A Ringel-Hall type construction of vertex algebras

Dominic Joyce, Oxford University
String Theory seminar, Oxford, May 2018.
Based on 'Ringel-Hall style vertex algebra and Lie algebra structures on the homology of moduli spaces', preprint, 2018.

Funded by the Simons Collaboration on Special Holonomy in Geometry, Analysis and Physics.
Thanks to Yalong Cao, Jacob Gross, Yuuji Tanaka, Markus Upmeier. These slides, and preprint above, available at http://people.maths.ox.ac.uk/~joyce/.
1/24 Dominic Joyce, Oxford University A Ringel-Hall type construction of vertex algebras

> Ringel-Hall algebras and vertex algebras
> Vertex algebras on homology of moduli stacks
> Lie algebras on homology of moduli stacks
> Examples from quivers and coherent sheaves

Plan of talk:
(1) Ringel-Hall algebras and vertex algebras
(2) Vertex algebras on homology of moduli stacks
(3) Lie algebras on homology of moduli stacks

4 Examples from quivers and coherent sheaves

Ringel-Hall algebras and vertex algebras Vertex algebras on homology of moduli stacks
 Lie algebras on homology of moduli stacks Examples from quivers and coherent sheaves

 1. Ringel-Hall algebras and vertex algebras

 1. Ringel-Hall algebras and vertex algebras Ringel-Hall algebras

 Ringel-Hall algebras}

Let \mathbb{K} be a field, and \mathcal{A} a \mathbb{K}-linear abelian category satisfying some conditions, e.g. \mathcal{A} could be the category mod- $\mathbb{K} Q$ of representations of a quiver Q, or the category $\operatorname{coh}(X)$ of coherent sheaves on a smooth projective \mathbb{K}-scheme X. Write \mathfrak{M} for the moduli stack of objects in \mathcal{A}, which should be an Artin \mathbb{K}-stack, locally of finite type, and $\mathfrak{M}(\mathbb{K})$ for the set of \mathbb{K}-points.
There are several versions of the Ringel-Hall algebra \mathcal{H} associated to \mathcal{A}. In one version, \mathcal{H} is a \mathbb{Q}-vector space of some class of functions $f: \mathfrak{M}(\mathbb{K}) \rightarrow \mathbb{Q}$ (e.g. functions with finite support, or constructible functions $\mathcal{H}=\mathrm{CF}(\mathfrak{M})$) equipped with an associative multiplication $*$ making \mathcal{H} into a \mathbb{Q}-algebra, with unit $\delta_{0}: \mathfrak{M}(\mathbb{K}) \rightarrow \mathbb{Q}$ the function which is 1 on $0 \in \mathcal{A}$ and 0 otherwise.
3/24 Dominic Joyce, Oxford University A Ringel-Hall type construction of vertex algebras

[^0]Write $\mathfrak{E x a c t}$ for the moduli stack of exact sequences
$E_{\bullet}=0 \rightarrow E_{1} \rightarrow E_{2} \rightarrow E_{3} \rightarrow 0$ in \mathcal{A}, with projections
$\Pi_{i}: \mathfrak{E x a c t} \rightarrow \mathfrak{M}$ mapping $E_{\bullet} \rightarrow E_{i}$ for $i=1,2,3$. Then *: $\mathcal{H} \times \mathcal{H} \rightarrow \mathcal{H}$ is

$$
f * g=\left(\Pi_{2}\right)_{*} \circ\left(\Pi_{1}, \Pi_{3}\right)^{*}(f \boxtimes g)
$$

Here $\Pi_{2}: \mathfrak{E x a c t} \rightarrow \mathfrak{M}$ is a representable morphism, and $\left(\Pi_{1}, \Pi_{3}\right): \mathfrak{E x a c t} \rightarrow \mathfrak{M} \times \mathfrak{M}$ is a finite type morphism, and pushforwards (pullbacks) of \mathcal{H}-type functions should be defined for representable (finite type) morphisms of Artin \mathbb{K}-stacks.
Ringel-Hall algebras are studied in Geometric Representation
Theory, for instance to construct Quantum Groups from $\mathcal{A}=\bmod -\mathbb{K} Q$ for Q an ADE quiver.
Note that \mathcal{H} is also a Lie algebra, with Lie bracket $[f, g]=f * g-g * f$, the Jacobi identity follows from $*$ associative.

Ringel-Hall algebras are interesting for several reasons:

- If Q is a quiver and \mathbb{F}_{q} is a finite field with q elements, one can identify a (twisted) Ringel-Hall algebra $\mathcal{H}\left(\bmod -\mathbb{F}_{q} Q\right)$ with the quantum group $U_{\sqrt{q}}\left(\mathfrak{n}_{+}\right)$of the positive part \mathfrak{n}_{+}of the Kac-Moody Lie algebra \mathfrak{g} associated to the dimension vector lattice $\mathbb{Z}^{Q_{0}}$ with symmetrized intersection form $\chi(\boldsymbol{d}, \boldsymbol{e})=\chi_{Q}(\boldsymbol{d}, \boldsymbol{e})+\chi_{Q}(\boldsymbol{e}, \boldsymbol{d})$. Morally one should get the full quantum group $U_{\sqrt{q}}(\mathfrak{g})$ from the derived category $\mathcal{H}\left(D^{b} \bmod -\mathbb{F}_{q} Q\right)$, but this doesn't work very well at the moment.
- Ringel-Hall (Lie) algebras are used to write wall-crossing formulae for enumerative invariants (e.g. D-T invariants) under change of stability condition (Joyce, 2004-8).
- Work by Grojnowski, Nakajima, ... constructs representations of interesting infinite-dimensional (Lie) algebras on homology of Hilbert schemes, etc., by what looks like a Ringel-Hall type construction; but usually without constructing the Ringel-Hall (Lie) algebra geometrically.

