci and perverse sheaves D-critical loci D-critical stacks Categorification using perverse sheaves

A truncation functor from -1-symplectic derived schemes

Theorem 4.1 (Brav, Bussi and Joyce arXiv:1305.6302)

Let (\mathbf{X}, ω) be a -1-shifted symplectic derived \mathbb{K} -scheme. Then the classical \mathbb{K} -scheme $X = t_0(\mathbf{X})$ extends naturally to an algebraic d-critical locus (X, s). The canonical bundle of (X, s)satisfies $K_{X,s} \cong \det \mathbb{L}_{\mathbf{X}}|_{X^{red}}$.

That is, we define a *truncation functor* from -1-shifted symplectic derived \mathbb{K} -schemes to algebraic d-critical loci. Examples show this functor is not full. Think of d-critical loci as *classical truncations* of -1-shifted symplectic derived \mathbb{K} -schemes.

An alternative semi-classical truncation, used in D–T theory, is *schemes with symmetric obstruction theory*. D-critical loci appear to be more useful, for both categorified and motivic D–T theory.

D-critical loci D-critical stacks Categorification using perverse sheaves

Corollaries 3.3–3.4 imply:

Corollary 4.2

Let Y be a Calabi–Yau 3-fold over \mathbb{K} and \mathcal{M} a classical moduli \mathbb{K} -scheme of coherent sheaves, or complexes of coherent sheaves, on Y. Then \mathcal{M} extends naturally to a d-critical locus (\mathcal{M}, s) . The canonical bundle satisfies $K_{\mathcal{M},s} \cong \det(\mathcal{E}^{\bullet})|_{\mathcal{M}^{red}}$, where $\phi : \mathcal{E}^{\bullet} \to \mathbb{L}_{\mathcal{M}}$ is the (symmetric) obstruction theory on \mathcal{M} defined by Thomas or Huybrechts and Thomas.

Corollary 4.3

Let (S, ω) be a classical smooth symplectic \mathbb{K} -scheme, and $L, M \subseteq S$ be smooth algebraic Lagrangians. Then $X = L \cap M$ extends naturally to a d-critical locus (X, s). The canonical bundle satisfies $K_{X,s} \cong K_L|_{X^{red}} \otimes K_M|_{X^{red}}$. Hence, choices of square roots $K_L^{1/2}, K_M^{1/2}$ give an orientation for (X, s).

Bussi extends Corollary 4.3 to complex Lagrangians in complex symplectic manifolds.

63 / 110

Shifted symplectic geometry and Darboux Theorems D-critical loci and perverse sheaves

Dominic Joyce, Oxford University

D-critical loci D-critical stacks Categorification using perverse sheaves

Lecture 2: Shifted symplectic geometry, d-critical loci

4.2. D-critical stacks

To generalize the d-critical loci in §4.1 to Artin stacks, we need a good notion of sheaves on Artin stacks. This is already well understood. Roughly, a sheaf S on an Artin stack X assigns a sheaf $S(U,\varphi)$ on U (in the usual sense for schemes) for each smooth morphism $\varphi: U \to X$ with U a scheme, and a morphism $S(\alpha, \eta): \alpha^*(S(V, \psi)) \to S(U, \varphi)$ (often an isomorphism) for each 2-commutative diagram

$$U \xrightarrow{\alpha} \eta \uparrow \qquad \psi \qquad (4.1)$$

with U, V schemes and φ, ψ smooth, such that $S(\alpha, \eta)$ have the obvious associativity properties. So, we pass from stacks X to schemes U by working with smooth atlases $\varphi: U \to X$.

