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3. Shifted symplectic geometry
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Theorem’ for shifted symplectic structures on derived Artin stacks,
with applications, Geometry and Topology 19 (2015), 1287-1359.
arXiv:1312.0090.
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Classical symplectic geometry

Let M be a smooth manifold. Then M has a tangent bundle and
cotangent bundle T*M. We have k-forms w € C®(AKT*M), and
the de Rham differential dgg : C®(AKT*M) — CX(AFLT*M). A
k-form w is closed if dgrw = 0.

A 2-form w on M is nondegenerate if w-: TM — T*M is an
isomorphism. This is possible only if dim M = 2n for n > 0. A
symplectic structure is a closed, nondegenerate 2-form w on M,
Symplectic geometry is the study of symplectic manifolds (M, w).
A Lagrangian in (M, w) is a submanifold i/ : L — M such that
dim L = n and i*(w) = 0.
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3.1. PTVV's shifted symplectic geometry

Pantev, Toén, Vaquié and Vezzosi (arXiv:1111.3209) defined a
version of symplectic geometry in the derived world.

Let X be a derived K-scheme. The cotangent complex Lx has
exterior powers APLx. The de Rham differential dgr : NPLLx —
APy is a morphism of complexes. Each APLy is a complex, so
has an internal differential d : (APLx )% — (APLx)**1. We have
d? :dglR =dodyr +dgrod =0.

A p-form of degree k on X for k € Z is an element [wO] of

H (/\P]Lx,d). A closed p-form of degree k on X is an element

[(wo,wl, .. )] e Hk (@io Ap+iLx[i], d+ ddR)-

There is a projection 7 : [(w%, w?,...)] = [w°] from closed p-forms

[(w®, w?,...)] of degree k to p-forms [wO] of degree k.
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Nondegenerate 2-forms and symplectic structures

Let [w®] be a 2-form of degree k on X. Then [w®] induces a
morphism w® : Tx — Lx[k], where Tx = L} is the tangent
complex of X. We call [w°] nondegenerate if w° : Tx — Lx[k] is
a quasi-isomorphism.

If X is a derived scheme then the complex Lx lives in degrees
(—00,0] and Tx in degrees [0,00). So w® : Tx — Lx[k] can be a
quasi-isomorphism only if kK < 0, and then Lx lives in degrees
[k,0] and Tx in degrees [0, —k]. If k =0 then X is a smooth
classical K-scheme, and if Kk = —1 then X is quasi-smooth.

A closed 2-form w = [(w?,w?,...)] of degree k on X is called a
k-shifted symplectic structure if [w°] = m(w) is nondegenerate.
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Although the details are complex, PTVV are following a simple
recipe for translating some piece of geometry from smooth
manifolds/smooth classical schemes to derived schemes:

(i) replace manifolds/smooth schemes X by derived schemes X.
(ii) replace vector bundles TX, T*X,APT*X, ... by complexes

Tx,Lx,APLx,....
(iii) replace sections of TX, T*X,A°PT*X, ... by cohomology
classes of the complexes Tx,Lx,APLx,..., in degree k € Z.

(iv) replace isomorphisms of vector bundles by quasi-isomorphisms
of complexes.

Note that in (iii), we can specify the degree k € Z of the
cohomology class (e.g. [w] € HX(APLLx)), which doesn't happen at
the classical level.
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Calabi—Yau moduli schemes and moduli stacks

PTVV prove that if Y is a Calabi—Yau m-fold over K and M is a
derived moduli scheme or stack of (complexes of) coherent sheaves
on Y, then M has a (2 — m)-shifted symplectic structure w.

This suggests applications — lots of interesting geometry concerns
Calabi—Yau moduli schemes, e.g. Donaldson—Thomas theory.

