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Abstract

This thesis studies enumerative invariants counting orthogonal and symplectic objects in lin-
ear categories arising from algebraic geometry, as a first step towards generalizing known
results and methods in linear enumerative geometry to general non-linear moduli problems.
The main focus of the thesis is the construction of orthosymplectic Donaldson-Thomas
invariants and the study of their properties. Examples include invariants counting self-dual
representations of self-dual quivers with potential, invariants counting orthosymplectic com-
plexes of coherent sheaves on Calabi-Yau threefolds, a motivic version of Vafa-Witten type
invariants counting orthosymplectic Higgs complexes on surfaces, and so on. We prove wall-
crossing formulae relating these invariants for different stability conditions, and we carry out

explicit computations in some cases.
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Conventions

We assume familiarity with basic concepts in algebraic geometry and higher category theory.
Standard textbooks include Hartshorne [71] and the Stacks project [145] for the former, and
Lurie [109; 110; 112] for the latter.

We write N = {0, 1, 2, ...} for the set of natural numbers. Write Z, = Z/nZ for the cyclic
group of order n € Z.,,. Denote by Sp(2n) (rather than Sp(n)) the n-th symplectic group for
n € N, as an algebraic group over a given base field.

For an integer n > 0, an n- or co-category means an (n,1)- or (oo, 1)-category. For a
category (or a higher category) €, and objects x, y € €, write € (x, y) for the set (or space)
of morphisms from x to y in €. We freely use the language of higher category theory. For
example, functors into higher categories always mean higher functors; limits and colimits
in higher categories always mean homotopy limits and colimits; algebra objects in higher
categories are always homotopy coherent; and so on.

We deal with set-theoretic size issues following Lurie [109, §1.2.15], by assuming the fol-
lowing axiom of universes: For every set x, there exists a Grothendieck universe U such that
x € U. We use these universes implicitly. For example, ‘the category of sets’ refers to sets

living in a fixed but unspecified universe, whereas the category itself lives in a bigger universe.

viii



Chapter 1

Introduction

1.1 Overview

1.1.1. Enumerative geometry is the geometric study of moduli spaces arising in algebraic geo-
metry and other areas of mathematics. From its early origins in ancient times up to the present
day, it has served as a rich source of inspiration and problems, contributing to the development
of many new geometric theories and methods.

The modern study of enumerative geometry began with, among others, the study of the
moduli space of holomorphic vector bundles on a compact Riemann surface. Foundational
works on this moduli space include the seminal works of Mumford [121], Harder and Narasim-
han [70], Atiyah and Bott [7], and others, spanning several decades.

The ideas and methods developed in these works are powerful and far-reaching, and con-
tinue to inspire new developments today in understanding more complicated moduli spaces,
such as the moduli of coherent sheaves on higher dimensional varieties. However, it has re-
mained true that moduli spaces of linear nature, such as those of vector bundles or sheaves,
are better understood than the non-linear ones, such as those of principal G-bundles where G

is an algebraic group that is not GL(n), or SL(n), etc.

1.1.2. One major difficulty in enumerative geometry is that moduli spaces are often stacky,
or that they are more naturally seen as moduli stacks, meaning that their points can acquire
non-trivial automorphism groups. This often causes technical complexity in studying such

moduli spaces, and this is the main issue that this thesis addresses.



In this thesis, we take a first step in the enumerative study of non-linear moduli stacks by
studying orthosymplectic moduli stacks, such as those of principal G-bundles when G = O(n)
or Sp(n), drawing ideas from existing methods in linear enumerative geometry.

Orthosymplectic moduli stacks are closely related to linear ones, making them easier
among the non-linear ones, while also allowing us to get a first glimpse at the behaviour of
non-linear moduli stacks, which will eventually lead us to an intrinsic theory of enumerative
geometry, which we describe in §1.5.1.

We note that although some non-linear moduli spaces are well-understood, such as those
in Gromov-Witten theory, as in Li and Tian [105], the automorphism groups there are usually

finite, and do not cause the issues that we discuss here.

1.1.3. A central topic in enumerative geometry is the study of enumerative invariants, which
are numbers or other types of data constructed from the geometry of moduli spaces, usually
having an interpretation as counting points in such moduli spaces in a certain sense. See, for
example, Kiem [95] for a survey of the subject.

For example, when the moduli space is discrete, the number of points in the moduli space is
an enumerative invariant. As another example, when the moduli space is smooth and compact,
its fundamental class in homology is another enumerative invariant. More interesting cases
are those where the moduli space can be stacky and singular, where invariants are constructed

from different types of virtual geometry of the moduli space.

1.1.4. Many different flavours of enumerative invariants have been developed in the linear

case in the past decades. Notable examples include the following:

(i) Intersection pairings on moduli spaces of semistable vector bundles on Riemann sur-
faces. These were first computed by Witten [162] using physical methods, and rigor-
ously proved by Jeffrey and Kirwan [80] in the case of smooth moduli spaces, later
generalized by Jeffrey, Kiem, Kirwan, and Woolf [79] to the singular case. Another com-
putation was recently done by the author [25] using the framework of Joyce [88], giving
an equivalent (in the smooth case) but more concise and more conceptual formula.

(ii) Invariants counting coherent sheaves on algebraic surfaces, sometimes called algebraic

Donaldson invariants. These can be seen as a generalization of the virtual fundamental



classes of Behrend and Fantechi [12] from Deligne-Mumford stacks to Artin stacks, and
were studied by Mochizuki [119], with recent developments by Joyce [88].

(iii) Donaldson—Thomas invariants counting coherent sheaves on Calabi-Yau threefolds. This
theory was initiated by Donaldson and Thomas [55] and Thomas [152], and later de-
veloped by Behrend [10], Joyce [81-85], Joyce and Song [89], and Kontsevich and Soi-
belman [99], using motivic methods.

(iv) Cohomological Donaldson-Thomas theory, which can be seen as a categorification of
Donaldson-Thomas theory, where the invariants are vector spaces rather than numbers,
and are sometimes called BPS cohomology after the physicists Bogomol'nyi, Prasad, and
Sommerfield. This was conjecturally proposed by Kontsevich and Soibelman [100], and
rigorously understood through the works of Efimov [57], Meinhardt and Reineke [117],
and Davison and Meinhardt [46] in the linear case, and understood very recently in the
non-linear case by Hennecart [73; 74] and the author et al. [30].

(v) Categorical Donaldson-Thomas theory, which is a further categorification of cohomolo-
gical Donaldson-Thomas theory, where the invariants are categories rather than vector
spaces. This theory was recently developed in a series of works of Toda [155; 156] and
Padurariu and Toda [126-134].

(vi) Vafa—Witten invariants counting Higgs sheaves on algebraic surfaces, arising from the
work of Vafa and Witten [161], and developed by Tanaka and Thomas [149; 150] and
Thomas [153].

(vii) Donaldson-Thomas theory for Calabi-Yau fourfolds, or the theory of DT4 invariants
counting coherent sheaves on Calabi—Yau fourfolds. With its foundations developed
by Cao and Leung [38], Borisov and Joyce [18], and Oh and Thomas [123; 124], the

theory has seen increasing interest recently.

However, until very recently, it had not been clear how to generalize any of these theories
outside the linear case, except the case (i), which was discuss by Meinrenken [118], Teleman

and Woodward [151], and others.

1.1.5. A main reason that many of the above theories are restricted to the linear case is the

difficulty of dealing with strictly semistable points, or points in the semistable locus in the



moduli stack that have positive-dimensional automorphism groups, making the semistable
locus a genuine Artin stack, rather than a scheme or a Deligne—-Mumford stack. When this
happens, defining invariants usually requires heavy extra work. For many theories listed
above, techniques to deal with this are only available in the linear case. See §1.2.6 below
for more detailed examples of technical issues involved here.

Note that when there are no strictly semistable points, that is, when the moduli stack is
Deligne—-Mumford, we often do not need to restrict to the linear case, since the technical issues

mentioned above are not present.

1.1.6. This thesis will mainly focus on developing an orthosymplectic version of the theory (iii)
above, that is, an orthosymplectic version of Donaldson-Thomas theory, as a first step towards
understanding general non-linear moduli stacks and their enumerative invariants, especially
how to deal with strictly semistable points in these cases.

During the preparation of this thesis, the author and his collaborators [30-33] have been
working on a more general framework of enumerative geometry, called intrinsic enumerative
geometry, which allows the generalization of many results in this thesis to more general moduli

stacks. We will discuss this framework in slightly more detail in §1.5 below.

1.2 Linear enumerative geometry

1.2.1. In this section, we sketch through the main ideas in existing theories of linear enumer-
ative geometry, such as those listed in §1.1.4. We will discuss generalizations of these ideas
outside the linear case in §§1.3-1.5 below.

We describe a general process that applies to most variants of linear enumerative geometry,
and we outline the main technical difficulties in them, which we will be facing again when

trying to generalize them outside the linear case.

1.2.2. The setting. In linear enumerative geometry, we usually start with a linear category <,
together with a moduli stack & of objects in &/. Thus, points in 2 correspond to objects in &,
and automorphism groups of points in 2 correspond to automorphism groups of objects in .

Typical examples of such linear categories & include:



« The category Coh(Y) of coherent sheaves on a smooth projective C-variety Y.
« The category Mod(CQ) of representations of a quiver Q over C, or its variants, such as

the category Mod(CQ, W) of representations of Q with potential W (see §4.1.7).

In all these cases, we have natural choices of moduli stacks, which are algebraic stacks over C.
Such a moduli stack 2" usually has infinitely many connected components, and we consider

its decomposition

r= 1] 2. (1.2.2.1)

aeny ()
into connected components, where 1,(2") is the set of connected components of &, and then
study invariants counting points in each component .

The set 1y (") has the structure of a commutative monoid, induced by the direct sum in .
We denote the monoid operation by +, and its unit by 0. The component 2, C 2 is usually a

single point {0}, and we have direct sum morphisms
@:,%ax%ﬁﬂ&”aw (1.2.2.2)
for a, p € my ().

1.2.3. Stability conditions. A next ingredient in constructing enumerative invariants is a sta-
bility condition. This is needed because it can often happen that the components &, are not
quasi-compact, so that counting all points in them will not be meaningful. Instead, we decom-
pose &, into smaller quasi-compact pieces which we count points in.

A stability condition in this case can be defined as a map
T:m(X)\N{0} — T

to some totally ordered set T, satistfying certain conditions. For a point in 2, representing an
object x € o, the value 7(«) is called the slope of x, also denoted by 7(x). Such an object is
called 7-semistable if the slopes of its non-zero subobjects do not exceed its own slope, that is,
we have 7(x’) < r(x) forall 0 # x” C x.

This condition determines a semistable locus

Xy (t) c &y,



which we usually require to be a quasi-compact open substack. We also require that each

object x € o/ has a unique Harder—Narasimhan filtration, that is a filtration of the form

O0=xg —> x; “ Xy > - “> X =X
l i i (1.2.3.1)
M Y2 Vi

where each quotient y; = x;/x;_; is non-zero and 7-semistable, with 7(y;) > -+ > 7(y).

1.2.4. Stratifications. Geometrically, on the moduli stack, the existence and uniqueness of
Harder—Narasimhan filtrations correspond to a stratification
X, = U L) %+ L8 (1), (1.2.4.1)
a=apt-toy:
t(ay)>-->1(ay)
where X (1) * - * X () denotes the stack of all filtrations in & with stepwise quotients
lying in X ;j(r), A ;i(l'), in that order, and we run over all ways to write & as a sum of
non-zero classes ¢; with strictly decreasing slopes. This is often a ®-stratification in the sense
of Halpern-Leistner [67].
In light of the stratification (1.2.4.1), one might argue that to make sense of counting points
in 2, we may instead count points in the semistable loci 23’ (7). In other words, we construct
enumerative invariants depending on a and 7, based on the geometry of 275’ (7), and this will

be a satisfactory answer to the question of counting points in 2.

1.2.5. Motivic relations. We can often extract from the decomposition (1.2.4.1) precise rela-
tions between the enumerative information of 2, and the 25’ (7). This process is straightfor-
ward in the motivic setting, and will be useful in this thesis.

More precisely, we consider rings of motives, which are roughly rings generated by classes

[Z] of algebraic stacks Z, with the cut-and-paste relations
(Z]1=[Z'1+[F\Z] (1.2.5.1)
for closed substacks Z’ c Z. The stratification (1.2.4.1) directly leads to the relation

[Zo] = Y, RO = [25(0)] (1.2.5.2)

a=aj+-+ay:
t(ay)>-->7(ay)

in the motivic Hall algebra, which we discuss in detail in Chapter 5, where * denotes the



multiplication in the motivic Hall algebra, defined by taking the stack of filtrations with given
stepwise quotients, so that the product is equal to [ (1) * -+ * X (7)], the motive of the
stack of filtrations appearing in (1.2.5.2).

Relations like (1.2.5.2) are important tools in studying enumerative invariants, and can be
used to obtain wall-crossing formulae, which relate invariants defined for different stability

conditions 7. We will discuss this more in §1.4.7 below.

1.2.6. Enumerative invariants. As we mentioned in §1.1.5, a major difficulty in constructing
invariants is that the semistable loci 25’ (7) might contain strictly semistable points, or points
with positive-dimensional automorphism groups, even if we ignore (i.e., quotient out) the copy
of G,, present in the automorphism group of every non-zero object as scalar automorphisms.

The presence of strictly semistable points means that the moduli stack is genuinely stacky,
and is an Artin stack instead of a Deligne-Mumford stack. In many cases, this causes technical
difficulty that requires heavy extra work to deal with, often involving further decompositions
of the enumerative information of 2°;’(7) into even simpler pieces which we finally call enu-
merative invariants. We demonstrate this in the following examples:

Firstly, in the motivic setting, we would like to make sense of the Euler characteristic of
the moduli stack. Naively, we would like to define the Euler characteristic of a quotient stack
U/Gtobe y(U/G) = x(U)/x(G), where U is a scheme acted on by an algebraic group G.
However, this almost never works, since we have y(G) = 0 for any algebraic group G of
positive rank, so that we would have to define y (*/G) = co. To obtain a finite number requires
a machinery developed by Joyce [81-85]. Roughly, we consider a further decomposition

(2O = Y, e () reg (1) (1.2.6.1)
a=oay+-+ay
t(ay)==7(ay)
in the motivic Hall algebra, where the sum is over ordered partitions of a into non-zero
classes «; of equal slope, and the epsilon motives €,(7) are uniquely determined by the require-
ment that (1.2.6.1) holds for all classes «. The choice of the coefficients 1/n! ensures that €, (7),
which is the leading term in (1.2.6.1), has a well-defined Euler characteristic (after multiplying
by the motive [G,,] to correct for the scalar automorphisms). We can read from (1.2.6.1) that

the epsilon motive €,(7) is the motive [’ ()] with certain parts removed on the strictly



semistable locus, and we regard it as a good representative of 2;°(7). These epsilon motives
are used to define Donaldson-Thomas invariants by Joyce and Song [89].

Secondly, in the cohomological setting, this problem corresponds to the phenomenon that
the cohomology of 275’ (7) can be infinite-dimensional. For example, we have H' (x/G,; Q) =
Q[t], a free polynomial ring. To obtain finite-dimensional invariants, one considers decom-

positions of the form

5

HZE ()= P (BPSO,I(T) ® - ® BPS, (1) ® Qliy, ..., 1,]
a=aytoray:

t(ay)==7(ay) (1.2.6.2)

where H denotes either rational cohomology or its certain variants, the sum is over unordered

partitions of a into non-zero classes «; of equal slope, and Aut(ay, ..., ,) is the group of

permutations of {1, ...,n} that preserve the sequence («y, ..., @,). The spaces BPS,(7r) are

usually finite-dimensional, sometimes called BPS cohomology, and we regard them as good

cohomological representations of 25 (7). This type of decompositions were conjectured by

Kontsevich and Soibelman [100], and proved in different generalities by Efimov [57], Davison
and Meinhardt [46], Hennecart [73; 74], and the author et al. [30].

Thirdly, in the homological setting, we would like to define a generalized version of virtual
fundamental classes of 2;°(t). Such a construction is not directly available in the presence
of strictly semistable points. The works of Mochizuki [119] and Joyce [88] deal with this by
constructing an auxiliary moduli space of Bradlow pairs after Bradlow [20], which contains
no strictly semistable points, then transporting the virtual fundamental classes there to the

original moduli space. It would be interesting to explore whether this approach has an inter-

pretation as a decomposition-type construction similar to the previous cases.

1.3 Orthosymplectic enumerative geometry

1.3.1. The main subject of this thesis is orthosymplectic enumerative geometry, extending the
techniques and constructions in linear enumerative geometry discussed above to the case of
moduli stacks of orthogonal or symplectic objects. We see this as a first step towards a further

generalization to more general algebraic stacks, which we will discuss in §1.5.1.



1.3.2. Self-dual linear categories. We now introduce the basic set-up of orthosymplectic enu-
merative geometry. We start with a linear category & as in §1.2.2, equipped with a contrav-

ariant involution, that is the following data:

(i) An equivalence (-)": o > AP,

(ii) A natural isomorphism 5:id, = (-)"", satisfying compatibility conditions.

For example, & could be the category of vector bundles of finite rank on a smooth projective
curve, where the involution (-)" is given by taking the dual bundle, and the natural isomorph-
ism n can be chosen to be ¢ = +1 times the usual identification.

We have the notion of a self-dual object of </, defined as a pair (x, ¢), where x € & is an
object, and ¢: x = x" is an isomorphism satisfying ¢ = ¢". We have a groupoid & sd of such
self-dual objects. For example, in the case of vector bundles, & sd consists of either orthogonal
or symplectic vector bundles, depending on the choice of the sign ¢ = +1 mentioned above,
which is a part of the data of the involution.

Note that & cannot be taken to be the category of coherent sheaves on a smooth project-
ive variety of positive dimension, as it is not equivalent to its dual category. See §2.1.7 for

explanations, and see §1.4.3 for a modification that fits into our framework.

1.3.3. Moduli stacks. In the setting above, suppose that we are given a moduli stack 2 of
objects in &, as in §1.2.2, such that the involution on & induces a Z,-action on 2. The fixed
locus %% = X722, defined as a (2-categorical) limit in the 2-category of algebraic stacks, is the
moduli stack of self-dual objects in the sense above.
Again, we consider the decomposition
2= I <« (1.3.3.1)
femn, (Is4)

into connected components. We also often consider the monoid action
@Sd' '%' x '%'Sd N %'Sd
(x,9)—x®y®x", (1.3.3.2)

where we equip x @ y @ x" with the self-dual structure induced by that of y. This type of

operations often give rise to modules for various algebras defined from 2. For example, in



§5.4, we will use a variant of this action to define the motivic Hall module for the motivic Hall
algebra associated to 2.

In particular, the set (2 sd) also acquires an action by the monoid 7,(Z"), which we
denote simply by (,0) = a + 0 + " for a € my(L) and 0 € 7[0(3”5‘1).

We remark that although the stack & sd and the set 7o (X Sd) also carry commutative mon-

oid structures given by the direct sum, these structures are less often used in this thesis.

1.3.4. Stability conditions. Now, suppose that we have a stability condition 7 on &, as in
§1.2.3. We also assume that 7 is compatible with the self-dual structure, in that 7 (x") = —7(x)
for all non-zero objects x € &, where t — —t is an order-reversing involution of the totally
ordered set T that 7 is valued in. Assume that there is a unique element 0 € T fixed by this
involution.

Then, for any non-zero self-dual object (x, ¢) € Sd, we necessarily have 7(x) = 0, and

in the Harder—Narasimhan filtration

0=x) — x; = Xy —> -+ ——> X = X
i i i (1.3.4.1)
N Y2 Yk

of x, the self-dual structure ¢ induces isomorphisms y; = y.,,_; of the factors (see §2.2.4).
In particular, if k is odd, the middle factor y(;.1)/, admits an induced self-dual structure. For
convenience, when k is even, we sometimes think of it as having the zero self-dual object as
the middle factor.

Therefore, heuristically speaking, if we think of objects of & as composed of semistable
objects via Harder—Narasimhan filtrations as in §1.2.3, we should think of an object of o/ sd as
composed of a series of semistable objects of &/, which are those in the left half of the Harder—
Narasimhan filtration, together with a single semistable self-dual object in &/ sd in the middle,
allowed to be zero; the factors in the right half are dual to those on the left, and do not contain

new information.

1.3.5. Stratifications. Geometrically, similarly to §1.2.4, the existence and uniqueness of

10



Harder—Narasimhan filtrations correspond to a stratification

a5 = U LE(r) 00 L8 (1) 0 L3(1), (1.3.5.1)

O=ay+ay +-+a,+a, +p:
(ay)>-->1(a,)>0

where we run over classes ¢; € 71,(2) \ {0} and p € Tto(.fl"Sd), and we allow n = 0, giving the
leading term, the semistable locus %5‘1’“@). We denote by 2 () o - o Xy (1) o.fl";d’ss(r) the
stack of self-dual filtrations, or filtrations of the form in §1.3.4, with stepwise quotients lying in
3";?(1'), - Sl";i (1), tfl”;d’ss(r), OS:Y (1), ..., .fl";?v (1), in that order, where we allow the middle
term of the filtration to be zero. As in the linear case, this is also usually a ©-stratification.
Again, similarly to §1.2.5, the stratification (1.3.5.1) implies the motivic relation
d d,
(23] = 3 (X5 (0)] 0 - 0 [T (0)] 0 [T34(r)] (135.2)
O=ay+a) +-+a,+a, +p:
(ay)>-->1(a,)>0

in the motivic Hall module for the motivic Hall algebra, which we introduce in Chapter 5, and

this will be important for studying orthosymplectic enumerative invariants.

1.3.6. Enumerative invariants. We now explain how to construct enumerative invariants in
the orthosymplectic case, in the presence of strictly semistable points, parallel to the descrip-
tions in §1.2.6.

Firstly, in the motivic setting, which is the main focus of this thesis, we roughly consider

a further decomposition

d 1 d
['%-5 SS(T)] _ Z T -eal(’[) O e O ean(f) o G/S) (T) (1.3.6.1)
O=ay+a) +-+a,+a, +p: ’
r(ay)=--=1(a,)=0

in the motivic Hall module, which is parallel to the decomposition (1.2.6.1) in the linear
case. The epsilon motives €, (7) are the ones defined in the linear case, and the new epsi-
lon motives egd(r), defined by the relation (1.3.6.1), are one of the main constructions of this
thesis, which we will use to define orthosymplectic Donaldson-Thomas invariants, and the
choice of the coefficients 1/2"n! ensure that they have well-defined Euler characteristics. See

Chapter 5 for details.
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Secondly, in the cohomological setting, we hope to obtain decompositions of the form
H(25%(r)) =

D (BPSal(f) ® - ® BPS, (1) ® BPS'S (1) ® Q[ty, ..., t,]

a=a+o) +-+ap+a,) +p:

r(ay)=-=7 () =0 (1.3.6.2)
where Aut™®(ay, ... , a,) is the group of Z,-equivariant permutations of the set {1,1Y, ..., n,n" 1,
where the Z,-action exchanges each pair (i,i"), such that the sequence (a3, /), ..., a,, a, )

remains unchanged after the permutation. The spaces BPSZd(T) are finite-dimensional, some-
times called BPS cohomology, and are regarded as the cohomological enumerative invariants
in this setting. Such decompositions were first conjectured by Young [166], and then partially
proved in different generalities as special cases of the results of Hennecart [73; 74] and the
author et al. [30], and we refer to these works for details.

Thirdly, in the homological setting, the author’s preprint [27] attempts to formulate a pre-
cise statement about how the invariants should behave, and constructs these invariants in the
case of self-dual quivers, although we are not yet able to verify that these invariants satisfy all

the expected properties.

1.3.7. Graded and filtered points. A helpful framework for studying enumerative geometry
outside the linear case, and for finding the correct generalizations of notions from the linear
case, is the theory of stacks of graded and filtered points due to Halpern-Leistner [67].

For an algebraic stack 2, its stacks of graded and filtered points are defined as mapping

stacks

Grad(X) = Map(*/G, X) , (1.3.7.1)

Fil(X) = Map(A' /G, T) , (1.3.7.2)

where G, acts on A' by scaling. See §3.2 for details.

For example, in the linear case, if & is the moduli stack of objects in a linear category <,
then ©rad(Z) and Filt(Z') are usually the stack of Z-graded objects and the stack of Z-
indexed filtrations in &, respectively.

In the orthosymplectic case, we consider the moduli stack & 54 of self-dual objects in a
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self-dual linear category <. In this case, €rad(2%) is usually the stack of self-dual objects
(E,¢9) € %, equipped with Z-gradings E = @, E;, such that ¢(E;) = EY; for all i. Equi-
valently, this is the information of a series of objects (E;);s, together with a single self-dual
object (E, ¢y). The stack Filt(X Sd) can also be described as the stack of self-dual filtrations

indexed by Z, similar to those appearing in §1.3.4. See §3.4 for details.

1.4 Main results

1.4.1. Orthosymplectic Donaldson-Thomas invariants. As mentioned above, the main con-
structions of this thesis are those of orthosymplectic Donaldson-Thomas invariants, including
a numeric version and an enhanced, motivic version, which we discuss in Chapters 5 and 6,
respectively.

More precisely, recall from §1.2.6 and §1.3.6 the epsilon motives €,(7) and ezd(r). The

linear and orthosymplectic Donaldson-Thomas invariants are rational numbers defined by
DT,(7) = / (1-L)-€ey,(r) vy dy, (1.4.1.1)
Ly

d
DT, (r) = /%sd e (1) - vgsa dy (1.4.1.2)

0

where [ (—) dy denotes taking the weighted Euler characteristic, and v_) denotes the Behrend
function of a stack. The extra factor (1 — L) roughly accounts for the fact that in the linear
case, every non-zero object has a copy of G, in its automorphism group, given by scalar
automorphisms, whereas this is not the case for orthosymplectic objects. See §5.1 for more
explanations of these definitions.

The linear invariants DT, (7) have seen many applications and connections with other
fields of mathematics. The invariants themselves admit rich structures, such as wall-crossing
structures as in Kontsevich and Soibelman [101], and a geometric structure on the stability
space as in Bridgeland [24]. They have interesting relations to Gromov-Witten invariants
that are not yet well-understood, as conjectured by Maulik, Nekrasov, Okounkov, and Pand-
haripande [114; 115]. They are also related to different aspects of representation theory, such
as those studied by Kontsevich and Soibelman [99], Nagao [122], Cérdova and Shao [42], and

many others. We hope that many of the above constructions and applications will have ana-
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logous versions for the orthosymplectic invariants.

1.4.2. Invariants for quivers. A basic example of our theory is the construction of orthosym-
plectic Donaldson-Thomas invariants for self-dual quivers with potential, which we discuss
in §4.1 and §8.1. These invariants are an orthosymplectic analogue of the usual Donaldson-
Thomas theory for quivers with potential, studied in Joyce and Song [89, Ch. 7] and Kontsevich
and Soibelman [99, §8]. Self-dual quivers were first introduced by Derksen and Weyman [51],
and studied by Young [164-166] in the context of enumerative geometry.

Roughly speaking, a self-dual quiver is a quiver Q equipped with a contravariant involution
(=)": O = Q°, where Q is the opposite quiver of Q, obtained from Q by reversing the

direction of arrows. For example, we could take the quiver

O/.\‘.
N

with the involution (—)" given by horizontal flipping. The involution induces a self-dual

structure on the abelian category of representations of Q, which, in the above example, is

roughly given by
E v EV v
3P 2 ey €24 2 e
/’ \ (o) oA N
E E, EX EY ,
€13 E /63'4 eb Eg/ /‘31\'/3

where E; are vector spaces and e;; are linear maps. See §4.1 for the precise set-up. We are then
interested in representations that are self-dual, meaning in the above example that E, = E/,
and that there are self-dual structures on the vector spaces E, and E3, together with conditions
on the morphisms e;;. The theory also works for quivers with potential.

This can be regarded as a local model for counting orthosymplectic sheaves on varieties,
which we will discuss below.

We also provide an algorithm for computing Donaldson-Thomas invariants for self-dual
quivers when the potential is zero, and present some numerical results. We mention a relation

between self-dual quivers and orthosymplectic coherent sheaves in Example 8.2.5.

1.4.3. Invariants for threefolds. Another main example of our theory is the construction of
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Donaldson-Thomas invariants counting orthosymplectic complexes on Calabi-Yau threefolds,
which are perfect complexes of coherent sheaves equipped with self-dual structures. These are
an orthosymplectic version of the usual Donaldson-Thomas theory counting coherent sheaves
on Calabi-Yau threefolds, studied by Thomas [152], Joyce and Song [89], and Kontsevich and
Soibelman [99].

As mentioned in §1.3.2, the category of coherent sheaves on a Calabi-Yau threefold does
not fit into our framework, and we use an alternative approach involving the derived category
of coherent sheaves, which we describe below.

For a smooth projective Calabi—Yau threefold Y over C, we consider a Bridgeland stability
condition 7 = (Z,9) on Y in the sense of Bridgeland [22], such that it is compatible with
a chosen self-dual structure on the derived category D’Coh(Y). Then there is an abelian

subcategory

2(0) c D’Coh(Y)

of semistable objects of slope 0, which inherits a self-dual structure. We then define invariants
counting self-dual objects in this category, or r-semistable orthosymplectic complexes. See §4.2
and §8.3 for more details.

We expect that these invariants are related to counting D-branes in string theories on
Calabi-Yau 3-orientifolds, discussed in, for example, Witten [163, §5.2], Diaconescu, Garcia-

Raboso, Karp, and Sinha [54], and Hori and Walcher [76].

1.4.4. Invariants for curves and surfaces. We also introduce the following invariants similar
to the above construction for threefolds.

For an algebraic curve C over a field, we define Donaldson-Thomas invariants counting
semistable orthogonal or symplectic bundles on C, analogous to the motivic invariants count-
ing semistable vector bundles considered by Joyce [85, §6.3]. We discuss this in §8.2.

For an algebraic surface S over C which is either a del Pezzo, K3, or an abelian surface,
we also define motivic Vafa-Witten type invariants counting orthosymplectic Higgs complexes
on S, which is similar to the Vafa—Witten invariants of Tanaka and Thomas [149; 150], al-
though we work in the motivic setting, which is different from their approach using equivari-

ant localization. We discuss this in §4.3 and §8.4. The main reason for restricting to this class
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of surfaces is that we do not know how to construct Bridgeland stability conditions on the
derived category of Higgs sheaves on S if S is of general type, and such stability conditions

are crucial in our approach, as discussed in §1.4.3.

1.4.5. In the rest of this section, we outline a few key general results proved in this thesis that
apply to all of the above settings, which are used in constructing the invariants and studying

their properties.

1.4.6. The no-pole theorem. The first such result is the no-pole theorem, Theorem 5.5.5, which
is a key property of the epsilon motives €,(7) and ezd(r). It is roughly the statement that the
Euler characteristics (1.4.1.1)—(1.4.1.2) are finite, which is a non-trivial property in light of the
discussions in §1.2.6. Proving this property is the main technical difficulty in showing that our
invariants are well-defined.

In the linear case, this result was proved by Joyce [83, Theorem 8.7] under a slightly dif-

ferent setting, and the orthosymplectic case of this theorem is a main result of this thesis.

1.4.7. Wall-crossing formulae. A key property of our orthosymplectic Donaldson-Thomas
invariants is that they satisfy wall-crossing formulae, Theorem 7.3.2, which relate the invariants
for different stability conditions.

More precisely, for stability conditions 7, and 7_, under certain assumptions, we prove

relations of the form

DT, (r.)= Y,  Clay,..,a,) DT, (z;) DT, (1,), (1.4.7.1)

nz0;a,..,a, € m(XL)\{0}:
a=a + - +a,

DTy (r.)= Y. C'(ay,...a,) DT, (r,) DT, (r,) DTs(z,),  (14.7.2)

n20; a,...,a, € ng(XL)\{0}; p € my(L*):
O=a,+a/ +-+a,+a, +p

where C(...) and C’(...) are certain combinatorial coefficients. The linear case (1.4.7.1) was
first obtained by Joyce and Song [89, Theorem 5.18] in the case of counting coherent sheaves
on Calabi-Yau threefolds, and the orthosymplectic case (1.4.7.2) is a main result of this thesis.

Furthermore, in §7.5, we prove a similar result for wall-crossing in derived categories,

where we compare invariants for two Bridgeland stability conditions that are close enough
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with respect to the metric on the space of stability conditions, and we show that wall-crossing
formulae hold in this case.

Wall-crossing formulae are important because they impose a very strong constraint on the
structure of the invariants, and can sometimes be used to compute the invariants directly, or
to obtain very strong properties of the invariants. See, for example, Feyzbakhsh and Thomas
[59-62] for a series of applications of this type in the linear case.

Moreover, we hope that other flavours of enumerative invariants, such as the quasi-smooth
invariants mentioned in §1.1.4 (i), (ii), should exhibit the same wall-crossing behaviour, in that
they should satisfy wall-crossing formulae with the same combinatorial coefficients. This
phenomenon was already observed in the linear case by Gross, Joyce, and Tanaka [65] and
Joyce [88]. See also the author [25] and Bojko, Lim, and Moreira [16] for applications of the
wall-crossing formulae for quasi-smooth invariants in the linear case. Assuming that this
phenomenon generalizes to the orthosymplectic case or more general cases, we can hope to
predict the behaviour of these invariants, or even compute them, without necessarily having

a general construction of the invariants.

1.4.8. The integral identity. A key technical ingredient in the proof of wall-crossing formulae
for our Donaldson-Thomas invariants is the motivic integral identity for the Behrend functions
that appear in the definitions of the invariants, (7.3.2.1)-(7.3.2.2).
In the linear case, the integral identity is the statement that the motivic version v3°" of the
Behrend function of 2" should satisfy, roughly, the relation
yEot() ot (z) = ,74/2. / v (x) dx (1.4.8.1)
0—y—x—2-0
for given y,z € 2, where the integral is a motivic integral in the sense of §5.2.6, taken over
the space of short exact sequences 0 - y — x — z — 0, and d is the virtual dimension of this
space. This was conjectured by Kontsevich and Soibelman [99, Conjecture 4], and later proved
by Lé [104]; a numerical version was proved earlier by Joyce and Song [89, Theorem 5.11] to
obtain wall-crossing formulae for Donaldson-Thomas invariants.

In this thesis, we prove a more general version of the integral identity, Theorem 7.4.2,
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which works for a general class of (—1)-shifted symplectic stacks. It states that we have

mot

Vrad(L) = L™9/2 . gr, o ev* (vE) (1.4.8.2)
where we consider the attractor correspondence
Crad(2) & Fi ) S &, (1.4.8.3)

where Zrad(2) and Filt(X') are the stacks of graded and filtered points introduced in §1.3.7.
In (1.4.8.2), the pushforward gr, can be interpreted as integrating along the fibres of gr.
For example, in the linear case, each fibre of gr consists of filtrations with given graded quo-
tients, and restricting to a connected component of Filt(2) where all filtrations are two-step
filtrations gives the statement (1.4.8.1).
Similarly, in the orthosymplectic case, the integral identity (1.4.8.2) can be written more

explicitly, roughly as

oty ymek(z) = L79/2. / vl (x) dx (1.4.8.4)

3-step self-dual filtrations
0=x(yCx;Cx9Cx3=X
with quotients y, z, y"

forgiveny e X andz € & sd where d is the virtual dimension of the space of such self-dual
filtrations. See also §2.2.4 for details on self-dual filtrations.

Our result is stronger than previous works on this topic mentioned above, as we are able to
remove a technical assumption on weights which is not necessarily satisfied outside the linear
case; see Theorem B.2.1 for details. This result will later also be used in a future work [33] to
prove wall-crossing formulae for intrinsic Donaldson-Thomas invariants, which we discuss in

§1.5.1 below.

1.5 Future directions

1.5.1. Intrinsic enumerative geometry. A natural direction to go from the above discussion is
to further generalize this theory to more general algebraic stacks.
A satisfactory answer is already available as a framework that we would call intrinsic enu-

merative geometry, developed very recently by the author and collaborators [30-33], based on
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ideas from the author’s earlier preprints [26; 27] on orthosymplectic enumerative geometry
and Halpern-Leistner’s formalism [67] generalizing important ideas in geometric invariant the-
ory from quotient stacks to general algebraic stacks, involving the notions of stacks of graded
and filtered points, ©-stratifications, etc.

Substantial progress has already been made in this framework, including defining enumer-
ative invariants in the flavours of §1.1.4 (iii), (iv) for more general stacks, and studying their
properties. We hope that this framework will lead to more applications, such as generalizing
other types of invariants in §1.1.4, or even applying the framework to other algebraic stacks,

such as those arising from Gromov-Witten theory or from K-stability.

1.5.2. Quasi-smooth invariants. One possible direction for future work is to construct enu-
merative invariants that generalize the virtual fundamental class from Deligne-Mumford
stacks to Artin stacks, in the style of §1.1.4 (i), (ii). One obstacle here is that the approach
of Joyce [88] using stable pairs does not seem to easily generalize outside the linear case, so
more work or a replacement approach is needed.

In the case of principal bundles on curves, Meinrenken [118] prove the conjectural for-
mula of Witten [162] for intersection pairings on moduli spaces in the case when there are
no strictly semistable objects. It would be interesting to explore connections of Witten’s for-
mula with the intrinsic framework discussed in §1.5.1. In the case of GL(n), the author [25]
obtained a formula involving a regularized divergent series, and it would be interesting to

explore whether a similar formula can be obtained for more general groups.

1.5.3. Vafa—Witten invariants. Another possible direction is to generalize the theory of Vafa—
Witten invariants of Tanaka and Thomas [149; 150], mentioned in §1.1.4 (vi), to the orthosym-
plectic case. In the linear case, these invariants count coherent sheaves on surfaces equipped
with Higgs fields, or Higgs sheaves. An orthosymplectic analogue of such Higgs sheaves is
what we call orthosymplectic Higgs complexes, which we discuss in §4.3 and §8.4, defined using
certain Bridgeland stability conditions. Although this thesis constructs a motivic version of
Vafa-Witten invariants, we have not yet been able to construct invariants in the same flavour

of Tanaka and Thomas using torus localization, and this is a possible direction for future work.

1.5.4. DT4 invariants. A perhaps more difficult problem is to construct DT4 invariants, men-
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tioned in §1.1.4 (vii), in the orthosymplectic case and the general case, although even the linear
case is not entirely understood yet. These invariants behave somewhat similarly to the quasi-
smooth invariants discussed in §1.5.2, and it seems likely that a replacement of stable pairs

mentioned there would also help with this case.

1.5.5. Duality. In many of the flavours of enumerative invariants above, it is often inter-
esting to explore various types of duality relations between invariants for Langlands dual
groups. One striking example is the modularity of generating functions of Vafa-Witten in-
variants, originally proposed by Vafa and Witten [161], which is related to the self-duality of
the groups GL(n). The orthosymplectic setting of this thesis includes an interesting pair of
dual groups, SO(2n + 1) and Sp(2n), as well as the self-dual groups SO(2n), where one can

hope to explore such duality relations.

1.5.6. Relations with Gromov-Witten theory. Using orthosymplectic Donaldson-Thomas
invariants for a Calabi—Yau threefold Y, as in §1.4.3, we can expect to obtain curve-counting
invariants by choosing a suitable self-dual structure on DPCoh(Y), then counting self-dual
complexes supported on curves. For a summary of similar constructions in the linear case, see
Pandharipande and Thomas [135]. We also hope to be able to compare these invariants with
Gromov-Witten invariants in the style of Maulik, Nekrasov, Okounkov, and Pandharipande

[114; 115].
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Chapter 2

Selt-dual categories

This chapter introduces the basic setting of orthosymplectic enumerative geometry, includ-
ing the notions of self-dual linear categories and self-dual objects in such categories, which we
already briefly discussed in §1.3.2. A basic example to keep in mind is the linear category of vec-
tor bundles on a scheme, where self-dual objects are orthogonal or symplectic vector bundles,
as described in Example 2.1.5. More examples and details will be provided in Chapter 4 below.
For background on the basic theory of additive, abelian, triangulated, and derived categories,
we refer to Mac Lane [113] and Gelfand and Manin [63].

The main focus of this thesis later on will be to construct and study orthosymplectic enu-
merative invariants counting such self-dual objects, based on the geometry of moduli stacks

of these objects, which we will introduce in Chapter 3.

2.1 Self-dual linear categories

2.1.1. Linear categories. Let K be a field, which we fix throughout this chapter.

By a K -linear category, we mean an additive category & (see, for example, Mac Lane [113,
§VIIL.2]), together with the structure of a K-vector space on the set of morphisms & (x, y) for
every pair of objects x, y € &/, such that addition of vectors agrees with addition of morphisms

using the additive category structure, and the composition map
o sl (y,2) x d(x,y) — (. 2)

is K-bilinear for any x,y,z € .
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Examples of K-linear categories include the category of K-vector spaces, the category of

modules over a K -algebra, the category of coherent sheaves on a K-scheme, etc.