D-critical loci D-critical stacks Categorification using perverse sheaves

The definition of d-critical stacks

Generalizing d-critical loci to stacks is now straightforward. As above, on each scheme U we have a canonical sheaf S_U^0 . If $\alpha : U \to V$ is a morphism of schemes we have pullback morphisms $\alpha^* : \alpha^{-1}(S_V^0) \to S_U^0$ with associativity properties. So, for any classical Artin stack X, we define a sheaf S_X^0 on X by $S_X^0(U, \varphi) = S_U^0$ for all smooth $\varphi : U \to X$ with U a scheme, and $S_X^0(\alpha, \eta) = \alpha^*$ for all diagrams (4.1). A global section $s \in H^0(S_X^0)$ assigns $s(U, \varphi) \in H^0(S_U^0)$ for all smooth $\varphi : U \to X$ with $\alpha^*[\alpha^{-1}(s(V, \psi))] = s(U, \varphi)$ for all diagrams (4.1). We call (X, s) a *d-critical stack* if $(U, s(U, \varphi))$ is a d-critical locus for all smooth $\varphi : U \to X$. That is, if X is a d-critical stack then any smooth atlas $\varphi : U \to X$

for X is a d-critical locus.

Shifted symplectic geometry and Darboux Theorems D-critical loci and perverse sheaves D-critical loci D-critical stacks Categorification using perverse sheaves

A truncation functor from -1-symplectic derived stacks

As for the scheme case in $\S4.1$, we prove:

Theorem 4.4 (Ben-Bassat, Brav, Bussi, Joyce arXiv:1312.0090)

Let (\mathbf{X}, ω) be a -1-shifted symplectic derived Artin stack. Then the classical Artin stack $X = t_0(\mathbf{X})$ extends naturally to a d-critical stack (X, s), with canonical bundle $K_{X,s} \cong \det \mathbb{L}_{\mathbf{X}}|_{X^{red}}$.

Corollary 4.5

Let Y be a Calabi–Yau 3-fold over \mathbb{K} and \mathcal{M} a classical moduli stack of coherent sheaves F on Y, or complexes F^{\bullet} in $D^{b} \operatorname{coh}(Y)$ with $\operatorname{Ext}^{<0}(F^{\bullet}, F^{\bullet}) = 0$. Then \mathcal{M} extends naturally to a d-critical stack (\mathcal{M}, s) with canonical bundle $K_{\mathcal{M},s} \cong \operatorname{det}(\mathcal{E}^{\bullet})|_{\mathcal{M}^{\operatorname{red}}}$, where $\phi : \mathcal{E}^{\bullet} \to \mathbb{L}_{\mathcal{M}}$ is the natural obstruction theory on \mathcal{M} .

D-critical loci D-critical stacks Categorification using perverse sheaves

4.3. Categorification using perverse sheaves

It's not easy to explain what perverse sheaves are. We can think of a perverse sheaf as a system of coefficients for cohomology. Let X be a complex manifold. The cohomology group $H^k(X; \mathbb{Q})$ is the sheaf cohomology group $H^k(X, \mathbb{Q}_X)$, where \mathbb{Q}_X is the constant sheaf with fibre \mathbb{Q} . Working in complexes of sheaves of \mathbb{Q} -modules on X, consider the shifted sheaf $\mathbb{Q}_X[\dim_{\mathbb{C}} X]$. This is an example of a perverse sheaf. The shift means that Poincaré duality for X has the nice form $\mathbb{H}^i_{cs}(\mathbb{Q}_X[\dim_{\mathbb{C}} X]) \cong \mathbb{H}^{-i}(\mathbb{Q}_X[\dim_{\mathbb{C}} X])^*$. If instead X is a singular complex variety, rather than considering $H^*(X; \mathbb{Q})$, it can be helpful (e.g. in 'intersection cohomology', and to preserve nice properties like Poincaré duality) to consider cohomology $\mathbb{H}^*(X, \mathcal{P}^{\bullet})$ with coefficients in a complex \mathcal{P}^{\bullet} on X (a 'perverse sheaf') which treats the singularities of X in a special way.

67 / 110

Dominic Joyce, Oxford University Lecture 2: Shifted symplectic geometry, d-critical loci

Shifted symplectic geometry and Darboux Theorems D-critical loci and perverse sheaves Categorification using perverse sheaves

Let U be a complex manifold, and $f: U \to \mathbb{C}$ a holomorphic function. Then one can define a perverse sheaf $\mathcal{PV}_{U,f}^{\bullet}$ on Crit fcalled the *perverse sheaf of vanishing cycles*, with nice properties. The *vanishing cohomology* $\mathbb{H}^{\bullet}(\mathcal{PV}_{U,f}^{\bullet})$ measures how $H^*(f^{-1}(c); \mathbb{Q})$ changes as c passes through critical values of f. Kai Behrend observed that the pointwise Euler characteristic $\chi_{\mathcal{PV}_{U,f}^{\bullet}}$: Crit $f \to \mathbb{Z}$ is the Behrend function of Crit f, as used in classical Donaldson–Thomas theory.