$5 / 24$
 Dominic Joyce, Oxford University
 A Ringel-Hall type construction of vertex algebras

Vertex algebras

Let R be a commutative ring. A vertex algebra over R is an R-module V equipped with morphisms $D^{(n)}: V \rightarrow V$ for $n=0,1,2, \ldots$ with $D^{(0)}=\operatorname{id}_{v}$ and $v_{n}: V \rightarrow V$ for all $v \in V$ and $n \in \mathbb{Z}$, with $v_{n} R$-linear in v, and a distinguished element $\mathbb{1} \in V$ called the identity or vacuum vector, satisfying:
(i) For all $u, v \in V$ we have $u_{n}(v)=0$ for $n \gg 0$.
(ii) If $v \in V$ then $\mathbb{1}_{-1}(v)=v$ and $\mathbb{1}_{n}(v)=0$ for $-1 \neq n \in \mathbb{Z}$.
(iii) If $v \in V$ then $v_{n}(\mathbb{1})=D^{(-n-1)}(v)$ for $n<0$ and $v_{n}(\mathbb{1})=0$ for $n \geqslant 0$.
(iv) $u_{n}(v)=\sum_{k \geqslant 0}(-1)^{k+n+1} D^{(k)}\left(v_{n+k}(u)\right)$ for all $u, v \in V$ and $n \in \mathbb{Z}$, where the sum makes sense by (i), as it has only finitely many nonzero terms.

$$
\text { (v) }\left(u_{l}(v)\right)_{m}(w)=\sum_{n \geqslant 0}(-1)^{n}\binom{l}{n}\left(u_{l-n}\left(v_{m+n}(w)\right)-(-1)^{\prime} v_{l+m-n}\left(u_{n}(w)\right)\right)
$$

for all $u, v, w \in V$ and $I, m \in \mathbb{Z}$, where the sum makes sense by (i).

It is usual to encode the maps $u_{n}: V \rightarrow V$ for $n \in \mathbb{Z}$ in generating function form as R-linear maps for each $u \in V$

$$
Y(u, z): V \longrightarrow V\left[\left[z, z^{-1}\right]\right], \quad Y(u, z): v \longmapsto \sum_{n \in \mathbb{Z}} u_{n}(v) z^{-n-1}
$$

where z is a formal variable. The $Y(u, z)$ are called fields, and have a meaning in Physics. Parts (i)-(v) may be rewritten as properties of the $Y(u, z)$. We can also define graded vertex algebras and vertex superalgebras.
Let R be a field of characteristic zero. A vertex operator algebra (VOA) over R is a vertex algebra V over R, with a distinguished conformal element $\omega \in V$ and a central charge $c_{V} \in R$, such that writing $L_{n}=\omega_{n+1}: V_{*} \rightarrow V_{*}$, the L_{n} define an action of the Virasoro algebra on V_{*}, with central charge c_{V}, and $L_{-1}=D^{(1)}$. VOAs are important in Physics. We will give a geometric construction of vertex algebras, but often they will not be VOAs, and even when they are, the conformal element ω does not appear naturally from the geometry, so far as I know.
7/24 Dominic Joyce, Oxford University A Ringel-Hall type construction of vertex algebras

Let \mathcal{A} be a \mathbb{K}-linear abelian category as before, and \mathfrak{M} the moduli stack of objects in \mathcal{A}, an Artin \mathbb{K}-stack, locally of finite type. Suppose we have a homology theory $H_{*}(-)$ of Artin \mathbb{K}-stacks over a commutative ring R (e.g. $R=\mathbb{Q}$), satisfying some axioms. Given some extra data on \mathfrak{M}, we will define a vertex algebra structure on the homology $H_{*}(\mathfrak{M})$. We also define a graded Lie bracket [,] on $H_{*}(\mathfrak{M})$ (or rather, a modification of this), making $H_{*}(\mathfrak{M})$ into a graded Lie (super)algebra (with a nonstandard grading). This is analogous to the Ringel-Hall Lie algebra $(\mathrm{CF}(\mathfrak{M}),[]$,$) , but with \mathrm{CF}(\mathfrak{M})$ replaced by $H_{*}(\mathfrak{M})$.
There are lots of interesting applications:

- Lie algebras in Geometric Representation Theory from quivers, etc.
- Explain Grojnowski-Nakajima on (co)homology of Hilbert schemes.
- Wall-crossing for virtual cycles in enumerative invariant problems.
- A differential-geometric version for use in gauge theory.