2.1.2. Self-dual linear categories. For a K-linear category </, define a self-dual structure on o/

to be the following data:

(i) An equivalence of K-linear categories
(=) oA = AP, (2.1.2.1)

called the dual functor.
(ii) A natural isomorphism

VvV

niidy = (-)"", (2.1.2.2)

such that for any object x € o, we have v = (n¥) 71 xV S xVVV,

A self-dual K -linear category is a K-linear category equipped with a self-dual structure.
Given a self-dual K-linear category &, define a self-dual object in &/ to be a pair (x, ¢),

where x € & and ¢: x = x" is an isomorphism, such that ¢ = ¢" o 7,

We denote by of *d the groupoid of self-dual objects in &, where morphisms are isomorphisms

in & compatible with the self-dual structures.

2.1.3. Self-dual objects as fixed points. More conceptually, a self-dual K-linear category can
be defined as a (2-categorical) fixed point of the Z,-action on the 2-category of K-linear cat-
egories given by taking the opposite category, and a self-dual object in a self-dual K-linear
category & is a (2-categorical) fixed point of the Z,-action on the underlying groupoid of &
given by its self-dual structure.

Note that as we are considering Z,-actions on categories and higher categories, the only
notion of fixed points that makes sense is the homotopy one, which is defined as the homotopy
limit of a functor from the groupoid BZ,, and its behaviour is different from the classical notion

of fixed points. For example, a fixed point in a category is not only the data of an object in
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the original category that is fixed by the action, but contains extra data including explicit

isomorphisms witnessing the object being fixed, as in the above explicit definitions.

2.1.4. The hyperbolic self-dual object. Let & be a self-dual K-linear category, and let x € &
be an object. Then there is a self-dual object (x & x", ¢) € o sd_ with the hyperbolic self-dual

structure given by

¢ = ( 0 idxv): x@x’ S xVex'. (2.1.4.1)
Nx 0
2.1.5. Example. Vector bundles. Let X be a K-scheme, and let & = Vect(X) be the K-linear
category of vector bundles on X of finite rank.
For each choice of a sign ¢ € {+1}, there is a self-dual structure (-=)": o > o/°P sending

a vector bundle to its dual vector bundle, with the natural isomorphism 7: (=)""

= id, given
by ¢ times the usual identification.

A self-dual object in & is a pair (E, ¢), where E is a vector bundle on X, and ¢: E = EY
is an isomorphism, satisfying ¢ = ¢ o np. Equivalently, ¢ is a non-degenerate symmetric
(or antisymmetric) bilinear form on E when ¢ = +1 (or —1). In particular, if K is algebraically

closed of characteristic # 2, then self-dual objects of &/ can be identified with principal O(n)-
bundles (or Sp(n)-bundles) on X.

2.1.6. Example. Self-dual quivers. Let Q be a self-dual quiver, that is, a quiver with an invol-
ution o: Q = Q°, where Q is the opposite quiver of Q. This notion was due to Derksen
and Weyman [51] and Young [164-166]. See §4.1 for details.

Let o = Mod(K Q) be the K-linear abelian category of finite-dimensional representations
of Q over K. There is a self-dual structure (-=)": o = /°P sending a representation to the
representation with the dual vector spaces and dual linear maps. This also involves choosing

)VV

signs when defining n: (-) "’ = idy, as in the previous example. Again, see §4.1 for details.
Self-dual objects in & are called self-dual representations of Q, which we think of as ana-

logues of orthogonal or symplectic bundles in the quiver setting.

2.1.7. Non-example. Coherent sheaves. Let X be a connected, smooth, projective K -variety
of positive dimension, and let & = Coh(X) be the abelian category of coherent sheaves on X.

Then &/ does not admit a self-dual structure. This is because & is noetherian, meaning
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that every ascending chain of subobjects of a given object stabilizes, while it is not artinian,
in that there exists an infinite descending chain of subobjects Oy > Ox(—-1) D Ox(-2) D --
Since taking the opposite category exchanges the properties of being noetherian and artinian,
the category & is not equivalent to o/°P.

This problem can be fixed, however, by considering the derived category & = DCoh(X),

which has many interesting self-dual structures. See §4.2 for details.

2.2 Self-dual filtrations

2.2.1. We discuss self-dual filtrations in a self-dual exact category &. This notion is the or-
thosymplectic analogue of filtrations in linear enumerative geometry, and will play a crucial
role in orthosymplectic enumerative geometry.

For example, the orthosymplectic version of Harder—Narasimhan filtrations, mentioned in

§1.3.4, will be such self-dual filtrations.

2.2.2. Exact categories. For the purpose of describing filtrations later on, we briefly discuss
the notion of exact categories, originally introduced by Quillen [139]. We present the following
definition taken from Keller [92, Appendix A]:

An exact category is an additive category & equipped with a distinguished class of se-

quences

y < x L (2.2.2.1)

of morphisms in &/, called short exact sequences, satisfying the following conditions:
We call morphisms that appear as the first (resp. second) arrow in a short exact sequence

an inclusion (resp. a projection). Then,

(i) Sequences of the form E — E & F — F, called split exact sequences, are short exact,
where the two arrows are the canonical ones.

(ii) All short exact sequences are kernel-cokernel pairs, that is, in (2.2.2.1), we always have
i = ker(p) and p = coker(i).

(iii) Inclusions and projections are closed under composition.
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(iv) Pushouts along inclusions exist, and inclusions are closed under pushouts. Dually, pull-

backs along projections exist, and projections are closed under pullbacks.

For a short exact sequence (2.2.2.1), we also say that y is a subobject of x, and that z is a
quotient of x.

For example, every abelian category has a canonical structure of an exact category, given
by the notion of short exact sequences in the abelian category.

A self-dual K -linear exact category is a K-linear exact category with a self-dual structure,
such that the dual functor ()" sends short exact sequences y < x —» z to short exact

\ \Y \
sequences z°= < x° » y .

2.2.3. Categories of filtrations. For a K-linear exact category & and an integer n > 0, define

the K-linear exact category & () of n-step filtrations in o/ whose objects are diagrams

O0=x) = x; “> X9 = ==+ —> X, = X
i l i (2.2.3.1)
N N Yn s

with each sequence x;_; < x; = y; short exact in &/, and morphisms are morphisms of

diagrams. Short exact sequences in &/ () are sequences that are term-wise short exact.

2.2.4. Self-dual filtrations. Now, suppose that o/ is a self-dual K-linear exact category, and
consider the category &/ (") defined above.
For an n-step filtration (2.2.3.1), define its dual filtration to be the n-step filtration

0= (x/x,)" = (x/%,1)" = (x/%5)" —> = —> (x/x)" = x"

! ! ! (2.2.4.1)
2 Yn-1 2
where x/x; denotes the cokernel of the inclusion x; — x, which exists by the axioms of
an exact category. We have the short exact sequence y; = x/x;_; = x/x; by the third
isomorphism theorem, which holds in any exact category.
This defines a self-dual structure on o ™. Its self-dual objects are called n-step self-dual
filtrations in o .
In other words, an n-step self-dual filtration is a filtration of the form (2.2.3.1), where x

has a self-dual structure ¢: x = x", such that ¢ identifies the filtrations (2.2.3.1) and (2.2.4.1).
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In particular, ¢ induces isomorphisms y; = y,/,;_; for all i, and if n is odd, then the middle

piece y(n+1)/2 acquires an induced self-dual structure y(, 1)/, = y(\; +1)/2-

2.3 Stability conditions on exact categories

2.3.1. We define stability conditions on exact categories, generalizing the notion of stability
conditions on abelian categories considered by Rudakov [142] and Joyce [83].

As mentioned in §§1.2.3-1.2.4, the purpose of introducing stability conditions is mainly to
deal with constructing enumerative invariants when the moduli stack is not quasi-compact,
so that a stability condition should produce a stratification of the moduli stack with quasi-
compact strata, so it is meaningful to count points in each stratum. For example, if the moduli
stack is already quasi-compact, then we can usually use the trivial stability condition, giving
the trivial stratification.

In the case of self-dual exact categories in the sense of §2.2.4, we also define when a stability
condition is compatible with the self-dual structure. In this case, we can also say when a self-
dual object is semistable or stable.

These notions of stability will not be essentially used in our main constructions, but will
serve as a motivation for the more complicated definition of stability conditions for linear
stacks in §3.5 below, and will be easier to work with when studying examples.

We prove two useful results, Theorems 2.3.4 and 2.3.5, which characterize semistability

and stability for self-dual objects in self-dual exact categories.

2.3.2. Stability for exact categories. We first define a notion of stability conditions for exact
categories, following ideas of Rudakov [142], Joyce [83], and Bridgeland [22].

Let o be a K-linear exact category (see §2.2.2), which we assume to be essentially small.
The Grothendieck group of &f is the abelian group K,(&f/) generated by isomorphism classes
of objects of &/, modulo the relations [x] ~ [y] + [z] for short exact sequences y < x —» z
in &. We assume that [x] = 0in K,(&/) implies x = 0. Let C(&f) C K,(&) be the submonoid

consisting of classes of objects in .
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A weak stability condition on &/ is a map of sets
7: C(A)\ {0} — T,
where T is a totally ordered set, satisfying the following conditions: We say that

+ An object x € o is T-semistable, if for any short exact sequence y < x - z in & with
v,z # 0, we have 7(y) < 7(x) < 7(2).
« Anobject x € o is 7-stable, if it is non-zero, and for any short exact sequence y = x -

z in & with y,z # 0, we have 7(y) < 7(x) < 7(2).

Then, we require the following:

(i) For any short exact sequence y — x —» z of non-zero objects in &, we have either
7(y) < t(x) <7(z) or r(y) 2 7(x) > 7(2).
(ii) For any non-zero r-semistable objects x, y € o, if 7(x) > 7(y), then &/ (x, y) = 0.

(iii) Every object x € o has a Harder—Narasimhan filtration, that is a filtration

0=x) = x; = Xy > ==+ ——> X = X
Lo !
b5 Y2 Yk >

with each x;_; < x; » y; short exact, and each y,; non-zero and r-semistable, such that

t(y1) > 1(y2) > - > (k)

Here, the conditions (ii)—(iii) are automatic when & is an abelian category and is noetherian
and 7 -artinian in the sense of Joyce [83, §4]; see there for more details.
In (iii), the Harder-Narasimhan filtration of every object is unique up to a unique iso-

morphism, which can be deduced from a standard argument.

We say that 7 is a stability condition, if in addition, we have the following:

(iv) Foranyt € T, the full subcategory &/ () C & consisting of 7-semistable objects x with
either 7(x) = t or x = 0, with the induced exact structure, is an abelian category, and

is closed under taking kernels and cokernels in <.

In this case, for any short exact sequence y = x — z of non-zero objects in &/, we have either

7(y) < 7(x) < 7(z),0or 7(y) = 7(x) = 7(z), or 7(y) > 7(x) > 7(z). This condition is

equivalent to (iv) when &/ itself is an abelian category.
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2.3.3. Self-dual stability. Let of be a small self-dual K -linear exact category, where the duality
preserves the exact structure as in §2.2.4, and also the linear structure.
We say that a weak stability condition 7 on & is self-dual, if the following condition is

satisfied:
« For any non-zero objects x, y € &, we have 7(x) < 7(y) ifand only if 7(y") < 7(x").

In this case, shrinking T (replacing it by the image of 7) if necessary and assuming that & # 0,
we may assume that there is an order-reversing involution on T, denoted by ¢t — —¢, with a
unique fixed element 0 € T. This element exists because for any self-dual object (x, ¢) € & sd
with x # 0, we have 7(x) = 7(x") = —r(x), so that we must have 7(x) = 0; such (x, ¢)
exists by §2.1.4.

For a self-dual object (x,¢) € & Sd, we introduce the following notions:

i

« A subobject i: y < x is isotropic, if the composition y & x — x" 5 y" is zero.

« We say that (x, ¢) is 7-semistable, if for any non-zero isotropic subobject y — x, we
have 7(y) < 0.

« We say that (x, ¢) is 7-stable, if for any non-zero isotropic subobject y < x, we have

(y) <O.

The reason for only considering isotropic subobjects here, instead of all subobjects, is that
giving an isotropic subobject y — x is equivalent to giving a three-term self-dual filtration

whose total object is (x, ¢), in the sense of §2.2.4, which is necessarily of the form

0;>y<—>yl;>x

i l L (2.3.3.1)

\%

y z Yy o
where y© = (x/y)Y, z = y*/y,and y¥ = x/y". The object z has an induced self-dual
structure, giving an object (z,¢) € & sd
From this, one can deduce the following characterizations of semistability and stability for

self-dual objects.

2.3.4. Theorem. Let of be a self-dual K -linear exact category, and let T be a self-dual weak
stability condition on of. Then an object (x, ¢) € o™ is r-semistable if and only if its underlying

object x € o is T-semistable.
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Proof. Consider the Harder—Narasimhan filtration of x. Its dual filtration in the sense of
§2.2.4 is a Harder-Narasimhan filtration of x", and the self-dual structure on x equips this
filtration with the structure of a self-dual filtration. Therefore, if this filtration has at least two
terms, then the first term must be isotropic, proving that (x, ¢) being semistable implies x

being semistable. The other direction is clear. [

2.3.5. Theorem. Let o be a noetherian self-dual K -linear exact category, and let T be a self-dual

stability condition on <. Then an object (x, $) € o™ is T-stable if and only if it is of the form

(x> ¢) = (xla ¢l) © - D (xn’ ¢n) >

wheren > 0, (x;, ¢;) € A%, and the underlying objects x; € o are T-stable.
In particular, if —1 has a square root in K, then the objects (x;, ;) are pairwise non-

isomorphic, and Aut(x, ¢) = Z;.

Proof. The abelian category &/(0) C & in §2.3.2 (iv) is noetherian and self-dual, so it is also

artinian. Let (x, ¢) € %4 be stable, so x € 2(0). Let
0=Xx)—— Xy =+ —> X, =X (2.3.5.1)

be a Jordan-Hélder filtration of x in &/(0), where the stepwise quotients are simple. If n < 1,
then we are done. Suppose that n > 1. Since (x, ¢) is stable, the inclusion x; < x cannot
factor through x;" = (x/x;)". The composition x; < x —-» x/xi = x, is thus non-zero,
and hence an isomorphism, which then splits the inclusion x; < x, giving a decomposition
(x,9) = (x1,8ly,) ® (xi, ¢l x+) into stable self-dual objects. Repeating this process, we obtain
the desired decomposition, where the artinian property ensures that the process terminates.
For the last statement, suppose we have an isomorphism ¥ : (x;, ¢;) = (x;,¢;) for some

i #j. Thenid, ++v-1-¢: x; = x is an isotropic subobject of x, a contradiction. ]

2.4  Bridgeland stability conditions

2.4.1. We now introduce Bridgeland stability conditions following Bridgeland [22], which are a
notion of stability defined on triangulated categories, which we will apply to derived categories

of coherent sheaves on varieties. Later on, we will also study enumerative invariants counting
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semistable objects for such stability conditions.

Another reason why we are interested in Bridgeland stability conditions is that we need
them to define a category of sheaves on a given smooth projective variety that is self-dual,
due to the problem discussed in §2.1.7, so that our theory of orthosymplectic enumerative
invariants can be applied.

In the following, we work with triangulated categories in the sense of, for example, Gelfand

and Manin [63, Chapter IV].
2.4.2. Bridgeland stability conditions. Assume that we are given the following data:

« A K-linear triangulated category 6.
« A finitely generated free abelian group I, with a surjective homomorphism K(€) » T’

from the Grothendieck group of 6.
Then a Bridgeland stability condition on € that factors through I' is a pair 7 = (Z, %), where

o Z:T — Cis agroup homomorphism.
« P is a slicing on €, meaning a family of K-linear full subcategories (% (t) C €);cg,

such that the following conditions hold:
(i) We have 2(t +1) = P (t)[1] forallt € R.

(ii) Ift; > t,, then for any x; € P(t;) and x, € FP(t,), we have € (x, x,) = 0.

(iii) Each object x € € has a Harder—Narasimhan filtration, that is a sequence

0= x, X1 X Xp =X
l l l (2.4.2.1)
N Y2 Vi »

where each x;,_; — x; — y; is an exact triangle, we have 0 # y; € 9(t;) for some

t; € R, and we have t; > -+ > t;.
They should satisfy the following condition:
« Forany t € Rand any 0 # x € 9°(t), we have
Z(x) € Ryy-e™ | (2.4.2.2)

where Z(x) denotes the value of Z on the image of x inT.
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« Support property. For any r € R, there are only finitely many classes @ € I' admitting

a semistable object (see below), such that |Z (a)| < r.

Here, (t) is called the subcategory of semistable objects of phase t, and is necessarily a K-
linear abelian category.

For any interval I C R, denote by 9(I) C & the smallest extension-closed subcategory
of € containing all the subcategories & (t) for t € I, where being extension-closed means that
for any exact triangle x - y — z in € with x,z € &(I), we also have y € 2(I).

For any object 0 # x € €, one can show that its Harder—Narasimhan filtration is unique

up to a unique isomorphism. If its Harder-Narasimhan factors are y;, ..., y; as above, then
we define
k
$o(x)=t, p(x)=t, mx)=) 1Z(). (2.4.2.3)
i=1

These are called the maximal phase, the minimal phase, and the mass of x.

We denote by Stabr (&) the set of such Bridgeland stability conditions.

2.4.3. The space of stability conditions. The set Stabr(€) has a topology given by a general-

ized metric d, that is, a metric allowing infinite distance, defined as in [22, §8] by
d(r,) = sup | Ip* (x) = $* ()L™ (x) = §~(x)] log m(x) — log m(x)| | x # 0}, (243.1)
where x goes through all non-zero objects of €. The projection
Stabp (%) — Hom(I, C) (2.4.3.2)

given by (Z,P) + Z is a local homeomorphism, and equips Stabp (%) with the structure of

a complex manifold.

2.4.4. Self-dual Bridgeland stability conditions. We now discuss self-dual Bridgeland stabil-
ity conditions in self-dual triangulated categories. This type of duality already appeared, for
example, in Bayer [8, §3.3] and Bayer, Macri, and Toda [9, Lemma 4.1.2 ff.], although for dif-
ferent purposes.

Let € be a self-dual K -linear triangulated category, that is a K -linear triangulated category
with a self-dual structure in the sense of §2.1.2, such that the dual functor (-)" exchanges

shifting by 1 and —1, and sends exact triangles x — y — z — x[1] to exact triangles x ' [-1] —
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zV - yY - xY,

Let K(€) — T be a map as in §2.4.2, such that its kernel is preserved by the dual func-
tor (—)". In this case, the group I has an induced involution (=)": I' = T, whose fixed locus
is denoted by I'*¢.

For a Bridgeland stability condition 7 = (Z, %) € Stabr(€), define its dual stability con-
ditiont¥ = (Z",P") by setting

ZV(a) = Z(@"),  PV(t) = P(-t)" (2.4.4.1)

forall « € Tand t € R, where (—) denotes complex conjugation.
If r = 7, then it is called a self~dual Bridgeland stability condition.

Taking the dual stability condition defines an anti-holomorphic involution
(—)Y: Stabp(€) = Stabp (%), (2.4.4.2)

and its fixed locus Stablid(%) C Stabr (@) is the space of self-dual stability conditions, which

is a real analytic manifold.

2.4.5. Remark. Self-dual dg-categories. Finally, we remark that from a higher categorical
point of view, the above notion of self-dual structures on triangulated categories might not be
the most natural one, and we sometimes also need to impose higher coherence conditions.

For this purpose, we can choose to work with K -linear dg-categories, or categories enriched
in chain complexes of K-modules, with a notion of equivalence of dg-categories as described
in Keller [93, §7.2] or Haugseng [72, Definition 5.6]. All derived categories we are interested
in can be seen as K-linear dg-categories. By Lurie [110, §1.3.1], a K-linear dg-category € has
an underlying co-category @), obtained by taking its dg-nerve. Moreover, all (small) K-linear
dg-categories form an co-category as in Tabuada [147] and Toén [157].

We may now define self-dual K-linear dg-categories, and self-dual objects in such cat-
egories, as fixed points of suitable Z,-actions in the corresponding co-categories. Note that
in this case, the explicit presentation in §2.1.2 will not be enough, and more coherence data
is required: The equivalence v = (7})" there needs to be self-dual, with the self-duality

witnessed by a higher equivalence that is also self-dual, and so on.
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Chapter 3
Moduli stacks

In this chapter, we discuss moduli stacks of objects in linear categories, and moduli stacks of
self-dual objects in self-dual linear categories, which are algebraic stacks whose points corres-
pond to objects in these categories, and whose stabilizer groups correspond to automorphism
groups of these objects.

We will take an intrinsic approach, meaning that we solely work with algebraic stacks that
behave like such moduli stacks, without referring to the original categories. Such stacks are
called linear stacks as in the author et al. [31, §7.1], and we also discuss self-dual structures on
linear stacks, from which one can construct the moduli stack of self-dual objects. See Chapter 4

for concrete examples.

3.1 Algebraic spaces and stacks

3.1.1. This section provides background material on algebraic spaces and algebraic stacks,
mainly following Olsson [125].

We do not attempt to give a complete introduction to the theory or define every notion
involved here. The reader should refer to standard textbooks such as Olsson [125] or the Stacks

project [145] for more details.

3.1.2. Algebraic spaces. We first give a definition of algebraic spaces. See Olsson [125, §5.1],
Knutson [97, II.1], or Laumon and Moret-Bailly [103, §1] for more details.

Let Aff be the category of affine schemes, equipped with the étale topology (see [125,
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Example 2.1.13]). An algebraic space is a functor
X: Aff® — Set,
satistfying the following properties:

(i) X is a sheaf with respect to the étale topology on Aff.
(ii) There exists a scheme U and a surjective étale morphism U — X that is representable

by schemes.

Here, the property (ii) means more precisely that for any affine scheme T and any morphism
T — X, the base change Ur = U xx T — T is a surjective étale morphism of schemes, where
we identify a scheme with the functor Aff°? — Set that it represents.

Note that some sources, such as Knutson [97] or Laumon and Moret-Bailly [103], impose
the extra condition that X is quasi-separated, meaning that the diagonal morphism Ay : X —
X x X is quasi-compact. More modern sources such as Olsson [125] or the Stacks project [145]
tend to omit this condition, and say quasi-separated algebraic spaces when this condition is

satisfied, and we follow this latter approach.

3.1.3. Algebraic stacks. We now give a definition of algebraic stacks, also called Artin stacks.
Standard references on algebraic stacks include Olsson [125], the Stacks project [145], and
Laumon and Moret-Bailly [103].

Let Grpd be the 2-category of small groupoids. An algebraic stack is a functor
L AFP — Grpd,
satisfying the following properties:

(i) X is a sheaf with respect to the étale topology on Aff.
(if) There exists a scheme U and a surjective smooth morphism U — X that is representable

by algebraic spaces.

Here, the property (i) involves a 2-categorical notion of sheaves; see, for example, Olsson [125,
§4.6]. The property (ii) means that for any affine scheme T and any morphism T — &, the

base change Ur = U x¢ T — T is a surjective smooth morphism of algebraic spaces.
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We denote by St ¢ Fun(Aff°P, Grpd) the full sub-2-category of algebraic stacks.

Again, some sources such as [103] impose the extra condition that & is quasi-separated
(and/or has separated diagonal), meaning that the diagonal morphism Ag-: &' — X x X is
quasi-compact and quasi-separated (and/or separated). We follow more modern sources, such
as [125] or [145], which omit these conditions.

An algebraic stack & is called a Deligne-Mumford stack if it satisfies the following extra

property:

(ii") There exists a scheme U and a surjective étale morphism U — & that is representable

by algebraic spaces.

Roughly, this condition means that the stabilizer groups of 2, as in §3.1.5 below, must be
discrete groups.

Many properties of morphisms of schemes generalize to stacks, such as being an open (or
closed, or locally closed) immersion, being quasi-compact, (quasi-)separated, (locally) of finite
type, proper, affine, étale, smooth, etc. We do not list the definitions here, but we refer to Olsson
[125] for details. In particular, an open (or closed, or locally closed) substack of 2 means an
algebraic stack with an open (or closed, or locally closed) immersion to 2.

Another useful class of morphisms of stacks is those representable by algebraic spaces, or
representable morphisms for short, meaning morphisms % — & such that for any algebraic

space T and any morphism T — &, the base change % = % xq¢ T is an algebraic space.

3.1.4. The underlying topological space. Each algebraic stack & has an underlying topological
space ||, as in Laumon and Moret-Bailly [103, §5], similar to the underlying topological space
of a scheme equipped with the Zariski topology.

Namely, a point x € |Z’| is an equivalence class of morphisms Spec K — X for fields K,
with the equivalence relation generated by the relation that two such morphisms are equival-
ent if one factors through the other. The set || of points of & admits a natural topology,
called the Zariski topology, where the open sets are the sets |%| c || for open immersions
U — . The space | 7| is called the underlying topological space of X .

As with the case of schemes, open substacks of 2 are in bijection with open sets in ||,

whereas different closed substacks of | 2’| can correspond to the same closed set in |Z'|. Nev-
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ertheless, each closed set gives a canonical reduced induced closed substack.
We will frequently use the set of connected components of ', denoted by 15(X") = 7y (|X]).

Each element a € 7y(Z") gives an open and closed substack 2, ¢ .

3.1.5. Stabilizer groups. For an algebraic stack 2" and a point x: Spec K — &, the stabilizer

group of x is a group algebraic space over K given by the fibre product

Aut(x) = Spec K x SpecK .
X

x,Z,
Its group of K-points is the automorphism group of x as an object in the groupoid X' (K).
All the stabilizer groups of points in & arrange themselves into a group stack over ',

given by

jz‘:% X%(,CZ‘,

X

called the inertia stack or the loop stack of &'. The natural morphism oo — X, given by

projection to either factor, has the stabilizer groups Aut(x) as its fibres.

3.1.6. Quotient stacks. Quotient stacks are an important class of motivating examples and one
of the most common sources of algebraic stacks.

For an algebraic space X defined over a base algebraic space S, and a smooth group algeb-
raic space G over S acting on X, there is the quotient stack X /G as an algebraic stack over S.

See Olsson [125, Example 8.1.12] for details.

3.1.7. Mapping stacks. We will make extensive use of mapping stacks, or stacks that paramet-
rize morphisms between two given algebraic stacks.

For algebraic stacks 2" and % defined over a base algebraic stack &, define the functor

Map o (X, Y ): Aff) g — Grpd,

T—Stys(XxsT,¥%),

where Aff ¢ is the category of affine schemes with a morphism to . If this functor is repres-
ented by an object of St ¢, this object is called the mapping stack from 2" to %, also denoted

by Map (X, %). We often omit the base & from the notation when it is clear from context.
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3.2 Graded and filtered points

3.2.1. We introduce the stacks of graded and filtered points of an algebraic stack, following
Halpern-Leistner [67], as we mentioned in §1.3.7. We will later use this formalism to define

linear stacks and self-dual linear stacks, which will be the main basic setting of this thesis.

3.2.2. Running assumptions. In the following, we work over an algebraically closed field K,

and we work with algebraic stacks & over K with the following properties:

(i)  is locally of finite type over K, meaning that there exists a scheme U locally of finite
type over K and a surjective smooth morphism U — &.
(i) X has affine diagonal, meaning that the diagonal morphism Ag-: & — & x X is an

affine morphism, in that it is so upon a base change to any scheme.
The condition (ii) has the following consequences:

« X is quasi-separated, meaning that the diagonal morphism Ag-: & — & x X is quasi-
compact and quasi-separated.
« X has affine stabilizers, meaning that for any point x € Z, the stabilizer group Aut(x)

is an affine algebraic group over the residue field «, of x.
These assumptions are almost always satisfied by the moduli stacks that we are interested in.

3.2.3. Graded and filtered points. Let & be a stack over K as in §3.2.2. Following Halpern-
Leistner [67], define the stack of graded points and the stack of filtered points of & as the

mapping stacks
Grad(X) = Map(*/Gy, X) , (3.2.3.1)
Filt(X) = Map(A' /G, T) , (3.2.3.2)
where G, acts on A’ by scaling. By [67, Proposition 1.1.2], these are again algebraic stacks

over K, quasi-separated and locally of finite type.

Consider the morphisms

/\

0
*/Gpy = Al/G, —— =,
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where pr is induced by the projection A' — . These induce morphisms of stacks

tot

/\

gr
Grad(X) <:f) Fill( LX) = X,

where the notations ‘gr’, ‘sf’, ‘ev’, and ‘tot’ stand for the associated graded point, the split filtra-
tion, the evaluation, and the total point, respectively.

By [67, Lemma 1.1.5 and Proposition 1.1.13], the morphisms tot and ev are representable
by algebraic spaces, under our assumptions in §3.2.2. Moreover, by [67, Lemma 1.3.8], the
morphisms gr and sf form an A'-deformation retract, meaning that there is a morphism h: A'x
Filt(T) — Filt(Z') such that h(1,-) = idgg) and h(0,—) = sf o gr. In particular, the

morphisms gr and sf induce a bijection 1y (Erad(X)) = my(Filt(X)).

3.2.4. Example. Quotient stacks. The stacks of graded and filtered points of a quotient stack
can be described explicitly, following Halpern-Leistner [67, Theorems 1.4.7 and 1.4.8].

Let & = U/G be a quotient stack, where U is a quasi-separated algebraic space over K,
locally of finite type, acted on by a smooth affine algebraic group G over K with a split maximal
torus T C G.

For a cocharacter A: G, — G, define the Levi subgroup and the parabolic subgroup of G

associated to A by

Ly={geG|g=At)gAt) " forall t},
P,={geG| }i_r)ré/l(t) g A(t) ™! exists}
respectively. Here, that the limit exists means that the corresponding morphism G,, = G can
be extended to a morphism A' — G.
For example, if G = GL(n) and A(t) = diag(¢"", ..., t*") with k; > - > k,, then L, P, C
G are the groups of block diagonal and block upper triangular matrices, respectively, where

the i-th and j-th positions belong to the same block if and only if k; = k;.

Define the fixed locus and the attractor associated to A by

U* = Map®(x,U) ,

Ut = Map® (AL U) ,
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where Mame(—, —) denotes the G,,-equivariant mapping space, and G, acts on U via A, and
on A' by scaling. These are again algebraic spaces over K, as in Drinfeld and Gaitsgory [56,
§1]. For example, if U is a G-representation, then Ut , UMt ¢ U are the subspaces with zero
and non-negative A-weights, respectively.

By [67, Theorems 1.4.7 and 1.4.8], we have

grad(X)= [] U'/L,. (3.2.4.1)
A: Gy—G

Fix)= [] Ut/py. (3.2.4.2)
A: Gy—G

where the coproducts are taken over conjugacy classes of cocharacters A, and the L ,-action

on U” and the P ,-action on UM are induced by the G-action on U.

3.3 Linear stacks

3.3.1. We introduce the notion of linear stacks, also called linear moduli stacks, as in the author
et al. [31, §7.1]. They are algebraic stacks that behave like moduli stacks of objects in linear
categories. The reader is recommended to refer to Chapter 4 for concrete examples of such
stacks.

This thesis takes an intrinsic approach to moduli stacks, meaning that we base all our
constructions on the structure of linear stacks, without referring to the original categories of

objects that these stacks are supposed to parametrize.

3.3.2. Linear stacks. Let K be an algebraically closed field. As in the author et al. [31, §7.1],

define a linear stack over K to be the following data:

+ An algebraic stack 2 over K.
« A commutative monoid structure &: & x &’ — X, with unit 0 € 2 (K).

« A%/Gpy-action ©: */G, x & — X respecting the monoid structure.

Note that these structures come with extra coherence data; the compatibility of the monoid
structure and the */G,,-action means more precisely that we are given a commutative monoid

object in the 2-category of * /G ,-equivariant algebraic stacks over K.
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In this case, the set 1y(2") of connected components of " (see §3.1.4) carries the structure
of a commutative monoid. We denote its operation by +, and its unit by 0.

We require the following additional property:

+ There is an equivalence

H H Ly(ny — Grad(T) , (3.3.2.1)

y: Z-my(X) nesupp(y)

where y runs through maps of sets Z — ,(Z’) such that supp(y) = Z\ y~'(0) is finite,
and the morphism is defined by the composition

( )" 0] ®
*/Gm H 'EZ‘ - H (*/Gm x y(n)) - H( )'%‘y(n) — X
Y

nesupp(y nesupp(y) nesupp

on the component corresponding to y, where the first morphism is given by the n-th

power map (—)": */Gy, — */Gy, on the factor corresponding to X ().

We can think of (3.3.2.1) roughly as an equivalence €rad(2) =~ L%, where we only consider

components of 2 z involving finitely many non-zero classes in 7y(Z’).

3.3.3. Example. Vector spaces. Consider the moduli stack of finite-dimensional K-vector
spaces, defined as the coproduct

Z =]]+/GL(n). (3.3.3.1)

neN

Itis a linear stack over K, with the monoid structure @ given by the direct sum of vector spaces,
and the »/G,-action O given by scalar multiplication on vector spaces, or equivalently, given
by the central cocharacters G,, — GL(n) defined by ¢ — diag(t, ..., t). Here, the equivalence

(3.3.2.1) follows from the explicit description of Erad(*/GL(n)) in Example 3.2.4.
3.3.4. Stacks of filtrations. For a linear stack 2, recall the canonical bijections
o (Filt(X)) = ny(Crad(X)) = {y: Z — 7o(X) | supp(y) finite} ,

where the first bijections is induced by the morphism gr, and the second is given by (3.3.2.1).

For classes ay, ..., a, € my(X'), there is a stack of filtrations

. C FilL),

.....
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defined as a connected component corresponding to a map y as above whose non-zero values
agree with the non-zero elements in «,, ..., a;, preserving order. We think of this as the stack
parametrizing n-step filtrations with stepwise quotients of classes «y, ..., a,. This stack is
independent of the choice of y up to a canonical equivalence, as in [31, §7.1].

The morphisms defined in §3.2.3 restrict to canonical morphisms

(3.3.4.1)

a, '%‘0‘1“'”’4'% 5 (3.3.4.2)

.....

sending a filtration to its associated graded object and total object, respectively, where we
also restrict the targets to single connected components as the sources are connected. These
mentioned above, and up to canonical 2-isomorphisms.