We can understand the associated nondegenerate 2-form [w?] in
terms of Serre duality. At a point [E] € M, we have

h(Taq)lig) = Ext'"H(E, E) and h'(La)|ig) = Ext'~'(E, E)*.
The Calabi-Yau condition gives Ext/(E, E) = Ext™/(E, E)*,
which corresponds to h"*H(Taq) (g = A1 (Laq[2 — m])|g. This
is the cohomology at [E] of the quasi-isomorphism

w0 Ty — ]LM[Q — m]
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Lagrangians and Lagrangian intersections

Let (X,w) be a k-shifted symplectic derived scheme or stack.
Then Pantev et al. define a notion of Lagrangian L in (X,w),
which is a morphism i : L — X of derived schemes or stacks
together with a homotopy i*(w) ~ 0 satisfying a nondegeneracy
condition, implying that Ty ~ L, /x[k — 1].

If L, M are Lagrangians in (X, w), then the fibre product L xx M
has a natural (k — 1)-shifted symplectic structure.

If (S,w) is a classical smooth symplectic scheme, then it is a
0-shifted symplectic derived scheme in the sense of PTVV, and if
L,M C S are classical smooth Lagrangian subschemes, then they
are Lagrangians in the sense of PTVV. Therefore the (derived)
Lagrangian intersection LN M = L xg M is a —1-shifted
symplectic derived scheme.
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Examples of Lagrangians

Let (X,w) be k-shifted symplectic, and i, : L, — X be Lagrangian
in X fora=1,...,d. Then Ben-Bassat (arXiv:1309.0596) shows

L1><xL2><X- . -><de — (L1><xl_2)><- . -X(Ld_1><de)><(Ld><xL1)

is Lagrangian, where the r.h.s. is (k—1)-shifted symplectic by
PTVV. This is relevant to defining ‘Fukaya categories’ of complex
symplectic manifolds.

Let Y be a Calabi—Yau m-fold, so that the derived moduli stack
M of coherent sheaves (or complexes) on Y is (2—m)-shifted
symplectic by PTVV, with symplectic form w. We expect (Oren
Ben-Bassat, work in progress) that

Exact "X (M, w) x (M, —w) x (M, w)
is Lagrangian, where €xact is the derived moduli stack of short

exact sequences in coh(Y) (or distinguished triangles in
DP coh(Y)). This is relevant to Cohomological Hall Algebras.
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Summary of the story so far

@ Derived schemes behave better than classical schemes in some
ways — they are analogous to smooth schemes, or manifolds.
So, we can extend stories in smooth geometry to derived
schemes. This introduces an extra degree k € Z.

@ PTVV define a version of (‘k-shifted’) symplectic geometry
for derived schemes. This is a new geometric structure.

@ 0O-shifted symplectic derived schemes are just classical smooth
symplectic schemes.

@ Calabi—Yau m-fold moduli schemes and stacks are
(2 — m)-shifted symplectic. This gives a new geometric
structure on Calabi—Yau moduli spaces — relevant to
Donaldson—Thomas theory and its generalizations.

@ One can go from k-shifted symplectic to (k — 1)-shifted
symplectic by taking intersections of Lagrangians.
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3.2. A '‘Darboux theorem’ for shifted symplectic schemes

Theorem 3.1 (Brav, Bussi and Joyce arXiv:1305.6302)

Suppose (X,w) is a k-shifted symplectic derived K-scheme for

k <0. If k#2 mod 4, then each x € X admits a Zariski open
neighbourhood Y C X with Y =~ Spec(A d) for (A, d) an explicit
cdga generated by graded variables x;', yk+’ for 0 < i< —k/2,

and w|y = [(w° 0 0,...)] where x! ,yJ have degree I, and

Z[ A >y dary; o 'darx;
Also the different/a/ d in (A, d) is given by Poisson bracket with a
Hamiltonian H in A of degree k + 1.
If k=2 mod 4, we have two statements, one étale local with w°
standard, and one Zariski local with the components of WO in the
degree k /2 variables depending on some invertible functions.
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Sketch of the proof of Theorem 3.1

Suppose (X,w) is a k-shifted symplectic derived K-scheme for

k <0, and x € X. Then Lx lives in degrees [k, 0]. We first show
that we can build Zariski open x € Y C X with Y ~ Spec(A,d),
for A = @igo A’ d a cdga over K with A% a smooth K-algebra,
and such that A is freely generated over A° by graded variables
><j_",yjk+i in degrees —1,—2, ..., k. We take dim A° and the
number of ><j_",yjk+i to be minimal at x.