The extra data we need

We have $f * g=\left(\Pi_{2}\right)_{*} \circ\left(\Pi_{1}, \Pi_{3}\right)^{*}(f \boxtimes g)$ for Ringel-Hall algebras of constructible functions $\operatorname{CF}(\mathfrak{M})$. If we replace $\operatorname{CF}(\mathfrak{M})$ by $H_{*}(\mathfrak{M})$ then the pushforward $\left(\Pi_{2}\right)_{*}$ is natural, but the pullback $\left(\Pi_{1}, \Pi_{3}\right)^{*}$ is not. To define our substitute for $\left(\Pi_{1}, \Pi_{3}\right)^{*}$ we need some extra data, a perfect complex Θ^{\bullet} on $\mathfrak{M} \times \mathfrak{M}$ satisfying some assumptions; the formula for [,] involves rank Θ^{\bullet} and $c_{i}\left(\Theta^{\bullet}\right)$. We also need signs $\epsilon_{\alpha, \beta}$ related to 'orientation data' for \mathcal{A}. For graded antisymmetry of [,] we need $\sigma^{*}\left(\Theta^{\bullet}\right) \cong\left(\Theta^{\bullet}\right)^{\vee}[2 n]$ for some $n \in \mathbb{Z}$, where $\sigma: \mathfrak{M} \times \mathfrak{M} \rightarrow \mathfrak{M} \times \mathfrak{M}$ exchanges the factors, as then $c_{i}\left(\sigma^{*}\left(\Theta^{\bullet}\right)\right)=(-1)^{i} c_{i}\left(\Theta^{\bullet}\right)$.
In our examples there is a natural perfect complex $\mathcal{E} x t^{\bullet}$ on $\mathfrak{M} \times \mathfrak{M}$ with $\left.H^{i}\left(\mathcal{E x} t^{\bullet}\right)\right|_{([E],[F])} \cong \operatorname{Ext}_{\mathcal{A}}^{i}(E, F)$ for $E, F \in \mathcal{A}$ and $i \in \mathbb{Z}$. If \mathcal{A} is a $2 n$-Calabi-Yau category then $\sigma^{*}\left(\left(\mathcal{E} x t^{\bullet}\right)^{\vee}\right) \cong \mathcal{E} x t^{\bullet}[2 n]$, and we put $\Theta^{\bullet}=\left(\mathcal{E} x t^{\bullet}\right)^{\vee}$. Otherwise we put $\Theta^{\bullet}=\left(\mathcal{E} x t^{\bullet}\right)^{\vee}+\sigma^{*}\left(\mathcal{E} x t^{\bullet}\right)[2 n]$. Thus examples split into 'even Calabi-Yau' and 'general' Lie algebras.

$$
9 / 24 \quad \text { Dominic Joyce, Oxford University } \quad \text { A Ringel-Hall type construction of vertex algebras }
$$

Ringel-Hall algebras and vertex algebras
Vertex algebras on homology of moduli stacks
Lie algebras on homology of moduli stacks
Examples from quivers and coherent sheaves

More detail on the basic set-up

Let $K(\mathcal{A})$ be a quotient group of the Grothendieck group $K_{0}(\mathcal{A})$ of \mathcal{A} such that $\mathfrak{M}=\coprod_{\alpha \in K(\mathcal{A})} \mathfrak{M}_{\alpha}$, with \mathfrak{M}_{α} the moduli stack of objects $E \in \mathcal{A}$ in class α in $K(\mathcal{A})$ an open and closed substack in \mathfrak{M}. We suppose we are given a biadditive map $\chi: K(\mathcal{A}) \times K(\mathcal{A}) \rightarrow \mathbb{Z}$ called the Euler form, with $\chi(\alpha, \beta)=\chi(\beta, \alpha)$. The restriction $\Theta_{\alpha, \beta}^{\bullet}=\left.\Theta^{\bullet}\right|_{\mathfrak{M}_{\alpha} \times \mathfrak{M}_{\beta}}$ should have $\operatorname{rank} \Theta_{\alpha, \beta}^{\bullet}=\chi(\alpha, \beta)$.
There should be an Artin stack morphism $\Phi: \mathfrak{M} \times \mathfrak{M} \rightarrow \mathfrak{M}$ mapping $\Phi(\mathbb{K}):([E],[F]) \mapsto[E \oplus F]$ on \mathbb{K}-points, from direct sum in \mathcal{A}. It is associative and commutative. In perfect complexes on $\mathfrak{M}_{\alpha} \times \mathfrak{M}_{\beta} \times \mathfrak{M}_{\gamma}$ for $\alpha, \beta, \gamma \in K(\mathcal{A})$ we should have

$$
\left(\Phi_{\alpha, \beta} \times \operatorname{id}_{\mathfrak{M}_{\gamma}}\right)^{*}\left(\Theta_{\alpha+\beta, \gamma}^{\bullet}\right) \cong \Pi_{\mathfrak{M}_{\alpha} \times \mathfrak{M}_{\gamma}}^{*}\left(\Theta_{\alpha, \gamma}^{\bullet}\right) \oplus \Pi_{\mathfrak{M}_{\beta} \times \mathfrak{M}_{\gamma}}^{*}\left(\Theta_{\beta, \gamma}^{\bullet}\right)
$$

needed for the graded Jacobi identity for [,], and corresponding to

$$
\operatorname{Ext}_{\mathcal{A}}^{i}(E \oplus F, G)^{*} \cong \operatorname{Ext}_{\mathcal{A}}^{i}(E, G)^{*} \oplus \operatorname{Ext}_{\mathcal{A}}^{i}(F, G)^{*}
$$