We say that 2 has quasi-compact filtrations, if for any «y, ..., a, € 1y(Z’), the morphism
a, = Lo +..+a, 1S quasi-compact. See also Halpern-Leistner [67, Definition 3.8.1].

~~~~~~

This is a very mild condition, and is satisfied by all examples of our interest.

3.4 Self-dual linear stacks

3.4.1. Self-dual linear stacks. We now introduce a notion of self-dual linear stacks, which
describe moduli stacks of objects in self-dual linear categories.
Let X be a linear stack over K. A self-dual structure on 2 is a Z,-action on &, given by

an involution
)T >,

together with a 2-isomorphism 7: (-=)"" = idg with Ny = (172/_))_1 similarly to §2.1.2, such
that the involution respects the monoid structure @ on 2, and inverts the x/G,,-action ©,
meaning that it is equivariant with respect to the involution (-)™': */G,, — */G,,. More
precisely, this means that we require an action of the group object (*/G,,)%Z, on X, where Z,
acts on * /G, by the above involution, and we require that & defines a commutative monoid

structure in the 2-category of (*/G,,) » Z,-equivariant algebraic stacks.
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In this case, we call 2 a self-dual linear stack. Define the stack of self-dual points of X as

the fixed locus

(%-Sd — ‘%-Zz

for the above Z,-action, defined as a 2-categorical limit in the 2-category of algebraic stacks.
It has affine diagonal by Lemma 3.4.5 below. Note that this is different from the fixed locus of
the automorphism (-)" of 2, which would give the fixed locus of the corresponding Z-action
on &, rather than that of the Z,-action, and these are different as 2-categorical fixed loci.

There is a monoid action

o & x 1 — g, (3.4.1.1)

given by (x,y) — x @ y ® x". This induces a monoid action 7,(Z’) x 71,(XL%) — mo(XY),
which we often denote by («,0) — o + 0 + a’, where a + " can also be seen as a class

in ) (L sdy, corresponding to the case when 6 = 0.

3.4.2. Example. Vector spaces. Consider the linear stack
2 =] ] +/GL(n)
neN

in Example 3.3.3. Consider the involution (=)": */GL(n) — */GL(n) sending a vector space
to its dual, or equivalently, sending a matrix to its inverse transpose, and choose a sign ¢ € {+1}
when identifying (—)"" with idg, similarly to Example 2.1.5.

Then 2% is the classifying stack of non-degenerate symmetric (or anti-symmetric) bilinear
forms if ¢ = +1 (or —1). In particular, if K is of characteristic # 2, then we have

I =/0(n) ife = +1,

g8t = { neN (3.4.2.1)

LI */Sp(2n) ife = -1.
neN

3.4.3. Self-dual graded points. The involution on 2 induces an involution on ¥rad(X’), and

we may identify Srad(Z SCl) = Grad(X )Zz. This gives an isomorphism

Crad(2%Y) = 11 <5r;?0) < [1 sxy(,,)> , (3.4.3.1)
Y: Z\{0}—>my(X) n>0: y(n)#0
involutive,d
y (0)em ()
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where y runs through finitely supported maps that are involutive, meaning that y(-n) =
y(n)" for all n > 0, and y (0) is a convenient notation which is independent of the map y, and

VA YS?O) c 2% denotes the component corresponding to y (0).

3.4.4. Self-dual filtrations. For classes ay, ..., @, € n1y(Z) and 6 € nO(Sl”Sd), define the stack

of self-dual filtrations

L o C Fill( ™)

as a component such that under the isomorphism 7y (Filt(X Sd)) = 1y(Crad(X Sd)), its corres-
ponding map y as above has y(0) = 6, and its non-zero values at positive integers agree with
the non-zero elements in «,,, ... , &y, preserving order. This does not depend on the choice of y

by the constancy theorem of the author et al. [31, Theorem 6.1.2].

.....

§2.2.4, with stepwise quotients of classes ay, ..., a,, 0, a, , ..., & .

d,+
JEREEE)

The morphisms defined in §3.2.3 restrict to morphisms gr: 25" , g = Lo, x =+ x Ly X

ae_)t%‘Sd

..... . 4oty +0+a) +-+a) - 1f & has quasi-compact filtrations as in

§3.3.4, then the morphism ev described above is always quasi-compact.

3.4.5. Lemma. Let X be a stack as in §3.2.2, acted on by Z,. Then the forgetful morphism
Xl - X is affine.

Proof. Let 7 = & x; a.q,j, &, where j; is the diagonal morphism, and j; = (id, i), where i
is the involution. Let 7: 7 — 2 be the projection to the first factor, which is affine as 2" has
affine diagonal. Let Z, act on _# by the involution on the second factor, so we may identify
F% ~ 3% Then 7 is equivariant with respect to the trivial Z,-action on 2, so the forget-
ful morphism 7 22 ¢ is a closed immersion, which can be seen by base changing along

morphisms from affine schemes to 2. The composition & Z» ~ g% 5 7 - I is thus

affine. OJ
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3.5 Stability conditions on linear stacks

3.5.1. We define a notion of stability conditions on linear stacks, based on the notion of ©-
stratifications of a stack developed by Halpern-Leistner [67]. Such stratifications is a geomet-
ric formulation of the existence and uniqueness of Harder—Narasimhan filtrations in various
moduli problems, as we discussed in §1.2.4.

The theory of ®-stratifications has seen important applications, including the construction
of good moduli spaces for algebraic stacks in Alper, Halpern-Leistner, and Heinloth [5].

Our notion of stability is a geometric version of the notion of stability conditions on cat-
egories introduced in §2.3. In particular, such a stability condition will determine a semistable

locus in the moduli stack, which will be used to construct enumerative invariants.

3.5.2. Stratifications. For an algebraic stack &, we define a stratification of X as a family of

locally closed substacks (2;);e; of X, satisfying the following properties:

(i) The subspaces |2;| C || give a partition of the underlying set | 2|, meaning that they
are disjoint and that their union is |Z'|.
(ii) There exists a total order < on I, such that for any i € I, the set | J; ; |X/| € |2 is
open.
(iif) Local finiteness. For any quasi-compact open substack % c &, there are only finitely

many i € I such that |%| N |Z;| # @.

Note that these conditions depend entirely on the topological subspaces |Z;| c |Z].

In this case, each 2 is called a stratum of the stratification.

3.5.3. O-stratifications. We now define O-stratifications following Halpern-Leistner [67], but
we slightly weaken the original definition by discarding the ordering on the set of strata.

Let & be a stack as in §3.2.2. A ©-stratification of X is the following data:
« Open substacks & ¢ Filt(X') and Z c Crad(X), with & = gr {(ZF),

such that for each A € 7,(€rad(X)) = ny(Filt(X)), if we write §; ¢ & and ) C Z for

the parts lying in the components 2y ¢ Filt(2) and X C Erad(X), respectively, then:
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« The morphismev: &; —  is alocally closed immersion, and the family (&), defines

a stratification of 2.
In this case, each Z) is called the centre of the stratum &;.

3.5.4. Stability for linear stacks. Let 2 be a linear stack, as in §3.3.2. Define a stability condi-

tion on & to be a map

T: e (X)\N{0} — T
to a totally ordered set T, satisfying the following conditions:

(i) If oy, 9 € 1y(X) \ {0} and 7(;) < 7(axy), then 7(a;) < 7(a + @) < 7(ay).

(ii) For any class a € my(X'), the semistable locus

T5(r) = T, \ U evi(@ia) (3.5.4.1)
a=a;+ay
T(ay)>7 ()
is open in &, where «;, a, are assumed non-zero. Moreover, for any ¢t € T, the union
2¥(mt)y={otu | 23() (3.5.4.2)
aeny(L)\{0}:
t(a)=t

is an open linear substack of 2.

(iii) The open substacks

......

for all n > 0 and classes «a;, ..., a, € 1y(X) \ {0} with 7(a;) > -+ > 7(«,) define a

O-stratification of 2 in the sense of §3.5.3.

More precisely, the last condition means that for each choice of «y, ..., «, as above, we choose

.....

and &, as above; for all other A, we set them to be empty.
3.5.5. Examples. Here are some examples of stability conditions on linear stacks.

(i) Let X be any linear stack. The constant map 7: 75(Z") \ {0} — {0} is called the trivial

stability condition, where X5°(t) = X, for all a.
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(ii) Let & be the moduli stack of representations of a quiver Q. Then any slope function

1 Qp = Q induces a stability condition on & given by
Zier d; - pu(i)
Zier di

for non-zero dimension vectors d € my(2)\{0}, where the existence of a ®-stratification

7(d) =

follows from Ibafiez Nufiez [77, Theorem 2.6.3] or Halpern-Leistner [67, Example 4.1.17].
See §4.1 for more details.

(iii) Let & be the moduli stack of coherent sheaves on a projective scheme Y over an al-
gebraically closed field K of characteristic zero. Then Gieseker stability is a stability
condition on 2, where the choice of 7 is described in Joyce [83, Example 4.16], and the

©-stratification exists by Alper, Halpern-Leistner, and Heinloth [5, Example 7.28].

3.5.6. Stability for self-dual linear stacks. Let & be a self-dual linear stack over K, and let 7

be a stability condition on 2. We say that 7 is self-dual, if the following condition holds:
« Forany a, B € my(Z) \ {0}, we have 7(a) < 7(f) ifand only if r(a”) > 7(B").

In this case, for each 0 € 7y (X Sd), writing & = j(6) for the corresponding class in 1y, (Z"), we

have the semistable locus
X8 (r) = X8(r) e n X5 < 11, (3.5.6.1)

where X 5d c (T a)ZZ as an open and closed substack.
Note also that the open linear substack 2**(7;0) ¢ & defined in (3.5.4.2) is self-dual.

We have an induced ©-stratification of 2% given by the open substacks

0. 0(T) = LE(0) x o x L8 (1) x LE¥S(1) € Ly %+ x Xy x 30,

,,,,,

......

where a4, ..., a, € 1y(X)\{0} and 0 € J'to(.fl"Sd) are classes such that r(ay) > -+ > 7(«,) > 0.
These strata and centres can also be realized as Z,-fixed loci in the strata and centres of the

©-stratification of 2" given by 7.

3.5.7. Permissibility. Let & be a linear stack over K, and let 7 be a stability condition on .

We say that 7 is permissible, if the following condition holds:
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« For any a € ny(Z’), the semistable locus X3’ (r) ¢ 2, is quasi-compact.

This is similar to the notion of permissible weak stability conditions in Joyce [83, Definition 4.7]

and Joyce and Song [89, Definition 3.7].

3.5.8. Lemma. Let X be a linear stack over K, and let T be a permissible stability condition on X.
Then for any a € (') \ {0}, there are only finitely many decompositions a = oy + -+ + a,

into classes a; € 71o(X') \ {0}, such that t(a;) = t(a) and XL () # @ for all i.

Proof. Let t = 7(a). Then the open substack

)y ={tu [] IF0cx
Beny (X)\{0}:
T(p)=t

is again a linear stack. Replacing 2" by 2 (r;t), we may assume that 2" has quasi-compact
connected components, and that 7 is trivial.

By the finiteness theorem of the author et al. [31, Theorem 6.2.3], each connected com-
ponent of & has finitely many special faces. In this case, this is the statement that for any
a € 1y(X) \ {0}, there are finitely many decompositions a = «; + --- + a,,, such that all other

decompositions can be obtained from combining terms in these decompositions, and hence

the total number of decompositions is finite. O

3.6 Derived algebraic geometry

3.6.1. In the remainder of this chapter, we discuss derived enhancements of ideas and con-
cepts discussed above, using derived algebraic geometry. For example, moduli stacks will be
upgraded to derived algebraic stacks, and the extra derived structure will be useful later in the
thesis.

This section provides background material on derived algebraic geometry. We mainly
follow Toén and Vezzosi [159; 160] and Pantev, Toén, Vaquié, and Vezzosi [136], and use
their framework as our foundation, but we restate their definitions using the language of co-
categories instead of model categories. See Khan [94] for a gentle introduction to derived
algebraic geometry. Other useful references include Lurie [108; 111] and Calaque, Haugseng,

and Scheimbauer [37, Appendix B].
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3.6.2. The étale topology. Let dAff be the co-category of derived affine schemes, defined as
the opposite category sCRing®? of the co-category of simplicial commutative rings.
For a morphism A — B in sCRing, denote by Spec B — Spec A the corresponding morph-

ism in dAff. We say that such a morphism is an étale surjection, if the following hold:

(i) Foreachn € N, the induced morphism m,, (A) ® (4)7o(B) — 7, (B) is an isomorphism.

(ii) The morphism Specmy(B) — Specm,(A) of usual schemes is an étale surjection.

A finite family (Spec B; — Spec A);¢; is an étale cover if the induced morphism Spec[[; B; —

Spec A is an étale surjection. This notion of covering defines the étale topology on dAfT.

3.6.3. Derived stacks. A derived stack is a functor
X : dAfFP — co-Grpd,

where co-Grpd is the co-category of small co-groupoids (also known as the co-category of spaces,
such as in Lurie [109, §1.2.16]), such that it is a hypersheaf with respect to the étale topology

on dAff. This means more precisely the following conditions:

(i) & preserves finite products, that is, it sends finite coproducts in dAff to products.

(ii) For any hypercover Spec B° — Spec A in dAff, that is a cosimplicial object B': A —
sCRing,/, where A is the category of simplices, such that each induced morphism
(cosk’y ' B')" — B"isan étale surjection, where cosk’y : (sCRingA/)A@ — (sCRingA/)A

is the right adjoint of the restriction, the induced morphism

L(A) — liin( Z(B°) — Z(B")

i

in co-Grpd is an equivalence.

This is a translation of the definition of Toén and Vezzosi [160, Definition 2.2.2.14]; see [160,
Corollary 1.3.2.4] for the model category version of these conditions, and [108, Remark 4.2.3 ff.]
for the oo-categorical notion of hypercovers.

Derived stacks form an co-category
dSt ¢ Fun(dAff°?, co-Grpd) ,

as a full subcategory in the functor category consisting of functors that are derived stacks.
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We have a notion of derived algebraic stacks, called locally geometric stacks in Toén and
Vaquié [158], defined as those stacks that admit an open cover by geometric stacks in the sense
of Toén and Vezzosi [160, Lemma 2.2.3.1 ff.].

For a derived stack X, its classical truncation 2 is the restriction of & to the full subcat-
egory Aff°? c dAfF°P. If its image lands in Grpd C c0-Grpd, and if 2 is a classical algebraic
stack, we sometimes say that 2" is a derived Artin stack.

A derived algebraic stack & that is (homotopically) locally of finite presentation over a
field K admits a cotangent complex Lo, which is a perfect complex on 2. Its dual is called the
tangent complex of X', denoted by T4. However, note that this notion of finite presentation
is very different from the classical one; see Khan [94, Warning 1.3.49].

For derived stacks &', % defined over a base derived stack &, we have the derived mapping

stack d/%ap s (X, ¥ ) defined as the object of dSt ¢, if it exists, representing the functor
ap 5(X,Y): dAFF;g —> co-Grpd,
Tr—dSt) (X xs T, %) .
We often omit the base & when it is clear from context.

3.6.4. Moduli of objects in dg-categories. A main source of derived algebraic stacks for us
is from moduli stacks of objects in dg-categories, constructed by Toén and Vaquié [158].

Let K be a commutative ring, and let € be a K-linear dg-category of finite type, in the
sense of [158, Definition 2.4]. By [158, Theorem 3.6], there is a moduli stack .#¢ of right
proper objects in €, which is a derived algebraic stack locally of finite presentation over K,

given by the moduli functor
M (R) = dgCaty (€°P, Perf(R)) (3.6.4.1)

for simplicial commutative K-algebras R, where dgCaty (—, —) denotes the mapping space of
K-linear dg-categories, as in [148; 157]. See [158] for the precise definitions.

In particular, we have the moduli stack
g’erf = ﬂPerF(K) (3.6.4.2)

of perfect complexes over K, and for any smooth and proper K -scheme X, we have the moduli
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stack of perfect complexes on X, defined by
Perf(X) = Mpee(x) = Wap (X, Perf) , (3.6.4.3)

which is also algebraic and locally of finite presentation over K, and equivalent to the derived

mapping stack from X to Perf. See [158, Definition 3.28 ff.] for details on this.

3.6.5. Total stacks of perfect complexes. Another construction of derived algebraic stacks is
as total stacks of perfect complexes on other schemes or stacks.

Let & be a derived algebraic stack locally of finite presentation over a field K of charac-
teristic zero, and let E € Perf(Z) be a perfect complex on 2. As in Calaque [36, §2], there
is a total stack of E, which is a derived algebraic stack & locally of finite presentation over K,

given by the relative spectrum
& = Specq (Sym(E")) , (3.6.5.1)

as a relative spectrum of a possibly non-connective commutative algebra object over ', mean-

ing that it is defined by the universal property that
dSt/&ﬂ(SpeC(A)’ %) = AlgA(SymA(EV|Spec A)> A) (3652)

for all morphisms Spec A — X for Spec A € dAff, where Alg,(—, —) denotes the mapping
space of commutative A-algebras. See [36, §2] for the precise formulation.

For example, if 2 is a classical smooth scheme and E is a vector bundle on 2, then & is
the usual total space of E.

We often consider the n-shifted cotangent stack T*[n] 2, defined as the total stack of the

shifted cotangent complex LLo-[n], which is perfect.

3.6.6. Derived graded points. The stacks of graded and filtered points defined in §3.2.3 have
derived versions, simply by replacing the mapping stack with the derived mapping stack de-
scribed in §3.6.3.

Namely, for a derived algebraic stack & locally almost of finite presentation over a field K,

50



whose classical truncation ' satisfies the conditions of §3.2.2, we denote

YCrad(X) = Wap (+/G,, X, (3.6.6.1)

AFin ) = Yap(A' )G, L) . (3.6.6.2)

These exist as derived algebraic stacks locally almost of finite presentation over K, by Halpern-
Leistner [68, Theorem 1.2.1].

Note that even if 2 is a classical algebraic stack, these derived stacks may have non-trivial
derived structure. See [68, Example 1.6.4] for an example of this phenomenon. However, for
classical &, we always have ‘€rad(2)y = €rad(Z) and ‘Fill(L)y = Filt(L) by their

definitions.

3.6.7. Shifted symplectic structures. A main reason for working with derived stacks in this
thesis is to work with shifted symplectic structures, which are possessed by some moduli stacks
of interest, and they contain rich geometric information.

For a derived algebraic stack 2 locally finitely presented over a field K of characteristic
zero, and an integer n € Z, an n-shifted symplectic structure on & is an n-shifted closed 2-

form v on & that induces an isomorphism
w: Tg = Lg[n]. (3.6.7.1)

See Pantev, Toén, Vaquié, and Vezzosi [136] or Park and You [137] for precise definitions.

A basic example of n-shifted symplectic stacks is the n-shifted cotangent stack T*[n] 2
of a derived stack 2 locally finitely presented over K, defined in §3.6.5, analogous to the
canonical symplectic structure on the cotangent bundle of a smooth manifold. See Calaque
[36, Theorem 2.4] for the construction of the shifted symplectic structure.

As another example, the moduli stack of objects in a Calabi-Yau dg-category of degree
d € Z admits a (2—d)-shifted symplectic structure, by Brav and Dyckerhoff [21, Theorem 5.6].

Finally, as in Pantev, Toén, Vaquié, and Vezzosi [136, §2.1] or Calaque, Haugseng, and
Scheimbauer [37], the derived mapping stack from a d -oriented stack to an n-shifted symplectic
stack, if it is algebraic and locally finitely presented, admits an (n — d)-shifted symplectic

structure.
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3.6.8. Orientations. We now discuss an extra piece of data on shifted symplectic stacks, called
orientations or spin structures, that will be used in various constructions later on.

For an n-shifted symplectic stack & with n odd, consider its canonical line bundle K¢ =
detLg-. The isomorphism (3.6.7.1) induces an isomorphism ng = Oq.

An orientation of X is a pair (K}/Z, 0q'), where Kuclr/z is a line bundle on &, and
0q: (K¥H)® = Ko (3.6.8.1)

is an isomorphism that squares to the canonical one. We sometimes abbreviate the pair as oq,

and we call the pair (2, 04-) an oriented n-shifted symplectic stack.

3.6.9. Example. The derived critical locus. Let % be a smooth algebraic stack over K, and let

f: % — A' be a function. The derived critical locus of f is the derived algebraic stack

dcrit(f) = % £, (3.6.9.1)

0, T, df
whose classical truncation is the classical critical locus Crit( f). It admits a canonical (-1)-
shifted symplectic structure by, for example, Bozec, Calaque, and Scherotzke [19, §4.2.1]. In
fact, this construction holds for any derived algebraic stack % locally of finite presentation
over K.

Moreover, “Crit( f) admits a canonical orientation given by

Kdlc/fit(f) = Kolacrit(f) » (3.6.9.2)

where we restrict along either projection dCrit( f)—->%.

3.7 Derived linear stacks

3.7.1. We now discuss derived linear stacks, which are linear stacks introduced in §§3.3-3.4
equipped with compatible derived structure. These stacks will be used to model derived moduli
stacks of objects in linear categories.

Note that moduli stacks of objects in dg-categories discussed in §3.6.4 will not be examples
of derived linear stacks, since their classical truncations are not classical algebraic stacks, but

rather higher stacks. Instead, roughly speaking, we will consider open substacks in these stacks
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that correspond to subcategories of the original dg-category that are 1-categories, such as

hearts, and these substacks will be derived linear stacks. See §4.2 below for details.

3.7.2. Derived linear stacks. Let K be an algebraically closed field. Define a derived linear

stack over K to be the following data:

« A derived algebraic stack 2 locally finitely presented over K.

« A commutative monoid structure on & in the co-category dStg, with multiplication
morphism @: & x & — & and unit 0 € X (K).

o Ax/Gpy-action ©: */G,xZ — X respecting the monoid structure. More precisely, we
require the data of a commutative monoid object in the co-category of * /G,,-equivariant

derived stacks.
We require the following additional property:

« There is an equivalence
Lyny = Grad(2) (3.7.2.1)
y: Z—mo(L) nesupp(y)

defined by the same process as in §3.3.2.

Note that we have required higher coherence data in the compatibility between © and @.
In practice, this can usually be seen by first constructing the two structures separately and
establishing the equivalence (3.7.2.1), then using the fact that the tautological */G,-action
on ‘%rad (') upgrades the monoid structure on 2 to a monoid structure on %rad (X) in

* /G -equivariant objects, then identifying & with a substack of Crad () using (3.7.2.1).

3.7.3. Shifted symplectic linear stacks. Now let K be an algebraically closed field of char-
acteristic zero. As in the author et al. [30, §3.1.7], for an integer n € Z, define an n-shifted

symplectic linear stack to be the following data:

« A derived linear stack & over K.

+ An n-shifted symplectic structure w on &', such that
& (w)=wBow (3.7.3.1)

on X xI',where wBw = prj(@)+pr,y(w),and pry,pry: ' x2 — X are the projections.
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Note that the requirement (3.7.3.1) is weaker than the perhaps more natural one requiring this
equivalence together with higher coherence data. However, this weaker condition is sufficient

for our applications in this thesis.

3.7.4. Orientation data. We introduce a compatibility condition for orientations, as in §3.6.8,
on shifted symplectic linear stacks, called orientation data following Kontsevich and Soibelman
[99].

Let & be an n-shifted symplectic linear stack, with n odd, and let 04 be an orientation of &
as in §3.6.8. By [30, §6.1.6], this induces an orientation 0g,,q(q) of ¥rad(Z’). An orientation

oq is called an orientation data, if it satisfies the following compatibility condition:

« Under the isomorphism (3.3.2.1), the induced orientation og,,q.q') of ¥rad(Z’) agrees

with the product orientations on the left-hand side.

By Joyce and Upmeier [90, Theorem 3.6], such an orientation data exists canonically on moduli

stacks of coherent sheaves on Calabi—Yau threefolds.

3.7.5. Self-dual orientation data. Now, let 2" be a self-dual (—1)-shifted symplectic linear stack,
that is, a stack & as in §3.7.4, equipped with a Z,-action preserving the symplectic form w,
compatible with the monoid structure @ and inverting the x/G-action ©.

In this case, the fixed locus 2 = 2% carries an induced (—1)-shifted symplectic struc-
ture. However, an orientation of 2" does not naturally induce one on & s

We define a self-dual orientation data on & to be a pair (0q, 0g-s¢) of orientations of &

and 2%, respectively, satisfying the following conditions:

(i) og is an orientation data.
(ii) Under the isomorphism (3.4.3.1), the induced orientation of Zrad(Z Scl) agrees with the

product orientations on the right-hand side.

The author does not know if such a self-dual orientation data, or even an orientation, exists in
the case of coherent sheaves on Calabi-Yau threefolds, which we will discuss in §4.2 and §8.3

below.
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3.8 The attractor correspondence

3.8.1. In this section, we study the attractor correspondence
Crad(L) <= Fill( L) 5> & (3.8.1.1)

for an algebraic stack &, defined in §3.2.3, together with its derived version, which will be an
important tool for constructions later on. We name it this way because of the local description

below, involving the fixed and attractor loci discussed in Example 3.2.4.

3.8.2. Local structure. We first discuss how étale local models of an algebraic stack interact
with its stacks of graded and filtered points.

Let & be an algebraic stack over K as in §3.2.2, and let (2; — 2');c; be a representable
étale cover, where each ; = S;/G;, with S; an algebraic space over K and G; a reductive

group. Then there are commutative diagrams

SH/Li, —— s}t /P, —— S,/G;

l ) l l (3.8.2.1)

Crad(X) —>— FiHI) —— I,

where all vertical arrows are representable and étale, A: G, — G; is a cocharacter, and the

left-hand square is a pullback square by [31, Theorem 5.2.7]. Moreover, the families

(Si/l/Li,A — ?rad(%))iel, A: Gp—G; *

A .
(Si +/Pi,)t - g'—llt(‘%'))iel, A: Gy —G;

are representable étale covers of rad(Z) and Filt(X'), respectively, which follows from

Halpern-Leistner [67, Corollary 1.1.7] and the pullback square in (3.8.2.1).

3.8.3. Deformation theory. For a derived algebraic stack & locally of finite presentation
over K, one can express the tangent complexes of %rad (X) and d?]ilt(f[ ) in terms of
that of 2. Concretely, by Halpern-Leistner and Preygel [69, Proposition 5.1.10], or Halpern-

Leistner [67, Lemma 1.2.2], we have

Td?md(&’) = tOt*(’]I‘&f)o 5 (3.8.3.1)
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Taging) = ¢« ° p (Tg) (3.8.3.2)

where (=), denotes the weight 0 part with respect to the natural G, -action, p: A'/G,, x
deilt(SL”) —  is the evaluation morphism, and q: A'/G,, x df’?ilt(fl") - deilt(.%”) is the

projection.

3.8.4. Shifted Lagrangian correspondences. Now suppose that K is algebraically closed of
characteristic 0. Let 2 and % be oriented n-shifted symplectic stacks over K, as in §3.6.8,
where n is odd.

As in Pantev, Toén, Vaquié, and Vezzosi [136, Definition 2.8] or Calaque, Haugseng, and

Scheimbauer [37, §2.4], a diagram

el oty (3.8.4.1)

is called an n-shifted Lagrangian correspondence, roughly if we have an exact triangle
Ty — f(Tg) ® g (Ty) — Lg[n] — Te[1] (3.8.4.2)

of perfect complexes on &, where the first map is ( f,, — g,), and the second map is ( f*, g*)[n]
composed with the identifications To- = Lg-[n] and Tg, = Lg/[n] given by the symplectic
structures. See [37, §2.4] for details.

An orientation of the shifted Lagrangian correspondence (3.8.4.1) is an isomorphism
Ko = f*(Kif*) ® g"(Ky?) | (3.8.4.3)

such that it squares to the canonical isomorphism K&* = f*(Kq) ® g*(K?) induced by the

exact triangle (3.8.4.2).

3.8.5. Theorem. Let K be an algebraically closed field of characteristic 0, and let & be an n-
shifted symplectic stack over K, with symplectic form o.
Then we have an induced n-shifted symplectic structure tot™ () on d?rad(fl"), and an n-

shifted Lagrangian correspondence
dgrad(X) E- STl X)) <> & . (3.8.5.1)

Moreover, if n is odd and & has an orientation K}/z, then d?rad(fl") has an induced orienta-
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tion Kdléiad( ), and the Lagrangian correspondence is oriented.

Proof. The stacks Y€rad (X') and d,%'ilt(.fl" ) are derived algebraic stacks locally of finitely
presentation over K. These follow from Halpern-Leistner and Preygel [69, Theorem 5.1.1
and Remark 5.1.3]; although they work with stacks locally almost of finite presentation, their
argument also shows in our case that our stacks are locally of finitely presentation.

To prove that (3.8.5.1) is an n-shifted Lagrangian correspondence, by Calaque [35, The-

orem 4.8], it is enough to show that the cospan
0 4 1
*/Gy — A /Gy, «— * (3.8.5.2)

is a 0-oriented cospan, in the sense of [35, §4.2] and Calaque, Haugseng, and Scheimbauer [37,
§2.5]. Indeed, * carries a natural 0-orientation, and the 0-orientation on */G,, is given by
the isomorphism RI'(0, g _) = K. To see that this is indeed a 0-orientation, we check the
condition in [136, Definition 2.4]. For A € CdgAéO and a perfect complex & € Perf(Spec A x
(¥*/Gp,)), one has p,(&")" = p,(&) on Spec A, where p: Spec A x (x/G,,) — Spec A is the
projection, since both sides are the weight 0 part of the induced G,,-action on 7" (&), where
7: Spec A — Spec A x (*/G,,) is the projection.

To see that (3.8.5.2) is a 0-oriented cospan, we check the condition in [37, Lemma 2.5.5].
Forany A € CdgAﬁO and & € Perf(Spec A x (A'/G,,)), we need to show that the induced
commutative diagram

3:(&) — p. 0 0°(8)
l l (3.8.5.3)

1°(&8) —— q.(&")7
in Perf(A) is cartesian, where p and q are the projections from Spec A x (x/G,,) and Spec A x
(A'/G,,) to Spec A, respectively. Indeed, as in Halpern-Leistner [68, Proposition 1.1.2 ff.],

such an object & can be seen as a filtered object in Perf(A), that is, a sequence of maps
e — E?l —_ E>0 —_ E>_1 —_ ...

in Perf(A), where all but finitely many arrows are isomorphisms, such that E,,, = 0 forn » 0.
Write E,, = cofib(Es, 1 = E,), and write E = colim,_,_, Es,. Then 0°(&) = @, E,, with

the natural G,-action having weight n on E,.. One can deduce from [68, Proposition 1.1.2 ff.]
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that we have natural identifications

q*(%) = E}O )
P* ° O*(%) = EO ’
1"(8) ~ E,

Q*(gv)v = ((Ev)zo)v =Eg,

where E., = cofib(E,; — E), and the arrows in the diagram (3.8.5.3) are the natural ones.
This implies that (3.8.5.3) is cartesian.

For the final statement, observe that

tot*(Kg') = det(tot*(Lg)?) ® det(tot*(Lg)™) ® det(tot*(Lg)™)
= Kagraq() ® det(tot"(ILg)") ® det((tot"(Lg)™) " [-s])
= Kigraqa) ® det(tot*(]ng)Jr)z ,

where (-)°, (=), (=)~ denote the parts with zero, positive, and negative weights, respectively,

with respect to the natural G, -action. Therefore, we may define
Kifadiory = tot" (KY?) ® det(tot" (L)) . (3.8.5.4)

and this gives an orientation on 4€rad(X). To see that the n-shifted Lagrangian correspond-

ence is oriented, consider the cartesian diagram

Taging) — & (Tagrad))

l ) l (3.8.5.5)

ev' (Ty) — Lagn(a)[s]
in Perf(“Filt(X)), witnessing the n-shifted Lagrangian correspondence structure. Write
& = r*(Tg), where r: (A'/G,) x d.%'ilt(.fl") — X is the evaluation morphism. As in
the argument above, & can be seen as a filtered object in Perf (dgilt(.fl” )), and the terms
in (3.8.5.5) can be identified with E., E,, E, and E, respectively. In particular, one has

Kagip(ay = gr*(Kdléiad(g)) ® ev’( 51[/2), as both sides can be identified with det(E;O)_l. ]
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Chapter 4
Examples

4.1  Self-dual quivers

4.1.1. As a basic example of orthosymplectic enumerative geometry, we discuss self-dual
quivers and their self-dual representations. Such representations are analogous to orthogonal
and symplectic principal bundles on a variety, similar to how the usual quiver representations
are analogous to vector bundles or coherent sheaves on varieties.

Self-dual quivers were first introduced by Derksen and Weyman [51] as a special case of G-
quivers for G = O(n) or Sp(2n), and studied by Young [164-166] in the context of Donaldson—
Thomas theory.

Throughout, we fix an algebraically closed field K.
4.1.2. Quivers. Recall that a quiver is a quadruple Q = (Qy, Oy, s, t), Where

« Q, is a finite set, called the set of vertices.

« Q, is a finite set, called the set of edges.

s,t: Q; = Q, are maps sending each edge to its source and target, respectively.

A representation of Q isthe data E = ((Ei)ieQO, (€4)aco, ), where each E; is a finite-dimensional
K-vector space, and each e, : E;,) = E;(,) is a linear map.

We denote by Mod(K Q) the K-linear abelian category of finite-dimensional represent-
ations of Q over K, where KQ stands for the path algebra of Q, which is a possibly non-
commutative K-algebra whose representations are equivalent to representations of Q.

See, for example, Derksen and Weyman [52], for background on quivers.
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4.1.3. Self-dual quivers. We define a self-dual quiver to be a quiver Q equipped with the fol-

lowing data:

« A contravariant involution (=)": Q = Q°, where Q°° = (Q,, Q;,1, s) is the opposite
quiver of Q, such that ()" = id.
« Choices of signs u: Q, — {1} and v: Q; — {*1}, such that u(i) = u(i") for all

i € Qp,and v(a)v(a") = u(s(a)) u(t(a)) foralla € Q,.

This data is called a self-dual structure on Q.

In this case, the abelian category Mod(K Q) admits a self-dual structure in the sense of
§2.1.2, defined as follows. For a representation E = ((Ei)ieQO, (€4)ae0, ), define the dual repres-
entation E" by assigning the vector space (E;v)" to the vertex i, and the linear map v(a)-(e,v)"
to the edge a. Then, identify E¥" with E using the sign u(i) at each vertex i.

As in §2.1.2, we have the groupoid Mod(KQ)Sd of self-dual representations of Q.
4.1.4. Example. Consider the quiver
7N
NS

with the involution (-)": Q = QP given by horizontal flipping. Then the self-dual structure
on Mod(K Q) is given by

v
e&, Ey Qz& N E; vizel
()" v v
E E, <<~ K Er,
/ LV Y
€13 E3 €34 V13°€34 ES\’/ V13-€13

where v;, € {+1} is the value of v on the edge e;,, etc., and we identify E; = E;’" using the
sign u(i).

In particular, a self-dual representation of Q must have E, =~ E,, and the isomorphisms
E, = E; and E5 = E; define either orthogonal or symplectic structures on the vector spaces E,

and Es, depending on the signs u, and us.

4.1.5. Moduli stacks. Recall that for a quiver Q, the moduli stack 2, of representations of Q
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over K is given by the disjoint union of quotient stacks
Zo= |] Va/Ga. (4.1.5.1)
aeN

where V,, = [],e0, Hom(K“@, K“(@),and G, = [];¢0, GL(%;). Each factor Hom(K*, K*7)
is acted on by GL(«;) via right multiplication, and by GL(«;) via left multiplication of the
inverse matrix.

If Q is equipped with a self-dual structure, the self-dual structure on Mod(K Q) extends
to an involution of < 0> establishing it as a self-dual linear stack. The fixed locus Z 81 of the
involution is the moduli stack of self-dual representations of Q. Explicitly, we have

2= 1] vs'/ay. (4.1.5.2)
9e(NQ)sd

where (NQO)Sd c N9 is the subset of dimension vectors 6 such that 0, = 0,v foralli € Q,

and 0; is even ifi = i and u(i) = —1. The vector space ng and the group Gf;d are given by

vit= [ Hom(K%@,K%@)x [T sym*(K%@)x [T aA*(K%@),  (4153)
aeQi /2, acQy a€Qy

Gi'= ] oL@y = [Tow)x[]se@). (4.1.5.4)
€05/, i€Qq i€Qy

where Qg is the set of vertices i with i # i¥, and Qj the sets of vertices i with i = i¥ and
u(i) = +1. Similarly, Q] is the set of edges a with a # a", and Q7 the sets of edges a with

a=a’"andv(a)u(t(a)) = +1.

4.1.6. Stability conditions. We now describe a commonly used class of stability conditions for
quiver representations, called slope stability, introduced by King [96] and discussed in Rudakov
[142, §3].

A slope function on a quiver Q is a map p: Q, — Q. Given such a map, the slope of a
dimension vector a € N \ {0} is the number

(@) = Yieg, % k(i) -
ZieQO a;

This defines a stability condition on the linear stack oin the sense of §3.5.4, where the exist-

ence of a @-stratification follows from Ibafnez Nufiez [77, Theorem 2.6.3] or Halpern-Leistner

[67, Example 4.1.17].
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If Q is equipped with a self-dual structure, then a slope function y is said to be self-dual if
u(i¥) = —p(i) for all i € Q. In this case, the corresponding stability condition on Mod(K Q)

is self-dual, and the corresponding stability condition on ', is also self-dual.

4.1.7. Potentials. The above discussion also generalizes to quivers with potentials, considered
by Joyce and Song [89] and Kontsevich and Soibelman [99] in the context of Donaldson-
Thomas theory, which serve as a local model for the enumerative theory of coherent sheaves
on Calabi-Yau threefolds.

We now assume that the base field K is of characteristic zero, as we are going to work with
shifted symplectic structures, which are only well-understood in characteristic zero.

For a quiver Q, a potential on Q is an element W € KQ/[KQ, KQ], where [KQ, KQ] C
K Q is the K-linear subspace spanned by commutators. Such an element can be equivalently