Using theorems about periodic cyclic cohomology, we show that on
Y ~ Spec(A,d) we can write w|y = [(w?,0,0,...)], for w° a
2-form of degree k with dw® = dgrw® = 0. Minimality at x implies
w? is strictly nondegenerate near x, so we can change variables to
write w? = Zl-,j ddR)/jk+iddR><j_i. Finally, we show d in (A,d) is a
symplectic vector field, which integrates to a Hamiltonian H.
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The case of —1-shifted symplectic derived schemes

When k = —1 the Hamiltonian H in the theorem has degree 0.
Then Theorem 3.1 reduces to:

Corollary 3.2

Suppose (X,w) is a —1-shifted symplectic derived K-scheme.
Then (X,w) is Zariski locally equivalent to a derived critical locus
Crit(H : U — A'), for U a smooth classical K-scheme and

H: U — A a regular function. Hence, the underlying classical
K-scheme X = to(X) is Zariski locally isomorphic to a classical
critical locus Crit(H : U — Al).
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Combining this with results of Pantev et al. from §2 gives
interesting consequences in classical algebraic geometry:

Corollary 3.3

Let Y be a Calabi—Yau 3-fold over K and M a classical moduli
K-scheme of coherent sheaves, or complexes of coherent sheaves,
on Y. Then M is Zariski locally isomorphic to the critical locus
Crit(H : U — A% of a regular function on a smooth K-scheme.

Here we note that M = ty(M) for M the corresponding derived
moduli scheme, which is —1-shifted symplectic by PTVV.

A complex analytic analogue of this for moduli of coherent sheaves
was proved using gauge theory by Joyce and Song arXiv:0810.5645
(81, key idea 3), and for moduli of complexes was claimed by
Behrend and Getzler.

Note that the proof of the corollary is wholly algebro-geometric.
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As intersections of algebraic Lagrangians are —1-shifted
symplectic, we also deduce:

Corollary 3.4

Let (S,w) be a classical smooth symplectic K-scheme, and

L,M C S be smooth algebraic Lagrangians. Then the intersection

LN M, as a K-subscheme of S, is Zariski locally isomorphic to the
critical locus Crit(H : U — A') of a regular function on a smooth

K-scheme.

In real or complex symplectic geometry, where the Darboux
Theorem holds, the analogue of the corollary is easy to prove, but
in classical algebraic symplectic geometry we do not have a
Darboux Theorem, so the corollary is not obvious.
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Outlook for generalizations of Donaldson—Thomas theory

We now know that 3-Calabi—Yau moduli spaces are locally
modelled on critical loci, and we have nice geometric structures
encoding this (—1-shifted symplectic structures).

There is some interesting geometry associated with critical loci:

@ Perverse sheaves of vanishing cycles.
@ Motivic Milnor fibres.
@ Categories of matrix factorizations.

It seems natural to try and construct global structures on
3-Calabi—Yau moduli spaces, which are locally modelled on perverse
vanishing cycles, motivic Milnor fibres, or matrix factorizations.
This leads to questions of categorification of Donaldson—Thomas
theory, and motivic Donaldson—Thomas invariants.
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3.3. Extension to shifted symplectic derived Artin stacks

In Ben-Bassat, Bussi, Brav and Joyce arXiv:1312.0090 we extend
the material of §3.2 from (derived) schemes to (derived) Artin
stacks. We call a derived stack X a derived Artin stack X if it is
1-geometric, and the associated classical (higher) stack X = tp(X)
is 1-truncated, all in the sense of Toen and Vezzosi. Then the
cotangent complex Lx lives in degrees (—oo, 1], and X = to(X) is
a classical Artin stack (in particular, not a higher stack).