The stack $\left[* / \mathbb{G}_{m}\right]$ and morphism Ψ

Write $\mathbb{G}_{m}=\mathbb{K} \backslash\{0\}$ as an algebraic \mathbb{K}-group under multiplication, and $\left[* / \mathbb{G}_{m}\right]$ for the quotient stack, where $*=\operatorname{Spec} \mathbb{K}$ is the point. If S is an Artin \mathbb{K}-stack and $s \in S(\mathbb{K})$ a \mathbb{K}-point there is an isotropy group $\operatorname{Isos}(s)$, an algebraic \mathbb{K}-group. We have $\operatorname{Ison}_{\mathfrak{M}}([E]) \cong \operatorname{Aut}(E)$ for $E \in \mathcal{A}$. There is a natural morphism $\mathbb{G}_{m} \rightarrow \operatorname{Aut}(E)$ mapping $\lambda \mapsto \lambda \cdot \operatorname{id}_{E} \in \operatorname{Aut}(E) \subset \operatorname{Hom}_{\mathcal{A}}(E, E)$.
There should be an Artin stack morphism $\Psi:\left[* / \mathbb{G}_{m}\right] \times \mathfrak{M} \rightarrow \mathfrak{M}$ mapping $(*,[E]) \mapsto[E]$ on \mathbb{K}-points, and acting on isotropy groups by
$\Psi_{*}: \operatorname{Iso}_{\left[* / \mathbb{G}_{m}\right] \times \mathfrak{M}}(*,[E]) \cong \mathbb{G}_{m} \times \operatorname{Aut}(E) \longrightarrow \operatorname{Iso}_{\mathfrak{M}}([E]) \cong \operatorname{Aut}(E)$,
$\Psi_{*}:(\lambda, \mu) \longmapsto\left(\lambda \cdot \mathrm{id}_{E}\right) \circ \mu$.
Here $\left[* / \mathbb{G}_{m}\right]$ is a group stack, and Ψ is an action of $\left[* / \mathbb{G}_{m}\right.$] on \mathfrak{M}, which is free except over $[0] \in \mathfrak{M}$. This Ψ encodes the natural morphisms $\mathbb{G}_{m} \rightarrow \operatorname{Isom}([E])$ for all $[E] \in \mathfrak{M}(\mathbb{K})$.
11/24 Dominic Joyce, Oxford University A Ringel-Hall type construction of vertex algebras

> Ringel-Hall algebras and vertex algebras
> Vertex algebras on homology of moduli stacks
> Lie algebras on homology of moduli stacks
> Examples from quivers and coherent sheaves

We require a compatibility between Ψ and Θ^{\bullet}, roughly that

$$
\left(\Psi \times \operatorname{id}_{\mathfrak{M}}\right)^{*}\left(\Theta^{\bullet}\right) \cong \Pi_{\left[* / \mathbb{G}_{m}\right]}^{*}(L) \otimes \Pi_{\mathfrak{M} \times \mathfrak{M}}^{*}\left(\Theta^{\bullet}\right)
$$

where L is the line bundle on $\left[* / \mathbb{G}_{m}\right]$ associated to the obvious representation of \mathbb{G}_{m} on \mathbb{K}. This corresponds to $\lambda \operatorname{id}_{E} \in \operatorname{Aut}(E)$ acting by multiplication by $\lambda \in \mathbb{G}_{m}$ on $\operatorname{Ext}^{i}(E, F)^{*}$.
We should be given $\epsilon_{\alpha, \beta}= \pm 1$ for $\alpha, \beta \in K(\mathcal{A})$ satisfying

$$
\begin{aligned}
\epsilon_{\alpha, \beta} \cdot \epsilon_{\beta, \alpha} & =(-1)^{\chi(\alpha, \beta)+\chi(\alpha, \alpha) \chi(\beta, \beta)}, \\
\epsilon_{\alpha, \beta} \cdot \epsilon_{\alpha+\beta, \gamma} & =\epsilon_{\alpha, \beta+\gamma} \cdot \epsilon_{\beta, \gamma} .
\end{aligned}
$$

They are needed to correct signs in defining [,]. Such $\epsilon_{\alpha, \beta}$ always exist. They are related to 'orientation data' as follows: if we have chosen 'orientations' for $\mathfrak{M}_{\alpha}, \mathfrak{M}_{\beta}, \mathfrak{M}_{\alpha+\beta}$, then $\epsilon_{\alpha, \beta}$ should be the natural sign comparing the orientations at $[E] \in \mathfrak{M}_{\alpha}(\mathbb{K})$,
$[F] \in \mathfrak{M}_{\beta}(\mathbb{K})$ and $[E \oplus F]=\Phi([E],[F]) \in \mathfrak{M}_{\alpha+\beta}(\mathbb{K})$.

The homology of $\left[* / \mathbb{G}_{m}\right]$, and its action on $H_{*}(\mathfrak{M})$

Let $H_{*}(-)$ be a homology theory of Artin \mathbb{K}-stacks over a commutative ring R, satisfying some natural axioms. Then

$$
H_{i}\left(\left[* / \mathbb{G}_{m}\right]\right) \cong \begin{cases}R, & i=0,2,4,6, \ldots \\ 0 & \text { otherwise }\end{cases}
$$

(This holds as the 'classifying space' of $\left[* / \mathbb{G}_{m}\right]$ is $\mathbb{K} \mathbb{P}^{\infty}$.) So we may write $H_{*}\left(\left[* / \mathbb{G}_{m}\right]\right) \cong R[t]$, for t a formal variable of degree 2 , such that t^{n} is a basis element for $H_{2 n}\left(\left[* / \mathbb{G}_{m}\right]\right)$. Let $\Omega:\left[* / \mathbb{G}_{m}\right] \times\left[* / \mathbb{G}_{m}\right] \rightarrow\left[* / \mathbb{G}_{m}\right]$ be the stack morphism induced by the group morphism $\omega: \mathbb{G}_{m} \times \mathbb{G}_{m} \rightarrow \mathbb{G}_{m}$ mapping $\omega:(\lambda, \mu) \mapsto \lambda \mu$. Define $\star: H_{*}\left(\left[* / \mathbb{G}_{m}\right]\right) \times H_{*}\left(\left[* / \mathbb{G}_{m}\right]\right) \rightarrow H_{*}\left(\left[* / \mathbb{G}_{m}\right]\right)$ by $\zeta \star \eta=H_{*}(\Omega)(\zeta \boxtimes \eta)$. Then \star makes $H_{*}\left(\left[* / \mathbb{G}_{m}\right]\right) \cong R[t]$ into a commutative R-algebra, with $t^{m} \star t^{n}=\binom{m+n}{m} t^{m+n}$.
Define $\diamond: H_{*}\left(\left[* / \mathbb{G}_{m}\right]\right) \times H_{*}(\mathfrak{M}) \rightarrow H_{*}(\mathfrak{M})$ by $\zeta \diamond \theta=H_{*}(\Psi)(\zeta \boxtimes \theta)$. Then \diamond makes $H_{*}(\mathfrak{M})$ into a module over $H_{*}\left(\left[* / \mathbb{G}_{m}\right]\right) \cong R[t]$.
13/24 Dominic Joyce, Oxford University A Ringel-Hall type construction of vertex algebras