described as a formal linear combination of cyclic paths in Q, and there is a trace function
ow =tt(W): Xy — A' defined by taking traces along cyclic paths in a representation. The

derived critical locus

‘%'Q,W = dCrlt((pw) C ‘%'Q s

as in Example 3.6.9, admits a natural (—1)-shifted symplectic structure, and is a (—1)-shifted
symplectic linear stack, equipped with a canonical orientation data.

When Q is equipped with a self-dual structure, the potential W is said to be self-dual if it is
invariant under the involution of K Q sending a path to its dual path, multiplied by the product
of the signs assigned to the edges in the path. In this case, the function ¢y, is Z,-invariant,
so Lo w is a self-dual linear stack, and the fixed locus 2, 5‘,1W admits a natural (—1)-shifted
symplectic derived structure and a canonical self-dual orientation data.

When the potential W' is zero, X = T [-11Z o is the (—1)-shifted cotangent stack of
the smooth stack 0 defined in §3.6.5, and its classical truncation coincides with 0

Any slope function 7 on Q defines a stability condition on 2y, where the existence
of a O-stratification follows from Ibafez Nufiez [77, Theorem 2.6.3] or Halpern-Leistner [67,
Example 4.1.17]. For a self-dual potential W on a self-dual quiver Q, a self-dual slope function 7

on Q defines a self-dual stability condition on X .
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4.2 Sheaves on varieties

4.2.1. We now discuss how to apply our framework of orthosymplectic enumerative geometry
to coherent sheaves on varieties, with the goal of defining enumerative invariants counting
orthosymplectic coherent sheaves, with potential applications as outlined in §1.4.1.

As mentioned in §2.1.7, the category of coherent sheaves on a smooth projective variety is
usually not self-dual. Therefore, we take an alternative approach by considering the derived
category of coherent sheaves, which is self-dual, and then constructing self-dual subcategories
using Bridgeland stability conditions. The self-dual objects, which we call orthosymplectic
complexes, are then complexes of coherent sheaves which are quasi-isomorphic to their derived
duals. We will see that such complexes are parametrized by a nice moduli stack, which can be
seen as a variant of the moduli of principal G-bundles, where G = O(n) or Sp(2n).

We note that this approach of defining a coherent-sheaf-like version of principal bundles
is different from the related construction of Gémez, Fernandez Herrero, and Zamora [64]. Our
approach has the advantage that it interacts well with Bridgeland stability conditions, and
satisfies wall-crossing formulae under a change of Bridgeland stability, which is an important

feature in Donaldson-Thomas theory.

4.2.2. The derived category. Let Y be a connected, smooth, projective C-variety of dimen-
sion n, and consider the derived category of coherent sheaves on Y, or equivalently (see, for
example, [145, Tag OFDC]), perfect complexes on Y, denoted by Perf(Y), which is a C-linear
dg-category. We construct self-dual structures on Perf(Y).

Fix the data (I, L,s,¢), where I: Y = Y is an involution, L — Y is a line bundle, s € Z,
and £: L S I*(L) is an isomorphism such that I*(¢) o ¢ = id;. Then there is a self-dual

structure on Perf (Y') given by the dual functor

D = R#om(I"(-),L)[s]: Perf(Y) = Perf(Y)°?, (4.2.2.1)
and identify D(ID(E)) with E using the isomorphism &, for all objects E € Perf(Y).
4.2.3. The derived moduli stack. Consider the derived moduli stack

Perf(Y) = Ytap(Y, Perf) , (4.2.3.1)
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of perfect complexes on Y, constructed by Toén and Vaquié [158], where Perf on the right-
hand side is the classifying stack of perfect complexes. The stack Perf(Y) is a derived algeb-
raic stack locally of finite presentation over C. By Pantev, Toén, Vaquié, and Vezzosi [136,
Corollary 2.13], if Y is a Calabi-Yau n-fold, meaning that its canonical bundle Ky is trivial,
then Perf(Y) has a (2 — n)-shifted symplectic structure.

Given the data (I, L, s, €) in §4.2.2, the self-dual structure on Perf(Y') induces a Z,-action
on Perf(Y), and the fixed locus Perf (Y)*4 is the moduli stack of self-dual perfect complexes
onY. In particular, when I = idy and ¢ = *id;, the stack Perf (Y)Sd parametrizes L[s]-twisted
orthogonal or symplectic complexes on Y, respectively. When L = Oy and s = 0, we simply

call them orthogonal or symplectic complexes.

4.2.4. Next, we wish to construct abelian or quasi-abelian subcategories of Perf(Y') that are
preserved by the dual functor D, so they themselves become self-dual. Their moduli stacks of
objects and self-dual objects will form open substacks of Perf(Y) and Perf (Y)Sd, respectively,
and the latter substack can be seen roughly as a compactification of the stack of orthogonal
or symplectic bundles on Y, analogously to how coherent sheaves are a compactification of

vector bundles.
4.2.5. Bridgeland stability conditions. Consider the free abelian group
K(Y) = {ch(E) | E € Perf(Y)} c H*(Y;Q) . (4.2.5.1)

Define a Bridgeland stability condition on Y to be a Bridgeland stability condition on Perf(Y)

in the sense of §2.4, where we use K(Y) as the group I there. We have the spaces
Stab(Y),  Stab*(Y)

of Bridgeland stability conditions and self-dual Bridgeland stability conditions on Y, which

are shorthand notations for Stabg (y)(Perf(Y)) and Stabi?(y) (Perf(Y)), respectively.

4.2.6. Permissibility. We discuss a technical condition on Bridgeland stability conditions
which we call permissibility, mainly to ensure that moduli stacks have nice behaviours, es-

pecially for the purpose of wall-crossing. We follow ideas of Piyaratne and Toda [138].
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Define subspaces of permissible Bridgeland stability conditions,

o,sd

Stab’(Y) € Stab(Y),  Stab™*%(Y) c Stab*(Y)

as maximal open subsets such that every element r = (Z, %) with Z(K(Y)) c Q+iQ satisfies

the following conditions:

(i) Generic flatness. See Abramovich and Polishchuk [1, Problem 3.5.1], Halpern-Leistner
[67, Definition 6.2.4], or Piyaratne and Toda [138, Definition 4.4] for the precise formu-
lation. Roughly, this condition says that if we consider the heart of Perf(Y) induced
by &, then for any smooth K-algebra R, any object in an induced heart of Perf(Yy) is
flat over a dense open subset of Spec R.

(ii) Boundedness. For any t € Rand a € K(Y) with Z(a) € Ry - ™!, there is a quasi-
compact open substack Z'(7;t), € Perf(Y) whose C-points are the objects of Z(t) of

class «.

By Piyaratne and Toda [138, Proposition 4.12], if a stability condition 7 satisfies these condi-
tions and has rational central charge, meaning that the central charge is valued in Q +iQ c C,
then a neighbourhood of r lies in Stab” (Y).

For r € Stab”(Y) and an interval J ¢ R of length | J| < 1, there is an open substack
X(t;]) C Perf(Y) (4.2.6.1)

whose C-points are the objects of %°(J), which we construct in §4.2.8 below. It is a derived
linear stack in the sense of §3.7.2, and 7 defines a permissible stability condition on its classical
truncation in the sense of §3.5, where the ©-stratification is constructed in §4.2.8 below.

In particular, if 7 € Stabo’Sd(Y) and J = —J, then X' (7; J) is a self-dual derived linear
stack, and the induced stability condition on 2 (7; J) is self-dual. The stack 2 (7; 0)Sd is the
moduli stack of 7 -semistable self-dual complexes, which our orthosymplectic DT invariants will

count.

4.2.7. Example. We now give examples of permissible self-dual Bridgeland stability conditions
with rational central charge, for certain classes of Y, so that the spaces Stab°’(Y) and Stabo’Sd(Y)

are non-empty in these cases.
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In the setting of §4.2.2, let Y be either a curve, a surface, or a threefold satisfying the
conjectural Bogomolov—-Gieseker inequality of Bayer, Macri, and Toda [9, Conjecture 3.2.7].
Fix the data (I, L, s, ¢) as in §4.2.2. Let 0 € H"!(Y; Q) be an ample class with I*(w) = w.

Let § = ¢;(L)/2 € H*(Y;Q). Consider the map Z,: K(Y) — C given by

Z,(a) =i""°- /Yexp(—ﬂ —iw)-«a (4.2.7.1)

for @ € K(Y), where n = dimY. We use the notation Z, because only w can be varied if
(I, L, s, ¢) is fixed. This central charge is compatible with the self-dual structure, because for

all @ € K(Y), we have
Z,(@(@) = [ exp(-f o) I"(a") - (-1)* exp(2f)
=i""s. /exp(ﬂ —iw)-a’
Y
=i"7"-(-1) -/Yexp(—ﬂ+ia>)-a=Zw(a),

where the second step uses that I*(f) = f and I"(w) = w, and the third step uses that the
cohomological degree 2i parts of « and " satisfy (a"); = (=1)'q; fori =0, ..., n.

There is a Bridgeland stability condition 7, = (Z,,, %,) € Stab’(Y) with central charge Z,,,
by the works of Toda [154] and Piyaratne and Toda [138]. See also the earlier works of Bridge-
land [23] and Arcara and Bertram [6] in the case of surfaces.

In fact, we can also choose &, so that 7, is self-dual, or equivalently, the slicing %, coin-

cides with its dual slicing &, given by
P, (t) = D(ZF,(~1)) .

This can be deduced from Bayer, Macri, and Toda [9, Remark 4.4.3], where we choose our &,

to be their 29# with a phase shift of (1 — s)/2.

4.2.8. Construction of the moduli stack. We now explain the detailed construction of the
open substack &' (7; J) € Perf(Y) and its O-stratification mentioned in §4.2.6, where 7 €
Stab’(Y), and J c R is an interval with | J| < 1,

Applying Piyaratne and Toda [138, Proposition 4.12], we may apply a phase shift and as-
sume that J C ]e, 1 — ¢[ for some ¢ > 0. Fix @ € K(Y) of slope within J, and then choose

a perturbation 7’ = (Z’,%’) of r satisfying the above properties, with d(z’,7) < ¢ and
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Z'(K(Y)) c Q@ +iQ. Then if § € K(Y) is the class of a 7-Harder-Narasimhan factor of an

object of 2(J) of class &, then Z’( ) must lie in the bounded region
{rem lr>0,te ]g}ﬁ{Z'(a)—rem lr>0,tej}ccC,

where J, is the e-neighbourhood of J, so the set B of such classes f is finite. We then choose ¢
small enough, possibly changing 7’, so that for any §, " € B, arg Z(f) < arg Z(f’) im-
plies arg Z'(f) < arg Z’(p’), where we take phases within J.. Now, Halpern-Leistner [67,
Theorem 6.5.3] gives the open substack 2'(7’;]0,1[) with a ©-stratification by 7’-Harder-
Narasimhan types. The part of 2 (7; J) lying in &, can be defined as a finite open union of
strata.

To construct the ©-stratification on 2 (7; J), we follow the proof of [67, Theorem 6.5.3],
with the following modifications. Instead of using rational weights for Harder-Narasimhan fil-
trations, we use real-weighted filtrations in the sense of [31, §§7.2-7.3]. As a result, we obtain
real-weighted ®-stratifications, which non-canonically give usual ©-stratifications by [31, Pro-
position 7.2.12]. The key ingredients of the proof in [67] are the conditions (R), (S), and (B)
there. The rationality condition (R) is no longer needed as we use real weights. The condition
(S) needs to be modified to incorporate real weights, but the argument still works to prove it.
The condition (B) follows from the quasi-compactness of X (7; J).

This also shows that any 7 € Stab®(Y) satisfies the support property and the boundedness
property in §4.2.6, where for the support property, fixing r > 0 and choosing 7’ rational with
d(r’,7) < e with ¢ < 1/2, for any class a with |Z(«)| < r admitting a r-semistable object E,
by considering the 7’-Harder-Narasimhan filtration of E, we see that « is a finite sum of
classes ff with |Z’ ()| < re® admitting 7’-semistable objects, and these classes lie on the same

side of a line in C, so there are only finitely many choices.

4.3 Higgs sheaves on varieties

4.3.1. We apply orthosymplectic enumerative geometry to Higgs sheaves on varieties.
A Higgs sheaf on a smooth, projective variety Y is a coherent sheaf on Y equipped with a

Higgs field, and can be identified with a compactly supported coherent sheaf on the total space
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of the canonical line bundle Ky of Y.

When Y is a curve, there is also the notion of G-Higgs bundles on Y for a reductive group G,
due to Hitchin [75], which are principal G-bundles with a Higgs field. Here, we would like to
study such G-Higgs bundles for G = O(n) or Sp(2n).

Moreover, using the approach of orthosymplectic complexes developed in §4.2, in the case
when Y is a higher-dimensional variety, it is possible to define a version of G-Higgs sheaves
for G = O(n) or Sp(2n), which we call orthosymplectic Higgs complexes on Y. They can be
described as complexes of Higgs sheaves equipped with self-dual structures, and they admit a
well-behaved moduli stack which we can use to define enumerative invariants. For example,
in the case when Y is a surface, in §8.4, we will define and study a version of orthosymplectic

Vafa—Witten invariants counting orthosymplectic Higgs complexes on Y.

4.3.2. Higgs complexes. Let Y be a connected, smooth, projective C-variety, and fix the data
(I, L, s, ¢) as in §4.2.2 defining a self-dual structure ID on Perf(Y).

For an object E € Perf(Y), a Higgs field on E is a morphism
lﬁi E—FEQ® KY

in Perf(Y). We call such a pair (E, ) a Higgs complex on Y.

A self-dual Higgs complex is then defined as a fixed point of the involution
(E.¢) — (D(E), (-1)*"'D(y) ® Ky)

on the co-groupoid of Higgs complexes, where D(1/): D(E) ® Ky' — ID(E).

More concretely, for a self-dual object (E, ¢) € PerF(Y)SOl with Ext'(E, E ® Ky) = 0 for
alli < 0, where ¢: E = ID(E), a self-dual Higgs field on (E, ¢) isamap /: E - E ® Ky such
that (¢ ® Ky) o ¢ = (-=1)*"' (D(¢) ® Ky) o ¢ as maps E — ID(E) ® Ky.

4.3.3. Moduli stacks. Let Perf(Y) be the derived moduli stack of perfect complexes on Y,

andletn = dimY. Let

Higgs(Y) = T'[1 — n] Perf(Y) (4.3.3.1)

be the (1 — n)-shifted cotangent stack of Perf(Y ), equipped with the canonical (1 — n)-shifted

symplectic structure as in Calaque [36, Theorem 2.4].
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The stack Ziggs(Y) is a derived moduli stack of Higgs complexes on Y, since at a C-point
E € Perf(Y)(C), we have

Lgerp(yy[1 — n]lp = RHomy (E, E)'[-n] = RHomy (E,E ® Ky), (4.3.3.2)

parametrizing Higgs fields on E.

The self-dual structure on Perf(Y) determines a Z,-action on Perf(Y), which induces a
Z,-action on Figgs(Y). We have Ziggs(Y)*d = T*[1 — n] Perf(Y)*, giving Figgs(Y)* a
canonical (1 — n)-shifted symplectic structure.

We regard 7 iggs(Y)Sd as a moduli stack of self-dual Higgs complexes on Y. This descrip-
tion agrees with the definition of a self-dual Higgs field, as the tangent map of the involution D,
as a map RHom(E, E) =& RHom(ID(E),D(E)), is given by ¥ — —ID(¢), and shifting by s

N

twists the second isomorphism in (4.3.3.2) by (-1)".

4.3.4. Stability conditions. We now restrict to the case when the anti-canonical bundle Ky !
of Y is either ample or trivial. This condition is often also referred to as Y being either Fano
or Calabi—Yau. We abbreviate this condition as Ky < 0.

In this case, for any 7 € Stab’(Y) and any E € Perf(Y), every Higgs field : E - E® Ky
respects the 7-Harder—Narasimhan filtration of E, since choosing a non-zero map ¢: Ky —
Oy, the composition £ o) : E - E® Ky — E must preserve the Harder—-Narasimhan filtration.
Therefore, heuristically, a Higgs complex (E, /) is r-semistable if and only if E is 7-semistable.
This justifies the following series of definitions:

Let 7 € Stab’(Y), and let J C R be an interval of length | J| < 1. Let Z'(r; J) € Perf(Y)

be the open substack as in §4.2.6, and define
Z(t;]) =T -n]L(r;]) c Higgs(Y) (4.3.4.1)

be the corresponding open substack. The stacks 2 (7; J) and # (z; J) are derived linear stacks.
When ] = —J, they also admit self-dual structures, and #'(z; ])SOl =T [1-n] X (r; ])Sd.
Moreover, 7 defines permissible stability conditions on 2'(z; J) and Z'(r; J), in the sense
of §3.5.6. Here, the ©-stratification on #°(7; J) can be obtained by following the proof of
Halpern-Leistner [67, Theorem 6.5.3], similarly to §4.2.8, where the conditions (S) and (B)

follow from the respective properties of ' (z; J).
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Chapter 5
Donaldson-Thomas invariants

This chapter presents a main construction of this thesis, that of orthosymplectic Donaldson—
Thomas invariants, which are an orthosymplectic analogue of the theory of Donaldson-
Thomas invariants in the linear case developed by Donaldson and Thomas [55], Thomas [152],
Behrend [10], Joyce [81-85], Joyce and Song [89], and Kontsevich and Soibelman [99]. We ex-
plain in §5.1 some of the basic ideas behind this construction in the linear case.

One of the key technical constructions in this thesis is the generalization of epsilon motives
from the linear case to the orthosymplectic case, which we present in §5.5. These motives
satisfy an important property, the no-pole theorem, Theorem 5.5.5, which allows us to define

Donaldson-Thomas invariants in the orthosymplectic case in §5.6.

51 lIdea

5.1.1. We start by informally discussing some basic ideas in the usual theory of Donaldson-
Thomas invariants, to motivate some of our technical constructions later on.

Consider a smooth projective Calabi—Yau threefold Y over C, and let 2" be the moduli
stack of coherent sheaves on Y. Then  is a (—1)-shifted symplectic linear stack in the sense
of §3.7.3.

Given a stability condition 7 on &, then for each class ¢ € my(Z’), there is an open
substack 2;°(r) ¢ &, consisting of r-semistable sheaves. When a # 0, we may form the
G, -rigidification '’ (1) /BG,,, which is a modification of 2’ (7) where stabilizer groups are

replaced by their quotients by G,,,, which corresponds to scalar automorphisms of the sheaves.
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If all 7-semistable sheaves of class a are 7-stable, which implies in particular that they only
have scalar automorphisms, then the rigidification 2’ (7)/BG,, is usually a proper scheme,
and admits a (—1)-shifted symplectic structure. In this case, the Donaldson-Thomas invariant
DT, (7) € Zis defined as the virtual fundamental class of X’ (7) /BG,, in the sense of Behrend

and Fantechi [12], which is a number as the space has virtual dimension zero.

5.1.2. It was observed by Behrend [10, Theorem 4.18] that in this ‘stable = semistable’ case, the
invariant DT, (7) can be written as a weighted Euler characteristic of the space X5 (7)/BGy,,
weighted by a constructible function v: X°(t)/BG,, — Z, now called the Behrend function.

This fact may be written as an integral

DT,(r) = / vdy,

23 (7)/BGry

defined as ) .oz C - x(v7'(c)), where y(—) denotes the usual Euler characteristic.

5.1.3. Epsilon motives. The aforementioned motivic approach to Donaldson-Thomas the-
ory allowed one to also define Donaldson-Thomas invariants for classes where not all 7-
semistable sheaves are 7-stable, as was done by Joyce and Song [89] based on earlier works
of Joyce [81-85], and by Kontsevich and Soibelman [99]. In this case, the above relation is

replaced by an integral of the form

DT, (r) =/(1—m)-ea(f)-v% dy (5.1.3.1)
VA

where €, (1) is the epsilon motive, which is a modification of the motive [ 2’ (7)] that makes
the integral well-defined (see also §1.2.6), and v is the Behrend function of 2. The integral is
in the sense of §5.2.9 below. The factor 1 — IL accounts for the fact that we are now integrating
over the non-rigidified moduli stack, where IL — 1 is the motive of G, and the sign difference
comes from the fact that p*(vg /g _) = —vg, where p: & — 2 /BGy, is the projection.
Note that although we have the Euler characteristic y (1 — L) = 0, the above integral can

still be non-zero, since €, (7) has a built-in factor of (I — 1),

5.1.4. Orthosymplectic Donaldson-Thomas invariants. In the orthosymplectic setting, as ex-

plained in §4.2, we no longer use the moduli of coherent sheaves, but we use an alternative
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abelian subcategory & (0) C DbCoh(Y) coming from a Bridgeland stability condition, so that
P(0) is self-dual, and its derived moduli stack of objects ' is a self-dual (—1)-shifted sym-
plectic linear stack.

In fact, we do not need to restrict ourselves to this concrete example, as the construction
works for general self-dual (—1)-shifted symplectic linear stacks .

For a class 6 € my(X Sd), we would like to define orthosymplectic Donaldson-Thomas
invariants

DT (7) = / esd(r) - vasa dy (5.1.4.1)
qsd

analogously to (5.1.3.1), where we no longer need the factor 1 — L, since points in & d 1o
longer necessarily have a copy of G, in their stabilizer groups.

The only remaining difficulty is to define the epsilon motives egd (7) in the orthosymplectic
case, so that the integral (5.1.4.1) is well-defined and finite. This will be the main focus of this

chapter, and the no-pole theorem, Theorem 5.5.5, guarantees this desired property.

5.2 Rings of motives

5.2.1. This section provides background material on rings of motives over an algebraic stack.
Roughly speaking, these are rings generated by classes [Z'] of algebraic stacks Z defined

over X', up to the cut-and-paste relations
[Z]=[Z']+[Z\ Z'] (5.2.1.1)

for closed substacks £’ ¢ Z. The class [ Z ] is called the motive of Z . In the context of stacks,
these rings were originally considered by Joyce [84] under the name of stack functions.
For technical reasons, we will define multiple versions of rings of motives, which can be

roughly arranged into the diagram below:

M(Z)

U
MS(SX)\—> M(Z) (5.2.1.2)
U

M (Z) —— CF() .
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Here, MI(2') is the default version, M*(2") is the schematic version, M(SK ) is the completed
version, and M"(&” ) is the subspace of regular motives. The middle horizontal map is a loc-
alization, the diagonal map is like a retract of the inclusion M*(Z) < M(Z’) up to this loc-
alization, and y is the Euler characteristic map, valued in constructible functions on 2". As
mentioned in §1.2.6, one cannot expect to define the Euler characteristic for all stacks, so it is
not defined on the full space NA’H(R" ).

Recall from §3.2.2 our running assumptions on algebraic stacks, which we will assume all

stacks in this section to satisfy.

5.2.2. The ring of motives. Let K be a field, let 2 be an algebraic stack over K satisfying
assumptions in §3.2.2, and let A be a commutative ring.
The ring of motives over 2 with coeflicients in A is the A-module
M(Z;4) = @D A-[Z] /~ , (5.2.2.1)
Z-

where we run through isomorphism classes of representable morphisms Z — & of finite
type, with Z quasi-compact, and @ indicates that we take the set of locally finite sums, that
is, possibly infinite sums ), 4 _, o ag - [Z], such that for each quasi-compact open substack
U c X, there are only finitely many Z such that ag # 0 and Z x¢ % # @. The relation ~

is generated by locally finite sums of elements of the form
a-([Z]1-[2']-[Z\Z']),

where a € A, Z is as above, and Z’ C Z is a closed substack. The class [Z] € M(Z; A) is
called the motive of Z.

In fact, M((Z'; A) carries a natural topology which is the limit topology of the discrete
topologies on M(%; A) for quasi-compact open substacks  c 2. The locally finite sums are
precisely the sums that converge in this topology.

For a representable morphism Z — X of finite type, where Z is not necessarily quasi-
compact, we can still define its motive [Z] € M((X'; A), by stratifying Z into quasi-compact
locally closed substacks, Z = | J;c; Z;, and defining [Z] = ) ,c; [Z;] as a locally finite sum.
It is easy to check that this does not depend on the choice of stratification, by passing to a

common refinement of two given stratifications.
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The ring structure on M(Z'; A) is given by [Z] - [Z] = [Z xg Z'] on generators, with
unit element [ 2] defined using the procedure of the previous paragraph.

We also write M((Z") for M(X'; Z), and M(K; A) for M(Spec(K); A).

The ring MI(Z'; A) is naturally an MI(K; A)-algebra, with the action given by the product.

In particular, it is an A[LL]-algebra, where
L =[A!] € M(K; A) (5.2.2.2)
is the class of the affine line over K.
5.2.3. Properties. We list some basic properties of rings of motives.
(i) For amorphism f: % — X, there is a pullback map
fHM(Z5A) — M(Y5A)

given by [Z] = [Z xq %] on generators, which is a ring homomorphism.

(ii) For a representable quasi-compact morphism f: % — &, there is a pushforward map
fii M(¥; A) — M(Z; A),

given by [Z] = [Z'] on generators. This is not a ring homomorphism in general.

(iii) For stacks 2" and ¥, there is an external product
®: M(25A) @ M(¥; A) — M(Z x %5 A),

givenby [Z]®[Z’] — [Z xZ '] on generators. The multiplication on M((2'; A) can be
realized as the external product for & x & followed by pulling back along the diagonal
ASIVAE VARV A

(iv) For a representable quasi-compact morphism f: ¥ — ', we have the projection for-

mula
fila- f*(b)) = fi(a)-b (5.2.3.1)

fora e M(%; A) and b € M(X'; A), which can be verified on generators.
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(v) For a pullback diagram
v oy
7| Ir
-

where f is representable and quasi-compact, we have the base change formula
g o fi=flo(g) M(¥;A) — M(X; A). (5.2.3.2)
Again, this can be verified directly on generators.
5.2.4. Schematic motives. Let 2 and A be as above. Define the A-submodule
M*(Z; A) c M(Z; A)

of schematic motives to be the smallest closed submodule containing the motives [Z] for
morphisms Z — 2 from a K-scheme Z of finite type. Here, being a closed submodule is
equivalent to being closed under taking locally finite sums in the sense of §5.2.2.

For a morphism Z — X of finite type from an algebraic space Z locally of finite type
over K, we can still define its motive [Z] € M®(Z; A) using a stratification, similarly to
§5.2.2.

Note that we have M*(2’; A) = M(X; A) if and only if 2 is an algebraic space. Also,
M®(Z; A) is closed under multiplication in M(Z'; A), but it does not contain the unit [2]

when & is not an algebraic space. We also write M*(Z") for M*(X'; Z).
5.2.5. Completed motives. Consider the localization
M(Z;A) = MY(T;A) @ AL, (LF-1)"": k> 0], (5.2.5.1)
A[L]

where I = [A'] is the motive of the affine line, and ® denotes the completed tensor product
with respect to locally finite sums. We call this the completed ring of motives over .
A key property of completed motives is that for a morphism & — & of finite type, not

necessarily representable, we have a class
(Z] € M(Z; A) (5.2.5.2)

defined as follows. By Kresch [102, Proposition 3.5.9], we may stratify Z into locally closed
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substacks of the form (Z; = U;/G;);c1, With U; a quasi-projective K-scheme acted on by a
group G; = GL(n;) for some n; € N. We then define
[(Z]1— > (G- [U]. (5.2.5.3)
iel

where [G;]7! € A[L™, (]Lk —1)7!]. To see that this is well-defined, it is enough to check that
this does not depend on the choice of stratification, and by choosing common refinements of
two given stratifications, we are reduced to the following fact: If U, /G; = U,/G, = %, then
[G1]-[U,] = [G,] - [U;], where G; = GL(n;) for i = 1, 2. To see this, set U = U; x¢, U,. Then
U — U, is a Gy-bundle, and since every principal GL(n,)-bundle is Zariski locally trivial, a
further stratification of U, shows that [U] = [G,] - [U,], and similarly, [U] = [G,] - [U;].

Note that here, we have used a special property of the groups GL(n) that every principal
bundle over a scheme is Zariski locally trivial. This property is called being a special group in
Serre [144].

In particular, there is a natural map
M(Z; A) — M(Z; A), (5.2.5.4)
given on generators by [Z] = [Z'] defined as above.

5.2.6. Properties. We collect here some properties of the rings M(&”; A).

Firstly, all properties in §5.2.3 hold analogously for M(Z'; A). Moreover, we are also al-
lowed to push forward along quasi-compact but possibly non-representable morphisms, given
on generators by [Z] — [Z ], where the second [Z] is the class defined in §5.2.5.

In particular, if 2 is quasi-compact, there is a motivic integration map
[ a) — s a)
x

defined as the map (5.2.5.4) followed by pushing forward along the possibly non-representable
morphism & — Spec(K).
Another useful property is that for a class [Z] € M(&” ; A) as in §5.2.5, a vector bundle

& — Z of rank n, and a principal G-bundle & — Z for a special group G in the sense of
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Serre [144], such as G = GL(n) for some n € N, we have the relations
(€] =1"-[Z], (5.2.6.1)

(] =1[G]-[Z]. (5.2.6.2)

These can be verified using the fact that any vector bundle or principal G-bundle on a scheme

is Zariski locally trivial, where the latter property is by the definition of special groups.

5.2.7. Constructible functions. For a stack 2 as above, and a commutative ring A, a con-

structible function on 2 is a map of sets
a: | ¥ — A,

where 2| is the underlying topological space of 2 as in §3.1.4, such that for any ¢ € A,
the preimage a~'(c) is a locally constructible subset of |2|. The A-algebra of constructible

functions on X is denoted by CF(Z; A).
5.2.8. Euler characteristics. Define the subspace

M°(2; A) € M(Z; A) (5.2.8.1)
of regular motives as the image of the map

M(Z; A) ?]A[]Lil, (1+L+ - +L5)™: k> 0] — M(Z; A) (5.2.8.2)
A[L

naturally extending the map (5.2.5.4).
Roughly speaking, this is the subspace of motives that ‘have no poles at L. = 1’, so that
taking the Euler characteristic, which sets I = 1, is a valid operation on this subspace.

When A contains Q, define the Euler characteristic map
y: M°(2; A) — CF(Z; A),

as follows. For a generatora = f(L)-[Z] € I@IIC’(&”; A), where [Z] is a generator of M((Z; A)

as in §5.2.2, and f(LL) is a rational function in L regular at . = 1, define

x(@)(x) = £(1)- Y (~1)' - dim HL(Z5: Q)

i20

to be the alternating sum of the dimensions of the compactly supported ¢-adic cohomology
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groups of the base change of Z to the geometric point x: K, — 2 of x, where K, is the
algebraic closure of the residue field K, of x, and £ is a prime number different from char(K).

This integer is independent of the choice of ¢, as in Illusie [78, §1.1].

5.2.9. The virtual rank decomposition. Let 2 be a stack over K, and let A be a commutative
Q-algebra. As in Joyce [84, §5] and the author, Ibafiez Nuifiez, and Kinjo [32, §5.1], there is a

virtual rank decomposition

M(2: A) = P MP(2:4),
k>0

where & means allowing locally finite sums as in §5.2.2, and each M (X;A) cM(X;A)is
the submodule of motives of pure virtual rank k.

Roughly speaking, having virtual rank < k means having a pole of order at most k at L = 1
after motivic integration (see §5.2.6).

Precisely, this decomposition is defined by the projection operators
78 M(Z; A) — M(Z; A), (5.2.9.1)

which are MI(K; A)-linear maps that are continuous (that is, preserving locally finite sums),

characterized by the following properties:

(i) Forany a € M(X'; A), we have a = ) 1, Jr(k)(a) as a locally finite sum.

(ii) For a generator [U/G] € M(Z; A), where U is a quasi-projective K-scheme, acted
on by a smooth affine algebraic group G over K with a split maximal torus, such as
G = GL(n), equipped with a representable morphism U/G — X', we have

w/cl= Y —— . x®OquT L), (5.2.9.2)

k>0; TcG |WT|

where we sum over conjugacy classes of split tori T = (Gz’;1 C G of dimension k, W =

Ng(T)/Z(T) is the relative Weyl group, U’ c U is the fixed locus, Ly = Z5(T) € G

is the Levi subgroup given by T, and the sum only has finitely many non-zero terms.
(iii) For a generator [U/G] € M(X'; A) as above, if there exists a subtorus (G:ﬁ1 c Z(G)

acting on U trivially, then ﬂ(k,)([U/G]) =0forall0 < k' < k.

The image of 7 is then defined as M) (X; A). See [32, §5.1] for details.
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Note that this definition uses almost no information about &', and as a consequence, the
decomposition §5.2.9 is compatible with pushforwards of motives.

The reader should be warned that this decomposition does not descend to M(ﬁ[ ; A), since
for example, when & = */G,,, the motives [G,, x (*/G,,)] (with the natural projection to
*/G,,) and [*] (with the unique morphism to */G,,) get identified in M(SX ; A), whereas they
have pure virtual ranks 1 and 0, respectively.

When ' is quasi-compact, the motivic integration map satisfies the property that
/ (=): ME(F; A) — (L -1)7F - M°(K; A) c M(K; A), (5.2.9.3)
x

that is, the image of the space M) = MO @ ... @ M® lies in the subspace (L — 1)7k.

A

M°(K; A). In particular, there is an Euler characteristic integration map

/(]L— Dk (=)dy = xo/ L-1F (=) MS)N(Z;4)— A. (5.2.9.4)
VA X

5.3 Descent of motives

5.3.1. We now discuss descent properties of the rings of motives defined above. These rings do
not satisfy étale descent, since for example, pulling back along the double cover (-)*: G,, —
G,, identifies the class of the trivial double cover G, x p, = G, and the non-trivial double
cover G, = Gy,

However, we show in Theorem 5.3.3 below that the ring of motives M(—) does satisfy

descent under the Nisnevich topology.

5.3.2. The Nisnevich topology. Recall that for an algebraic space X, a Nisnevich cover of X
is a family of étale morphisms ( f;: X; = X),cs, such that for each point x € X, there exists
i € I and a point x” € X;, such that f;(x") = x, and f; induces an isomorphism on residue
fields at x” and x.

Let 2 be an algebraic stack. Define a Nisnevich cover of 2" to be a representable étale
cover (f;: X — ), such that its base change to any algebraic space is a Nisnevich cover
of algebraic spaces. See also Choudhury, Deshmukh, and Hogadi [39, Definition 1.2 ff.].

For example, for an integer n > 1, the morphism * — =/, is not a Nisnevich cover, since
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its base change G,, — G, t — t" is not a Nisnevich cover.
Algebraic spaces over K that are locally of finite type admit Nisnevich covers by affine

K-schemes, which can be deduced from Knutson [97, I, Theorem 6.4].

5.3.3. Theorem. Let X be a stack as above, and let (f;: X; = X );c1 be a Nisnevich cover. Then

the map

(f)ier: M(Z) — eq(H M(Z) = [ ] (L, % &3))

iel i,jel
is an isomorphism, where the right-hand side is the equalizer of the two maps induced by pulling

back along projections from each X; xo &; to X; and X}, respectively.

Proof. We first consider the case when 2 is an algebraic space. In this case, one can stratify
Z into locally closed subspaces S, ¢ 2, such that the map [[; Z; — 2 admits a section s
over each Sy. After a base change to each Sy, we can assume that [ [; Z; — 2 admits a global
section, in which case the result is clear.

For the general case, by Kresch [102, Proposition 3.5.9], & can be stratified by quotient
stacks of the form U /G, where U is a quasi-projective K-scheme acted on by G = GL(n)
for some n. Therefore, we may assume that & = U/G is of this form. Let 7: U — U/G
be the projection. Then for all a € M(U/G), we have a = [G]™} - 7, o 7%(a), so that ©*
is injective. Its image consists of elements a € M(U) such that 7* o m(a) = [G]-a. We
call such elements G-invariant. In other words, we may identify M(U /G) with the subring
of M(U) consisting of G-invariant elements. Writing U; = U xg¢ &, it suffices to show that
M(U) > eq([Tie; M(U;) 3 [1ijer M(U; x U;)), since taking G-invariant elements on both
sides gives the desired result. We are now reduced to the already known case of algebraic

spaces. [

5.4 Motivic Hall algebras and modules

5.4.1. We introduce the motivic Hall algebra for a linear stack, originally defined by Joyce [82],
which is an associative algebra structure on the ring of motives M(Z').
For self-dual linear stacks, we show that the ring of motives M(Z Sd) is a module for the

motivic Hall algebra MI(Z"), which we call the motivic Hall module.

80



Hall modules have been constructed and studied for other flavours of Hall algebras, such
as by Young [164-166] in the context of Ringel’s [140; 141] Hall algebras and that of cohomo-
logical Hall algebras. A similar construction in the context of Joyce’s [87; 88] vertex algebras
is obtained by the author [27]. Another closely related work is DeHority and Latyntsev [47],

who studied the relation between the cohomological version and the vertex algebra version.

5.4.2. The motivic Hall algebra. Let 2 be a linear stack over an algebraically closed field K,

with quasi-compact filtrations as in §3.3.4. Define an operation
*: M(Z) ® M(Z) — M(X)
by the composition
M(Z) ® M(Z) — M(ZL x ) Ll M(Z") -5 M(Y),

where 2" denotes the disjoint union of the stacks of filtrations 2 ;1 «, forall a;, a; € mo(T').
Roughly speaking, for motives a, b € M(Z'), the product a * b € M(Z') parametrizes all
possible extensions of objects parametrized by a and b, respectively. Here, taking gr* picks
out two-step filtrations with given quotients specified by a and b, and taking ev, maps these
filtrations to their total objects.
We will see in Theorem 5.4.4 that the product * is associative, and that it has a unit ele-
ment [{0}] € M(Z), which is the motive of the component {0} c 2. This defines an associ-

ative algebra structure on M(Z’), called the motivic Hall algebra of .

5.4.3. The motivic Hall module. Now, let 2 be a self-dual linear stack over K, with quasi-

compact filtrations as in §3.3.4. Define an operation
o: M(Z) ® M(Z*Y) — M(ZLY)
by the composition
M(Z) ® M(ZY) -5 M(Z x 259 L M) S My,

where %" denotes the disjoint union of the stacks of filtrations 2, y for all a € 7y(Z’) and