Theorem 4.6 (Brav-Bussi-Dupont-Joyce-Szendrői arXiv:1211.3259)

Let (X, s) be an algebraic d-critical locus over \mathbb{K} , with an orientation $K_{X,s}^{1/2}$. Then we can construct a canonical perverse sheaf $P_{X,s}^{\bullet}$ on X, such that if (X, s) is locally modelled on $\operatorname{Crit}(f : U \to \mathbb{A}^1)$, then $P_{X,s}^{\bullet}$ is locally modelled on the perverse sheaf of vanishing cycles $\mathcal{PV}_{U,f}^{\bullet}$ of (U, f). Similarly, we can construct a natural \mathscr{D} -module $D_{X,s}^{\bullet}$ on X, and when $\mathbb{K} = \mathbb{C}$ a natural mixed Hodge module $M_{X,s}^{\bullet}$ on X.

D-critical loci D-critical stacks Categorification using perverse sheaves

Sketch of the proof of Theorem 4.6

Roughly, we prove the theorem by taking a Zariski open cover $\{R_i : i \in I\}$ of X with $R_i \cong \operatorname{Crit}(f_i : U_i \to \mathbb{A}^1)$, and showing that $\mathcal{PV}_{U_i,f_i}^{\bullet}$ and $\mathcal{PV}_{U_j,f_j}^{\bullet}$ are canonically isomorphic on $R_i \cap R_j$, so we can glue the $\mathcal{PV}_{U_i,f_i}^{\bullet}$ to get a global perverse sheaf $P_{X,s}^{\bullet}$ on X. In fact things are more complicated: the (local) isomorphisms $\mathcal{PV}_{U_i,f_i}^{\bullet} \cong \mathcal{PV}_{U_j,f_j}^{\bullet}$ are only canonical *up to sign*. To make them canonical, we use the orientation $K_{X,s}^{1/2}$ to define natural principal \mathbb{Z}_2 -bundles Q_i on R_i , such that $\mathcal{PV}_{U_i,f_i}^{\bullet} \otimes_{\mathbb{Z}_2} Q_i \cong \mathcal{PV}_{U_j,f_j}^{\bullet} \otimes_{\mathbb{Z}_2} Q_j$ is canonical, and then we glue the $\mathcal{PV}_{U_i,f_i}^{\bullet} \otimes_{\mathbb{Z}_2} Q_i$ to get $P_{X,s}^{\bullet}$.

69 / 110

Dominic Joyce, Oxford University Lecture 2: Shifted symplectic geometry, d-critical loci

Shifted symplectic geometry and Darboux Theorems D-critical loci and perverse sheaves D-critical loci D-critical stacks Categorification using perverse sheaves

Theorem 4.6 and Corollary 4.2 imply:

Corollary 4.7

Let Y be a Calabi–Yau 3-fold over \mathbb{K} and \mathcal{M} a classical moduli \mathbb{K} -scheme of coherent sheaves, or complexes of coherent sheaves, on Y, with (symmetric) obstruction theory $\phi : \mathcal{E}^{\bullet} \to \mathbb{L}_{\mathcal{M}}$. Suppose we are given a square root $\det(\mathcal{E}^{\bullet})^{1/2}$ for $\det(\mathcal{E}^{\bullet})$ (i.e. orientation data, K–S). Then we have a natural perverse sheaf $P^{\bullet}_{\mathcal{M},s}$ on \mathcal{M} .

(Compare Kiem and Li arXiv:1212.6444).