Let $\alpha, \beta \in K(\mathcal{A})$ and $a, b \geqslant 0, n \in \mathbb{Z}$. Define an R-bilinear operation

$$
H_{a}\left(\mathfrak{M}_{\alpha}\right)^{\prime} \times H_{b}\left(\mathfrak{M}_{\beta}\right) \longrightarrow H_{a+b-2 n-2 \chi(\alpha, \beta)-2}\left(\mathfrak{M}_{\alpha+\beta}\right)
$$

by, for all $u \in H_{a}\left(\mathfrak{M}_{\alpha}\right)$ and $v \in H_{b}\left(\mathfrak{M}_{\beta}\right)$,

$$
\begin{align*}
u_{n}(v)= & \sum_{\substack{i \geqslant 0: 2 i \leqslant a+b, i \geqslant n+\chi(\alpha, \beta)+1}} \epsilon_{\alpha, \beta}(-1)^{a \chi(\beta, \beta)} . \tag{1}\\
& \left(t^{i-n-\chi-2 n-2 \chi(\alpha, \beta)-1} \boxtimes\left[(u \boxtimes v) \cap c_{i}\left(\left[\Theta_{\alpha, \beta}^{\bullet}\right]\right)\right]\right),
\end{align*}
$$

where $t^{k} \in H_{2 k}\left(\left[* / \mathbb{G}_{m}\right]\right)$ as above. Define $D^{(k)}(u)=t^{k} \diamond u$, and let the vacuum vector $\mathbb{1}$ be $1 \in H_{0}\left(\mathfrak{M}_{0}\right)$.

Theorem

All this makes $H_{*}(\mathfrak{M})=\bigoplus_{\alpha \in K(\mathcal{A})} H_{*}\left(\mathfrak{M}_{\alpha}\right)$ into a graded vertex superalgebra over R, with the shifted grading

$$
\tilde{H}_{i}\left(\mathfrak{M}_{\alpha}\right)=H_{i+2-\chi(\alpha, \alpha)}\left(\mathfrak{M}_{\alpha}\right) .
$$

The proof uses properties of Chern classes, and combinatorial identities.
When R is a \mathbb{Q}-algebra, for $u \in H_{a}\left(\mathfrak{M}_{\alpha}\right)$ and $v \in H_{b}\left(\mathfrak{M}_{\beta}\right)$, we can rewrite (1) using Chern characters $\operatorname{ch}_{j}(-)$ in the suggestive form

$$
\begin{aligned}
& Y(u, z) v=\sum_{n \in \mathbb{Z}} u_{n}(v) z^{-n-1} \\
& =\epsilon_{\alpha, \beta}(-1)^{a \chi(\beta, \beta)} z^{\chi(\alpha, \beta)} \cdot H_{*}\left(\Phi_{\alpha, \beta} \circ\left(\Psi_{\alpha} \times \operatorname{id}_{\mathfrak{M}_{\beta}}\right)\right) \\
& \left\{\left(\sum_{i \geqslant 0} z^{i} t^{i}\right) \boxtimes\left[(u \boxtimes v) \cap \exp \left(\sum_{j \geqslant 1}(-1)^{j-1}(j-1)!z^{-j} \operatorname{ch}_{j}\left(\left[\Theta_{\alpha, \beta}^{\bullet}\right]\right)\right)\right]\right\} .
\end{aligned}
$$

$15 / 24$

 Dominic Joyce, Oxford University A Ringel-Hall type construction of vertex algebras> Ringel-Hall algebras and vertex algebras
> Vertex algebras on homology of moduli stacks
> Lie algebras on homology of moduli stacks
> Examples from quivers and coherent sheaves

Question

What is the interpretation of these vertex algebras in Physics?
Some hints, pretending to use String Theory words: suppose \mathfrak{M} comes from the triangulated category $D^{b} \operatorname{coh}(X)$ for X a physically interesting smooth projective \mathbb{C}-scheme - say a Calabi-Yau 2- or 4-fold. (Sorry, not a C-Y 3-fold, for reasons next). Then String Theory should give you an SCFT from X. I believe you guys think that \mathfrak{M} is the moduli space of ' B -branes' on X - boundary conditions for the string, which should form a triangulated category. If branes can come in continuous families, then a string should be allowed to end on not just one brane, but on a family of branes say on a homology class in $H_{*}(\mathfrak{M})$.
Now think of the worldsheet of your string as a Riemann surface Σ with punctures, each puncture giving you a small \mathcal{S}^{1} boundary component, labelled by a class in $H_{*}(\mathfrak{M})$. Can you justify a vertex algebra structure on $H_{*}(\mathfrak{M})$ on physical grounds this way?