0 € n,(29).

Again, roughly speaking, for motives a € M(Z') and b € M(Z ) the producta ¢ b €
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M(Z) parametrizes the total objects of all possible three-step self-dual filtrations, as in §2.2.4,
whose graded pieces are parametrized by a, b, and a", respectively,
We will prove in Theorem 5.4.4 that the product o establishes MI(Z Sd) as a left module for

the motivic Hall algebra M(2"). This is called the motivic Hall module of X
5.4.4. Theorem. Let X be a linear stack with quasi-compact filtrations as above.
(i) Consider the operation * defined in §5.4.2. Then for any a,b,c € M(X’), we have

[{0}]xa =a=ax[{0}], (5.4.4.1)

(axb)xc=ax(bxc), (5.4.4.2)

where [{0}] € M(X") is the motive of the component {0} C X.
(ii) Suppose that X is equipped with a self-dual structure. Consider the involution (-)"
on M(X') induced by the involution of X, and the operation o defined in §5.4.3. Then

foranya,b e M(Z') and c € M(&”Sd), we have

a’ b =(bxa)’, (5.4.4.3)
[{0}]oc=c, (5.4.4.4)
acs(boc)=(a*xb)oc. (5.4.4.5)

Proof. For (5.4.4.1), it is enough to show that for any a € 713(Z), the morphisms Sl"(fa -2,
and Xy > &, are isomorphisms, which follows from the descriptions in §3.3.4.
For (5.4.4.2), we may assume that a € M(Z,), b € M(Z,,), and ¢ € M(Z,), for some

ay, ay, a3 € mo(Z). Applying the base change formula (5.2.3.2) to the pullback squares in the

diagrams
+ +
*%‘al,az,a?, L(/;Z‘al>0{2’a3
/ ~ \ / ~ \
+ + + +
‘%al,az x (%.6(3 ‘%'0(1+0(2,0(3 ‘%'0{1 X (%az,a:s ‘%al,a2+a3 (5.4.4.6)

SN SN SN SN

‘%‘alx‘%‘azx'%‘og t%‘(Xl‘F(ZQx‘%‘O(:; t%‘0(1“'0524-(13 4 '%‘alx'%‘aZX*%‘a:; ‘%‘(11 xg‘(lg‘l‘(l:ﬁ L%‘(Xl‘i'(lz‘l'O{:; ’

we see that both sides of (5.4.4.2) are equal to ev, o gr*(a® b ® ), where gr and ev are the outer
compositions in both diagrams in (5.4.4.6). These diagrams are special cases of the associativity

theorem of the author et al. [31, §6.3], as explained in [31, §7.1.7].
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The relation (5.4.4.3) follows from the commutativity of the diagram

gr
(%.al x (%' — (%.;—1 ay L) ‘EZ.O(1+0(2
(_)vlz (_)vl: (_)vlz (5.4.4.7)
%vx%v(—gr .%‘; al\/ —)e '%‘(Xv+a1 5

where a;,a, € my(Z), and the middle vertical isomorphism is given by the Z,-action on
Filt(X).
The relation (5.4.4.4) follows from the isomorphism X' sdt =5 54 for 0 € my (L9).

For (5.4.4.5), we have similar diagrams

sd,+ sd,+
Loy a0 zal "
+ sd sd.+ Sd,+ sd,+
Loy, * L Loy v b Lo < XS T ey (5.44.8)
sd,+ sd sd
'%‘alefz‘az 9 ‘%‘0{1+a2 ‘%‘0 ‘%‘a1+a2+9+a2 +ay > ‘E[alx‘%ﬂ X’EXG ‘9:'05 XA gy +0+ay a1+a2+6+a2 +ay o

where the pullback squares follow from the associativity theorem of the author et al. [31, §6.3].
Alternatively, these diagrams can be obtained by taking Z,-fixed loci in pullback diagrams
analogous to (5.4.4.6) for 5-step filtrations. The relation (5.4.4.5) then follows from applying

the base change formula (5.2.3.2) to these diagrams. [

5.5 Epsilon motives

5.5.1. We define epsilon motives for linear and self-dual linear stacks, following Joyce [85] in
the linear case and the construction of the author, Ibafiez Nufiez, and Kinjo [32] for general
algebraic stacks. These are elements of the rings of motives MI[(2'; Q) and M(Z sd, Q), depend-
ing on a stability condition 7, and are obtained from motives of semistable loci, [2;°(7)] and
(X Sd **(7)], by removing certain parts of the strictly semistable locus. The purpose of doing
this step is so that the no-pole theorem, Theorem 5.5.5, holds, allowing us to take the Euler
characteristics of epsilon motives, which will then be used to define Donaldson-Thomas in-
variants.

Throughout, we assume that 2 is a linear stack over an algebraically closed field K with

quasi-compact filtrations as in §3.3.4.
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5.5.2. The linear case. Let 7 be a permissible stability condition on 2. Following Joyce [85],
for each class @ € 7y(Z') \ {0}, define the epsilon motive €, () € M(Z,; Q) by the formula

_ n—1
= Y Y as)e w12 (0], (55.2.1)

n

n>0; a..,a, €(L)\ {0}:
a=a + - +a,
() = =1(a,)

where * denotes multiplication in the motivic Hall algebra M(2; Q). By Lemma 3.5.8, only
finitely many terms in the sum are non-zero. Note that €, (7) is supported on 275’ (7).

Formally inverting the formula (5.5.2.1), we obtain the relation

@eml= Y ni-eal(r) 5 xeg (7). (5.5.2.2)

!

n>0;a,..,a, €m(L)\{0}:
a=a + - +a,
() = -+ = 7(a,)

The relation between the coefficients (—1)" " /n and 1/n! are explained in §5.5.4 below.

One can also combine (5.5.2.2) with the relation

(L= Y XS] [T ()], (5.5.23)

n>0;a,..,a, €mn,(X)\ {0}:
a=a + - +a,,
(ay) > - > 1(a,)

which comes from the ©-stratification of ', and can be an infinite but locally finite sum, giving

the formula

2= Y ;I g, (1) % e weg (1) (5.5.2.4)

n>0; a,..,a, €mn(XL)\{0}:
a=a + - +a,
(o) 2 - 2 1(a,)

where W, . (7) denotes the group of permutations o of {1, ...,n} such that r(a,)) >

- 2 7(&(n))- This can be taken as an alternative definition of the invariants €,(7), that is,
they are the unique set of motives such that (5.5.2.4) holds for all .
One can interpret (5.5.2.4) as considering a generalized version of HN filtrations, where

the slopes of the quotients are non-increasing rather than strictly decreasing, and the sum is

averaged over all possible orderings satisfying the non-increasing condition.

5.5.3. The self-dual case. Suppose that 2 is equipped with a self-dual structure, and let 7 be
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a permissible self-dual stability condition on 2.

For each class 6 € my(2*%), define the epsilon motive e (r) € M(Z$%; Q) by the formula

= Y (V) @n@le e RT3

n20;a,..,a, €my(L)\ {0}, p €m(LY):
O=a, +a) +- +a,+a, +p,
t(ay) = =71(a,) =0

where o denotes the multiplication for the motivic Hall module, the notation a; + ;" is from
§3.4.1, and (_11/ 2) is the binomial coefficient. The sum only contains finitely many non-zero
terms, and €3(7) is supported on the semistable locus & ;d’ss(r) cas

Formally inverting the formula (5.5.3.1), we obtain the relation

2= Y, peomeg@ogln). (5532

n=0;a,..,a, €m(X)\{0}, p € m,(TY):
O=a,+a) + - +a,+a, +p,
() = =7(a,) =0

which we explain further in §5.5.4. This can be combined with the relation

(5= Y, (R e o [XR(D)] o [131(7)] (5533)

n20; a,...,a, € (L) \ {0}, p €m(T):
O=a,+a) +- +a,+a, +p,
(a;) > - >1(a,) >0

from the ©-stratification of & Sd, together with (5.5.2.2), to obtain the formula

(23] = D 1 €, (T) 0 - 0 €, (1) 0 €X(r) (5.5.3.4)

.....

,,,,, o, (7) is the group of permutations ¢ of {1, ...,n,n",...,1"}, such that ¢ (i)" =
o(i¥) for all i, where we set (i')" = i, satisfying the non-increasing condition t(a5(1)) >
- 2 1(a5(y)) = 0, where we set ;v = ;. For example, we have |WOS,§1 ..... a, (T)] = 2" nlif

(y) = - = 1(ap,) = 0.

5.5.4. Explanations of the coefficients. The relations between the coefficients in (5.5.2.1),
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(5.5.2.2), (5.5.3.1), and (5.5.3.2), can be seen more directly by setting

S(rit)y =[{o}]+ > [Z¥D].  SUy= D [0,

aen (T)\{0}: femn, (%)
(a)=t
e(rst)= Y elr), )= ), '),
aeny (Z)\{0}: femy (2%

()=t

as motives on & or & Sd, where t € T, so that these relations can be rewritten as

e(r;t) =log8(r;t),  €(r) = 8(r;0)" V%6 8%(1),

5(r;t) = expe(r;t), 5%(r) = exp(%e(f;0)> o e¥(r),

where we take formal power series using the product in the motivic Hall algebra.

The coefficients (-1)""'/n and (_1n/2) in (5.5.2.1) and (5.5.3.1) are determined by the coef-
ficients 1/n! and 1/(2"n!) in (5.5.2.2) and (5.5.3.2) in this way. They are the unique choice of
coefficients only depending on n, such that the no-pole theorem, Theorem 5.5.5, holds for the
epsilon motives. The rough reason for this is that they ensure the combinatorial descriptions

of the coefficients 1/[W, . (r)| and 1/|WOS,d a, (T)| in (5.5.2.4) and (5.5.3.4), and from the

1seees

.....

viewpoint of [32], the no-pole theorem corresponds to the property that these coefficients sum

up to 1 for all permutations ¢ as described for each of them, for fixed classes «;.

5.5.5. The no-pole theorem. A key property of the epsilon motives is the no-pole theorem,
which states that they have pure virtual ranks in the sense of §5.2.9. This will allow us to
define numerical invariants, including Donaldson-Thomas invariants, by taking their Euler

characteristics.
Theorem. Let X be a linear stack over K, with quasi-compact filtrations.

(i) For any permissible stability condition t on X, and any a € my(Z) \ {0}, the motive
€,(7) has pure virtual rank 1.
(ii) If X is equipped with a self-dual structure, then for any permissible self-dual stability

condition r on X', and any 6 € no(,%”Sd), the motive ezd(r) has pure virtual rank 0.

We defer the proof of the theorem to Appendix A. The linear case (i) was originally proved by

Joyce [83, Theorem 8.7], under a slightly different setting. The orthosymplectic case (ii) was
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originally proved in the author’s preprint [26, Appendix E], again under a slightly different
setting. This theorem is now available in a more general form for intrinsic Donaldson-Thomas
invariants in [32, Theorem 5.3.7], but we present a proof in Appendix A that is spiritually closer

to the original proofs in [83] and [26], and requires less abstract formalism to set up.

5.6 Donaldson—=Thomas invariants

5.6.1. We now turn to the definition of Donaldson—-Thomas invariants for linear and self-dual
linear stacks, where the latter is one of the main constructions of this thesis. The linear case
was first due to Joyce and Song [89] and Kontsevich and Soibelman [99].

Throughout this section, we assume that the base field K is algebraically closed and has

characteristic zero.

5.6.2. The Behrend function. We now discuss the definition of Behrend functions of algebraic
stacks, described in §5.1.2.

For an algebraic stack 2 over K as in §3.2.2, we would like to define its Behrend function
ve € CKH(X;Z) . (5.6.2.1)
There are multiple ways to define it, in different generalities:

(i) The original definition of Behrend [10] works for Deligne-Mumford stacks over C.
(ii) This was later extended by Joyce and Song [89, §4.1] to algebraic stacks locally of finite
type over an algebraically closed field K of characteristic zero.
(iii) Alternatively, when & upgrades to a derived stack with a (—1)-shifted symplectic struc-

ture, we can define v¢- using the motivic Behrend function, which we do in §6.2.8 below.

The first two definitions agree when they are defined; the third one agrees with the second one
when K = C and when the former is defined, which can be deduced from Denef and Loeser
[50, Theorem 3.10]. Although we expect them to agree for general K, we do not have a proof
of this yet.

In the following, we always take (iii) as our definition of v, since we can prove more

properties of it, including crucially the motivic integral identity, which is important for proving
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wall-crossing formulae for our Donaldson-Thomas invariants. As mentioned above, when

K = C, we can also use (ii) instead.

5.6.3. The linear case. From now on, we fix a (—1)-shifted symplectic linear stack X over K
in the sense of §3.7.3. Let 7 be a permissible stability condition on 2, or more precisely, on
the classical truncation of ', as in §3.5.7,

Following Joyce and Song [89, Definition 5.15], but adapting it to our more general setting
of linear stacks, for a class @ € my(Z) \ {0}, we define the Donaldson-Thomas invariant

DT,(7r) € Q by the formula

DT,(7) = /(1—]14)'60((2')-1/5[ dy, (5.6.3.1)
VA

where the notation / (—) dy is defined in §5.2.9, and vq is the Behrend function of 2.
This integral is well-defined since €,(7) is supported on the semistable locus 275’ (1),

which is quasi-compact, and by the no-pole theorem, Theorem 5.5.5 (i).

5.6.4. The self-dual case. Assume further that & is equipped with a self-dual structure, that
is a Z,-action preserving the (—1)-shifted symplectic form, and reversing the *«/G,-action,
analogously to §3.4.1.

Let 7 be a permissible self-dual stability condition on (the classical truncation of) 2. For
aclass 6 € no((%'Sd), define the self-dual Donaldson-Thomas invariant DTZd(T) € Q by the
formula

DT (7) = / esd(r) - vasa dy . (5.6.4.1)
qsd
Again, this is well-defined by the fact that e{(r) is supported on X5 (r), which is quasi-

compact, and by the no-pole theorem, Theorem 5.5.5 (ii).

5.6.5. For smooth stacks. Let 2 be a classical linear stack that is smooth over K, and con-
sider its (—1)-shifted cotangent stack T"[-1] 2, which has a canonical (—1)-shifted sym-
plectic structure as in §3.6.7, making it a (—1)-shifted symplectic linear stack. We have
(T*[-1]9)q = L. If X is equipped with a self-dual structure, then the fixed locus 2°*¢ is
also smooth, and (T*[-1] )% = T [-1] 2.
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. . sd
In this case, we have vg: = (=1)%™% and vogsa = (=1)4™% " and (5.6.3.1)~(5.6.4.1) become

DT, (r) :(—1)dim~°l’a-/ (1-1L)-e,(r)dy, (5.6.5.1)
Z,
DT () = (—1)0“11“’1’5‘1-/%SC1 esd(r) dy . (5.6.5.2)

The invariants DT, (7) are essentially the same as those defined by Joyce [85, §6.2], denoted

by J¢ (1')Q there, while the invariants Dngd(T) are new.
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Chapter 6
Motivic Donaldson-Thomas invariants

We introduce motivic enhancements of the orthosymplectic Donaldson-Thomas invariants
defined in Chapter 5, living in a ring of monodromic motives, parallel to the conjectural con-
struction of Kontsevich and Soibelman [99] in the linear case, later rigorously established
through the works of Lé [104], Bussi, Joyce, and Meinhardt [34], Ben-Bassat et al. [13], and
others.

In the linear case, these invariants are, in general, not easy to compute, but in cases where
they are computable, they often exhibit interesting and rich structures. See Behrend, Bryan,
and Szendréi [11], Morrison, Mozgovoy, Nagao, and Szendréi [120], Davison and Meinhardt
[44; 45], etc., for examples. It would be interesting to explore if the orthosymplectic case also

has similar interesting structures.

6.1 Monodromic motives

6.1.1. Idea. The motivic Donaldson-Thomas invariants are defined using the ring of mono-
dromic motives, a variant of the ring of motives defined in §5.2.

To explain the rough idea of monodromic motives, it might be more straightforward to
work in the analytic setting. For this purpose, let X be a complex manifold, with a smooth
metricd: X x X — Ry, and let f: X — C be a holomorphic function. Let x € X be a point

such that f(x) = 0. Let 0 < § < ¢ « 1 be small positive numbers, and consider the map

X5 (x) = B,(x) n f71(D}) - D}
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where Ds = {z € C| 0 < 2| < §}. This map is a topological fibration, and its fibre MF ¢ (x) is
called the Milnor fibre of f at x. The cohomology of MF ¢(x) is often called the nearby cycles
of f at x, and carries the action of the monodromy operator induced by this fibration.

There is also a motivic analogue of this construction, called the motivic Milnor fibre, which
we discuss in §6.2 below.

The ring of monodromic motives can then be roughly thought of as having Milnor fibres
of functions as above as its elements, equipped with monodromy actions, and these elements

satisfy cut-and-paste relations (5.2.1.1) for closed subsets respecting the monodromy action.

6.1.2. Monodromic motives. We define the ring of monodromic motives over a stack &, ex-
tending the ring of motives M(SX; A) defined in §5.2.6.

Let i = lim p,, be the projective limit of the groups of roots of unity. For a scheme Z, a good
action of i on Z is one that factors through p, for some n, such that each orbit is contained in
an affine open subscheme of Z.

For a stack 2" over K as in §3.2.2, and a commutative ring A, define

KMZ; A) = D A-[Z]/~, (6.1.2.1)
AN
M A) = KMZ:A) & A[LEL (LK - 1)—1]/z, (6.1.2.2)
A[L]

where & and ® indicate that we allow locally finite sums, as in §5.2.2 and §5.2.6, and we sum
over morphisms Z — 2 with a good [i-action on Z, called the monodromy action, that is com-
patible with the trivial fi-action on . The relation ~ is generated by [Z] ~ [Z'] + [Z \ Z']
for i-invariant closed subschemes Z’ c Z, and [Z x V] ~ [Z x A"] for a [i-representation V
of dimension n, where the projections to 2 factor through Z, and i acts trivially on A". The
definition of = is slightly more involved, and can be found in Ben-Bassat et al. [13, Defin-
ition 5.13], where it is denoted by Ifg’ﬁ. There is a map M(ﬂf; A) - Mﬁ(&"; A) given by
[Z] = [Z] on generators, with trivial ji-action.

There is a commutative multiplication on Mﬂ(flf ; A), denoted by ‘©’ in [13, Definition 5.13],
which is different from the one given by the fibre product in general. Equipped with this
multiplication, M”(ff ; A) is a commutative A-algebra, called the ring of monodromic motives

over X .
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6.1.3. Properties. There are pullback and pushforward maps for monodromic motives, similar
to those defined in §5.2.3, and they satisfy the base change and projection formulae (5.2.3.1)-
(5.2.3.2).

Define a subring

MP (23 A) ¢ M5 A) (6.1.3.1)

as the set of motives whose underlying motives live in the subring M°(Z; A) defined in §5.2.8.

When A contains Q, there is an Euler characteristic map
y: MM (25 A) > CR(Z; A) (6.1.3.2)
defined via the underlying non-monodromic motive.

6.1.4. Motives of double covers. There is an element
LY? =1 - [p,] € M(K), (6.1.4.1)

where 1, is equipped with the unique non-trivial fi-action. This element satisfies (ILl/ )2 = LL.
We also write L™/ = L™' - LV2 In particular, we have )((ILI/Z) = -1
As in Bussi, Joyce, and Meinhardt [34, §2.5] and Ben-Bassat et al. [13, Definition 5.13], for

a principal py-bundle & — &', we have an element
Y(P) = (] - [P]) e MM D), (6.1.4.2)

where [1 acts trivially on 2 and via the p,-action on &, and monodromic motives of stacks
are defined by a similar process to that in §5.2.5. This construction satisfies Y(# ® @) =
Y(2) - Y(@) for principal p,-bundles &, @ — X', where &’ ® @ denotes the tensor product

principal p,-bundle.

6.2 The motivic Behrend function

6.2.1. We introduce the motivic Behrend function, which is a motivic enhancement of the
Behrend function introduced in §5.6.2. It can be seen as a motivic version and a globaliza-
tion of the construction of Milnor fibres mentioned in §6.1.1.

For functions on smooth varieties, the Milnor fibre was constructed by Denef and Loeser

92



[48-50], and is a monodromic motive on the zero locus of the function. See also Looijenga
[106]. This was later generalized to the case of stacks by Ben-Bassat et al. [13]. Here, we

slightly generalize this construction by weakening the assumptions on the stack.

6.2.2. Local structure. For our constructions, we will need our stacks to satisfy local condi-
tions, which we introduce now.

Recall from §5.3.2 the definition of a Nisnevich cover of an algebraic stack.

For an algebraic stack 2 satisfying the assumptions in §3.2.2, we say that 2 is étale (or Nis-
nevich) locally a quotient stack, if it admits a representable étale (or Nisnevich) cover by quo-
tient stacks of the form U /GL(n), with U an algebraic space.

We say that X is étale (or Nisnevich) locally fundamental, if it admits a representable étale
(or Nisnevich) cover by quotient stacks of the form U /GL(n), with U an affine scheme.

These conditions are preserved by taking Z,-fixed points by Lemma 3.4.5.

For example, by Alper, Hall, and Rydh [4, Theorem 6.1], & is Nisnevich locally funda-
mental if it admits a good moduli space in the sense of Alper [2]. Also, by Alper, Hall, and
Rydh [3, Theorem 1.1], & is étale locally fundamental if closed points of 2 have linearly

reductive stabilizers, and if every point of 2" specializes to a closed point.

6.2.3. The motivic Milnor fibre. Let K be an algebraically closed field of characteristic zero.
By a smooth K -variety, we mean an integral, separated K-scheme of finite type that is smooth
over Spec K.

Let X be a smooth K-variety, and let f: X — A’ be a morphism. Write X, = f~'(0).
Following Denef and Loeser [48-50], we define the motivic Milnor fibre of f, which is an

element

MEF; € M"(Xp),

as follows.

If f is constant, define MF r=0. Otherwise, choose a resolution 7 : X > X of f, in the
sense that X is a smooth K-variety, 7 is a proper morphism that restricts to an isomorphism
on 77 (X \ X,), and 77" (X,) is a simple normal crossings divisor in X. See, for example,
Kollar [98] for the existence of such resolutions and their properties.

Let (E;);e; be the irreducible components of 771 (X,), and write N; for the multiplicity
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of E; in the divisor of f o on X. For a non-empty subset I C J, write E; = ;s E; \Uigr Ei-
Let m; = ged,; N;, and define an m;-fold cover E; — Ej asfollows. For each opensetU ¢ X
such that f o r = uv™ on U for u: U — Al \ {0}and v: U — A, define the restriction

of E; on E; N U as
Eilgznv = {(z.y) € A x (E;nU) | 2™ = '} (6.2.3.1)

Since E; can be covered by such open sets U, (6.2.3.1) can be glued together to obtain a cover
E; — E;, with a natural M, -action given by scaling the z-coordinate, which induces a {i-

action on Ej. The motivic Milnor fibre MF f s then given by

MF;= > (1-L)/M[E}]. (6.2.3.2)
@+Ic]

It can be shown [49, Definition 3.8] that this is independent of the choice of the resolution .

6.2.4. d-critical stacks. We now introduce a convenient tool, the notion of d-critical structures
due to Joyce [86] and Ben-Bassat et al. [13], which describe some information about (—1)-
shifted symplectic structures but entirely on the classical stack.

More precisely, given a (—1)-shifted symplectic stack & over K, Ben-Bassat et al. [13, §3.3]
define an induced d-critical structure on its classical truncation &, so that &, is a d-critical
stack. See there and Joyce [86] for the precise definitions. For our purposes, it suffices to know

the following properties:

(i) For a smooth K-variety U and a function f: U — A, the critical locus Crit(f) c U
carries a canonical d-critical structure.

(if) d-critical structures can be pulled back along smooth morphisms of algebraic stacks
over K.

(iii) If a K-scheme X carries a d-critical structure, then it can be covered by open subs-
chemes called critical charts, each of which with the induced d-critical structure has the
form Crit( f) as in (i), such that Crit(f) c f~'(0). We denote such a critical chart by
i: Crit(f) = X.

(iv) Given a d-critical stack 2, we have its canonical bundle K ¢-, which models the canonical

bundle of the original (—1)-shifted symplectic stack as in §3.6.8. We can define orient-
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ations of d-critical stacks using this canonical bundle, as in §3.6.8. Moreover, by Joyce
[86, Lemma 2.58], for a smooth morphism g: % — X of d-critical stacks, compatible

with the d-critical structures, an orientation (K 51[/ 2, 0g) of & induces an orientation
(K}?/Z, 09) of % given by K}%/Z = g*(Kyz) ® det]L?/&»I?red.

6.2.5. Definition for schemes. Let X be an oriented d-critical K-scheme. Its motivic Behrend

mot

function vy € Mﬁ(X ) is defined by the following property:

« For any critical chart i: Crit(f) < X, where f: U — A' and U is a smooth K -variety,

we have
(RO = ~L7mU2 L (MF, - [U]) - Y(H(KYP) ® Ki it fyred) » (6.2.5.1)

in Mﬁ(Crit(f)), where U, = f_1 (0), and MF ; —[Uy] is supported on Crit( f ). The map Y
is as in §6.1.4, and the part inside Y(...) is a line bundle on Crit( f)*¢ whose square is

trivial, so it can be seen as a p,-bundle.

This is well-defined due to Bussi, Joyce, and Meinhardt [34, Theorem 5.10].
For X as above, and a smooth morphism g: ¥ — X of relative dimension d, where Y is

equipped with the induced oriented d-critical structure, we have the relation
g (vioty = L4/2. ymot (6.2.5.2)
which follows from Ben-Bassat et al. [13, Theorem 5.14].

6.2.6. Definition for stacks. Let 2 be an oriented d-critical stack over K, and assume that 2
is Nisnevich locally a quotient stack in the sense of §6.2.2.
We define the motivic Behrend function of 2 below, slightly generalizing the construction

of [13, Theorem 5.14], who only considered stacks that are Zariski locally quotient stacks.

Theorem. Let & be as above. Then there exists a unique element
yt e MY ),

called the motivic Behrend function of £, such that for any K -scheme Y and any smooth morph-

ism f: Y — X of relative dimension d, we have

vty = LY2 .yt (6.2.6.1)
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in MP(Y), where VP is defined in §6.2.5, and Y is equipped with the induced oriented d-critical

structure.

Proof. We first show that the theorem holds when & = X is an algebraic space. Indeed,
this follows formally from Theorem 5.3.3 and the relation (6.2.5.2) for schemes, since X has a
Nisnevich cover by affine schemes.

Also, note that if the element v3*" exists, then the relation (6.2.6.1) must also hold for
smooth morphisms from algebraic spaces Y to ', by passing to a Nisnevich cover of Y by
affine schemes.

Now, the proof of [13, Theorem 5.14] can be repeated word-by-word to show that the
theorem is true when 2" = S/G is a quotient stack, where S is an algebraic space over K and
G = GL(n) for some n.

For the general case, let (j;: &; < Z');c; be a Nisnevich cover by quotient stacks. The
condition on vi°" forces that j; (vg®") = v?iot for all i. We show that the elements vucl?l_ot agree
on overlaps. Indeed, let 1,2 € I be two indices, and let X', = X} xg &,. Then X, is
also a quotient stack, so the theorem holds for 2 ,. Let j/: 2, — Z; be the projections,

where i = 1,2. Then we have (j/ )*(v%ot) = v%f; for i = 1,2, since the left-hand side satisfies

the characterizing property of vf?f; By Theorem 5.3.3, it then follows that the elements v%‘)t
for i € I glue to a unique element v**", and a standard argument verifies that it satisfies the

relation (6.2.6.1). O

6.2.7. Compatibility with smooth pullbacks. We now show that the smooth pullback rela-

tion (6.2.6.1) holds for all smooth morphisms of d-critical stacks.

Theorem. Let X, % be oriented d-critical stacks over K that are Nisnevich locally quotient stacks,
and let f: % — X be a smooth morphism of relative dimension d which is compatible with the

oriented d-critical structures. Then we have the relation
g =LY% gt (6.2.7.1)

Proof. It is straightforward to verify that the element L~4/2. F*(vee!) satisfies the character-

izing property of v?’t. O
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6.2.8. The numerical Behrend function. Let 2 be an algebraic stack over K that is Nisnevich
locally a quotient stack, equipped with an oriented d-critical structure. The Behrend function

of X is the constructible function
ve = x(v§') € CK(Z) ,

where y denotes taking the pointwise Euler characteristic, as in §5.2.7.
In fact, we can define vq- for any stack 2 satisfying the assumptions in §3.2.2 in this way,
without the local condition or the orientability assumption. Indeed, we may define v by the

property that
frvg) = (=D vy

for any smooth morphism f: Y — & of relative dimension d such that Y is a K-scheme and
the pullback d-critical structure is orientable, where vy = y (v{"°'). The function vy does not
depend on the choice of orientation, because changing the orientation only affects the term
Y(...) in (6.2.5.1), which always has Euler characteristic 1. Given two such smooth morphisms,
we may pass to the fibre product and use (6.2.5.2) to conclude that the values agree on overlaps.

When K = C, the Behrend function vg agrees with the original definitions by Behrend
[10] and Joyce and Song [89, §4.1]. This follows from the compatibility of both versions with
smooth pullbacks, namely Theorem 6.2.7 and [89, Theorem 4.3], and the case of critical loci on

smooth varieties, which relies on an analytic argument, and follows from Denef and Loeser

[50, Theorem 3.10] and Joyce and Song [89, Theorem 4.7].

6.3 Motivic Donaldson—=Thomas invariants

6.3.1. Motivic Donaldson-Thomas invariants. Let 2 be a (—1)-shifted symplectic linear stack
over K, equipped with an orientation data as in §3.7.4. Assume that its classical truncation
Z . is Nisnevich locally a quotient stack, as in §6.2.2.

For a permissible stability condition 7 on &, and a class a € 7y(Z) \ {0}, following the

construction of Kontsevich and Soibelman [99], define the motivic Donaldson-Thomas invari-
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ant DTS (7) € M™Y(K; Q) by the formula

DTglOt(T) _ /E[ (ILI/Z _ ]L—l/Z) . Ea(T) . V;ot ’ (6.3.1.1)

where v3*' is the motivic Behrend function of & defined in §3.6.8.

Now, suppose further that 2 is equipped with a self-dual structure as in §3.7.5, together
with a self-dual orientation data.

For a self-dual permissible stability condition 7 and a class 6 € 7y (X Sd), define the self-
dual motivic Donaldson-Thomas invariant DTglOt’Sd(T) e M™Y(K;Q) by

DT (r) = /% ) esd(r) - vt (6.3.1.2)
0

This is the main construction of this chapter.

6.3.2. For smooth stacks. Let 2 be a linear stack which is smooth and Nisnevich locally a
quotient stack, and consider its (—1)-shifted cotangent stack T"[-1] Z, as in §5.6.5. It has a
canonical (—1)-shifted symplectic linear structure and orientation data, and in the self-dual
case, also a canonical self-dual orientation data.

The motivic Behrend function of & is vE®' = L™4"%/2 by Theorem 6.2.7, where dim 2

refers to the dimension of the classical smooth stack 2. The formulae (6.3.1.1)-(6.3.1.2) can

be simplified to
1/2 _ p-1/2
mot _ IL - L
DT (e) = =g /3» ) o220
. sd
DTglOt,Sd(T) — IL—dlmgre /2 . / ; ezd('[) . (6322)
l%'s

0
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Chapter 7

Wall-crossing formulae

This chapter discusses wall-crossing formulae for our orthosymplectic Donaldson-Thomas in-
variants defined in Chapters 5 and 6, which are formulae that characterize the change of these
invariants when we change the stability condition. These formulae are an important feature
of the invariants, and impose a strong constraint on the structure of the invariants, as we
mentioned in §1.4.7.

We first prove wall-crossing formulae for epsilon motives in Theorem 7.1.3, which we
then use in §7.3 to obtain wall-crossing formulae for Donaldson-Thomas invariants. Finally,
in §7.5, we prove wall-crossing formulae for Donaldson-Thomas invariants when changing

Bridgeland stability conditions in the derived category.

7.1 Wall—crossing for epsilon motives

7.1.1. Throughout, let 2 be a self-dual linear stack with quasi-compact filtrations as in §3.3.4.
Results in the linear case will not need the self-dual structure on &', and we will indicate this

when it is the case.

7.1.2. Dominance of stability conditions. For stability conditions 7, 7 on &', following Joyce
[83, Definition 4.10], we say that 7, dominates 7, if 7(ay) < 7(@,) implies 7y(a;) < 75(ay) for
all @y, a0y € 7y(X) \ {0}.

In this case, the O-stratification of 2 given by 7 refines the one given by 7,,, and in partic-
ular, we have 2’ (1) € X5 (1) for all & € m,(2') \ {0}.

For example, every stability condition is dominated by the trivial stability condition.
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7.1.3. Theorem. Let 7, 7_, 7, be permissible self-dual stability conditions on X', with t, domin-

ating both . and t_. Then for any a € ny(2L) and 0 € ﬂo(fl"s‘i), we have the relations

()] = D Sy @y 7 T) [T ()] + o % (L ()], (7.13.1)

nzo0;a,..,a, € m(X)\{0}:
a=a + - +a,

(251 = > SNy it 1) [T (1)) 0 0 o [T (1)] 0 [ (2],
n=0;a, .., a, € 1y(X)\{0}, p € my(L*):

O=a,+a) ++a,+a, +p (7.1.3.2)
()= D U@ @i Ty, T2) - €4, (1) % o 5 6g (74) (7.1.3.3)
nzo0;a,..,a, € r,(X)\ {0}:
a=o + - +a,
d d d
ey (1) = Z U (s ooe s Q3 Ty T2) » €4, (T4) © - 0 €4 (7,) 0 €57 (7)), (7.1.3.4)
n=0;a,..a, € 1(XL)\ {0}, p € m(L*):
O=a,+a) ++a,+a, +p
in M(Z,; Q) and M(,El"gd;Q), where the sums are finite, and
( 3
L, () > 7 (a;4) and
) T_(ay+ -+ o) <t_(oj1+ - + )
n—
S(ay, ..., a,; 7., 7_) = 1 -1, 7.(e;) <7, (1) and +, (7.1.3.5)
i=1
T_(a;+ - +a;) >1_(aj1 + - + )
L 0, otherwise
J
( 3\
1, 7.(e;)>71. () and7_(a; + - +;) <0
n
d
S*(ay, s a3 T4, T) = 1 -1, 7.(a) < tp(ajpq) and 7_(ay + = + ;) >0 ¢ (7.1.3.6)
i=1
L 0, otherwise

U(ag, .., @y T4, T_) =

1)"‘ d
. (Hs Byt s o T >) (

i
0:a0<--~<am:n,0—b< - <b,=m:
Writing §; = a,, ., + -+, fori=1,....m,
andy; = f, .+ + B, fori=1,...¢
we have 7, (a;) = 7,(f;) forall a;_; < j < a;,

~:|E

a —a;_ 1)')
J

and 7_(y;) = 7_(oy + - + @) foralli=1,..,¢ (7.1.3.7)
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USd(al, s Ay Ty, T_) =

¥ (-1/2) ( ‘
¢ i=1

0=ay,<-<a,<n 0=by<--<b,<m:

Writing §; = a,, ; + -+, fori=1,....m,

andy; = f, o+ + B, fori=1,...¢

we have 7, (a;) = 7, (f;) foralla, , <j < a;,

7, (a;) =0forall j > a,, (

d
S(Bp, 11 ...,ﬂbi;n,r_)) S Bt i T T)

and7_(y;) =0foralli=1,...,¢

! ) ! - (7.13.8)

(a; - a;y)!) 2"% (n - ay,)!

T

where we set 7, (a, 1) = 0 in (7.1.3.6).

For (7.1.3.1) and (7.1.3.3), we do not need X or 7, t_, 7 to be self-dual.

The formulae (7.1.3.1) and (7.1.3.3) were originally due to Joyce [85, Theorem 5.2], under a

slightly different setting. The self-dual versions (7.1.3.2) and (7.1.3.4) are new.

The coefficients (7.1.3.5)—(7.1.3.8) are combinatorial, and are defined whenever 7, are maps

from the set C = {a; + -+ + a; | 1 < i < j < n} of symbolic sums to totally ordered sets T,

such that 7, (y;) < 7,(y2) implies 7, (y;) < 7,.(y; + y2) < 74(y2) whenever yy,y,,y1 + 2 € C,

and similarly for 7_. For (7.1.3.6) and (7.1.3.8), we also require distinguished elements 0 € T,.

Proof. The O-stratifications of 255(z,) and 5% (r,) defined by 7, and 7_ give the relations

D8] = Y XS ()] e (X8 (1], (7.13.9)
n>0; ap,..,a, € (L) \ {0}:
a=o + -+ a,
To(ey) = -+ = 1o(ay,),
(o) > - > 1, (ay)
(55l = Y X E)]e o [T ()] o [T%(r)],  (7.13.10)

nz0;a,...a, € m,(L)\ {0}, p € m(L*):
O=a, +a) +- +a,+a, +p,

to(ay) = -+ = 1o(at,) =0,

Ti(al) > > Ti(an) >0

where the ‘+’ signs mean that we have a relation for 7, and another for 7_. These are finite

sums by Lemma 3.5.8, and agree with (7.1.3.1)—(7.1.3.2) with 7, 7, in place of 7, T

These relations then imply the relations

(X))l = ), (=D ()] e x [ (10)]
n>0;a,..,a, € (L) \ {0}:
a=o + - +a,,

Tola) = -+ = (@),
(o + - +ao) >t (2 + - +a,)fori=1,..,n-1
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(@)l = Y DS e o (X5 ()] 0 [ (w)] . (713.12)

n=0;a,..a, € (L) \ {0}, p € m(L):
O=a,+a/ +- +a,+a, +p,

to(ay) = - = 7o(a,) =0,

T,(ay+ - +a)>0fori=1,..,n

which agree with (7.1.3.1)-(7.1.3.2) with 7, 7, in place of 7,,7_. Indeed, these can be veri-
fied by expanding the right-hand sides of (7.1.3.11)—-(7.1.3.12) using (7.1.3.9)—(7.1.3.10), then
applying Lemma 7.1.4 below to see that the results are equal to the left-hand sides.

Now, expanding the right-hand sides of (7.1.3.11)—(7.1.3.12) for z, using (7.1.3.9)—(7.1.3.10)
for 7_, then applying Lemma 7.1.4 below, gives the general case of (7.1.3.1)—(7.1.3.2).

To verify the relations (7.1.3.3)—(7.1.3.4), we first substitute the relations (7.1.3.1)—(7.1.3.2),
in (5.5.2.1), (5.5.3.1) for 7_, then substitute in (5.5.2.2), (5.5.3.2) for 7,. Keeping track of the

coefficients gives the desired relations. [

7.1.4. Lemma. For symbols a;, ..., @, and maps ty, 7y, 75 from {a; + - + a; | 1 <i < j < n} to

totally ordered sets with distinguished elements 0, we have the identities

m
S(aty, oo, @y Ty, T3) = Z S(Pis s Bms Tos 1'3)-HS(a’ai_lﬂ,...,aai;rl,fz) , (7.1.4.1)
i=1
d d
SS (0(1,...,0(”;’['1,1'3) = Z SS (ﬂl,...,ﬁm;fz,f?’)‘

m
d
(H S(g, 415> Ua3 T1 1'2)) Sy, 115 03 Ty ), (7.1.4.2)
i=1

where

m210=qgy<--<a, =n,
Q=19 (fr, Bm) ,

Bi = Ug,_ 41t + g for all i

mz20,0=qgy<--<a,s<n,

0 =1 (By e\ B)

Bi =g 41+ +a, foralli
Proof. The identity (7.1.4.1) was proved in Joyce [85, Theorem 4.5]. The identity (7.1.4.2)

follows from (7.1.4.1) and the fact that SSd(al, s Oy Ty rj) = S(ay, ..., ay, ;T Tj), where

we set 7;(@j + - + @, +oo) =0foralliandall1 <j<n+1 [

7.1.5. Weakening the assumptions. In Theorem 7.1.3, we can slightly weaken the assumptions

by allowing 7, to be non-permissible, so that 25’ (z,) can be non-quasi-compact, and we add
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the extra assumption that the sums (7.1.3.11)—(7.1.3.12) are locally finite for all classes @, 6. In
this case, the relations (7.1.3.9)—(7.1.3.10) are always valid as locally finite sums, and the proof

shows that the relations (7.1.3.1)—(7.1.3.4) still hold as locally finite sums.

7.2 An anti—symmetric version

7.2.1. In this section, we rewrite the relations (7.1.3.3)—(7.1.3.4) in terms of anti-symmetric
product operations, instead of the operations * and ¢. This will be useful in writing down
wall-crossing formulae for Donaldson-Thomas invariants in §7.3 below.

Asin §7.1.1, let X be a self-dual linear stack with quasi-compact filtrations.

7.2.2. Lie algebras and twisted modules. The motivic Hall algebra MI(') can be seen as a Lie

algebra using the commutator

[a,b]=axb—-b~*a. (7.2.2.1)

This was considered in Joyce [82, §5.2]. It is equipped with a contravariant involution (-)",
meaning that [a",b"] = [b, a]" for a,b € M(Z'), which follows from Theorem 5.4.4.

We define a similar anti-symmetric operation ©: M(Z') ® M(X Sd) - M(Z Sd) by
aOm=aom—-a’om, (7.2.2.2)

where o is the multiplication in the motivic Hall module. This does not define a Lie algebra

module, but a twisted module, in that it satisfies the relations

-a'Om, (7.2.2.3)

alOm

aQbOm)-bV(aVm)=[a,b]Om-[a",b]Vm. (7.2.2.4)