A derived Artin stack X admits a smooth atlas ¢ : U — X with U
a derived scheme. If Y is a smooth projective scheme and M is a
derived moduli stack of coherent sheaves F on Y, or of complexes
F* in DPcoh(Y) with Ext<C(F®, F®) = 0, then M is a derived
Artin stack.
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A ‘Darboux Theorem' for atlases of derived stacks

Theorem 3.5 (Ben-Bassat, Bussi, Brav, Joyce, arXiv:1312.0090)

Let (X,wx) be a k-shifted symplectic derived Artin stack for

k <0, and p € X. Then there exist ‘standard form’ affine derived
schemes U = Spec A, V = Spec B, points u € U, v € V with

A, B minimal at u,v, morphisms ¢ : U — X and i : U — V with
p(u) = p, i(u) = v, such that ¢ is smooth of relative dimension
dim H*(Lx|p), and to(i) : to(U) — to(V) is an isomorphism on
classical schemes, and Ly,y =~ Ty,x[1 — k|, and a ‘Darboux form’
k-shifted symplectic form wg on V = Spec B such that

i*(wg) ~ ¢*(wx) in k-shifted closed 2-forms on U.
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—1-shifted symplectic derived stacks

When k = —1, (V,wg) is a derived critical locus

Crit(f : S — Al) for S a smooth scheme. Then to(V) =2 to(U) is
the classical critical locus Crit(f : S — Al), and U = to(U) is a
smooth atlas for the Artin stack X = to(X). Thus we deduce:

Corollary 3.6

Let (X,wx) be a —1-shifted symplectic derived stack. Then the

classical Artin stack X = to(X) locally admits smooth atlases
¢: U — X with U = Crit(f : S — Al), for S a smooth scheme
and f a regular function.

|

Corollary 3.7

Suppose Y is a Calabi—-Yau 3-fold and M a classical moduli stack
of coherent sheaves F on Y, or of complexes F® in D coh(Y)
with Ext<C(F*, F®) = 0. Then M locally admits smooth atlases
¢: U — X with U = Crit(f : S — Al), for S a smooth scheme.

v
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4. D-critical loci and perverse sheaves
References for §4

D. Joyce, A classical model for derived critical loci, J. Diff. Geom.
101 (2015), 289-367. arXiv:1304.4508.

C. Brav, V. Bussi and D. Joyce, A Darboux theorem for derived
schemes with shifted symplectic structure, arXiv:1305.6302, 2013.
O. Ben-Bassat, C. Brav, V. Bussi, and D. Joyce, A ‘Darboux
Theorem’ for shifted symplectic structures on derived Artin stacks,
with applications, Geom. Top. 19 (2015), 1287-1359. arXiv:1312.0090.
C. Brav, V. Bussi, D. Dupont, D. Joyce, and B. Szendrdi,
Symmetries and stabilization for sheaves of vanishing cycles,
Journal of Singularities 11 (2015), 85-151. arXiv:1211.32509.

V. Bussi, Categorification of Lagrangian intersections on complex
symplectic manifolds using perverse sheaves of vanishing cycles,
arXiv:1404.1329, 2014.
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4.1. D-critical loci

We will define ‘d-critical loci’ and ‘d-critical stacks’, classical
truncations of —1-shifted symplectic derived schemes and stacks.

Theorem (Joyce arXiv:1304.4508)

Let X be a classical K-scheme. Then there exists a canonical
sheaf Sx of K-vector spaces on X, such that if R C X is Zariski
open and i : R — U is a closed embedding of R into a smooth
K-scheme U, and Ir,y C Oy is the ideal vanishing on i(R), then

T*
SX’R%JKGI“(OU d, Y )

By lru-THU
Also Sx splits naturally as Sx = S)0< P Kx, where Kx is the sheaf
of locally constant functions X — K.

o
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The meaning of the sheaves Sx, Sy

If X = Crit(f: U — Al) then taking R = X, i =inclusion, we see
that £ + I)2<,U is a section of Sx. Also f|yrea : X™4 — K is locally
constant, and if f|yrea = 0 then f + I)2<7U is a section of Sy. Note
that f + Ix y = f|x in Ox = Oy/Ix,y. The theorem means that
f+ l)2<,U makes sense intrinsically on X, without reference to the

embedding of X into U.