On even Calabi-Yau / odd Calabi-Yau

The construction requires a perfect complex Θ^{\bullet} on $\mathfrak{M} \times \mathfrak{M}$ satisfying assumptions including $\sigma^{*}\left(\Theta^{\bullet}\right) \cong\left(\Theta^{\bullet}\right)^{\vee}[2 n]$ for some $n \in \mathbb{Z}$, where $\sigma: \mathfrak{M} \times \mathfrak{M} \rightarrow \mathfrak{M} \times \mathfrak{M}$ exchanges the factors. If \mathfrak{M} is the moduli stack of objects in $\operatorname{coh}(X)$ or $D^{b} \operatorname{coh}(X)$, the obvious choice for Θ^{\bullet} is the (dual) Ext complex $\Theta^{\bullet}=\left(\mathcal{E} x t^{\bullet}\right)^{\vee}$, with cohomology $H^{i}\left(\left.\Theta^{\bullet}\right|_{(E, F)}\right)=\operatorname{Ext}^{-i}(E, F)^{*}$ at $E, F \in \operatorname{coh}(X)$. This satisfies $\sigma^{*}\left(\Theta^{\bullet}\right) \cong\left(\Theta^{\bullet}\right)^{\vee}[2 n]$ if X is a $C-Y 2 n$-fold, by Serre duality. If we drop the condition $\sigma^{*}\left(\Theta^{\bullet}\right) \cong\left(\Theta^{\bullet}\right)^{\vee}[2 n]$, we get a 'nonlocal vertex algebra' or 'field algebra' - do these have a physical meaning? For any X, we can take $\Theta^{\bullet}=\left(\mathcal{E} x t^{\bullet}\right)^{\vee}+\sigma^{*}\left(\mathcal{E} x t^{\bullet}\right)[2 n]$, and get a vertex algebra on $H_{*}(\mathfrak{M})$. But if X is odd Calabi-Yau then $c_{i}\left(\Theta^{\bullet}\right)=0$ for all i, so $H_{*}(\mathfrak{M})$ is a commutative vertex algebra essentially trivial.
Facts from generalized D-T theory suggest there may be a parallel 'odd Calabi-Yau' story, but it must be rather more complicated.
17/24 Dominic Joyce, Oxford University A Ringel-Hall type construction of vertex algebras

> Ringel-Hall algebras and vertex algebras
> Vertex algebras on homology of moduli stacks Lie algebras on homology of moduli stacks Examples from quivers and coherent sheaves

3. Lie algebras on homology of moduli stacks

There are many different versions of our Lie algebra construction. Here is one of the simplest, which is well known in the theory of vertex algebras. Write $I_{t}=\left\langle t, t^{2}, t^{3}, \ldots\right\rangle_{R}$ for the ideal in $H_{*}\left(\left[* / \mathbb{G}_{m}\right]\right)=R[t]$ spanned over R by all positive powers of t. For each $\alpha \in K(\mathcal{A})$, define

$$
H_{*}\left(\mathfrak{M}_{\alpha}\right)^{t=0}=H_{*}\left(\mathfrak{M}_{\alpha}\right) /\left(I_{t} \diamond H_{*}\left(\mathfrak{M}_{\alpha}\right)\right),
$$

using the representation \diamond of $(R[t], \star)$ on $H_{*}\left(\mathfrak{M}_{\alpha}\right)$. Now define

$$
[,]^{t=0}: H_{a}\left(\mathfrak{M}_{\alpha}\right)^{t=0} \times H_{b}\left(\mathfrak{M}_{\beta}\right)^{t=0} \longrightarrow H_{a+b-2 \chi(\alpha, \beta)-2}\left(\mathfrak{M}_{\alpha+\beta}\right)^{t=0}
$$

$$
\text { by }\left[u+\left(I_{t} \diamond H_{*}\left(\mathfrak{M}_{\alpha}\right)\right), v+\left(I_{t} \diamond H_{*}\left(\mathfrak{M}_{\beta}\right)\right)\right]^{t=0}=u_{0}(v)+\left(I_{t} \diamond H_{*}\left(\mathfrak{M}_{\alpha+\beta}\right)\right) \text {. }
$$

Define an alternative grading on $H_{*}\left(\mathfrak{M}_{\alpha}\right)^{t=0}$ by

$$
\tilde{H}_{i}\left(\mathfrak{M}_{\alpha}\right)^{t=0}=H_{i+2-\chi(\alpha, \alpha)}\left(\mathfrak{M}_{\alpha}\right)^{t=0} .
$$

Then using $\chi(\alpha, \beta)=\chi(\beta, \alpha)$ we find that $[,]^{t=0}$ maps

$$
[,]^{t=0}: \tilde{H}_{\tilde{a}}\left(\mathfrak{M}_{\alpha}\right)^{t=0} \times \tilde{H}_{\tilde{b}}\left(\mathfrak{M}_{\beta}\right)^{t=0} \longrightarrow \tilde{H}_{\tilde{a}+\tilde{b}}\left(\mathfrak{M}_{\alpha+\beta}\right)^{t=0} .
$$

Using identities on the $u_{n}(v)$, we find that if $u \in \tilde{H}_{\tilde{a}}\left(\mathfrak{M}_{\alpha}\right)^{t=0}$, $v \in \tilde{H}_{\tilde{b}}\left(\mathfrak{M}_{\beta}\right)^{t=0}$ and $w \in \tilde{H}_{\tilde{c}}\left(\mathfrak{M}_{\gamma}\right)^{t=0}$ then

$$
\begin{gathered}
{[v, u]^{t=0}=(-1)^{\tilde{a} \tilde{b}+1}[u, v]^{t=0},} \\
(-1)^{\left.\tilde{c} \tilde{a} \tilde{a}[u, v]^{t=0}, w\right]^{t=0}+(-1)^{\tilde{a} \tilde{b}}\left[[v, w]^{t=0}, u\right]^{t=0}} \\
+(-1)^{\tilde{b} \tilde{c}}\left[[w, u]^{t=0}, v\right]^{t=0}=0 .
\end{gathered}
$$