We see (7.2.2.4) as a Jacobi identity twisted by the contravariant involution of the Lie algebra,
giving the extra term [a", b] O m.
Note that over @, a twisted module in this sense is equivalent to a usual module for the

Lie subalgebra consisting of elements a with a” = —a, with the action a - m = (1/2)(a © m).

7.2.3. Theorem. The relations (7.1.3.3)—(7.1.3.4) can be written only using the Lie bracket [—, —]

and the operation O, without using the products * or o.
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More precisely, using the notations of Theorem 7.1.3, we have the relations

e(t)= Y, Ulay ot t) [ (g (th) €, (t) ] o |€g ()] (7:23.2)

nzo0;a,..,a, € (L) \ {0}:
a=oa + - +a,

d ~rsd
' (r) = D TNy Camys e g e Qg T4 T ¢ (7.2.3.2)

nz0;mg..,m,>0;
sd
Oyt e s Qs oee 5 Cpgs o s Ay € (L) \ {0} p € o (X))

> Ynmy

_ v v v v
9 - (al,l + al,l + o+ al,ml + al,ml) + ot (an,l + an,l + ot an,mn + an,m”) + p

[[60!1,1(T+)’ ], €atym, (T+)] Q.- Q [[6an,1(7+): ]: €ty m, (T+)] © ef)d(f+) )
where U(...) and ﬁSd(...) are certain combinatorial coefficients, whose choices are not unique.

Here, the formulae (7.2.3.1)—(7.2.3.2) are just (7.1.3.3)—(7.1.3.4) with the terms grouped dif-
ferently, and this theorem is essentially a combinatorial property of the coefficients U(...)
and USd( ...) stating that such regrouping is always possible. The non-uniqueness of the coef-
ficients is due to relations in the Lie brackets and the twisted module operation, such as the
Jacobi identity and (7.2.2.3)—(7.2.2.4).

The linear case (7.2.3.1) was shown in Joyce [85, Theorem 5.4]. The self-dual case (7.2.3.2)

is a main result of this thesis, and its proof will be given in Appendix C.

7.3 Wall—crossing for Donaldson—-Thomas invariants

7.3.1. In this section, we prove wall-crossing formulae for our self-dual Donaldson-Thomas
invariants defined in §5.6 and §6.3, using the wall-crossing formulae for epsilon motives estab-
lished in Theorems 7.1.3 and 7.2.3. A key ingredient is the motivic integral identity for Behrend
functions, which we discuss in §7.4 below, generalizing the integral identities in the linear case
of Kontsevich and Soibelman [99, Conjecture 4], proved by Lé [104], and Joyce and Song [89,
Theorem 5.11].

Throughout, let K be an algebraically closed field of characteristic 0, and let 2" be a self-
dual (—1)-shifted symplectic linear stack over K, as in §3.7.2. We further assume that the

classical truncation 2 is Nisnevich locally fundamental, as in §6.2.2.

7.3.2. Theorem. Let 7., 7_, 7y be permissible self-dual stability conditions on &', with 7, domin-
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ating both . and t_. Then for any a € ny(Z) and 0 € no(.fl”Sd), we have the wall-crossing

formulae

DT (r.)= Y,  Ulay .. a1y, 7.) Uay, ... ) - DT, (1,) -+ DT, (1),
nz0; a,..,a, € r, (L) \ {0}: (7321)
a=oa + - +a,

d ~rsd

DTy ()= D, Uy @amysoee 5@t s Qo T4 T2) (7.3.2.2)
nz0;mg,..,m, >0;
Apgs e s Qs oo 5 0pgs oo s O € T (L) \{0}; p € (XY

\ Y \ Y
9 = (al,l + al,l + et al,ml + al,m,) R (an,l + an,l + ot an,m,l + an,mn) + p

sd . .
&% oy g, - s Qi mys e 3 Opts e s O p) -

(DTy,, (7.) -+ DTy, (z,)) - (DTq, (z,) - DT, (7,))- DTy (r,),

where the sums contain finitely many non-zero terms, the coefficients U (...), Usd(.) Q are
defined in Theorem 7.2.3, and the coefficients ¢(...), ESd(...) € Z are defined in §7.3.6 below.
If, moreover, X is equipped with an orientation data oq or a self-dual orientation data

(0g, 0qsd), then we have the wall-crossing formulae

t o t t
DI (r.)= Y, Ul ...apity,7.) L(ay, ..., a,) - DT (z,) - DT ()
n>0, al,,aneno(&")\{O} (7323)
a=a +- - +a,
DTE Yz ) = Y UNays s Gamyi e 3 Gty oo s G 5T40 T2 (7.3.2.4)
nz0;mg,..,m,>0;

s e s Ay e 3y eee s Oy € Ty (L) \ {0} p € Mg ()

\ \ \ \
9 = (al,l + al,l + ot al,ml + c(1,ml) + et (an,l + an,l + ot an,mn + an,mn) + p

sd . . .
L (ay g, ... NSRRI ST S p) -

(DTG (z.) -+ DTGy, (7)) = (DT} (r.) - DTG, (z,))-DI;*(z,)

Un,my,

respectively, where the coefficients L(...), LSd(...) € Z[]Lil/z] are defined in §7.3.6 below.

The theorem will be proved in §7.4.7, using various integral identities that we introduce

in the next section.

7.3.3. Symmetric stacks. The wall-crossing formulae in Theorem 7.3.2 provide a condition for
the Donaldson-Thomas invariants to be independent of the choice of the stability condition.

We say that a (—1)-shifted symplectic stack & is numerically symmetric, if every connected

105



component of Filt(Z') has virtual dimension 0. See the author et al. [30, §4.3] for examples
of stacks satisfying this condition.

For example, if 2 is a self-dual (—1)-shifted symplectic linear stack, then & is numeric-
ally symmetric if and only if vdim 2, p =0foral a,fp € n(X), and & sd i numerically
symmetric if and only if vdim 255" = 0 for all @ € 7,(2) and 8 € 7o (X*Y).

When 2 and 2% are numerically symmetric, the coefficients L(...), £(...) are zero unless
n < 1, and the coefficients LSd(...), ZSd(...) are zero unless n = 0, which follow from their

definitions. This immediately implies the following:

7.3.4. Corollary. In the situation of Theorem 7.3.2, assume that X and 2 are numerically

symmetric. Then the relations (7.3.2.1)—(7.3.2.4) simplify to

DT,(r_) = DT,(z,) , DTS (z_) = DTS (r,) , (7.3.4.1)

DTI;Ot (1) = DTI(‘)I[IOt ( T, ), DTg)ot,sd (r_) = DTI@not,sd ( 7, ). (7.3.4.2)

In particular, if & has quasi-compact connected components, then all the above invariants are

independent of the choice of the stability condition.

Here, the final claim follows from taking 7, and 7, to be the trivial stability condition,
which is permissible when & has quasi-compact connected components.

The remaining part of this section is devoted to the proof of Theorem 7.3.2.

7.3.5. Lattice algebras and modules. Define

Ay = P MY K:Q)-14,., Af= P MK:Q)- A,
aemny () ey ()

where MQ(K ; Q) is the ring of monodromic motives defined in §6.1.2. We define a product *

on Ag, and a Ag--module structure ¢ on Afg?, by setting
Lvdim 25 p/2 L vdim 255 /2

Asd (7.3.5.1)

/1(1 * Ll/2 _p-1/2 CAa+0+aY

Aﬁ:m.loﬁﬁ’ Aa<>l?)d=

for a,fp € 1y(X) and 0 € no(X SCl). The associativity of these operations follow from the
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relations

vdim Xy g +vdim Xy, 5, = vdim Ly 5, = vdim X, g, + vdim Xg, ,

vdim .fl”;’ﬁ + vdim Sl”;‘i},g = vdim .fl”;‘}ie = vdim .fl";"i’ﬁing + vdim .fl”;‘}{ ,

which follow from the derived versions of the associativity diagrams (5.4.4.6) and (5.4.4.8).
The algebra A g is often called the quantum torus in the literature, such as in Kontsevich and
Soibelman [99, §6.2].

The map A, — A,v defines a contravariant involution (-)" of Ag-. We also write a O m =
aom—a’omforae Agandm e Af%‘ni, as in §7.2.2, which gives Af%i the structure of a twisted
module over the involutive Lie algebra Ag, with the commutator Lie bracket.

We also define the numerical versions

Ay= P Q1. Ay= P Q&
aemy () femy(Xsd)
which are no longer equipped with algebra structures, but have a Lie bracket and a twisted

module operation ©, respectively, given by

s Ap] = ()9 Tap vdim 27 - A0 g (7.3.5.2)

— - . sd,+ -

do © 25 = (m1)VImTed L ydim IS A8 g, v (7.3.5.3)
By Lemma B.3.4 below, we have vdim 25, = —vdim 2, 5 and vdim ;‘3”5 = —vdim ;‘?g““,

establishing (7.3.5.2) and (7.3.5.3) as limits of (7.3.5.1) as L'/ — —1.

7.3.6. Coefficients. We can now define the coefficients L(...),LSd(...), etc., which appear
in (7.3.2.1).
For ay, ..., a, € my(Z'), we record the coefficients of the Lie brackets in Ag- and Ay as
([ [Aaps Ay s - 1 Ag, 1 = Lag, oo @) - Agsiar, (7.3.6.1)

([ [y Agyds o LAy 1= €y, o) - Ay st (7.3.6.2)

where L(ay, ..., a,) € Z[]Lil/z] and é(ay, ..., a,) € Z.

Similarly, for a1, ..., @5 3 Ap1s s A, € T(X) and p € Tto(fl”Sd), we also record
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the coefficients in

(Lo DAy Ay, b o D Ay 19 O (L [y o Ay b 1o Ay 19 A5

> 0nmy,

_ rsd X . . sd
=L (0(1,1, . Oll,ml, e al’l,l’ cee s an’mn, p) . Aal,l+a1\/,1+"'+an,mn+ar\l/,mn+p 5 (7.3.6.3)

(L Dy Ay, b o 1 Ay 19 O (L Dy o Ay b o 1 Ay 19 A5

_ psd .. . ysd
= O(a115 s Ay g5 oo 5 Apgsoon s Ay 5 P) ’1‘11,1+Of1v,1+“'+an,mn+anv,mn+p , (7.3.6.4)

where L*%(...) € Z[L*"/?] and £%(...) € Z.
These coefficients only depend on the numbers vdim 2, 5 and vdim sht for a, f €

1y(Z) and 0 € 7y (T sdy, They have straightforward explicit expressions, which we omit.

We have the relations £(...) = L(...)|1/2__, and £ = LSd(...)lml/zz - Also, L(...)

and L*4(...) are symmetric Laurent polynomials in LL'/2, in that they are invariant under the

transformation L2 — I,"1/2,

7.4 Integral identities

7.4.1. The motivic integral identity. A crucial ingredient in proving wall-crossing formulae
for Donaldson-Thomas invariants, Theorem 7.3.2, is the motivic integral identity for the mo-
tivic Behrend function, first conjectured by Kontsevich and Soibelman [99, Conjecture 4] in
the linear case, and proved by Lé [104] in that case.

For our applications in the orthosymplectic case, however, we will need the following

stronger and global version of the integral identity.

7.4.2. Theorem. Let X be an oriented (—1)-shifted symplectic stack over K, such that its classical
truncation is an algebraic stack that is Nisnevich locally fundamental in the sense of §6.2.2.

Consider the attractor correspondence
gr ev
Grad(X) «— Filt(X) — L (7.4.2.1)
as in §3.2.3. Then we have the identity
gry o CV*(Vg()t) = ]LVdim FinZ)/2 . V?Sz’[d(ﬂ,ﬁ) (7422)

in Mﬁ(?md(%)), where vdim Filt(X') is the virtual dimension of the derived stack d?ilt(.fl"),
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seen as a function 1y(Erad(X')) = ny(Filt(X)) — Z.

Here, the statement of the theorem treats & as a classical stack via the classical truncation,

except when taking the stack il (). The proof of this theorem is deferred to Appendix B.

7.4.3. We will use Theorem 7.4.2 to prove Theorem 7.3.2 in the following way. Let & be as
in Theorem 7.3.2, and suppose that we are given a self-dual orientation data (0g-, 0¢sd) on .

Then Theorem 7.4.2 implies that

. + A A

v;ot = V;ot — ]L—lemefl"a,ﬂ/z -gr o eV*(V;Ot) in MP(&"@ x 3/"/3) , (7_4‘3‘1)
: sd,+ " . ~ A

yPot g ot = VM Zep /2 gr o ev* (vBU)  in MM, x 25, (7.4.3.2)

where a, f € 1,(Z) and 0 € (L Sd), and the compositions are through Mﬁ(&” ;)ﬁ) and

I@[[ﬂ(fl" ;fl(f), respectively. These identities imply the relations

(/ a- vg}"t> : (/ b- vg(’t) — VM e /2, / (a*b)- v, (7.4.3.3)
Z, Z Z

a+f
. sd,+
(/ a- vggg) . (/ m- Vgg}) = L vdim T /2-/ (aom) vy, (7.4.3.4)
'%.a 5[5(1 g‘;‘i@+av

where a € M (X Q), b € Mg (X;Q), and m € ch(.fl”gd;Q), and the subscripts ‘qc’
indicate quasi-compactly supported motives. These follow from identifying both sides of each
relation with the integrals

. +
]L—vdlmfl”,),,/;/2 . [%+ gr*(a ®b)- eV*(V,IE?Ot) s
a,p

: sd,+
I Vdim 2o /2 / ) gri(amm)-ev* (ved),
o

respectively, using the projection formula (5.2.3.1). The relation (7.4.3.3) was first described by

Kontsevich and Soibelman [99, Theorem 8].

7.4.4. The numeric integral identity. To prove the numeric wall-crossing formulae (7.3.2.1)-
(7.3.2.2), we will need a corollary of Theorem 7.4.2, which is an integral identity for the numeric

Behrend functions.

We first introduce a notation used in the statement of the corollary. For a graded point
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Yy € Erad(X)(K), write

Plgr (1) = (+/Gm > Fil(D)) \ {s£()} .

()
where the map /G, - Zrad(Z) is given by the tautological G,-action on y. The K-point
sf(y) is closed in the fibre product, and {sf(y)} denotes the corresponding closed substack.
The space P(gr~'(y)) can be seen as the projectivized space of filtrations of a given associated

graded point.

7.4.5. Theorem. Let X be an oriented (—1)-shifted symplectic stack over K, such that its classical
truncation is an algebraic stack that is étale locally fundamental in the sense of §6.2.2.

Let y € Grad(Z)(K) be a graded point, and let y be its opposite graded point, given by
precomposing with the morphism (=)' : %/G, — /Gy,

Then we have the identities
K i i) —rank™ (L )
Vo (tOt(y)) — (_1)ran Filt(Z) Isf(y) ) —ran Fill(X)Isf(y) ) . V?md(&")()/) , (7451)

v (ev(9)) dy / v (ev(9)) dx
peP(gr1(y)) peP(gr (7))

= (dim H* (g lsty)) — dimH (L) lsty)) ) - ver (tot(y)) ,  (7.4.5.2)
where rank® = dim H° — dim H'.
This theorem is a generalization of Joyce and Song [89, Theorem 5.11], who considered

the case when X is the moduli stack of objects in a 3-Calabi—Yau abelian category. The proof

is deferred to Appendix B.

7.4.6. In the setting of Theorem 7.3.2, we can also obtain from Theorem 7.4.5 numerical in-

tegral relations analogous to (7.4.3.3)—(7.4.3.4),

/5[ ﬁ (1-L)-[a,b] v dy = (-1)"vdimZay vdim X, g -

yA

a

(1—]L)-a-v55d)(>~(/&" (1—]L)~b-1/5[d)(>, (7.4.6.1)
B

: sd,+
(@O m)-vgsady = (-1)V4mZap ~Vdim£l";flg)+ :

(/ (1_]14)'(1'1/5[61)()'(/ m-v&»sdd)(), (7.4.6.2)
Z, a3

a

sd
a+0+aV
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provided that the motives a, b, m are chosen so that the integrals on the right-hand sides are
finite, that is, they lie in e (K; A) as in §6.1.3 before taking the Euler characteristics. These
identities do not require orientations on 2" or & 4 The identity (7.4.6.1) was proved by Joyce
and Song [89, Theorem 5.14] in the setting of Calabi-Yau threefolds.
To prove them, we use a similar argument as in §7.4.1. Namely, for (7.4.6.1), we identify
the left-hand side with
X((1—1L)2-(—/ gr*(aﬁb)-ev*(l{gx)+/
]P’(Sl";’ﬁ) ]P’(Sl"g,a)
+ /g . (-1)-(amb)- (L7 T _ W ) ) @ (vo) d (7.4.6.3)
axLp

gri(famb) - e‘v*(vucx)))

where P(X,5) = (Xgp \ sf(Xy x Xp))/Gy,, with the Gy -action given by choosing an
identification of p with a component of Filt(2'), and P(Z /}"a) is defined similarly, using
the opposite component. We denote by gr, ev the maps gr, ev for 5,0(, and by L, the relative
cotangent complex of X pover Xy x I p. We regard h' (Lg) = dim H' (Lgr) as a constructible
function on & 4, which can be pulled back to 2, x 5. The factors L™ (") and 17" (e
are due to the difference of stabilizer groups in 2, p and X, x L. Applying (7.4.5.2) turns

(7.4.6.3) into
/g; Y (1-1)*-(amb)- (h'(Ly) - h*(Lg) + h*(Lg) = h'(Lg))- @ (vg) dx . (7.4.64)
a*4t B

where we also replaced I h L) _ k' (Lg) by (1 -1L) - (hl(]Lgr) - hl(]Lg—r)), as they are

equal modulo (1 — IL)?, so this will not affect the integral. By Lemma B.3.4, the alternating

sum in (7.4.6.4) is equal to —vdim & 4. Finally, by (7.4.5.1), we have &" (vg-) = (—1)Vdim‘%;’/” .

(vq ® vq ), which identifies (7.4.6.4) with the right-hand side of (7.4.6.1).

The identity (7.4.6.2) can be proved analogously.
7.4.7. Proof of Theorem 7.3.2. Consider the integration maps
@2 -1 [ () B Ml @30) — Ag
[ v M@ i) —

where the generators A, and /lzd record which components the motives are supported on. The

relations (7.4.3.3)—(7.4.3.4) imply that these maps are algebra and module homomorphisms.
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Similarly, the relations (7.4.6.1)—(7.4.6.2) imply that the integration maps

/g(l—lL)-(—)-vm: M(Z:0) — Ag
v Mi(ri@) — A

are Lie algebra and twisted module homomorphisms, where the superscripts * indicate sub-

spaces of motives for which the integrals are finite. It follows from (7.4.6.1)—(7.4.6.2) that these

subspaces are a Lie subalgebra and a sub-twisted module for this subalgebra, respectively.
The theorem is now a direct consequence of Theorem 7.2.3, by applying the above integ-

ration homomorphisms to the relations (7.2.3.1)-(7.2.3.2). [

7.5 Wall-crossing in derived categories

7.5.1. We now discuss wall-crossing formulae for linear and orthosymplectic Donaldson-
Thomas invariants when changing Bridgeland stability conditions in the derived category.
These wall-crossing formulae are similar to those in Theorem 7.3.2, but since changing
the Bridgeland stability condition also changes the heart of the derived category, the theorem
does not directly apply. However, we show that if the stability condition is not changed by too
much, as measured by the metric on the space of stability conditions, then the wall-crossing

formulae still hold.

7.5.2. The setting. Throughout, we fix an algebraically closed field K of characteristic 0.

Let € be a K-linear dg-category of finite type, and let 2 be the derived moduli stack of
objects in €, as in Toén and Vaquié [158, Theorem 3.6]. We assume that € is equipped with
a self-dual structure, which induces an involution of & .

We fix a surjection K (%) — T to a finitely generated free abelian group I', as in §2.4.2, and
consider the space Stabp (&) of Bridgeland stability conditions as in §2.4.3. It is equipped with
an involution as in §2.4.4.

We assume given an open subset Stabp.(%) C Stabp(%), invariant under the involution,

satisfying the following conditions:

« For any stability condition 7 = (Z, %) € Stabp(€), and any interval J C R such that

112



J N (J +1) = @, there exists an open substack
L(t;])c X (7.5.2.1)

consisting of objects in Z(J), which is a derived linear stack in the sense of §3.7.2.
Moreover, 7 defines a permissible stability condition on 2'(7; J) in the sense of §3.5.

« Support property. For any r € R, there are only finitely many classes a € I such that
there exist 7-semistable objects in & of class «, and |Z (a)| < r.

Denote by Stab;’Sd(%) C Stabp (%) the fixed locus of the involution, which is a real analytic

manifold.

In particular, if 7 € Stab;’Sd(%), and J ¢ Risanintervalwith ] = —Jand Jn(J+1) = @,
then 2 (r; J) is a self-dual derived linear stack.

Finally, we assume that € is equipped with a Calabi-Yau structure of degree 3, preserved
by the self-dual structure. By Brav and Dyckerhoff [21, Theorem 5.6], this also defines a (—1)-
shifted symplectic structure on &, preserved by its involution, establishing the derived linear
stacks & (7; J) as (—1)-shifted symplectic linear stacks.

In §8.3 and §8.4 below, we will verify these conditions for some choices of € and Stab(%).

7.5.3. Theorem. Let € be as above, and lett = (Z,P), 7 = (Z,P) € Staby(€) be Bridgeland

stability conditions.

(i) Ift,7 can be connected by a path of length < 1/4 in Staby.(€), then for any class « € T
with Z(a) # 0, the wall-crossing formula (7.3.2.1) holds.
(ii) Ifr, 7 e Stab;’Sd(%), and they can be connected by a path of length < 1/4 in Stab;’Sd(%),

then for any class a € 1% with Z(a) € Ry, the wall-crossing formula (7.3.2.2) holds.

Here, the length of a path is defined as the supremum of sums of distances over all subdivisions.
In(7.3.2.1)—(7.3.2.2), we use 7, T in place of T, 7_. The sets y(X'), Tto(fl”Sd) in the formulae are
defined using & = X (t;]t — 1/4,t + 1/4[), where t is a phase of Z(a) in (i) ort = 0 in (ii).
The coefficients U (...), USd(...) are defined using the total order on phases in |t — 1/2,t + 1/2[.

Moreover, if we are given an orientation data on X (t;]t — 1/2,t + 1/2[), or a self-dual
orientation data on X (7;1-1/2,1/2[), respectively, then (i)—(ii) also hold for the motivic versions

(7.3.2.3)—(7.3.2.4), where a has phase t.
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Proof. To avoid repetition, we prove (i)—(ii) using a common argument.

We first prove the following claim: For fixed 7 and a fixed class a or 0, there exists § > 0
such that the wall-crossing formulae hold whenever d(z, 7) < §, with the sets 1y (X"), o (X SCl)
defined using & = 2'(7;t), and we may take 7, 7_ in the formulae to be either 7,7 or 7, 7.

Write of = 9 (t). Let K C I be the set of classes of 7-semistable objects in €, and C C K
the set of classes realized by objects in &.

We choose 0 < § < 1/8 such that K n Z_l(V45(e25 -Z(a))) c C, where
Vu(z) = {re"? o< r<lzl. gl <u} c C.

If p e I'is the class of a 7-Harder—Narasimhan factor of a 7-semistable object of class «, then
Z(p) mustliein V,5(Z («)). By the choice of §, all such classes f have phase ¢, and are hence
equal to a. This implies that all 7-semistable objects of class a are r-semistable and are in /.

Similarly, we may assume that all 7-semistable objects with phase in [t — §,t + ] and
norm < e’ - |Z ()| are in /. Indeed, such objects have r-phase in [t — 2§, + 28] and 7-norm
< €% -|Z(a)], and this property holds by the choice of §.

It follows that for any object in & of class «, its 7-Harder—Narasimhan factors also belong
to &. In other words, 7 almost defines a stability condition on 2'(7;¢) in the sense of §3.5.4,
except that the @-stratification is only defined on &' (7;t) g for classes f € C with [Z(B)] <
|Z (a)]. However, this is enough to prove wall-crossing for «, as the other classes are irrelevant
in the argument. The claim thus follows from Theorem 7.3.2, where 7 corresponds to trivial
stability on 2 (7; ).

We now turn to the original statement of the theorem. Choose a path (7, = (Z;, %)) e[0,1]
of length ¢ < 1/4, with 7, = 7 and 7; = 7. By the compactness of [0, 1], our claim implies that
we can choose 0 = s, < --- < s, = 1 such that there are wall-crossing formulae between each
7, and 7, . We may thus apply (7.3.2.1), etc., to express DT, (), etc., in terms of invariants
for 7, , and so on, finally in terms of invariants for 7, = 7. In each step, the involved invariants

DTg(7,,) must satisty that Z(f) lies in the bounded region
(ré | r>0,l¢p—tI<}n{Z(a)-re™®|r>0,|p-t|<e}cC,

so that the sums (7.3.2.1), etc., can not only be written using some 7y (2 (7,5 t;)) and its self-
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dual version, as in the argument above, but also using the larger set 7y(X (7; ]t — 1/2,¢ +
1/2[)) and its self-dual version, where the coefficients U (...), USd( ...) are zero for the newly
introduced terms. The support property of 7 ensures that only finitely many non-zero terms
appear in each step.

It remains to prove that the coefficients U(...), USd(...) respect composition of wall-
crossing formulae, so that the wall-crossing formulae obtained from the above process are
equivalent to (7.3.2.1), etc., from 7 directly to 7. This follows from the fact that the coefficients

S(...), SSd( ...) respect composition, which was proved in Lemma 7.1.4. [
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Chapter 8
Applications

In this chapter, we study orthosymplectic Donaldson-Thomas theory in several concrete ex-
amples, based on the settings introduced in Chapter 4.

In §8.1, we study Donaldson-Thomas invariants counting self-dual representations of self-
dual quivers with potential; in §8.2 and §8.3, we study orthosymplectic Donaldson-Thomas
invariants for curves and threefolds. Finally, §8.4, we define a version of Vafa-Witten invari-

ants counting orthosymplectic Higgs complexes on surfaces.

8.1 Self-dual quivers

8.1.1. In this section, we continue the discussion of self-dual quivers and their self-dual repres-
entations from §4.1, and study their orthosymplectic Donaldson-Thomas invariants. We also
provide an explicit algorithm that computes these invariants for any self-dual quiver, provided
that the potential is zero.

Throughout, we work over an algebraically closed field K of characteristic zero.

8.1.2. Donaldson-Thomas invariants. For a quiver Q, a potential W, a slope function 7 on Q,

and a dimension vector & € N9 \ {0}, we have the Donaldson-Thomas invariants
DT,(r)€Q, DT;*(r) e MMK;Q),

defined as in §5.6.3 and §6.3.1, for the (—1)-shifted symplectic linear stack 2 1, defined in
§4.1.7. These invariants were studied by Joyce and Song [89], Kontsevich and Soibelman [99],

and others.
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When Q is equipped with a self-dual structure and W, t are self-dual, we have the self-dual

Donaldson-Thomas invariants
DT (r) e @,  DTF*"Y(r) e M*(K;Q),

defined as in §5.6.4 and §6.3.1 for the self-dual (—1)-shifted symplectic linear stack 2 yy.
These are new constructions in this thesis.

When the potential W is zero, we have 25 o = T[-1]1Z o asin §4.1.7, and the discussions
in §5.6.5 and §6.3.2 apply, which provide more straightforward formulae for the Donaldson-

Thomas invariants.

8.1.3. Wall-crossing formulae. For a self-dual quiver Q with a self-dual potential W, The-
orem 7.3.2 applies to the self-dual (—1)-shifted symplectic linear stack 2y, proving wall-
crossing formulae for the DT invariants defined in §8.1.2. We are allowed to take 7, 7_ in the
theorem to be any two self-dual slope functions, since we can take 7, in the theorem to be the

trivial stability condition, which is permissible.

8.1.4. An algorithm for computing Donaldson-Thomas invariants. For a self-dual quiver Q,
in the case when the potential W is zero, we describe an algorithm for computing all the
invariants DT, (r), DTy (1), DT4(r), and DT} (7 ), for any self-dual slope function 7.
First, we compute the motives of &, = V,,/G, and 3¢ = V§4/G59, asin (4.1.5.1)-(4.1.5.2),
in M(K). We use the relation (5.2.6.1) for the vector bundles &, — */G, and X3¢ — %/G§¢

and the motives

n-1
[*/GL(n)] = g > (8.1.4.1)
n-1
n 1
n—1
[+/O(2n + 1)] = [+/Sp(2m)] =L - ] | ﬁ , (8.1.4.3)
i=0

where the linear and symplectic cases follow from Joyce [84, Theorem 4.10], as these are spe-

cial groups in the sense there, while the orthogonal cases are due to Dhillon and Young [53
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Theorem 3.7]. We then have

[SX V%’lot — ]L—(dimVa—dimGa)/Z . [g-a] — ]L(dimVa+diInGa)/2 . [*/Ga] , (8144)
/ d ymol - (dimVi-dimGi)/2 (5] = L [im Vi +dim Gy /2 (/G5 (8.1.4.5)
g‘s

0
where [*x/G,] and [*/ng] are products of the rational functions in (8.1.4.1)—(8.1.4.3).

Next, we compute the invariants DT3°'(0) and DTZd’mOt(O) for the trivial slope function 0.
These can be obtained from (6.3.2.1)-(6.3.2.2) by substituting in (5.5.2.1) and (5.5.3.1), then
using the relations (7.4.3.3)—(7.4.3.4) to reduce to the known integrals (8.1.4.4)-(8.1.4.5). This
process also shows that DTIOI{10t (0) and DTtsgd’mOt (0) are rational functions in L'/2 and evaluating
them at L'/? = —1 gives the numerical invariants DT, (0) and DTZd(O).

Finally, for a general self-dual slope function 7, we may apply the wall-crossing formulae
(7.3.2.1)=(7.3.2.4) to compute the invariants DT, (7), DTZd(T), DT?Ot(T), and DTSQd’mOt(T) from
the case when 7 = 0, which is already known.

As an alternative to the final step, we may first compute the integrals f&,;s (1) veet and
/&»gd,SS(T) vl using the relations (7.1.3.11)~(7.1.3.12), together with (7.4.3.3)~(7.4.3.4) to reduce
to the known integrals (8.1.4.4)—(8.1.4.5), then repeat the process above to obtain the invari-
ants DT2°'(r) and DTZd’mOt(T), which are rational functions in L'/?. We then evaluate them
at L'/ = —1 to obtain the numerical invariants DT, (r) and DTzd(T).

The author has implemented the above algorithm using a computer program, and some

numerical results are presented below.

8.1.5. Example. The point quiver. Consider the point quiver Q = (s), with a single vertex and
no edges, with the trivial slope function 7 = 0. There are two self-dual structures on Q, with
the signs +1 and —1 assigned to the vertex, respectively.

We have the moduli stack 25 = [],5*/GL(n), and its fixed loci Sl”éd = 1,50 */0(n)
or [],5,*/Sp(2n), depending on the sign of the vertex. As in Joyce and Song [89, Ex-

ample 7.19], the usual Donaldson-Thomas invariants of Q are given by
1
DTAn—l = ?

for all n > 1, where the subscript A, _; refers to the Dynkin type of GL(n).
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Based on explicit computation following the algorithm in §8.1.4, we conjecture that
DT} =DTg = (-1)" (_1/4> . DTy =(-1)" ( 1/4> ,
n n

where the subscripts B,,, C,,, and D,, refer to the Dynkin types of O(2n+1), Sp(2n), and O(2n),
respectively. Equivalently, we have the generating series

>, d" DTy =Y q" DI, =(1-)™/*, > ¢"-DTy =(1-9"*.

n=0 n=0 n>0
We expect to prove this conjecture in a future paper [33], and we expect that the coincidence of
the type B and C invariants here should be related to the fact that these groups are Langlands

dual to each other.

8.1.6. Example. The A; quiver. Let Q = (+ = +) be the quiver with two vertices and two
arrows pointing in the same direction, called the A; quiver. Consider the contravariant invol-
ution of Q that exchanges the two vertices but fixes the edges. We use the simplified notation
Aﬁ"v, where u, v are the signs in the self-dual structure. For example, AT’H means that we
take the sign +1 on all vertices and edges. Note that both vertices must have the same sign.
We use the slope function 7 = (1, -1).
Based on numerical evidence from applying the algorithm in §8.1.4, we conjecture that we

have the generating series
( (1-q)'"

(1- ql/z ]L—1/2)(1 _ q1/2 ]L1/2)

an/z.Dngf;;ft(T) = (1 + q1/2)1/2
1-— q1/2

for A7 " and A7, (8.1.6.1)

for Aj*"and A", (8.1.6.2)

L (1-q)"? for A7 " and A7t . (8.1.6.3)

This example is related to coherent sheaves on P!, as we will discuss in Example 8.2.5.

8.2 Donaldson—-Thomas invariants for curves

8.2.1. We define Donaldson-Thomas invariants counting orthogonal and symplectic bundles
on a curve. These are orthosymplectic versions of Joyce’s motivic invariants counting vector

bundles on a curve, as in 85, §6.3].
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8.2.2. Let C be a connected, smooth, projective curve over C, and fix the data (I, L, s, ¢) as in
§4.2.2. This defines a self-dual structure on Perf (C).
Let 7 = (Z,9) be the Bridgeland stability condition on C defined as in Example 4.2.7,

where we choose the unique element » € H?(C; Q) with Jo @ = 1. Explicitly, we have
s _degL
Z(E) =1 -((1—1 5 >r+d> (8.2.2.1)

for E € Perf(C) with rank r and degree d, so that ch(E) = r + dw. Note that the choices

of L and s do not affect which objects are semistable, although they affect which objects are

self-dual. The subcategory Vect(C) C Perf(C) of vector bundles on C satisfies Vect(C) =
P(1(-1-5)/2.(1 - 5)/2])

8.2.3. The even case. When s is even, the abelian category & (0) consists of objects E[s/2]
for semistable vector bundles E on C in the usual sense, whose rank r and degree d satisfy
d = rdeg L/2. The self-dual objects are such E with isomorphisms ¢: E = Zom(I*(E), L)
with I*(¢)" o ¢ = (-1)*/% - ¢.

In particular, when L = O, semistable self-dual complexes can be identified, up to a shift,
with orthogonal or symplectic bundles on C, depending on whether (—l)s/ 2. =1or -1,
whose underlying vector bundles are semistable in the usual sense.

For each rank r > 0, we have the self-dual Donaldson-Thomas invariants
DT e @, DT¥™ e MYK;Q),

counting semistable self-dual vector bundles of rank r as above, defined as in §5.6.5 and §6.3.2

using the self-dual linear stack 2°(7;0) defined in §4.2.6 with the trivial stability condition.

8.2.4. The odd case. When s is odd, 2(0) consists of objects E[(s — 1)/2] for torsion
sheaves E on C, and the semistable self-dual objects are such E with isomorphisms ¢: E =
R#Zom(I*(E), L[1]) with I"(§)" o ¢ = (—1)(5_1)/2 - €. For each degree d > 0, we have the

self-dual Donaldson-Thomas invariants
DTy, €@, DTL™ e MY(K;Q),

counting these self-dual torsion sheaves, defined similarly as above.

In fact, these invariants do not depend on the choice of L, since choosing a suitable I-
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d dy - d,
o(=2)1] .
™~ 0(2)
@(—1)[1].\\. (-1,-2) (0,-1)| (1,0) (2,1)
@ . . . .
oot Y e fernt | AADY
o > = = Yo 1
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ol N\
6(-2)
Perf (') D’Mod(CQ)

Figure 8.1. An equivalence of categories

invariant open cover of C trivializing L, torsion sheaves supported on the open sets give an
open cover of the moduli stacks, where pieces and intersections do not depend on L. It then

follows from [32, Theorem 5.2.10 (i)] that the invariants do not depend on L.

8.2.5. Example. Invariants for PP'. Consider the case when C = P! and I = idp:. We describe
the invariants in two situations.

When s = 0 and L = Op:, since every vector bundle on P! splits as a direct sum of line
bundles, all semistable vector bundles of slope 0 are trivial bundles. The self-dual abelian
category 2 (0) is thus equivalent to the category of finite-dimensional C-vector spaces, with
one of the two self-dual structures described in Example 8.1.5, depending on the sign ¢. The
DT invariants agree with the ones given there.

When s = 1, invariants for P! are related to Donaldson-Thomas invariants for self-dual

quivers. Indeed, as a special case of Bondal [17, Theorem 6.2], we have an equivalence
®: Perf(P') = D’Mod(CQ) , (8.2.5.1)

where Q is the A; quiver in Example 8.1.6, and ®(E) = (RT(P', E(-1)) = RT(P', E)), with
the two maps given by multiplying with the coordinate functions x,, x; € T(IP*, Op1(1)).

In fact, under the isomorphism ®, the self-dual structure on Perf (]P’l) given by (I = idp:,
L = Opi(-1),s = 1,¢) corresponds to the self-dual structure on D’Mod(CQ) given by the

signs (&, ++) in the notation of Example 8.1.6, as shown in Fig. 8.1. Here, r and d denote the
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rank and degree of a complex on P!, and (dy, d;) is the dimension vector of a representation
of Q. The two-way arrows indicate the dual operation, and the self-dual objects lie on the
vertical axis on the left-hand side, or the horizontal axis on the right-hand side. The shaded
regions indicate the usual heart of DbMod((CQ) and the corresponding heart of Perf(PP').
The right-hand side can also be viewed either as the central charge of 7, or that of the stability
condition on Q given by the slope function (1, —1).

In particular, the Donaldson-Thomas invariants in this case coincide with those in Ex-

ample 8.1.6, and should be given by the conjectural formulae (8.1.6.1) and (8.1.6.3).

8.3 Donaldson-Thomas invariants for threefolds

8.3.1. We define Donaldson-Thomas invariants counting orthogonal or symplectic complexes
on a Calabi—Yau threefold. These invariants are one of the main applications of our theory, and
are an extension of the usual Donaldson-Thomas invariants studied by Thomas [152], Joyce
and Song [89], Kontsevich and Soibelman [99], and many others. We expect our invariants
to be related to counting D-branes on Calabi—Yau 3-orientifolds, as discussed in Witten [163,
§5.2], Diaconescu, Garcia-Raboso, Karp, and Sinha [54], and Hori and Walcher [76].

We also prove wall-crossing formulae for these invariants in Theorem 8.3.3, which relate

the invariants for different Bridgeland stability conditions.

8.3.2. Invariants. Let Y be a Calabi-Yau threefold over C, and fix the data (I, L, s, ¢) as in
§4.2.2, such that either s is even and I preserves the Calabi-Yau structure of Y, or s isodd and I
reverses the Calabi—Yau structure of Y. Let 7 = (Z, P) € Stabo’Sd(Y) be a self-dual Bridgeland
stability condition on Y as in §4.2.6, which always exists in the situation of Example 4.2.7.

Recall from §4.2.6 the derived moduli stacks
X (t;]) C Perf(Y)

of 7-semistable complexes on Y of phase within an interval J ¢ R with |J| < 1, which is a
(—1)-shifted symplectic linear stack, and is self-dual if /] = —J. The assumptions on s and I
ensure that the involution of 2'(7; J) preserves the shifted symplectic structure.

Moreover, the stack 2'(7; J) has an orientation data in the sense of §3.7.4, by Joyce and

122



Upmeier [90, Theorem 3.6]. However, we do not know, in the case when J = — J, if the moduli
stack X (z; J)* of orthosymplectic complexes has an orientation in general.
Given a class ¢ € K(Y) with Z,(a) € Ry, - €™ for some phase t € R, define the

numerical and motivic Donaldson-Thomas invariants
DT,(r) €Q,  DIF*(r) e MYC:Q),

as in §5.6.3 and §6.3.1 for the stack & (7;t) with the trivial stability condition, where we take
the sum of Donaldson-Thomas invariants of connected components of the open and closed
substack ' (7;t), € & (r;t), and we use the orientation of Joyce and Upmeier [90] for the
motivic version. These invariants are not new, and can be constructed from the formalisms of
Joyce and Song [89] and Kontsevich and Soibelman [99].

When t = 0, for each 8 € K Sd(Y) with Z_(0) € R,,, we have the numerical self-dual

Donaldson-Thomas invariant

DT (1) € Q,

defined as in §5.6.4 for the self-dual linear stack 2 (r;0) with the trivial stability condition,
where we sum over connected components of 2'(7; O)Sgd. These are new invariants for Calabi-
Yau threefolds, and are one of the main constructions of this thesis.

If one can construct a self-dual orientation data on 2'(7;0) in the sense of §3.7.5, then the

motivic self-dual Donaldson-Thomas invariant DTglOt’Sd(T) will also be defined, as in §6.3.1.

8.3.3. Theorem. LetY be a Calabi—Yau threefold over C. Choose the data (I, L, s, €) as in §8.3.2.
Lett = (Z,P), 7 = (Z,P) € Stab"(Y) be Bridgeland stability conditions.

(i) Ift, 7 can be connected by a path of length < 1/4 inStab’ (Y), then for any classa € K(Y)
with Z(a) # 0, the wall-crossing formula (7.3.2.1) holds.

(ii) Ifr,7 € Stabo’Sd(Y), and they can be connected by a path of length < 1/4 in Stabo’Sd(Y),
then for any class 0 € K*(Y) with Z () e R, the wall-crossing formula (7.3.2.2) holds.

Here, the precise formulations of the wall-crossing formulae are as in Theorem 7.5.3.
Moreover, if we are given an orientation data on X (t;]t — 1/2,t + 1/2[), or a self-dual
orientation data on X (7;1-1/2,1/2[), respectively, then (i)—(ii) also hold for the motivic versions

(7.3.2.3)—(7.3.2.4), where a has phase t.
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Proof. This is a special case of Theorem 7.5.3. [

8.3.4. Generic stability conditions. Following Joyce and Song [89, Conjecture 6.12], we say
that a stability condition 7 as above is generic, if forany a, f € K(Y) with Z(a) = AZ(f) # 0