That is, if X = Crit(f : U — A') then we can remember f up to

second order in the ideal /x y as a piece of data on X, not on U.

Suppose X = Crit(f : U — A') = Crit(g : V — A') is written as
a critical locus in two different ways. Then f + I)%,U, g+ /)2<,v are
sections of Sx, so we can ask whether f + I)2<7U =g+ I)2<7V. This
gives a way to compare isomorphic critical loci in different smooth
classical schemes.
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The definition of d-critical loci

Definition (Joyce arXiv:1304.4508)

An (algebraic) d-critical locus (X, s) is a classical K-scheme X and
a global section s € HO(SY) such that X may be covered by
Zariski open R C X with an isomorphism

i : R — Crit(f : U— A') identifying s|g with f + I3 , for f a
regular function on a smooth K-scheme U.

That is, a d-critical locus (X, s) is a K-scheme X which may
Zariski locally be written as a critical locus Crit(f : U — A!), and
the section s remembers f up to second order in the ideal Ix y.
We also define complex analytic d-critical loci, with X a complex
analytic space locally modelled on Crit(f : U — C) for U a
complex manifold and f holomorphic.
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Orientations on d-critical loci

Theorem (Joyce arXiv:1304.4508)

Let (X,s) be an algebraic d-critical locus and X**¢ the reduced
K-subscheme of X. Then there is a natural line bundle Kx s on
X 4 called the canonical bundle, such that if (X,s) is locally
modelled on Crit(f : U — A') then Kx s is locally modelled on

K£81>2|Crit(f)red, for Ky the usual canonical bundle of U.

Definition

Let (X,s) be a d-critical locus. An orientation on (X, s) is a
choice of square root line bundle K)l/s2 for Kx s on Jgred

This is related to orientation data in Kontsevich—Soibelman 2008.
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A truncation functor from —1-symplectic derived schemes

Theorem 4.1 (Brav, Bussi and Joyce arXiv:1305.6302)

Let (X,w) be a —1-shifted symplectic derived K-scheme. Then
the classical K-scheme X = ty(X) extends naturally to an
algebraic d-critical locus (X,s). The canonical bundle of (X, s)
satisfies Kx s = det L x| xrea.

v

That is, we define a truncation functor from —1-shifted symplectic
derived K-schemes to algebraic d-critical loci. Examples show this
functor is not full. Think of d-critical loci as classical truncations
of —1-shifted symplectic derived K-schemes.

An alternative semi-classical truncation, used in DT theory, is
schemes with symmetric obstruction theory. D-critical loci appear
to be more useful, for both categorified and motivic D—T theory.
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Corollaries 3.3-3.4 imply:

Corollary 4.2

Let Y be a Calabi—Yau 3-fold over K and M a classical moduli
K-scheme of coherent sheaves, or complexes of coherent sheaves,
on Y. Then M extends naturally to a d-critical locus (M, s). The
canonical bundle satisfies Knq s = det(E®)| \ qrea, where

¢ : E* — Ly is the (symmetric) obstruction theory on M defined
by Thomas or Huybrechts and Thomas.

|

Corollary 4.3

Let (S,w) be a classical smooth symplectic K-scheme, and
L,M C S be smooth algebraic Lagrangians. Then X = LN M
extends naturally to a d-critical locus (X,s). The canonical bundle
satisfies Kx s = Ky |xrea @ Kp|xrea. Hence, choices of square roots
K12 13 : .

"7, Ky~ give an orientation for (X, s).