The hypercohomology $\mathbb{H}^*(P^{\bullet}_{\mathcal{M},s})$ is a finite-dimensional graded vector space (if \mathcal{M} is of finite type). The pointwise Euler characteristic $\chi(P^{\bullet}_{\mathcal{M},s})$ is the Behrend function $\nu_{\mathcal{M}}$ of \mathcal{M} . Thus $\sum_{i\in\mathbb{Z}}(-1)^i\dim\mathbb{H}^i(P^{\bullet}_{\mathcal{M},s})=\chi(\mathcal{M},\nu_{\mathcal{M}}).$

Now by Behrend 2005, the Donaldson–Thomas invariant of \mathcal{M} is $DT(\mathcal{M}) = \chi(\mathcal{M}, \nu_{\mathcal{M}})$. So, $\mathbb{H}^*(P^{\bullet}_{\mathcal{M},s})$ is a graded vector space with dimension $DT(\mathcal{M})$, that is, a *categorification* of $DT(\mathcal{M})$.

Categorifying Lagrangian intersections

Theorem 4.6 and Corollary 4.3 imply:

Corollary 4.8

Let (S, ω) be a classical smooth symplectic \mathbb{K} -scheme of dimension 2n, and L, $M \subseteq S$ be smooth algebraic Lagrangians, with square roots $K_L^{1/2}$, $K_M^{1/2}$ of their canonical bundles. Then we have a natural perverse sheaf $P_{L,M}^{\bullet}$ on $X = L \cap M$.

Bussi extends this to complex Lagrangians in complex symplectic manifolds. This is related to Behrend and Fantechi 2009. We think of the hypercohomology $\mathbb{H}^*(P^{\bullet}_{L,M})$ as being morally related to the Lagrangian Floer cohomology $HF^*(L, M)$ by

$$\mathbb{H}^{i}(P^{\bullet}_{L,M}) \approx HF^{i+n}(L,M).$$

We are working on defining 'Fukaya categories' for algebraic/complex symplectic manifolds using these ideas (§6.2(B)).

Extension to Artin stacks

Let (X, s) be a d-critical stack, with an orientation $K_{X,s}^{1/2}$. Then for any smooth $\varphi : U \to X$ with U a scheme, $(U, s(U, \varphi))$ is an oriented d-critical locus, so as above, Theorem 4.6 constructs a perverse sheaf $P_{U,\varphi}^{\bullet}$ on U. Given a diagram

with U, V schemes and φ, ψ smooth, we can construct a natural isomorphism $P^{\bullet}_{\alpha,\eta} : \alpha^*(P^{\bullet}_{V,\psi})[\dim \varphi - \dim \psi] \to P^{\bullet}_{U,\varphi}$. All this data $P^{\bullet}_{U,\varphi}, P^{\bullet}_{\alpha,\eta}$ is equivalent to a perverse sheaf on X.

D-critical loci D-critical stacks Categorification using perverse sheaves

Thus we prove:

Theorem 4.9 (Ben-Bassat, Brav, Bussi, Joyce arXiv:1312.0090)

Let (X, s) be a d-critical stack, with an orientation $K_{X,s}^{1/2}$. Then we can construct a canonical perverse sheaf $P_{X,s}^{\bullet}$ on X.

Corollary 4.10

Suppose Y is a Calabi–Yau 3-fold and \mathcal{M} a classical moduli stack of coherent sheaves F on Y, or of complexes F^{\bullet} in $D^{b} \operatorname{coh}(Y)$ with $\operatorname{Ext}^{<0}(F^{\bullet}, F^{\bullet}) = 0$, with (symmetric) obstruction theory $\phi : \mathcal{E}^{\bullet} \to \mathbb{L}_{\mathcal{M}}$. Suppose we are given a square root $\det(\mathcal{E}^{\bullet})^{1/2}$ for $\det(\mathcal{E}^{\bullet})$. Then we construct a natural perverse sheaf $P^{\bullet}_{\mathcal{M},s}$ on \mathcal{M} .

The hypercohomology $\mathbb{H}^*(P^{\bullet}_{\mathcal{M},s})$ is a categorification of the Donaldson–Thomas theory of Y.

73 / 110

Dominic Joyce, Oxford University Lecture 2: Shifted symplectic geometry, d-critical loci