for some A € R.,, we have the numerical condition vdim ' . g =0.

Similarly, when 7 is self-dual, we say that it is generic as a self-dual stability condition, if it
is generic as above, and for any @ € K (Y) of phase 0 and 6 € K*4(Y), we have vdim & ;%Jr = 0.

By the first part in the proof of Theorem 8.3.3, combined with Corollary 7.3.4, we see
thatif 7 € Stabo’Sd(Y) is generic, then for each class « or 8 as in Theorem 8.3.3, there exists
d > 0, such that the invariant DT (7) or DTsed(T) does not change if we move 7 inside its

§-neighbourhood. Moreover, this also holds for the motivic versions DTZ°'(r) or DTgmt’Sd(r),

where the self-dual version requires a self-dual orientation data.

8.3.5. Expectations on deformation invariance. We expect that the numeric version of the or-
thosymplectic Donaldson-Thomas invariants, DTZd(T), should satisty deformation invariance,
analogously to Joyce and Song [89, Corollary 5.28] in the linear case, that is, they should stay
constant under deformations of the complex structure of the threefold Y. However, we have
not yet been able to prove this, as it does not seem straightforward to adapt the strategy of
[89] using Joyce—Song pairs to our case, and further work is needed.

We do not expect the motivic version, DTsed’mOt(T), to satisfy deformation invariance.

8.4 Vafa—Witten type invariants for surfaces

8.4.1. We construct a motivic version of orthosymplectic analogues of Vafa—Witten invariants
for algebraic surfaces, studied by Tanaka and Thomas [149; 150], Maulik and Thomas [116],
and Thomas [153]. We define our invariants for surfaces S with K¢ < 0.

Our invariants count orthosymplectic Higgs complexes on a surface introduced in §4.3, gen-
eralizing the notion of G-Higgs bundles for G = O(n) or Sp(2n).

Via the spectral construction, these invariants can be seen as a version of orthosymplectic
Donaldson-Thomas invariants in §8.3, for the non-compact Calabi-Yau threefold K3, the total

space of the canonical bundle of the surface S, with an involution that reverses the fibre dir-
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ection.

8.4.2. Invariants. Let S be an algebraic surface over € with Ky < 0, equipped with the data
(I,L,s,e) asin §4.3.2, and let 7 € Stabo’Sd(S ) be a permissible self-dual Bridgeland stability

condition. Recall from §4.3.4 the derived moduli stacks
Z(t;t) C Higgs(S)

of r-semistable Higgs complexes of phase t, for t € R, which is a (—1)-shifted symplectic
linear stack, and is self-dual if ¢ = 0.
For aclass @« € K(S) with Z(a) # 0Oor 0 € KSd(S) of phase 0, define the Vafa—Witten

type invariants
vw, (1) €Q, szed(r) €EQ

counting semistable Higgs complexes of class a or semistable self-dual Higgs complexes of
class 0, as the Donaldson-Thomas invariants in §5.6 for the stack Z°(7;t) equipped with the
trivial stability condition, where ¢ € R is a phase of Z(a) or ¢t = 0 for 0.

Moreover, since # (r;t) and #Z (t; 0)Sd are (—1)-shifted cotangent stacks, they come with
canonical orientations, which define an orientation data on #'(7; t) and a self-dual orientation

data on #'(7;0). We use them to define motivic Vafa—Witten type invariants
vwiot(r) | ng“’t’Sd(r) e MY(C; Q) .

8.4.3. Wall-crossing. We have the following theorem stating the wall-crossing formulae for

our Vafa—Witten invariants, which is analogous to Theorem 8.3.3.

Theorem. Let S be a surface with K < 0, and choose the data (I, L,s,¢) as in §4.3.2. Let

t,7 € Stab’(S) be Bridgeland stability conditions.

(i) Ift, 7 can be connected by a path of length < 1/4 in Stab’(S), then for any class a« € K(S)
with Z(a) # 0, the wall-crossing formulae (7.3.2.1) and (7.3.2.3) hold for the invariants

vw, (=), vwr° (=) when changing between r and 7.

o,sd

(ii) Ifr,7 € Stab " (S), and they can be connected by a path of length < 1/4 in Stabo’Sd(S),

then for any class 0 € K*4(S) with Z(0) € R, the wall-crossing formulae (7.3.2.2) and

(7.3.2.4) hold for the invariants szd(—), VW?Ot’Sd(—) when changing between T and 7.
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Here, the precise formulations of the wall-crossing formulae are as in Theorem 7.5.3.
Proof. This is a special case of Theorem 7.5.3. [

8.4.4. The case of K3 surfaces. We now specialize to the case when S is a K3 surface or an

abelian surface. In this case, for any E, F € Perf(S), we have the numerical relations

rkExts(E, F) = tkExty(F, E), (8.4.4.1)

rk Ext(E,ID(E))% = rk Exts(ID(E), E)*2 , (8.4.4.2)

where ‘rk’ denotes the alternating sum of dimensions, and (—)Zz denotes the fixed part of the
involution ¢ — ().
These relations imply that 2 and & d are numerically symmetric in the sense of §7.3.3, and

therefore, by Corollary 7.3.4 and Theorem 8.4.3, the invariants vw, (=), vw0(=), vwt(-),

and vwgwt’Sd(—) are locally constant functions on Stab”(S) or Stabo’Sd(S).
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Appendix A
Proot ot the no-pole theorem

This appendix contains the proof of the no-pole theorem, Theorem 5.5.5.

A.1  Virtual rank projections

A.1.1. To prove the no-pole theorem, we first give a useful alternative description of the virtual

rank projection operators

8 M) — Mm% (@), (A.1.1.1)

& M@t — MB (@Y, (A.1.1.2)

introduced in §5.2.9, in the special case when X is a self-dual linear stack over a field K. This
alternative description will be better suited for interacting with operations in the motivic Hall
algebra and module introduced in §5.4.

The following description is a specialization of the formulation in the author, Ibafiez Nuiiez,

and Kinjo [32, §5.1] to the case of self-dual linear stacks.
A.1.2. The description. Define operations

@=8 : MI)M(X) — M(X), (A.1.2.1)
o = ol M(Z) ® M(Z%) — M(2%), (A.1.2.2)
where ®: & x &' — X is the direct sum morphism, and @ is the morphism defined in

(3.4.1.1). These operations M(Z') into a commutative algebra, and M(Z Sd) into a module

over this algebra, which are similar to but different from the motivic Hall algebra and module.
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For classes & € my(Z) and 6 € my(2*Y), define elements o, (r) € M(Z¥(r)) and

o5 (1) € M(L**(r)) by

n—1
o, (1) = > n (Z2(D)] @ - @ [Xo ()], (A.1.2.3)

n
n>0; a,..,a, €mn,(X)\ {0}:
a=aq + - +a,,

() = - = 7(a,)

oiry= Y (‘;/2> T2E (D] 0 - 0 [TX(D] 0 [T5(r)]. (A12.4)

n20;a,..,a, €ny(L)\{0}, p €m(LY):
O=a,+a) ++a,+a, +p
t(a) = =71(a,) =0

Compare with (5.5.2.1) and (5.5.3.1). The element ¢, (7) was denoted by 8 (7) in Joyce [83,
Definition 8.1].

Then, for any a € 7,(Z’) and 6 € no(&”Sd), and any n € N, we have

AZEEON = =Y o (1)@ o, (r), (A1.25)

n!
a, ..., € 1y(L) \ {0}:
a=a +-+a,,
t(@) = - = 7(a,)

d 1 d
AL =5 Y, s(Deeo, (o). (Al26)
ay, .., € (L) N\ {0}, p € mp(L*Y):
O=a,+a) + - +a,+a, +p

(a) = =1(a,) =0
In particular, we have
aW(LE(0)]) = o,(z) , (A.1.2.7)
aO(L54(0)]) = o5(r) . (A.1.2.8)

A.2  The no-pole theorem

A.2.1. For a linear stack 2, a permissible stability condition 7 on &, and a slope t € T,
where T is the target of the map 7, recall the linear substack 2**(r;t) ¢ & defined in (3.5.4.2).

A key idea of the proof of the no-pole theorem is to consider the linear stack

,%‘SS’(H)(T; t) — H g‘;?’_i_ a (T) (A211)
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of n-step filtrations in *°(r;t), where n € N is a fixed integer, «y, ..., a,, are classes in 7y (')

that are either zero or of slope ¢, and we define

Lot o (1) = X¥(15t) g o C Filt(X¥(1;1)) (A.2.1.2)

..........

as the preimage of R";l «, under the induced map Filt(X>(1;t)) — Filt(X). Note that as

in §3.3.4, we do not choose a canonical connected component of Filt(2"), but any choice will
give the same construction up to a canonical isomorphism.

For a4, ..., a, as above, we also define an element

ol o (1) eM(XET , (1)) (A.2.1.3)

...........

.....

We also use the notation O'((ii))iel (1) for a totally ordered set I with |I| = n and a tuple
(a; € my(X));e; for the element (A.2.1.3).
Similarly, if 2 is equipped with a self-dual structure, and 7 is self-dual, then the linear

stack 2% (£,0) is equipped with an induced self-dual structure, where we identify

Loty () = X" v (7). (A.2.1.4)
For classes a, ...,a, € T (0) u{0}and p € Tco(&”Sd), we also define an element
oM (T) € M(ZSSE (7)) (A.2.1.5)

as in (A.1.2.4) for the self-dual linear stack 2 *?"*V(r;0) and its connected components
d,ss,+

.....

lying in 25", (), the preimage of 25 sd.+ p(7) as in §3.4.4 under the induced map

9zlt(3"sd>55(r;0)) — Filt(2Y), where we write .srsd’“(r; 0) = Z%(r;0)%.

(I),sd
Of)sf

We also denote (A.2.1.5) as o (r), where I is a totally ordered set with |I| = 2n + 1,
equipped with a (unique) order-reversing involution (-)", and the tuple (;);c; satisfies a, €
o (L sd), where 0 € I is the unique fixed element of the involution, and «; € 7y(Z") for

i # 0, with o;v = aiv for all such i, so that the element (A.2.1.5) corresponds to the tuple

(ay, ...,y P,y , ..., @ ) written using the order of I.

A.2.2. Proof of Theorem 5.5.5. We first spell out the proof of (ii), which is the main new result,
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and then explain how to modify the argument to prove (i), which is easier, and is a variant of
Joyce’s no-pole theorem in the linear case.

For ay, ..., ar € 1y(X) \ {0} and p € nO(Sl"Sd), we have

evi([ 50 p (D)) = [T ()] 0 oo 0 [0 ()] o [T325(r)], (A2.2.1)

Loeees AL, P

. d
as motives on 2" 3¢

wrra) +otagra) +p (7), where o is the multiplication in the motivic Hall module.

Recall from (5.5.3.1) the definition of ezd(r), which can now be written as

do = Y (T e, o). (A222)
k>0 ap, ..., € (L) \ {0}, p € my(X*):

O=a,+a) + - +a,+a +p
T(al):"' :f(ak):o

To prove the theorem, it is enough to prove that
™M (esd(r)) =0 (A.2.2.3)

for all integers n > 0.

(n)

By [84, Proposition 5.14], the virtual rank projection 7"’ commutes with the pushforward

ev,. We therefore study the virtual rank projections of [ ;f“;k H(D)]
Write I = {1,...,k,0,k",...,1¥}and J = {1,...,n,0,n",...,1"}, with total orders given
by the written order, and the obvious involutions. Applying (A.1.2.6) to the self-dual linear

stack ) (1,0), we obtain

a (XSS (0)]) =

2”n!.

1 1 I),sd
Z 0((ai),1)iel(f) ©--0 U((ai),n)iel(f) © 0-0(‘1,2),~~~’05k,0,P0,0(T) : (A'2‘2‘4)

@,; € my(X) for (i, j) € (I x J)\ (0,0); po, € 7o (L)

7(a;;) = 0 for all (i, j) with &;; # 0,

ay v = ay; forall (i, j),

o =y foralliel,

P =0y gyt Ay gt Pogs

et #0forallje J\O

We abbreviate each term in the sum (A.2.2.4) as aél)’Sd(r), where a = (; );c1, je is @ matrix
with &gy = po, and write

O'ojd(’l') — (ﬂ_(l),sd)! O'él)’Sd(T) )
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Let A, ; be the set of matrices a that appear in (A.2.2.4) for some choice of a, ..., aj, p. Then
(A.2.2.2) and (A.2.2.4) imply that

n(”)(egd(f)) = # Z Z <_1/2) . cr(zd(r) . (A.2.2.5)

k>0 acA, i k
Note that the element a;d(r) only depends on the equivalent class of @, where two matrices
a € A,randa’ € A, areequivalentifforall j € J, the subsequence of («; ;);e; With a; ; #
0 is the same as the subsequence of (; ;) with @] ; # 0, where I’ = {1, ..., k", 0, kY, v
It is then enough to prove that for a fixed «, we have

Z(_l/2>- ) 1=o0. (A.2.2.6)

k>O O_Z/EAn’kl
a’~a

To prove this, we first observe that the number a” € A, with &’ ~ « is equal to the number
of subsets of I x J, invariant under the involution (i, j) = (i",j"), such that the number of
elements in each row {i} x J is non-zero unless i = 0, and the number of elements in each

. is the number of non-zero entries «;

column I x {j} is equal to a;, where q; ij

in @ in that
column. Note that a; = a;v forall j € J.
Consider the generating series of this counting problem, with a formal variable x; assigned

to each a; for j € {1, ...,n,0}. For convenience, we write Xjv = X; for j € J. Summing over

k > 0, we obtain the generating series

k
-1/2
F(xl,...,xn,xo)zz:( k/ )( Z ij) : Z ij
k>0 of]'c] jeJ’ J'c{1,...,n0} jeJ’
-1/2
:(H(l‘l'xj)) H(1+x])
jeJ j=0

Therefore, the left-hand side of (A.2.2.6) is zero unless a; = 0 for all j # 0. But this cannot
happen, as we assumed that n > 0. This proves (A.2.2.6), and hence (A.2.2.3).

Finally, for the linear case (i), we use an analogous argument. Fix a class a € my(2) \ {0},
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and set t = 7(a). The definition (5.5.2.1) can be rewritten as

(_l)k_l $S,+
()= ), cevi ([ (7)) - (A.2.2.8)

.....

k>0 ap .., €m(X)\{0}:
a=a + -+ o

() = - = ()

It follows from this and (A.1.2.5) for the linear stack ") (7;¢) that 7(% (e, (1)) = 0, and it
suffices to show that ") (€4(7)) = 0 for all n > 1. The key combinatorial identity (A.2.2.6)

that we need to prove now becomes

k-1
-1
> ( I: b =0, (A.2.2.9)
k>0
where we write I = {1,...,k} and J = {1,...,n}, and we fix a sequence (aj € N>0)jej,

and b, is the number of subsets of I x J whose intersection with each row {i} x J is non-
empty, and whose intersection with each column I x { j} has size precisely a;. Again, consider
the generating series of this counting problem, with a formal variable x; assigned to each a;,

we obtain the series

(—1)k! ‘
G(xq, .oy Xp) = Z . ( Z H xj)

o#J'c] jel’

= log(H(l +xj)>

jeJ

- Z log(1+ x;) . (A.2.2.10)
jeJ

Therefore, the left-hand side of (A.2.2.9) is zero unless a; = 0 for all but one j € J, as the above
expression is a linear combination of monomials of the form xf. Again, this is impossible, as

we assumed that n > 1. O
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Appendix B
Proot of the integral identity

This appendix is devoted to the proof of the motivic integral identities, Theorems 7.4.2 and 7.4.5,
which we used to prove wall-crossing formulae for our Donaldson-Thomas invariants. We
prove three versions of the identity: First, in §B.2, we prove a local version of the main theorem,
using the theory of motivic nearby and vanishing cycles for stacks developed in §B.1. Then,
in §B.3, we glue the local versions together to prove the global version, Theorem 7.4.2. Finally,
in §B.4, we take Euler characteristics in the previous identity to obtain identities involving the
numerical Behrend functions, Theorem 7.4.5.

Throughout this appendix, we work over an algebraically closed field K of characteristic

zero. We mean by a K -variety a reduced, separated K-scheme of finite type.

B.1  Motivic vanishing cycles

B.1.1. In this section, we set up an important technical tool that will be used in the proof of
the integral identity, the motivic vanishing cycle map for stacks, generalizing the construction

of Bittner [15] from varieties to stacks.

B.1.2. For varieties. Let X be a K-variety, and let f: X — A' be a morphism. Write X, =

£71(0). Define the nearby cycle map of f, denoted by
¥ M(X) — Mﬁ(xo) ,

to be the unique M(K)-linear map such that for any smooth K-variety Z and any proper
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morphism p: Z — X, we have

¥ ([Z]) = (o)) (MFy.,) € MM (X,)

where p,: Z, — X, is the restriction of p to Z, = (f o p)~'(0), and MF¢,, € Mﬁ(ZO) is
the motivic Milnor fibre of f o p. It follows from Bittner [15, Claim 8.2] that the map ¥ ; is

well-defined.

Define the vanishing cycle map of f to be the map
Op =¥, —Foi" M(X) — MY(X,),
where i: X, = X is the inclusion, and Ly M(X,) < Mﬁ(XO) is the inclusion.

B.1.3. For algebraic spaces. We now generalize the motivic nearby and vanishing cycle maps
from varieties to algebraic spaces.

As in Bittner [15, Theorem 8.4], the nearby and vanishing cycle maps are compatible
with pulling back along smooth morphisms. In particular, these maps define morphisms
Y, d: M(-) — Mﬁ((—)o) of sheaves on the category of reduced, separated K-schemes of
finite type with a morphism to A, with the Nisnevich topology. Since algebraic spaces admit
Nisnevich covers by affine K-varieties, as mentioned in §5.3.2, these morphisms of sheaves
induce maps on their evaluations on algebraic spaces over K.

More precisely, for a quasi-separated algebraic space X locally of finite type over K, and

a morphism f: X — A', we have the nearby and vanishing cycle maps
¥, @ M(X) — M(X,) .
We state some of their properties below.
B.1.4. Theorem. Let X,Y be quasi-separated algebraic spaces locally of finite type over K.

(i) Let g: Y — X be a proper morphism, and f: X — A' a morphism. Then we have a
commutative diagram
M(Y) —2— M(X)
\I’fogl l\yf (B.14.1)

M (Yy) —2 MP(X,) .
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(i) Let g: Y — X be a smooth morphism, and f: X — A' a morphism. Then we have a
commutative diagram
M(X) —— M(Y)
\yfl lwfog (B.1.4.2)
M (X,) —5— MA(Y,)
Proof. The case when X and Y are K-varieties was proved in Bittner [15, Theorem 8.4]. The
verification of (ii) for algebraic spaces is completely formal, by passing to Nisnevich covers by
K -varieties.

We now prove (i) for algebraic spaces. Again, passing to a Nisnevich cover, we may as-
sume that X is a K-variety. We claim that M(Y) is spanned over M((K) by classes [Z] of
proper morphisms Z — Y, where Z is a smooth K-variety. Indeed, let u: U — Y be an
arbitrary morphism, where U is an integral K-variety. By Nagata compactification, as in Con-
rad, Lieblich, and Olsson [41, Theorem 1.2.1], u can be factored as a dense open immersion
U < V followed by a proper morphism V' — Y, where V is an integral algebraic space
over K. By Chow’s lemma for algebraic spaces, as in Knutson [97, IV, Theorem 3.1], there
exists a K-variety W and a projective birational morphism W — V. Applying a resolution of
singularities, we may assume that W is smooth. Now W — Y is proper, and the difference
[W]-[U]is a sum of lower dimensional classes. An induction on the dimension of U verifies
the claim.

Now, let h: Z — Y be a proper morphism, where Z is a smooth K-variety. Passing to a
Nisnevich cover of Y by K-varieties, one can show that ¥ ¢, ([Z]) = h(MF,4.4). On the
other hand, we have ¥ (([Z]) = (g © h)(MF,4,5) by definition. This completes the proof
since such classes [Z] span M(Y') over M(K). [

B.1.5. Theorem. Let X be a stack over K that is Nisnevich locally a quotient stack in the sense
0f §6.2.2, and let f: & — A' be a morphism. Write X, = f'(0). Then there is a unique
M(K)—linear map

¥ M) — MM,

called the nearby cycle map of f, such that for any K-scheme Y and any smooth morphism
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g: Y - X, we have a commutative diagram
(

¥, l\yfog (B.1.5.1)
(

where the right-hand map is defined in §B.1.2.

We then define the vanishing cycle map of f to be the map
Op =¥, — i oi*: M(Z) — MMZy),
wherei: Ly = X and e M(SL"O) - Mﬁ(.f[o) are the inclusions.

Proof. Let (j;: £; & X);c; be a Nisnevich cover, where each X; = U;/G;, with U; an algeb-
raic space over K, acted on by a group G; = GL(n;) for some n;. Let 7;: U, > Z; be the
projection.

First, note that the condition on ¥ implies that the same condition holds when Y is an
algebraic space, with the right-hand map in (B.1.5.1) defined in §B.1.3. This can be seen by
passing to a Nisnevich cover of Y by K-varieties, and applying Theorem 5.3.3 to this cover.

To define the map ¥ ¢, by Theorem 5.3.3, it is enough to define it on each 27, and then
verify that they agree on overlaps. Let a € M(Z) be an element. We define the element
Yi(a) € Mﬁ(fl"o) by giving its pullbacks ¥ ¢(a); = jio ¥i(a) € Mﬁ(fl"i’o) for each i, where

Zip = Xi xg &y The condition on ¥ forces
Yi(a); = ji o ¥yp(a) =[G (m)y om0 ji o ¥p(a)
=[G (m)r o ¥ fojiom © 7 0 Ji (@),

where [G;] € I@I(K) is the class of G; and is invertible in M(K), and we applied (5.2.6.2) to 7,
using the fact that G; is special. This shows that if the map ¥ exists, then it is unique.

To check that the elements ¥ 7 (a); agree on overlaps, let 1,2 € I be two indices, and form

136



the pullback squares

U” U! U,
A7)

Uy N L1, _k 2, (B.1.5.2)
J{/l r jil r lh

U, — 29, — ", q,

where U7, U;, U” are algebraic spaces. We need to show that (j;)"(¥f(a);) = (j1)" (¥ ¢(a),).
We have

(j2)"(¥f(a)s)
=[G ()" o (m1)1© ¥ pejiom, © (jr © 71)"(a)
=[G (1) e ()" 0 ¥pojyom © (1 o 1) (a)
=[G ()1 0 ¥ fojyomojy © (1 © 10 j3) " (a)
=[G (Gl () o (m)y o (7)) 0 ¥ pojiamyogy © (o 71 @ j3)"(a)
=[G 1G] ™ (] o 7 0 ¥ fojyomoggrony © Un © 0 3 o m5)7(a)
where we applied (5.2.3.2) in the second step, Theorem B.1.4 (ii) in the third and fifth steps,

and (5.2.6.2) in the fourth step. This expression is now symmetric in the indices 1 and 2, so the

element ¥ ¢ (a) is well-defined.

It now remains to show that the map ¥ satisfies the required condition. Let Y be a K-
variety and 7: ¥ — Z a smooth morphism. For each i € I, write Y; = Y xg¢ ;. Then
(k;: Y; > Y),cs is a Nisnevich cover by algebraic spaces, and it suffices to show that

k;og*O\Pf:k?O\PfogOg* (B153)

for each i. Consider the diagram

v, Y, Y
g{l ’ g,l ’ lg (B.1.5.4)
U, 7 2 Ji €,

where all squares are pullback squares. In particular, p; is a principal G;-bundle. For any
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ae M(%), we have

ki og"o¥(a)
=g (¥(a))
=[G gl o (m)o ¥ fojion, © (Ji 0 m)" (@)
=[G (p)r o (g)) ¥ fojion, © (i o m) " ()
=[G (P © ¥ fojiomeg: © (i © 7 0 g)"(a)
=[G (pi)i o ¥ rogokop; © (80 ko pi)*(a)
= [Gi]_l “(pi)ropi o Yiogok, © (g ki) (a)
=¥ fogor, © (& 0 k;)"(a)

= kl* o Tfog ° g*(a) P

where we applied the monodromic version of (5.2.3.2) in the third step, Theorem B.1.4 (ii) in
the fourth, sixth, and eighth steps, and the monodromic version of (5.2.6.2) in the seventh step.

This proves the desired identity (B.1.5.3). ]

B.1.6. The motivic Milnor fibre. Let 2 be a stack over K that is Nisnevich locally a quotient
stack as in §6.2.2, and let f: & — A' be a morphism. Write &, = f~'(0). The motivic Milnor

fibre of f is the element

MF; = ¥,([2]) € MM(Z,) .

We relate this to the description of the motivic Milnor fibre for schemes in §6.2.3. Suppose
that we are given a resolution of f, which is a representable proper morphism 7 : 7 -,
such that it restricts to an isomorphism on 7 (' \ ), and 77 (Z,) is a simple normal
crossings divisor in &, in the sense that it is so after pulling back along smooth morphisms
from schemes. Let (&;);c ; be the family of irreducible components of 7 NZ,), and define &;
and & for non-empty I C J similarly to §6.2.3, where &7 carries a natural fi-action. We then

claim that

MF= > (1-L)[&]. (B.1.6.1)
@+Ic]

Indeed, this can be shown by a similar argument as in the proof of Theorem B.1.5, by first
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passing to a Nisnevich cover by quotient stacks, then using the relation (5.2.6.2) to further
reduce to the case of algebraic spaces, and finally passing to a Nisnevich cover again to reduce

to the case of affine varieties.
B.1.7. Theorem. LetZ, % be stacks over K that are Nisnevich locally quotient stacks as in §6.2.2.

(i) Let g: ¥ — X be a proper morphism, and f: X — A' a morphism. Then we have a
commutative diagram
M(Y) —"— M(Z)
wfogl l\yf (B.1.7.1)
M (%) —— MM(Zy).
(i) Let g: ¥ — X be a smooth morphism, and f: X — A' a morphism. Then we have a
commutative diagram
fi(z) —— fi()
qffl lwfog (B.1.7.2)
Bt () —5— FIR(%,)

In particular, we have MF ¢, = g*(MFf).

Proof. For (i), we first restrict to the case when g is representable. By Theorem B.1.5, the map
¥ ¢ is determined by pullbacks along smooth morphisms from K-varieties to ', so we may
assume that 2 is a K-variety, and % is an algebraic space that is proper over 2. This case is
covered by Theorem B.1.4 (i).

For the general case, similarly, we may assume that & = X is a K-variety. It suffices to
show that g o ¥¢.,([Z]) = ¥y o g/([Z]) for smooth K-varieties Z mapping to ¥, as these
classes span I@H(?) over M(K ). Since ¥ is proper over X and has affine stabilizers, it has
finite inertia, and admits a coarse space 79/ : % — Y by the Keel-Mori theorem [40; 91]. The
morphism 79, is a proper universal homeomorphism.

By Rydh’s compactification theorem for representable morphisms of Deligne-Mumford
stacks [143, Theorem B], we may choose a relative compactification Z of Z over %, such that
there is a dense open immersion i: Z — Z and a proper representable morphism h: Z — %.

In particular, Z also has finite inertia, and admits a coarse space 74 : Z — Z , which can be
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seen as a relative compactification of Z over Y. We have a commutative diagram

z g X ,7
hl Fl
% "y (B.1.7.3)

N S
X,
where g and h are the induced morphisms, and all morphisms except i are proper. It is then

enough to show that

(mz)re¥sogon([Z]) = ¥ pogon o (22 W([Z]) (B.1.7.4)

since the compatibility with pushing forward along h and g o h is covered by the previous
case.

We now apply Bergh and Rydh’s divisorialification theorem [14, Theorem A] to a desingu-
larization of the pair (Z,Z \ Z) (see, for example, [58]), which gives a representable proper
morphism Z — Z thatis an isomorphism on the preimage of Z, such that FT\NZ =9
is a simple normal crossings divisor on Z, with smooth irreducible components &; C Z,
and for each x € Z, writing I, = {i € I | x € 9}, étale locally around x, one has
Z ~ Hiejx [Al/pni] x A% x| where d = dim Z, each H,, acts on A' by scaling, and 9; cor-
responds to the locus where the i-th factor is zero; the number n; is the order of the generic
stabilizer of ;.

From now on, we assume that Z = Z, since again, pushing forward along the represent-
able morphism Z — Z and the corresponding morphism of coarse spaces is already dealt
with.

Now, choose a resolution 7: Z — Z for the morphism Z — A, which is a composition
of blow-ups along smooth centres. Then Z still has the same local description as before. The
local description implies that the coarse space of Z, denoted Z, is a smooth algebraic space,
and can be seen as a resolution for the morphism Z — A'.

For each i € I, let @i Cc Z be the strict transform of 2;, which is a smooth divisor,
and let (&; C z )jey be the family of irreducible components of fo. Then by construction,

all the divisors 9, &; C Z have simple normal crossings, and Z \ (;c; Z; is an algebraic
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space. Let D;, E i C Z be the corresponding divisors in the coarse spaces. For I’ C I, write
D1 = (Niep D; and 9, = Nicr 9, with the convention that Dy, = Z and @Q = Z. Then,

each @I' can be seen as a resolution for the morphism &;, — A'. By §B.1.6, we have

() 0 ¥ pogen((Z]) = 3 (- () 0 ¥ gon ((21])

I'cl

= >, 3 a-nV & g
I'cl o+]'c]

_ (1-1) 1 \ 9
@q;cj zkejl
@+]'c] iel

=¥ oz © (22 )i([Z])

where the second last step used the fact that each %}3, \ Uies @i is an algebraic space.

For (ii), similarly, the case when g is representable follows from Theorem B.1.4 (ii). For the
general case, we may assume that " is a K-variety. Since ¥ ., is determined by pullbacks
along smooth morphisms from schemes to %, we can also assume that % is a K-variety, and
the result follows from Theorem B.1.4 (ii).

The final statement follows from applying (ii) to the element [2] € M(.fl" ). 0

B.1.8. Remark. The length of the proof of Theorem B.1.7 is primarily due to the case of pushing
forward along proper morphisms that are not necessarily representable. We will indeed need
this general case in the proof of one of our main results, Theorem B.2.1, where g will be taken

to be a weighted blow-up in the sense of §B.2.3.

B.2 The local model

B.2.1. Theorem. Suppose that we are given the following data:

« A finite-dimensional G, -representation V over K. Let

V=PV

be the decomposition into weight spaces. Write V, = @ - V.
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o A K-variety U acted on by G, and a G, -equivariant étale morphism 1: U — V.
Write U° = U® for the fixed locus, and U = Mame(Al, U) for the attractor. For a

point u, € U°(K), write

Ut (ug) = {ue Uui_r)%ru :uo}

for the fibre of the limit map U* — U° at uy, which is canonically isomorphic to V., .

« A Gy, -invariant function f: U — A', with f(u,) = 0.

Then we have the identities

¥ (U () = L™V ¥ ([U°]) (up) (B.2.1.1)
ueU™ (ug)
[ b =18 (0D w). (B.212)
ueU™ (ug)

Moreover, these hold as identities in Mﬁ(UO), where we vary u, € U°.

This theorem can be seen as a generalization of the integral identity conjectured by Kont-
sevich and Soibelman [99, Conjecture 4], and proved by Lé [104], who restricted to the case
when the G, -action on V only has weights —1, 0, and 1. Compare also Joyce and Song [89,
Theorem 5.11], where a similar identity involving Euler characteristics is proved, with the
same restriction on the weights.

The rest of this section is devoted to the proof of Theorem B.2.1. In the following, we
first provide preliminaries on weighted projective spaces and weighted blow-ups, and prove
some preparatory results. Then, in Lemma B.2.8, we establish a weaker version of the theorem,
using the theory of motivic nearby cycles for stacks developed in §B.1. Finally, in §B.2.9, we

show that the weaker version implies the stronger version.

B.2.2. Weighted projective spaces. Let V be a finite-dimensional G ,-representation over K,

with only positive weights. The weighted projective space of V is the quotient stack

"P(V) = (V\{0})/Gp, .
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This is a proper Deligne-Mumford stack over K, since we have the identification
dimV
"PV)=PV) [ [T
k=1
where P(V') is the usual projective space, and using a basis of eigenvectors of V, each ny is
the weight of the k-th coordinate, and p,, acts by scaling the k-th coordinate.

We also consider the coarse space “VTP(V') of “IP(V'), which is also given by
“YP(V) = ProjK[V],

where K[V] is the free polynomial algebra on V, with Z-grading given by the weights of V.

It is an integral, normal, projective K-variety.

B.2.3. Weighted blow-ups. Let V be a finite-dimensional G, -representation over K, with
only positive weights. Let U be a smooth K-scheme, U, C U areduced closed subscheme, and
let p: U — V be a smooth morphism such that U, = p~*(0).

Define the weighted blow-up of U along U,, with weights given by those of V, as the quo-

tient stack
“Bly, (U) = {(t, vou) e Al x (VN{0)xU | p(u) =t v}/@m , (B.2.3.1)

where t- (=) denotes the G ,-action naturally extended to t € A', and G, acts with weight —1
on A', with the given weights on V, and trivially on U. Note that we have an isomorphism
The natural projection "Bl (U) — U is proper. It restricts to an isomorphism over U \ Uy,

and has fibres VIP(V') over points in U,. In particular, we have the relation

["Bly, (U)] = T -1

[Uo] + [U\ U] (B.2.3.2)
of motives in M(U)

B.2.4. Lemma. LetU be a separated algebraic space of finite type over K, acted on by a torus T =
Gy, for some n, such that points in U have finite stabilizers. Let & = U /T be the quotient stack.

Then & admits a coarse space w: & — X which is a proper universal homeomorphism, and
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we have an isomorphism

m o= ()7t M(Z) = M(X) . (B.2.4.1)
A similar statement holds for M”(&")

Proof. Since U is separated, the inertia 7o is a closed substack of H x & for some finite
group H C T, and is thus finite over 2. It then follows from the Keel-Mori theorem [40; 91]
that 2 admits a coarse space 7: & — X, and that 7 is a proper universal homeomorphism.
To prove (B.2.4.1), stratifying U by locally closed subspaces with constant stabilizers, we
may assume that all points in U have the same stabilizers H C T, so that X = U/(T/H).
To show that 7 o 7™ = id, it is enough to show that for any K-variety Z and any morphism
g:Z — X, we have [Z] = [Z] in M(X), where & = [Z xyx Z]. Writing V = Z xx U,
wehave Z = V/Tand Z = V/(T/H), so that [Z] = (L — 1)_dimT -[V] = [Z], where we
used the fact that T/ H is a torus of the same dimension as T. A similar argument shows that

o m = 1id. O

B.2.5. Lemma. In the situation of Theorem B.2.1, the locus in U where the morphism 1 preserves

G, -stabilizers is open.

Proof. For each n > 1, let {,, € G,,(K) be a primitive n-th root of unity. It is enough to show
that the locus of u € U such that {,, - u # u and ¢({,,- u) = t(u) is closed. The latter condition
is equivalent to 1(u) € V), where V(,;y = @z Vin C V. Write U,y = l_l(V(n)), which is
étale over V(,), with a p,-action on its fibres, induced from the G,-action on U. The locus

where this action is trivial is open in U(,), proving the claim. [

B.2.6. Lemma. In the situation of Theorem B.2.1, suppose that U is affine, and 1 preserves G-
stabilizers and sends closed G,-orbits to closed G,-orbits. Then the affine GIT quotient U /|G,

is normal.

Proof. By Alper [2, Theorem 5.1], since ¢ is étale and preserves G, -stabilizers, the induced
morphism 1: U /G, —» V /G, is étale at [u] € (U /G,,)(K) for points u € U(K) such that
the G,,-orbits of u and i(u) are closed. By the assumption on closed orbits, it is enough to
require that the G, -orbit of u is closed. Since every S-equivalence class in U contains a closed

orbit, the morphism 1 is étale, and it is enough to check that V /G, is normal. This follows
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from a standard fact in toric geometry, as in Cox, Little, and Schenck [43, Theorem 1.3.5], since

V /G, = Spec K[S] for a saturated submonoid S ¢ Z4™V. H

B.2.7. Lemma. Let f: X — Y be a morphism of integral K -varieties. If f is bijective on K-

points and Y is normal, then f is an isomorphism.

Proof. By generic flatness and generic reducedness, f is flat over a dense open subset U C Y
with fibres Spec K, and hence étale, hence an isomorphism f ' (U) = U. It follows that f is
birational. Now, a version of Zariski’s main theorem [66, IV-3, Corollary 8.12.10] implies that

f is an open immersion, hence an isomorphism. O

B.2.8. Lemma. In the situation of Theorem B.2.1, write V_ = @y, Vi, and for a point u, €

U°(K), consider the repeller

U‘(uo):{ueU‘limbu:uO},

t—o00

defined in the same way as U " (u,) for the opposite G,,-action on U.

Then we have the identity

[ vwdw- [ eun@ = @ - n e () - @28

ueU™ (ug) ueU™ (ug)

Moreover, this holds as an identity of monodromic motives on U°, where we vary u, € U°.

Proof. Since U is smooth, by Sumihiro [146, Corollary 2], U admits a G, -invariant affine
open cover. We may thus assume that U is affine. Moreover, we apply this result whenever
we shrink U, so we may assume that U is affine and connected throughout the proof.

Write U, U~ for the attractor and repeller of the G, -action on U. By Halpern-Leistner [67,
Propositions 1.3.1 and 1.3.2], the morphism U™ — ™ (V, x V) is étale and a closed immersion,
and hence an open immersion. We may thus remove the closed subsets 1™ (V, x V) \U* and
"N (V_x Vy) \ U™ from U, and assume that U* = l_l(Vi x V). The morphism : now sends
closed G,,-orbits to closed G,,-orbits.

By Lemma B.2.5, we may also assume that i preserves G,,-stabilizers, by replacing U with

a G,,-invariant open neighbourhood of U°.
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LetUg =U\U ,andlet U =U" \ U’ c Ug. Consider the weighted blow-up

with weight k along the V_, -direction for k > 0, and write fe = fomg. Explicitly, as in §B.2.3,

we may write

Wg = {(t,v_,u) e Al x (V_\ {0}) x Ug | 1(u)_ = 1. v_} ’
Us = Wo /G ,

1, 1.

where 1(u)_ is the projection of 1(u) to V_, and G, acts on W by s- (¢t,v_,u) = (s t,s

v_, u). Note that W is smooth over A' x (V_\{0}), and hence over K. For any u € U3, by

Theorem B.1.7 (i), we have

[v_1eVP(V_)
= ¥ ([Us])(w)
=¥ (["P(V) x Ug] + [Ug \ US])(u)

= ("P(VO)] = 1) ¥ ([US]) () + ¥ £ ([Us])(w)
_ (]LdimV_ 1

=711 —1)"Pf([U5])(u)+‘Pf([U])(u), (B.2.8.2)

and this holds as an identity of monodromic motives on Ug.
Define p*: UZ — U° by p*(u) = lim,,ot - u. Then f(u) = f(p*(u)) forall u € UZ,
and by Theorem B.1.4 (ii), we have

¥r([USD(u) = ¥ ([U D (p* (w)) (B.2.8.3)

forallu € Ug. Again, this holds as an identity of monodromic motives on Ug , where the
right-hand side means (p*)” o ‘I’f([UO]).

Now, consider the quotient stack
Ug = Wo /G2, (B.2.8.4)
where G2, acts on Wg by (s1,8,) - (t,v_,u) = (s;'t,si's, - v_,s, - u). There is, by definition,

a principal G,,-bundle 7 : Ug — Ug. There is a morphism fg: Ug — A' induced by fg.
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Let U /G, be the affine GIT quotient, and consider the reduced closed subscheme
U c“P(V,) x “P(V.) x (U Gp)

consisting of points ([¢(u), ], [t(u)_], [u]) and ([v, ], [v_], [ue]) foru € U, v, € V_.\ {0}, and
u, € U°. There is a morphism f: U — A' induced by f.

Consider the projection 7 : Ue — U given by (t,v_,u) = ([t(u),],[v_],[u]). One can
check that fibres of the composition W — U are single G2, -orbits. We thus have an induced
morphism W // G2 = U, which is an isomorphism by Lemma B.2.7. Here, we used the fact
that U is normal by Lemma B.2.6, and the fact that Wy is integral since it is smooth and
connected. In other words, the morphism 7 is a coarse space map. In particular, it is proper
by Lemma B.2.4.

Since the projection #g: Uy — Ug is smooth and s is proper, by Theorem B.1.7 and

Lemma B.2.4, for any u € Ug and [v_] € "IP(V_), we have

¥ ([UeD)([0.v-,ul) = ¥} ([Ug])([0,v_, u])

=¥ ([UD([(w), 1 Iv-1. [p" (w)]) (B.2.8.5)

where [u] = [p"(u)] in U /G,,. Moreover, this holds as an identity of monodromic motives
on V"P(V_) x Ug.

Combining (B.2.8.2), (B.2.8.3), and (B.2.8.5), we obtain the identity

Ye([UD(u) = / ¥A(OD (0w, 1 Iv-1 [p" ()]

[v_]eVP(V_)

+(1-=——
IL —

) ¥ WD W) B2

where u € Ug and [v_] € “P(V_). Integrating over u € U™ (u,) \ {u,}, we obtain

(U (w) = (L-1)- / ¥ (0D ([, [v), [o))
ueU* (ug)\{uo} ([vi ] v-D e P(VL)x P (V)
]LdimV_ -1

+(]LdimV+_1)'<1_—
L-1

) (U (up) . (B.2.8.7)

Subtracting the analogous identity for integrating over U_(u,) \ {u,}, we arrive at the desired

identity (B.2.8.1). Il