A\

Bussi extends Corollary 4.3 to complex Lagrangians in complex

symplectic manifolds.
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4.2. D-critical stacks

To generalize the d-critical loci in §4.1 to Artin stacks, we need a
good notion of sheaves on Artin stacks. This is already well
understood. Roughly, a sheaf & on an Artin stack X assigns a
sheaf S(U, ¢) on U (in the usual sense for schemes) for each
smooth morphism ¢ : U — X with U a scheme, and a morphism
S(a,n) : a*(S(V,v)) = S(U, ¢) (often an isomorphism) for each
2-commutative diagram

v
| \ww (4.1)

with U, V schemes and ¢, 9 smooth, such that S(a,7n) have the
obvious associativity properties. So, we pass from stacks X to
schemes U by working with smooth atlases ¢ : U — X.
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The definition of d-critical stacks

Generalizing d-critical loci to stacks is now straightforward. As
above, on each scheme U we have a canonical sheaf 88. If

a : U — V is a morphism of schemes we have pullback morphisms
a* 1 a H(S8Y) — SP with associativity properties.

So, for any classical Artin stack X, we define a sheaf Sg on X by
SY(U, ) = S for all smooth ¢ : U — X with U a scheme, and
SY(a,n) = o* for all diagrams (4.1).

A global section s € HO(S%) assigns s(U, ) € H(SP) for all
smooth ¢ : U — X with o*[a~1(s(V,v))] = s(U, ¢) for all
diagrams (4.1). We call (X, s) a d-critical stack if (U,s(U,)) is
a d-critical locus for all smooth ¢ : U — X.

That is, if X is a d-critical stack then any smooth atlas ¢ : U — X
for X is a d-critical locus.
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A truncation functor from —1-symplectic derived stacks

As for the scheme case in §4.1, we prove:

Theorem 4.4 (Ben-Bassat, Brav, Bussi, Joyce arXiv:1312.0090)

Let (X,w) be a —1-shifted symplectic derived Artin stack. Then
the classical Artin stack X = to(X) extends naturally to a
d-critical stack (X,s), with canonical bundle Kx s = det Lx|xrea.

Corollary 4.5

Let Y be a Calabi-Yau 3-fold over K and M a classical moduli
stack of coherent sheaves F on Y, or complexes F® in D” coh(Y)
with Ext<C(F®, F*) = 0. Then M extends naturally to a d-critical
stack (M, s) with canonical bundle Ky s = det(E°®)| \ jrea, where
¢ : E®* — L is the natural obstruction theory on M.
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4 3. Categorification using perverse sheaves

It's not easy to explain what perverse sheaves are. We can think of
a perverse sheaf as a system of coefficients for cohomology. Let X
be a complex manifold. The cohomology group H¥(X; Q) is the
sheaf cohomology group HX(X,Qx), where Qx is the constant
sheaf with fibre Q. Working in complexes of sheaves of (Q-modules
on X, consider the shifted sheaf Qx[dim¢ X]. This is an example
of a perverse sheaf. The shift means that Poincaré duality for X
has the nice form H' (Qx[dimc X]) = H ' (Qx[dimc X])*.

If instead X is a singular complex variety, rather than considering
H*(X; Q), it can be helpful (e.g. in ‘intersection cohomology’, and
to preserve nice properties like Poincaré duality) to consider
cohomology H* (X, P*®) with coefficients in a complex P*® on X (a
‘perverse sheaf’) which treats the singularities of X in a special way.
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Let U be a complex manifold, and f : U — C a holomorphic
function. Then one can define a perverse sheaf PV{, ; on Crit f
called the perverse sheaf of vanishing cycles, with nice properties.
The vanishing cohomology H*(PV{, ) measures how
H*(f~1(c); Q) changes as c passes through critical values of f.
Kai Behrend observed that the pointwise Euler characteristic
XPVy Crit f — Z is the Behrend function of Crit f, as used in
classical Donaldson—Thomas theory.

Theorem 4.6 (Brav-Bussi-Dupont-Joyce-Szendréi arXiv:1211.3259)

Let (X,s) be an algebraic d-critical locus over K, with an

orientation K )1/ 52 Then we can construct a canonical perverse
sheaf P% ; on X, such that if (X,s) is locally modelled on
Crit(f : U — Al), then Py _ is locally modelled on the perverse
sheaf of vanishing cycles 73172{” of (U, f).