That is, $[,]^{t=0}$ is a graded Lie bracket on
$\tilde{H}_{*}(\mathfrak{M})^{t=0}=\bigoplus_{\alpha \in K(\mathcal{A})} \tilde{H}_{*}\left(\mathfrak{M}_{\alpha}\right)^{t=0}$, as we want.
19/24 Dominic Joyce, Oxford University A Ringel-Hall type construction of vertex algebras

> Ringel-Hall algebras and vertex algebras
> Vertex algebras on homology of moduli stacks Lie algebras on homology of moduli stacks
> Examples from quivers and coherent sheaves

The 'projective linear' Lie algebra

A disadvantage of the ' $t=0$ ' version is that $H_{*}(\mathfrak{M})^{t=0}$ is not presented as the homology of a nice space. The 'projective linear' version corrects this. Recall that $\left[* / \mathbb{G}_{m}\right]$ is a group stack, and $\Psi:\left[* / \mathbb{G}_{m}\right] \times \mathfrak{M} \rightarrow \mathfrak{M}$ is an action of $\left[* / \mathbb{G}_{m}\right]$ on \mathfrak{M}, which is free on $\mathfrak{M}^{\prime}=\mathfrak{M} \backslash\{[0]\}$. We can form a quotient $\mathfrak{M}^{\text {pl }}=\mathfrak{M} /\left[* / \mathbb{G}_{m}\right]$ called the 'projective linear moduli stack', with a morphism $\Pi^{\mathrm{pl}}: \mathfrak{M}^{\prime} \rightarrow \mathfrak{M}^{\mathrm{pl}}$ which is a principal $\left[* / \mathbb{G}_{m}\right]$-bundle.
Then \mathbb{K}-points of $\mathfrak{M}^{\mathrm{pl}}$ are isomorphism classes [E] of nonzero $E \in \mathcal{A}$, and isotropy groups are

$$
\mathrm{Iso}_{\mathfrak{M}^{\mathrm{pl}}}([E]) \cong \operatorname{Aut}(E) /\left(\mathbb{G}_{m} \cdot \mathrm{id}_{E}\right)
$$

That is, we make $\mathfrak{M}^{\text {pl }}$ from \mathfrak{M}^{\prime} by quotienting out \mathbb{G}_{m} from each isotropy group, a process called 'rigidification'. For moduli of stable coherent sheaves, the stable moduli scheme is the rigidification of the stable moduli stack.

Under some assumptions (including R a \mathbb{Q}-algebra) we can show that $H_{*}\left(\Pi^{\mathrm{pl}}\right): H_{*}\left(\mathfrak{M}^{\prime}\right) \rightarrow H_{*}\left(\mathfrak{M}^{\mathrm{pl}}\right)$ induces an isomorphism $H_{*}\left(\mathfrak{M}^{\prime}\right)^{t=0} \cong H_{*}\left(\mathfrak{M}^{\mathrm{pl}}\right)$. Thus, the Lie bracket $[,]^{t=0}$ on $H_{*}\left(\mathfrak{M}^{\prime}\right)^{t=0}$ induces a Lie bracket [, $]^{\mathrm{pl}}$ on $H_{*}\left(\mathfrak{M}^{\mathrm{pl}}\right)$. Actually, even without an isomorphism $H_{*}\left(\mathfrak{M}^{\prime}\right)^{t=0} \cong H_{*}\left(\mathfrak{M}^{\mathrm{pl}}\right)$ we can define a graded Lie bracket [, $]^{\mathrm{pl}}$ on $H_{*}\left(\mathfrak{M}^{\mathrm{pl}}\right)$ in a different way.
Here [, $]^{\mathrm{pl}}$ is graded for the alternative grading

$$
\tilde{H}_{i}\left(\mathfrak{M}_{\alpha}^{\mathrm{pl}}\right)=H_{i+2-\chi(\alpha, \alpha)}\left(\mathfrak{M}_{\alpha}^{\mathrm{pl}}\right) .
$$

We should interpret $2-\chi(\alpha, \alpha)$ as the (homological) virtual dimension of $\mathfrak{M}_{\alpha}^{\mathrm{pl}}$, where the 2 is the (real) dimension of \mathbb{G}_{m}, which we quotiented from the isotropy groups to make $\mathfrak{M}^{\mathrm{pl}}$.
There is also a triangulated category version of the construction, using higher stacks, which we can apply to moduli of objects in categories such as $D^{b} \operatorname{coh}(X)$ for X a smooth projective \mathbb{K}-scheme.

$21 / 24$

Dominic Joyce, Oxford University
A Ringel-Hall type construction of vertex algebras

Ringel-Hall algebras and vertex algebras
 Vertex algebras on homology of moduli stacks
 Lie algebras on homology of moduli stacks Examples from quivers and coherent sheaves
 4. Examples from quivers and coherent sheaves

Let $Q=\left(Q_{0}, Q_{1}, h, t\right)$ be a quiver and $\mathbb{K}=\mathbb{C}$, and apply our constructions to the abelian category $\mathcal{A}=\bmod -\mathbb{C} Q$ and the triangulated category $\mathcal{T}=D^{b} \bmod -\mathbb{C} Q$. Write $K(\mathcal{A})=K(\mathcal{T})=\mathbb{Z}^{Q_{0}}$ for the lattice of dimension vectors. Define $\chi: K(\mathcal{A}) \times K(\mathcal{A}) \rightarrow \mathbb{Z}$ by $\chi(\boldsymbol{d}, \boldsymbol{e})=\sum_{v, w \in Q_{0}} a_{v w} \boldsymbol{d}(v) \boldsymbol{e}(w)$, where $a_{v w}=2 \delta_{v w}-n_{v w}-n_{w v}$, for $n_{v w}$ the number of edges $\stackrel{v}{\bullet} \rightarrow \stackrel{w}{\bullet}$ in Q, so that $A=\left(a_{v w}\right)_{v, w \in Q_{0}}$ is the generalized Cartan matrix of Q. Write \mathfrak{M} and $\overline{\mathfrak{M}}$ for the (higher) moduli stacks of objects in \mathcal{A} and \mathcal{T}. Then we can work everything out very explicitly. We find: - The vertex algebra $H_{*}(\overline{\mathfrak{M}})$ is the lattice vertex algebra of $\left(\mathbb{Z}^{Q_{0}}, \chi\right)$.

- The full Lie algebra $\tilde{H}_{*}\left(\overline{\mathfrak{M}}^{\mathrm{pl}}\right)$ is rather large, but (for Q with no vertex loops) $\tilde{H}_{0}\left(\overline{\mathfrak{M}}^{\text {pl }}\right)$ contains the derived Kac-Moody algebra $\mathfrak{g}^{\prime}(A)$ with Cartan matrix A, with $\tilde{H}_{0}\left(\overline{\mathfrak{M}}^{\mathrm{pl}}\right)=\mathfrak{g}^{\prime}(A)$ if A is positive definite.
Similarly, $\tilde{H}_{0}\left(\mathfrak{M}^{\mathrm{pl}}\right)$ contains/equals the positive part \mathfrak{n}_{+}of $\mathfrak{g}^{\prime}(A)$.
- If $Q=\bullet$ has one vertex and no edges then $\tilde{H}_{0}\left(\overline{\mathfrak{M}}^{\mathrm{pl}}\right) \cong \mathfrak{s l}(2, \mathbb{C})$.

Let X be a smooth projective \mathbb{C}-scheme, and apply our theory to the abelian category $\mathcal{A}=\operatorname{coh}(X)$, with moduli stack \mathfrak{M}, and the triangulated category $\mathcal{T}=D^{b} \operatorname{coh}(X)$, with moduli stack $\overline{\mathfrak{M}}$. We either take X to be $2 n$-Calabi-Yau and set $\Theta^{\bullet}=\left(\mathcal{E} x t^{\bullet}\right)^{\vee}$, or we set $\Theta^{\bullet}=\left(\mathcal{E} x t^{\bullet}\right)^{\vee}+\sigma^{*}\left(\mathcal{E} x t^{\bullet}\right)$ for any X. Note that if X is $(2 n+1)$-Calabi-Yau this gives $c_{i}\left(\Theta^{\bullet}\right)=0$, so our vertex algebras and Lie algebras are abelian, and boring.
I haven't worked out the details yet, but here are some highlights:

- For some nice classes of X (e.g. curves, some surfaces) we can compute $H_{*}(\overline{\mathfrak{M}})$ fairly explicitly as a vertex algebra. It is the tensor product of a lattice-type vertex algebra defined using $K^{0}(X)$ or $H^{\text {even }}(X)$, and a fermion vertex algebra defined using $K^{1}(X)$ or $H^{\text {odd }}(X)$. For general X we can produce vertex algebra morphisms from $H_{*}(\mathfrak{M}), H_{*}(\overline{\mathfrak{M}})$ to an explicit vertex algebra of this type.
- The Heisenberg algebra acting on homology of Hilbert schemes in Grojnowski-Nakajima should appear as a Lie subalgebra of $\tilde{H}_{*}\left(\overline{\mathfrak{M}}_{\operatorname{dim} 0}^{\mathrm{pl}}\right)$ for dimension 0 sheaves and complexes on X.
- When X is a Calabi-Yau 4-fold, one can define

Donaldson-Thomas type invariants 'counting' moduli spaces $\mathfrak{M}^{\text {ss }}(\alpha)$ of (semi)stable coherent sheaves on X (Borisov-Joyce, Cao-Leung). We can think of these (i.e. the virtual classes of the moduli spaces) as taking values in $H_{*}\left(\mathfrak{M}^{\mathrm{pl}}\right)$.
I have a conjecture that the wall-crossing formula for these DT4 invariants under change of stability condition may be written using the Lie bracket $[,]^{\mathrm{pl}}$ on $H_{*}\left(\mathfrak{M}^{\mathrm{pl}}\right)$, using the same universal wall-crossing formula in a Lie algebra that appears in my previous work on motivic and DT3 invariants.
The way I discovered the vertex algebra structure on $H_{*}(\mathfrak{M})$ was while trying to write down this Lie bracket [, $]^{\mathrm{pl}}$, I accidentally reinvented the Borcherds definition of vertex algebra, without knowing what these were at the time.
Calabi-Yau 4-folds are in some sense the most basic case of this vertex algebra construction. Does this help with the physical interpretation?

[^0]: Ringel-Hall algebras and vertex algebras
 Vertex algebras on homology of moduli stacks
 Lie algebras on homology of moduli stacks
 Examples from quivers and coherent sheaves