Similarly, we can construct a natural Z-module Dy, _ on X, and
when K = C a natural mixed Hodge module M5 on X.
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Sketch of the proof of Theorem 4.6

Roughly, we prove the theorem by taking a Zariski open cover
{R; ;i €1} of X with R; = Crit(f; : U; — A!), and showing that
PV{,.r and PV, are canonically isomorphic on R; N R;, so we
can glue the PV{,hfi to get a global perverse sheaf P)'<,s on X.

In fact things are more complicated: the (local) isomorphisms
PV, = PV, are only canonical up to sign. To make them

canonical, we use the orientation K)l/sz to define natural principal
Zp-bundles Q; on R;, such that PV, - ®z, Qi = PVTJJ.,G ®z, Qj is
canonical, and then we glue the PVLI,’,CI, ®7, Qi to get Py ..
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Theorem 4.6 and Corollary 4.2 imply:
Corollary 4.7

Let Y be a Calabi—Yau 3-fold over K and M a classical moduli
K-scheme of coherent sheaves, or complexes of coherent sheaves,
on Y, with (symmetric) obstruction theory ¢ : £* — LLq. Suppose
we are given a square root det(£°)1/? for det(£°) (i.e. orientation
data, K-S). Then we have a natural perverse sheaf P}, . on M.

v

(Compare Kiem and Li arXiv:1212.6444).

The hypercohomology H*(P}, ;) is a finite-dimensional graded
vector space (if M is of finite type). The pointwise Euler
characteristic x(P}, ;) is the Behrend function v of M. Thus

ZiEZ(_l)I dim HI( /.\/l,s) - X(M7 VM)'
Now by Behrend 2005, the Donaldson—Thomas invariant of M is
DT (M) = x(M,vm). So, H* (P, ;) is a graded vector space
with dimension DT (M), that is, a categorification of DT (M).
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Categorifying Lagrangian intersections

Theorem 4.6 and Corollary 4.3 imply:
Corollary 4.8

Let (S,w) be a classical smooth symplectic K-scheme of
dimension 2n, and L, M C S be smooth algebraic Lagrangians,
with square roots K Ll/ 2, K ,t,/ 2 of their canonical bundles. Then we

have a natural perverse sheaf P} ,, on X = LN M.

Bussi extends this to complex Lagrangians in complex symplectic
manifolds. This is related to Behrend and Fantechi 2009. We think
of the hypercohomology H*(P; ,,) as being morally related to the
Lagrangian Floer cohomology HF*(L, M) by

H' (P} ) & HF' (L, M).
We are working on defining ‘Fukaya categories’ for
algebraic/complex symplectic manifolds using these ideas (§6.2(B)).
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Extension to Artin stacks

Let (X,s) be a d-critical stack, with an orientation K)l/sz Then for
any smooth ¢ : U — X with U a scheme, (U, s(U,go)) is an
oriented d-critical locus, so as above, Theorem 4.6 constructs a
perverse sheaf Py, on U. Given a diagram

V
U / SO \ X
with U, V schemes and ¢, 1 smooth, we can construct a natural

isomorphism Py, : a*(Py, ,)[dim ¢ — dim ] — Py, .

All this data P('J,@, P3. 1s equivalent to a perverse sheaf on X.
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Thus we prove:

Theorem 4.9 (Ben-Bassat, Brav, Bussi, Joyce arXiv:1312.0090)

Let (X,s) be a d-critical stack, with an orientation K )1/ _f Then we
can construct a canonical perverse sheaf Py _ on X.

Corollary 4.10

Suppose Y is a Calabi-Yau 3-fold and M a classical moduli stack
of coherent sheaves F on Y, or of complexes F® in D coh(Y)
with Ext<(F®, F*) = 0, with (symmetric) obstruction theory
¢ : E* — Ly Suppose we are given a square root det(£°)Y/? for
det(€°®). Then we construct a natural perverse sheaf P},  on M.

The hypercohomology H*(P3, ) is a categorification of the
Donaldson—Thomas theory of Y.
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