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B.2.9. Proof of Theorem B.2.1. Consider the G,,-representation V' = V x A, with the G-
action on V as given, and on A’ by scaling. Let U’ = U xA', with the G,,-action on U as given,
and on A' by scaling, and let f* = f o pr;: U’ — A, where pr,: U’ — U is the projection.
Let ug = (uy,0) € U” = U° x{0}. By Theorem B.1.4 (ii), we have ¥, ([U’]) = prj o ¥ ([U]),
and similarly, ‘{’f,([U’O]) = prj © \I’f([UO]).

Applying Lemma B.2.8 to this new set of data, and simplifying the expression by the ob-

servations above, we obtain

L. /%([U])(u)— /qff<[U]>(u)=(mdim““—mdimv-wf(w‘)])(uo).

ueU™ (ug) ueU~ (ug)
Subtracting the original identity (B.2.8.1) from this, and dividing by IL. — 1, we obtain the desired
identity (B.2.1.1).

Finally, (B.2.1.2) follows from (B.2.1.1) by the definition of . O

B.3 The motivic identity

B.3.1. In this section, we prove the main version of the integral identity, Theorem 7.4.2 using
the local model, Theorem B.2.1.

In the following, let 2 be a (—1)-shifted symplectic stack over K as in Theorem 7.4.2. For
convenience, when dealing with rings of motives, we always take classical truncations, and
omit the subscript (—) if no ambiguity is present.

We will prove the theorem in two steps. First, in Lemma B.3.2, we show that the the-
orem holds for a stack if it holds for a Nisnevich cover of the stack, reducing it to the case of
fundamental stacks. Then, we deduce the case of fundamental stacks from the local version,

Theorem B.2.1.

B.3.2. Lemma. Let (X — Za)ier be a Nisnevich cover, and set Xy = X q xq; Lo, S0 that

each ; is equipped with an induced (—1)-shifted symplectic structure and orientation. Then, if
Theorem 7.4.2 holds for each X;, then it holds for X .

148



Proof. For each i, consider the diagram

Grad(L;q) & Fill( 2 q) —2 Lig

l ! l l (B.3.2.1)

Crad(Xy) & Fill(Ly) —— Ly,
where the left-hand square is a pullback square as in §3.8.2. Therefore, there is a commutative
diagram
M (Grad(2;0)) € M (Filt( L)) < BN, 0)
T T T (B.3.2.2)
M (Frad(2)) & BINFil(Zg) <— B2y,
where the vertical maps are the pullback maps.

By Halpern-Leistner [67, Corollary 1.1.7], we have ¥rad(Z; ) = Erad(Xy) xg Liq
for all i. Therefore, the family (Erad(X;) — Crad(X’));c; is a Nisnevich cover on classical
truncations. By Theorem 5.3.3, it is enough to check the identity (7.4.2.2) after pulling back to
each ©rad(X; ). But this follows from the identity (7.4.2.2) for each X, the commutativity
of (B.3.2.2), the relation (6.2.7.1) establishing the compatibility of the motivic Behrend function
with smooth pullbacks, and the fact that the rank of the tangent complex of dziln ;) agrees

with that of YZilt(Z) on the corresponding components, which follows from (3.8.3.2). O

B.3.3. Lemma. Suppose we have a pullback diagram of d-critical stacks

v oy
f’l " lf (B.3.3.1)
T s,
where all morphisms are smooth and compatible with the d-critical structures.
Let Ké/z — X and K}W/Z — Y be orientations, not necessarily compatible with f. Let
Kgl//z — 2 and K}?/,z — Y’ be the orientations induced by K}/z and K}?/z, respectively, as

mentioned in §6.2.4. Then we have
g Y(KY2® 7 (Ka/?)®@det(Ly 19) ") = YK ® f* (K4 *)®det(Lyr jq) ") (B3.3.2)

in Mﬁ(?’), where Y is the map from §6.1.4, and the parts in Y(...) are line bundles with trivial

square, and can be seen as j,-bundles.
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Proof. These line bundles have trivial square by Joyce [86, Lemma 2.58]. We have

g7 (KY? ® f*(KZ*) @ det(Ly 9) ")
= g (Kyf*) ® f" o g"(K3'?) ® det(g"" (Ly/g) ™"
= Kfl/'z ® det(Lyr/9) "' ® (KPP @ f* o det(Lg/g) ® det(Lgy /)"

= KY* ® f*(Kz¥?) ® det(Loyrjq0) 7"
and applying Y gives the desired identity. [

B.3.4. Lemma. Let 2 be an n-shifted symplectic stack over K. Then we have an isomorphism

st (Taginzy) = op” o st (Lagan(ay[n])

of perfect complexes on Crad (), where op is the involution of YCrad () induced by the
morphism (=)' x/G, — */Gy,.

Proof. By Halpern-Leistner [67, Lemma 1.2.3], we have sf* (Tagin(g)y) = tot"(Tq ), Where
(=)0 denotes taking the part with non-negative weights with respect to the natural G, -action.
Consequently, we have op” o sf (Tagyy(q)) = tot"(Tg)o. Its dual shifted by n becomes

tot*(]L‘%'[n])Zo = tot*(TSZ‘)>O. D

B.3.5. Proof of Theorem 7.4.2. By Lemma B.3.2, we may assume that 2 is fundamental. Let
X = S/G, where S is an affine K-variety, and G = GL(n) for some n. The classical truncation
of the correspondence (7.4.2.1) can be written as
[T st & I s*/e = s/6,
A: GG A: Gp—G

with notations as in Example 3.2.4. The assumption on G implies that all the groups L, and
P, are special groups.

We fix a cocharacter A: G, — G, and prove the identity on the component S A+ /P;. We
may assume that S Aty

By Joyce [86, Remark 2.47], shrinking S if necessary, we may assume that there exists a
smooth affine K-scheme U acted on by G, and a G-invariant function f: U — A, such that

Z is isomorphic as a d-critical stack to the critical locus Crit( f)/G, and S = Crit( f). We now
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have a commutative diagram

HOl lf lﬁ (B3.5.1)

Ut/L, <& UuM/p, — U/G.

Let0 € S* bea K -point, and let V' = Ty, be the tangent space. Consider the G,,-actions
on U and V via the cocharacter A. By Luna [107, Lemma in §III.1], shrinking U if necessary,
we may choose a G -equivariant étale morphism :: U — V such that 1(0) = 0. Applying

Theorem B.2.1 gives the identity
* im V{
proi*o®y([U]) =LY . d,([UY), (B.3.5.2)

where Vf C V is the subspace where Gy, acts with positive weights. Note that ®((U) is
supported on S by its definition. Let K 51/ ? be the orientation of the d-critical scheme S induced
from that of 2. One computes that
gry e eV*(Vg()t)

= [P]7 - gryo m o (2F)" 0 ev (V)
=[P m o proito (Vg™
= LI [Pl o py o i ()
= SLAOEY R [P A o pyo (24 ([U]) V(K ®© Kyi'ls)
— _pdimG/2z=dimV/2 p 1-1.

7o py(i* 0 ®([U]) 1" o 1" o X(KH? ® KijJola )
_ _pdmG/2-dmV/2 [p -1,

7o p(i* o @ ([U]) - ()" o ev* o Y(KY? ® Kyl )

77,'!0 o p!(i* o (Df([U]) . (7-[+)* o gr* o Y(Kdlé?-ad(g') ® Kl}}/L)JSA/LA))

m o P!(i* o @4 ([U]) p” o (%) o Y(Kd sy ® Kﬁ}/h'“/u))

151



w(pro i 0 @p([UD) - ()" o Y(Kdbuaiar) ® Kid i, ls2/1,)

. . . A
— _I[JdlmG/2—d1mV/2+d1mV+ . [P/l]_l .

7 (@ (U*) - (1) o Y(Kdbaaier) ® Kby, ls21,))

_ _]Ldimc/z—dimV/2+dime [P,

(@ ([UH) - Y(KY? ® Kyhlsa))

. . . A3 A
_ ]Ldlm G/2—dimV /2+dim V] -dim V§ /2 [P/l]_ mot)

1 ”!O(Vs/l

_ ]L(dimG—dimLA)/2+(dime—dime)/2 ) [PA]—l ' ”10 . (”0)*(‘/51139:(4‘1(%))
. . I .
— IL(d1mG—d1m L;)/2+(dimV{-dimV’)/2 [PA]_l . [L)L] . V‘?lgf)rtad(fl”)

_ 7 (dim Vl—dimV,’l)/Z mot
=L " VdGrad(Z) -

Here, the first step uses (5.2.6.2); the third uses (6.2.6.1); the fourth uses (6.2.5.1); the fifth uses
Lemma B.3.3, where the morphism f there is taken to be an isomorphism; the seventh uses the
fact that the shifted Lagrangian correspondence (7.4.2.1) is oriented by Theorem 3.8.5, and the
fact that the orientation for ‘€rad (dCrit( f:U/G— A')) induced by the canonical one K; /G
is given by Ky;2 1 ,; the ninth uses (5.2.3.1); the tenth is the key step, and uses (B.3.5.2); the
eleventh is analogous to the fifth; the twelfth uses (6.2.5.1) again; the thirteenth uses (6.2.6.1)
again; the fourteenth uses (5.2.6.2) again; and the final step uses the relation [P;] = [L,] -
]L(dimG—dimL;L)/Z.

Finally, we verify that vdim ‘Filt" (2) = dim V{ — dim vV, where Filt’ (¥) ¢ ‘Filt(2)
is the open and closed substack corresponding to the cocharacter A. Indeed, let 2’ =
OlCrit( f:U/G — A') be the derived critical locus, with the natural (—1)-shifted symplectic

structure, so 27 = Z,. For x € S*(K), by Lemma B.3.4, one has

0, 0,
rank (L — rankl l](]Iﬂ‘%,lta(&,)lx) — rank! 1](I[,d%lt—a(%ﬂx)

ly) — rank[*] (L

ageii (27 )

= rank!®"! (L

Filt (L) %lt’ﬂ(&"d)lx)

= rank(LL (B.3.5.3)

ageite (g x)
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(0.1]

where rank"" = dimH° — dim H'. We have a presentation

Loy = (9 — Tyl — Lyl, — o") (B.3.5.4)

with degrees in [-2, 1], where g is the Lie algebra of G. By Halpern-Leistner [67, Lemma 1.2.3],
we have sf (Lagy* (ry) = tot"(ILg-) <o, where (—), denotes the part of non-positive weights

with respect to the natural G,,-action. This now gives

L 12— Tyr-ly — Lyasle — vYA) , (B.3.5.5)

agin () x = (”
where p is the Lie algebra of P,, and — A is the opposite cocharacter of A. Note that dim P, =

dim P_, and that diim U** = dim V! + dim V{{". It follows that vdim ilt(2’), which is equal

to the rank of (B.3.5.5) by (B.3.5.3), is dim V/ — dim V*. O

B.4 The numeric identity

B.4.1. In this section, we deduce the numeric version of the integral identity, Theorem 7.4.5
from the motivic identity, Theorem 7.4.2.

In the following, let 2 be a (—1)-shifted symplectic stack over K as in Theorem 7.4.5.

B.4.2. Proof of Theorem 7.4.5. By a similar argument as in the proof of Lemma B.3.2, passing
to a representable étale cover of & by fundamental stacks, which induces representable étale
covers of Erad(X’) and Filt(X') as in §3.8.2, it is enough to prove the theorem when &' = S/G
is fundamental, where S is an affine K-scheme acted on by a reductive group G. Here, we
are using étale descent for constructible functions, instead of Nisnevich descent for rings of
motives.

As in §B.3.5, shrinking S if necessary, we may assume that there exists a smooth affine K-
scheme U acted on by G, and a G-invariant function f: U — A, such that & is isomorphic
as a d-critical stack to the critical locus Crit( f)/G. Now, 2" comes with a natural orientation,
and the motivic Behrend function vi*°' is defined.

Applying Theorem 7.4.2, then evaluating the Euler characteristics at y, we obtain the iden-
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tity
. der:
/ v (ev(p)) dy = (=1)Vim FHE) e vy (v) - (B.4.2.1)
pegri(y)
Let ¢, = sf(y). Then the left-hand side of (B.4.2.1) is equal to v¢-(ev(¢py)) = ve (tot(y)), since
the integrand is G -invariant and ¢, is in the closure of all G, -orbits. Also, by Lemma B.3.4,

we have
. . 0,1 0.1
lemy dgllt(z‘) = rank[ ] ]LP}ilt(&’)lsf(y) - rank[ ] ]LPFilt(%')lsf()?) . (B422)

This verifies (7.4.5.1).

For (7.4.5.2), apply Theorem 7.4.2 again, then take the difference of the evaluations at y

and y. This gives the identity

@--| / e - [ o))

peP(grl(y)) peP(gr1(y))

n ]LdimHl(]L?rad(SZ)ly) ) (l—dimHl(]Ls;izt(zdﬂsf(y)) _ IL—dimHl(l%zt(zd)kf(y))) ) V?Ot(tot(y))
_ (]Lrank(ld%zr(z)|sf(y))/2 _ ]L—rank(ld%lt(sz)|sf(y))/2) . Véré)rtad(%)()’) (B.4.2.3)

of monodromic motives over K. Here, we used the fact that the stabilizer group G, of y in
gr'(y) is special and has motive LM S since G, is a subgroup of the fibre of the projection
P, — L,, and can be obtained by repeated extensions of G,. All of this can be seen by, for
example, equivariantly embedding S into an affine space with a linear G-action.

Starting from (B.4.2.3), we divide both sides by IL — 1, and then take the Euler characteristic,
which sets L/? to —1. We then apply the identity (7.4.5.1) to convert vg,,q.q) (v) to v (tot(y)).

This gives the desired identity (7.4.5.2). Il
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Appendix C
Proof of anti-symmetric wall-crossing

This appendix is dedicated to the proof of Theorem 7.2.3, through a complicated combinatorial

argument. The proof of the theorem is given in §C.3.7.

C.1  The setting

C.1.1. Throughout this section, let I be a finite set, and let

C;={e;,e’ |iel} (C.1.1.1)
be a set of symbols. We define a map (—)": C; — C; by sending e; to e;” and e;’ to e; for all
i€l

Let A; be the free associative algebra over Q generated by elements of C;, where we denote

the multiplication by *. There is an involution (=)¥: A; — A}, given by
(7% % xp)" = xg %0 % x;) (C.1.1.2)

for xq, ..., x, € Cy.
Let L; be the free Lie algebra over Q generated by elements of C;. Let L}® be the opposite
Lie algebra of L, i.e. the Lie algebra with the same underlying vector space and with Lie

bracket [x, y] 1P = [y, x]r,. There is an involution (-):L; — L(I)p, defined inductively by

\%

X X for x € Cy, (C.1.1.3)

[x,y]~ [y",x"] forx,y€L;. (C.1.1.4)
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There is a natural inclusion of vector spaces L; = A, which identifies A; with the uni-

versal enveloping algebra of L;.
C.1.2. Define linear subspaces

Li={xeLlL;|x=-x"}, (C.1.2.1)

Li={xelL;|x=x"}. (C.1.2.2)

Then L; = L] @ L7, and this makes L, into a Z,-graded Lie algebra. In other words, we have
[L},L7] € LT and [L},L7] c Lj. In particular, L] C L; is a Lie subalgebra, and there is a

natural embedding

U(L]) = A; (C.1.2.3)

of associative algebras, where the left-hand side is the universal enveloping algebra of L].
This is important, as our main goal is to show that the wall-crossing formula in Theorem 7.2.3,
which was originally expressed in terms of the A;-module structure given by the operation
o, using the coefficients Usd(...), can actually be expressed solely in terms of the L} -module
structure given by the operation ©, using the coefficients Usd(..).

Define linear maps (-)*: L; —» L], (=)": L; —» L] by

xt=x - xV, (C.1.2.4)
x =x+x". (C.1.2.5)

We have the relations
(x") " =(x")" =0, (C.1.2.6)
[y)" = S (I T+ (2. y7)), (C.1.27)
[ y) = 5 (7] + [ y") (C.1.238)

forx,y € L;.
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C.1.3. Write n = |I|. Define a set

P; = H {x = (X1, ..., Xp) ‘ X; € {eg(i) , e(\,/(i)} for all i} , (C.1.3.1)
o:{1,....,n} > 1
bijective

as a subset of C7.

Let K; = Z°" be the free abelian group generated by elements of C;, and let K = NC\
{0} c K;.

C.1.4. Define a self~dual weak stability condition on I to be a map 7: K; — T, where T is
a totally ordered set, equipped with a distinguished element 0 € T, and an order-reversing

involution t — —t fixing the element 0, such that
(i) Forany a, B,y € K|, such that f = « + y, either
t(a) <t(f) <(y), or t(a)=27(f)21(y).

(ii) For any @ € K,

(aV) = -1(a).

C.2  Wall-crossing to trivial stability

C.2.1. The goal of this section is to prove Theorem C.2.2 below.

Let 7 be a self-dual weak stability condition on I, as in §C.1.4. Define elements

T(I; T) = Z U(ea(l), cee s eg(n);T,O) . eg(l) Kkoeee k ea(n) s (C.Z.l.l)
e,

T(Iir) = ) U(xy, oo, X3 7,0) - Xp % o % X, (C.2.1.2)
X'EPI

TIt) = Y U (g oo, X3 7,0) - 3y 5 o0 % X, (C.2.1.3)
X'EP[

in the algebra A;, where the coefficients U(...) and USd(...) are defined as in (7.1.3.7) and
(7.1.3.8).
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C.2.2. Theorem. We have

T(I;r) e L;, (C.2.2.1)
T(I;r)e Ly, (C.2.2.2)
T4I;7) e U(LY) . (C.2.2.3)

The proof will be given at the end of this section.

C.2.3. From now on, we take I = {1,...,n}. For a subset | = {iy,...,i,} C I, where k > 1

and i; > -+ > iy, define elements F(J), F(J) € L; and G(J) € L] by

(_1)k—1
FU) = i B g;@: AL Loy seig b D 1 (C.23.1)
0'(1)=ki
S G . _
FU) = i B g;@: AL Lo seig b Doeig 1 (C.23.2)
0'(1)=ki
(-1)* 1 . _
6U) = (Be=Bu(3)) - Do [LLefei ) Doei ). (C.2:33)
’ O'E@k:
o(1)=1

where Bj denotes the k-th Bernoulli number, and By (—) denotes the k-th Bernoulli polyno-
mial. The sign ‘¥’ is ‘+’ if and only if k is odd.
Note that F(J) = F(J) = 0 whenever k > 2 is even, and G(J) = 0 whenever k > 1 is

odd.

For xy, ..., x, € A, we denote
1
sk(xl, ,xk) = F Z xa(l) *oeee Kk xg(k) s (C234)
T oeC
_ 1 . _
sk(xl,...,xk) = Wsk(xl,...,xk) . (C235)

C.2.4. Lemma. We have combinatorial identities

e, * Sy_1(€q, ..., €,_1) = Z sn_|]|+1(F(]), e:ielI\N]), (C.24.1)
I
ney
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€p * §n—1(el’ ) en—l) =

Zgn—|j|+1<F(])’ erielI\]J)+ ZEn_|J|(€iii€I\])*G(J)-
JjclI: JjclI:
nej nej

Proof. For (C.2.4.1), for 1 < i < k < n, write

1
Ei,k = (n—1)! 2@: €r(1) * "t * €5(k) - (C.2.4.3)
T oef,:
o(i)=n
Fork =1, ..., n, using the invariance under the &,,_;-action permuting the elementse, ..., ¢, _1,
we find that
k k-1
1 1)y (=1)
-———— By - (k-—1)E; . C.244
(n—l) ];: ; (1—1) (k —1)! e (k=1 B ( )
k - ]. ne]’|]| k
Simplifying this, we obtain
k k—i
(-0 " (n-1)
F = Bi_q1-E; . C.24.5
nel,|Jl=k
Therefore,
Z Sn—k+1(F(])’ e 1€ I\])
JjclI:
nel, |Jl=k
n-k k k i
(n—1)!
= B, . -Ei.. .
n—k+1 ; ; (n - k)'(k—z)'(z—l) k=17 Zitjn
n i k—i
(=D (n - 1)!
= - - Bk_ . Ei . (C246)
; j=;+k (n—k+1)(k—j) (-1 <t 7n
The left-hand side of (C.2.4.1) is just E; ,, so it suffices to prove that forany i = 1, ..., n,
Z": Z (-1)*7 (n - 1) 5 1, i=1, €247
. - k-1 = a4,
=1 jeiek (m =k DHE =G = D! 0, i>1.
Setting p = j — 1 and q = k — j, the above reduces to
i-1 n—i .
(n - 1)' 1, 1= 1 b
Z — Bpig = (C.2.4.8)
=0 g on_P Q! plq! 0, i>1.

This follows from taking x = 0 in Lemma C.4.2 below.
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For (C.2.4.2), for 1 < i < k < n, write

£ __ 1 e wet ke wel
El,k = 2k—1 (n B 1)' Uezen: eO'(l) * * eO’(l) * * eo.(k) . (C.2.4.9)
o(i)=n

Similarly to the previous case, we find that

k k—i+1 ok—2
(-1) 2" " (n-1)! -1k
F B,_{-E; , C.2.4.10
];Z D= 2 e =y e B (€.2410)
ne],|Jl=k
k k=i k-1
D72 (n-D! (k!
G(J) = B, - E! , (C.2.4.11)
J;: ;k(n—k)!(k DlG—1) ok Tk
nel.|Jl=k
where B} = By — B (1/2). Proceeding as before, we have
Z Suki1(F(J), e :i€IN]) (C.2.4.12)
JjclI:
nGJ,|J|=k k ] k 2
1 2 -1)! _k
= Z Z 1) (n=1) By, - EGY (C.2.4.13)
ll]ln+k (n—k+1)!(k-j)@y-1) :
Z Sn-ik(e;:1€INJ)*G(]) (C.2.4.14)
JjclI:
ne],|J|=k n (_1)n—i+l zk—l (n _ 1)| k-1
: (-1)
= By E;, C.2.4.15
l.:nZ;;Hk(n—k)!(n—i)!(i+k—n—1) ke ( )

The left-hand side of (C.2.4.2) is just (1/2) (E{, + E1,). Collecting the coefficients of each El s

we see that to prove (C.2.4.2), it is enough to prove that forany i = 1,...,n and ¢ = 1,
Yy _(DTZEEon
: W -1
pae] =Sk (n—k+1)!(k=j)G-1)
n —q)rmitlok=1 1 )1 1, i=lande=1,
+ Y ek ( ') (n-1) - By, = (C.2.4.16)
ki K=K =Dl +k—n-1) 0, i>lore=-1.
The case ¢ = 1 follows from taking x = 0 in Lemma C.4.3 below. The case ¢ = —1 follows
from taking x = 0 in Lemma C.4.4 below. ]

C.2.5. For J C I, we denote

I/J=UNJ]u{J}.
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For any element x € A s there is a homomorphism

Ay — Ar,

Y= Ylejox s

defined by mapping e; to e;, and ¢;’ to ¢;’, for i € I \ J, and mapping e; to the image of x in

Ar,and e\]/ to the image of x in A;.

If, moreover, x € L, then this map sends the subspace L;,; to L, preserving the Z,-

grading. In particular, this map sends the subalgebra U(LI+/ 7) into U(L7).

If 7 is a self-dual weak stability condition on I such that the restriction of 7 to K*(J) is a

constant map, then 7 induces a self-dual weak stability conditionon I / J.

To avoid nested subscripts, for I, J, 7, x as above, we denote

T(I,];T;x) = T(I/];T)|€Jl—>x >

TN Ji7:2) = T/ J30) Lo

We also define auxiliary coefficients

s

U'(ay, oo ay; 7, T) = Z S(Prs s P T, T) - (izl m) ’

O:a0<...<am:n_
Define B, ..., B, by fi = a,_ 1 + - + a,, .
We require 7(f;) = t(e;) forall a;_; < j < g

U'Sd(al, s Ay T, T) =

(C.2.5.1)

(C.2.5.2)

(C.2.5.3)

S ~ . 1 1
Y demﬂmm)'(g — )2<>

0=gqgy< - <a,<n.

Define B, ..., B, by B; = o o1 + - + @y, -
We require 7(f;) = 7(a;) foralla;,, <j < a;,
and 7(a;) = 0 forall j > a,

(C.2.5.4)

In other words, in (C.2.5.3), we take the sum of all terms in (7.1.3.7) with [ = 1;in (C.2.5.4), we

take the sum of all terms in (7.1.3.8) with [ = 0.

Define

T/(I;’l') = Z U'(ea(l), ,e(,(n);r,O) : 6‘0(1) Koeee ok eg(n) s

oced,

T'(I;7) = Z U (X1, oo, X3 T,0) - Xq 5 -0 % %X,

XEPI
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T'Sd(I; T) = Z U’Sd(xl, s X3 T,0) Xy * e kX, (C.2.5.7)

XEPI

as elements of A;. By definition, we have the relations

-1
T(Iir)= ), (11) T (Ist) % - T/ (I T) (C.2.5.8)
I=Lu--ul:
I, # @ for any i
= (_1)1_1 =/ =/
T(Lr)= ), — T'sr) s« T/ ) (C.2.5.9)
I=Lu-vul:

I, # @ for any i

41 7) = >, (‘11/2>-T'(11;T)* e x T(IpT) » T 7). (C.2.5.10)
I=LuLu-ul:
Il-#(z)fori:l,...il

For J c I as above, a self-dual weak stability condition 7 on I that is constant on J, and an

element x € A}, we denote

T'(L Jimsx) =TI/ J57) lejoo » (C.2.5.11)
T'(1, J;7;x) = T'(I/];T)le],_,x, (C.2.5.12)
TN Ji75x) = T/ J57) e » (C.2.5.13)

as is similar to the above.

C.2.6. Lemma. Let0 < | < m < n withm > | + 2. Let 71, 7, be two self-dual weak stability

conditions on I, satisfying

t1(er) < - < 1y(ep) < 1y(epyr) = -+ = 11(ep_1) < 11(ep) < 11(eper) < - < 14(ey)
To(eq) < -+ < 1o(ep) < To(epyy) = - = 1aepm—1) = T2(ep) < Ta(epyr) < - < 1(ey)
where each ‘<’ sign is ‘=" for r; if and only if the corresponding ‘<’ sign is ‘=" for t,. Then
T'(Lr)= Y, T/(LJimF()). (C.2.6.1)

Jcf{l+1, ..., m}:
meJ

T(Iim)= Y, Tt F(]))), (C2.6.2)
Jc{l+1, ] m}:

where F(]) is given by (C.2.3.1).

Proof. First, let us prove (C.2.6.1). By the definitions, both sides of (C.2.6.1) lie in the subspace
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of A; spanned by the elements e; (1) * -+ * €5(n), Where o € &, such that 7,(e,(1)) = -+ 2
7y(es(n))- Therefore, it suffices to prove that for each of these monomials, its coefficients on
both sides are equal.
Let I, = {l + 1, ...,m}. Then (C.2.6.1) can be rewritten as
T' (LIt T (Inmy)) = Y T'(L It T (o, Ji 70 F(J))) . (C.2.6.3)
]CI():
meJ
by an elementary combinatorial argument. Therefore, it is enough to show that
T'(Ipmy) = Y, T'(Ip, Jit: F(J)) (C.2.6.4)
]CI()S
meJ

which is precisely (C.2.6.1) with I = I,. Thus, we may ease the notation by setting [ = 0,

m = n, and I, = I. Expanding both sides of (C.2.6.4), we see that it is equivalent to

1
2 G e e =

0ceQ,:
o(1)=n
1
—_— e koo k€ , (C.2.6.5
]CZIO: o:{1,..., n;]ﬁ—l}—ﬂ/] (Tl N |J| + 1)| 7 7z ey—F(J) ( )
nej bijective

which is precisely (C.2.4.1). Therefore, we have proved (C.2.6.1).

For (C.2.6.2), using (C.2.5.8), we see that the right-hand side of (C.2.6.2) equals

0 :
Z Z K T'(Iyrg) * -« T°(L;, J; 195 F(J)) *
Jcf{i+1,..,m}: I=Lu-ul:
me]J I, # @ for any i, ’ .
J c I for some j *T (Ik’TZ)
R - :
= > > Ty« T'L, Jim F(J)) %
I=Lu-ul,: Jc{l+1,..,m}:
I, # @ for any i. me J *T,(Ik;l'z)

Let j satisfy m € I;

= > T (I;7y) * -« T'(Ii;7y) = T(I;14) (C.2.6.6)
I=Lu--ul:
I, # @ for any i.
Let j satisfy m € I,

where the second equal sign uses that T’ (I;; ;) = T'(I;; 7,) if i # j, by the definitions. O
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C.2.7. Lemma. Let0 <! < m < n and 7y, 7, satisfy the assumptions of Lemma C.2.6. Then

T'(Lr)= ), T/(ILJimF()), (C2.7.1)
Jc{l+1, ..., m}:
meJ

T(Lhm)= Y, TUILiwmFU)), (C.2.7.2)
Jc{l+1, ] m}:

where F(]) is given by (C.2.3.1).

Proof. We observe that for any x = (xy, ..., x,) € P;, we have
U'(xq, e X3 7,0) = U' (%), ..., x057,0), (C.2.7.3)
U(xqyy .., X3 7,0) =U(x,), ..., x);7,0), (C.2.7.4)

which follow from the definition of these coeflicients. Therefore, if we write

T'(x; T) = Z U'(xg(l), vee s xa(n); T,O) . x(,(l) Koo X x(,(n) s (C.2.7.5)

ced,
T(x; T) = Z U(xo(l), cee sy xg(n); T,O) . xU(l) Koeee % xg(n) , (C276)

ce®,

and write x¥ = (x,\l/, . xlv), then
’ \ ’ \Y

T (x";7) =T (x,7)", (C.2.7.7)
T(xV;7) =T(x,7)". (C.2.7.8)

To prove (C.2.7.1), note that both sides are self-dual by the above observation, so it is
enough to prove that the coefficients of monomials x; * --- * x,, that involve e, (rather than
e are equal on both sides. We divide such monomials into 2"~ classes, according to whether
they involve e; or el-V fori € {1,...,n} \ {m}. For each of these classes, let I’ C I be the
set of i € I such that e’ is involved in that class. Let {: K; — K| be the automorphism
exchanging e; and e;’ for all i € I’. Applying Lemma C.2.6 to the weak stability condition
a — 1(&(a)), we see that the coefficients of these monomials on both sides of (C.2.7.1) are
equal to the coefficients of the corresponding monomials in (C.2.6.1) using the modified weak
stability condition. This proves (C.2.7.1).

Finally, (C.2.7.2) follows from an analogous argument using (C.2.6.2). [
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C.2.8. Lemma. Let0 < I < m < nwithm > 1 + 2. Let 1,7, be two self-dual weak stability

conditions on I, satisfying

0<7(e) < - < 1yley) < 1ileyy) = -+ = 1i(emoy) < 71(epm) < Ti(eper) S - < 71(ey)
0< 1y(ey) < -+ < 1p(ey) < Tplepyy) = - = Tolepy) = Ta(en) < Talepir) < -+ < To(ey)
where each ‘<’ sign is ‘=" for r; if and only if the corresponding ‘<’ sign is ‘=" for t,. Then
L) = Y T it F())), (C.2.8.1)

Jc{l+1, ..., m}:
meJ

™"Lo)= Y T Lt F())). (C.2.8.2)
Jc{l+1, ..., m}:
me]j

where F(]) is given by (C.2.3.1).

Proof. The proof is similar to that of Lemma C.2.6.
First, let us prove (C.2.8.1). By the definitions, both sides of (C.2.6.1) lie in the subspace
of A; spanned by the elements e, (1) * - * €5(), where 0 € &,, such that 7,(ey()) = - 2
75(€s(n))- Note that the e;’ cannot appear. Therefore, it suffices to prove that for each of these
monomials, its coefficients on both sides are equal.
Let I, = {l + 1, ..., m}. We rewrite (C.2.8.1) as
T Iyt T (Igi 7)) = Z T,Sd(l’ I; 1o T'(Iy, J5 795 F(J))) (C.2.8.3)
Jcly:
me ]
which follows from (C.2.6.4). This proves (C.2.8.1).

For (C.2.8.2), using (C.2.5.10), we see that the right-hand side of (C.2.8.2) equals

Z Z <_1k/2) T/ (s 1) % - % T/(Ij»];TZ;F(])) *
Jc{l+1,..,m}: I=Lulu--ul:
meJ L #@ofori=1,..,k, "'*T,(Ik;TZ)*T,Sd(IO;TZ)

J c I, for some j > 0

+ Z Z (_1/2>'T’(I1;T2)*'--*T/(IkﬂZ)*

Jcf{i+1,..,m}: I=Lulu-ul:

meJ L#@fori=1,..,k, rsd ) .
Jcl, T (I]’]sTZ’F(]))
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- ¥ Y () T e T T PO ¢

I=LuLu-—ul: Jc{l+1,...minI;:

L +@fori=1,..,k, meJ T . rsd/r .
m € I, for some j > 0 *T(Ik’TZ)*T (IO’TZ)
12\ oy o T/ (I
+ k (I;;79) % oo % T'(Is 7p) *
I=LuLu-ul,: Jc{l+1,..,m}nI:
L#@fori=1,..,k, me ] rsdey gL
mEIO T (I],J,Tz,F(]))

- Z (_2/2) T/ (I ry) % o % T/ (L 1) * T,Sd(Ioﬂ'l)
I=LulLu-ul:
L#@fori=1,..,k

=TI 1), (C.2.8.4)
where the second equal sign is by (C.2.7.1) and (C.2.8.1). This proves (C.2.8.2). O

C.2.9. Lemma. Let1 < m < n. Let 7y, 75 be two self-dual weak stability conditions on I, satisfy-

ing

T1(em—1) < T1(em) < T1(epmye1) < -+ < 11(ey) ,

0=1(e) =
0=1(e1) = - = 13(ep_1) = T2(ep) < T2(ep41) < - < 13(ey) -

Then

T Lm) = ), T LmFOU)+ Y, T™UINTin)*G()), (C29.1)
Jc{1, ..., m}: Jc{1, ..., m}:

me ] me]

()= Y, TYULLmaFO)+ Y, TUINTin)+G(J), (C292)
Jc{1, ..., m}: Jc{1, ..., m}:

me ] meJ

where F(J) and G(J) are given by (C.2.3.2) and (C.2.3.3).

Proof. The proof is similar to that of Lemma C.2.6.

First, let us prove (C.2.9.1). By the definitions, both sides of (C.2.6.1) lie in the subspace
of A; spanned by the elements e, ;) * - * €5(), where 0 € &,, such that 7,(es()) > - 2
7y(€s(n))- Therefore, it suffices to prove that for each of these monomials, its coefficients on
both sides are equal.

Let I, = {1, ..., m}. We rewrite (C.2.9.1) as
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T/Sd(I,ImTz;T/Sd(Io;Tl)) = Z (T/Sd(Ia Io;Tz;T/Sd(Io’];Tz;F(J)))
]CI()Z
me] + T Iy TG\ i) * G(])) . (C.2.9.3)
Therefore, as before, it suffices to prove (C.2.9.1) in the case when m = n. But this is pre-
cisely (C.2.4.2). This proves (C.2.9.1).
For (C.2.9.2), using (C.2.5.10), as is similar to the proof of Lemma C.2.8, we see that the

right-hand side of (C.2.9.2) equals

-1/2 ald ald

¥ Y () U s T T PO
I=LuLu-ul: Jc{l,...m}nI:
L #@fori=1,..,k, meJ . T X rsdyy .
m € I, for some j > 0 *T (Ik’Tz) *T (IO,TZ)

-1/2 "l T

+ 2. 2. ( k/ )'T(Il;TZ)*"'*T(Ik;Tz)*

I=LuLu-ul,: Jc{l,...m}nl:

L#@fori=1,..,k, meJ

me I,

(7% 32 F(D) + T (I \ J52)  G())

Z (_;c/z> T (I ) % e % T (L 1p) TISd(I();Tl)
I=LuLu--ul:
L+#@fori=1,..,k

415 1y), (C.2.9.4)

where the first equal sign is by (C.2.7.1) and (C.2.9.1). This proves (C.2.9.2). [
Now, we are ready to prove Theorem C.2.2.

C.2.10. Proof of Theorem C.2.2. We only write down a proof of the more difficult part
(C.2.2.3), as the proof of (C.2.2.1) is analogous and easier, and (C.2.2.2) follows from (C.2.2.1)
together with the fact that U(x, ..., x,,;7,0) = U(x,,, ..., x;; 7,0) for all x € P;.

Let S be the set of self-dual weak stability conditions on I. For 7 € S, let T, be its codomain,

which is a totally ordered set. For t,t” € T,, write

1, t>t,
sgn(t,t’) =19 0, t=1t",
-1, t<t,

and write sgn(t) = sgn(t,0).

Define an equivalence relation ~ on S to be generated by the following relations:
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(i) 7y ~ rpif for any i,j € {1,...,n}, sgnri(e;) = sgnry(e;), sgn(rl(ei),rl(ej)) =
sgn(rz(ei), Tz(ej)), and Sgn(fl(ei): T1(e]\'/)) = sgn(fz(ei), Tz(ej\'/))-
(ii) 7 ~ 7y if there exists 0 € &, with 7,(e;) = J_rz'z(eo(i)) for all i, where the ‘+’ signs are
arbitrary.
(iii) 7, ~ 7y if they satisfy the assumption of Lemma C.2.8.

(iv) 7y ~ 1, if they satisfy the assumption of Lemma C.2.9.

We claim that ~ is trivial, that is, all elements of S are equivalent under ~.
Indeed, every element 7 € S is equivalent to the trivial stability condition 0 € S. To see

this, using (ii), we may assume that
0<7(ey) <+ <7(ey) .
If all the inequality signs are equalities, then 7 = 0 and we are done. If not, suppose that
0=1(e;) = =7(e) <7(eps1) =+ = 7(ep) <7(eps1) < - < 7(ey),

where 0 < | < m < n. Using (iii), we may increase the values of 7(e,,) by a small amount, as
long as it stays below 7(e,,,;). We then do the same thing to e,,_;, ..., €;,5, so that we can

now assume that
0=1(e) =+ =1(e) <7(epy) <tley) < <1(ey),

where 0 < | < n. We can then use (iv) to modify 7(e;,;), so that now we have 7(e;,;) = 0.
Repeating this process, we see that we eventually reach a point where 7 = 0.

Therefore, what is left to prove is that if 7; ~ 7,, and 7; satisfies (C.2.2.3), then so does 7,.
To see this, we only need to check the cases (i)-(iv) individually. By induction on n, we can
assume that this is already true for all smaller values of n, as the case when n = 0 is trivial.

For (i), we see that USd(xl, s X3 T1,0) = USd(xl, ey X3 Ty, 0) for all (xy, ..., x,,) € Pj, s0
that T%4(I;7,) = T*(I;1,). For (ii), permutations does not affect T*}(I; r) either, due to the
permutation symmetry of P;. Switching the sign of 7(e;) amounts to exchanging the roles
of ¢; and e/, i.e., its effect on TSd(I ; 7) is swapping e; with e in the expression. However,
since the subspace L] C L is fixed under this operation, (C.2.2.3) is preserved. For (iii), we

use (C.2.8.2), whose right-hand side contains TSd(I ; 7o) as the term with J = {m}. All other
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terms involve index sets of size < n, and hence, after replacing e; — F(J), lie in U(LY), by
our induction hypothesis. For (iv), similarly, we see from (C.2.9.2) that the difference between

T4(I; ;) and T%4(I; 1) lies in U (L}). O

C.3 General Wall—crossing

C.3.1. Let notation be as in the previous subsection. For x = (x4, ..., x,) € Pj, define
m=>=210=ay,< - <a,, =n,
Q(x) = g V= (Y1 ers V) 0 mer } (C.3.1.1)
Vi = Xg_ 41+ + X, foralli
, m=>=20,,0=ay< - <a, <n,
Q'(x) = z Y= (Y15 s Vi) 0 m . }, (C3.1.2)
Vi = Xq_ 41+ 0 + X, foralli

where each element y; is regarded as an element of K; = @, (Ze; ® Ze;").

C.3.2. Lemma. For self-dual weak stability conditions t,7,7 on I, we have combinatorial iden-

tities
S(x1, s Xp37T,T) = { (C3.2.1)

Sty X3 T E) = Y S Vi 2 8) - [ [ S(xq_s10 s Xai7a8) . (C3.2.2)
i=1

y€Q(x)
od 1, n=20,
S (xqy ey X3 T, T) = (C.3.2.3)
0, n>0,

SSd(xl, s X3 T, T) = Z SSd(yl, s Y T T)
yEQ’(x)
m
(H S(Xg, 14155 Xg3 T f')) . SSd(xamH s X3 T, 1) (C3.2.4)
i=1

1, n=1,
U(Xqy e s X3 T,T) = g (C.3.2.5)

m
U(Xqy e s X3 T,T) = Z U(Yiseees Y3 T57) - H U(xaHH s X3 T, 7), (C.3.2.6)

yeQ(x) i=1
od . B 1, n=20,
U (xq,y e s X3 T, T) = (C.3.2.7)
0, n>0,
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d ~ d N~
U (xqyy ., X3 T,T) = Z U (y1s oo Y3 T, T) -
yEeQ’(x)

m
(H U(Xa 415+ »>Xa;3 T %)) . USd(xam+1 s X3 T,T),  (C.3.2.8)
i=1
where a; is as in (C.3.1.1) and (C.3.1.2).

Proof. The identities (C.3.2.1), (C.3.2.2), (C.3.2.5), and (C.3.2.6) were proved in [85, Theorems
4.5 and 4.8], using purely combinatorial methods. The identities (C.3.2.3) and (C.3.2.7) follow
from the definitions easily.

One could also prove the other two identities, (C.3.2.4) and (C.3.2.8), using combinatorics.
However, we take a more intuitive approach and deduce them from Theorem 7.1.3.

Consider a self-dual quiver Q defined as follows. The set of vertices of Qis Qy = Iu 1" =
{1,1¥,...,n,n"}. Thereisa unique arrow i — j forany i, j € Q,, making a total of 4n? arrows.
Define the involution (=)": Q = Q° by exchanging the vertices i and i¥ foralli € {1, ..., n}.
The action on the arrows is determined accordingly. Let u, v assign the sign +1 to all vertices
and arrows.

Let & be the moduli of representations of Q as in §4.1.

For convenience, for verticesi¥ € Q, withi € I, we write e,y = ¢ € C;and eV = e; € C).

Let C; be the set of all @ € 7y(Z’) that is a non-zero sum of distinct elements of C;. For

such a, let C, C C; be the set of terms appearing in a. Define an object (E%, e%) € & by

B _ K, ieC,, « 1, i,jeC,,
i = €isj =

0, otherwise , 0, otherwise .

One can see that (E“, e”) is a simple object, and hence is semistable under any weak stability
condition.
Let X be the set of all @ = (ay,...,a,) with m > 0 and @, € Cj for all s, such that

o, + + + a, € C1. For each a € 3, define an object (E%, e%) € & by

(E%) K, i € C,, forsomes,
). =
0, otherwise ,
" 1, i€C, andj € C, forsomes >1t,
(e_)i—>j =
0, otherwise .
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Then (E%, e%) has a unique Jordan-Hélder filtration with quotients (E“, e“), ..., (E%m, e%m).

Define a partial order < on ¥ such that ¢ < @’ if and only if there exists 0 = s, < -+ <

Sme = m such that a/ = a;, 1 + - + a, for all t, where m and m’ are the lengths of ¢ and

’
a’.

(Lo ()] * - %

For a fixed weak stability condition 7, and for ¢ € X, write J,(7)
(25 (r)] € M(Z;Q). Then ,/(r) being non-zero at (E%, e*) implies & < a’, since any
filtration is refined by the Jordan-Hoélder filtration. In particular, §,(7) is not in the linear
span of §,/(7) with @ £ @’. Since < can be extended to a total order on the finite set 3, we
conclude that the motives §,(7) € M(Z;Q) for all ¢ € 3 are linearly independent.

As a result, the motives €, () * -+ * €, (1) € M(Z;Q) are also linearly independent,
essentially because upper triangular matrices with 1’s on the diagonal are invertible.

At this point, as a side note, if we apply Theorem 7.1.3 to express [ 25 (7)] in terms of
motives of 7-semistable loci, where @ = e; + --- + ¢,, and compare the result with first convert-
ing 7-semistable loci to 7-semistable loci, and then converting to 7-semistable loci, we have
reproved (C.3.2.2). Applying this to €,(7) reproves (C.3.2.6).

Now, let 3¢ be the set of @ = (ay, ..., @, p) such that each a, is in Cj, p € C} U {0},
p=p',and a; + @ + -+ + @, + a,, + p € C;. For a fixed self-dual weak stability condition
7, and for ¢ € =, write 53(r) = [T ()] 0 -+ o [T (0)] o [T3%°(r)] € M(Z™4Q).
Similarly, we claim that the stack functions 52‘1(7) forall ¢ € >4 are linearly independent.

Indeed, for a € ZSd, define @ = (ay, ..., 2y, (p,) a,\,/l, ,alv) € X, where p appears only
when it is non-zero. The object (E%, e%) has a natural self-dual structure. Using its unique
Jordan-Holder filtration, we can show that 5(‘2‘1(7) is not in the linear span of (5;24(1') with
& % @’. Since the map a — & is injective, it follows that the 5;‘1(1) are linearly independent.

Similarly, it follows that the stack functions €, (7) ¢ -+ o €, (7) © e'sud for a € >4 are
linearly independent.

Applying Theorem 7.1.3 to express [ chﬂesd,ss(

7)] in terms of motives of 7-semistable loci,
where 0 = é; + -+ + ¢,, and comparing the result with first converting 7-semistable loci to 7-
semistable loci, and then converting to 7-semistable loci, we have proved (C.3.2.4). Applying

this to e53(r) proves (C.3.2.8). O

171



C.3.3. Now, define elements

V(I;T) = Z U(ea(l), ,ea(,,);O, ’l') " €5(1) Koeee ok €s(n) » (C.3.3.1)
e,

VSd(I;T) = Z USd(xl, s X3 0,T) - Xy % -0 % X, (C.3.3.2)
X'EPI

in the algebra A;.
C.3.4. Theorem. We have

V(I;t)eL;, (C.3.4.1)

ved(I;7) e U(LY). (C.3.4.2)

Proof. The proof is essentially by formally inverting the results in Theorem C.2.2.

We use induction on n, and assume that the theorem is true for all smaller values of n. The
cases when n = 1in (C.3.4.1) and when n = 0 in (C.3.4.2) are trivial, since there is nothing to
prove.

To prove (C.3.4.1), we may assume that n > 1. By (C.3.2.5) and (C.3.2.6), for any x € Py,

we have
m
Z U(Y1seee> Y3 0,7) - H U(Xq,_+155%q;37,0) =0. (C.3.4.3)
yeQ(x) i=1
Summing over all possibilities of x = (ey(1), .- s €5(n)) for o € &,,, we obtain that
y U(ps oo s Y3 0,7) - T(J37) % - % T(J,;7) = 0, (C.3.4.4)
m21,1=Ju--uj,:
J; # @ foralli.

Write y; = 3¢, €
where the T(J;; 7) are as in (C.2.1.1). By Theorem C.2.2, T(J;;7) € L. Therefore, by the in-
duction hypothesis, that is, by (C.3.4.1) applied to m elements, if m < n, then for a fixed choice
of Ji,..., J,,, the sum of all the m! terms in (C.3.4.4) involving a permutation of J;, ..., J,, is
in L;. Since (C.3.4.4) equals zero, the sum of the terms that were not involved above must lie
in L; as well. These are precisely the terms with m = n. This gives that
Z@ U(es(1)s > €a(n) 0, T) “€g(1) * " * €5(n) € L1, (C.3.4.5)
c€d,

which is a restatement of (C.3.4.1).
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To prove (C.3.4.2), we assume that n > 0, and proceed as before. By (C.3.2.7)-(C.3.2.8), for

any x € P;, we have

m
d
Z U (915 e s Y3 0, 7) - (H U(Xg, 415> Xq;5 T,O)) :
1

yeQ’(x) i=
U (% 410 Xp37,0) = 0. (C.3.4.6)

Summing over all possibilities of x € P}, we obtain that

> U (Y1scoes Y3 0,7) - T(xs7) 5 o w T(x™57) « T(J'57) = 0, (C.3.47)

m>0,I=Jju-uj,uj,x €P:
J; # @ foralli.
Write y; = 3 ;c ), %)

where TSd(]'; 7)isasin (C.2.1.3), and T(xi; 7)isasin (C.2.7.6). By Theorem C.2.2, T(xi; T) €
L;,and TSd(]l-; T) € U(LJ]“/). For m < n, fix a choice of Ji, ..., J,,, J', and a choice of the
x'. Let 3 be the sum of all the 2™m! terms in (C.3.4.7) involving a permutation of J, ..., J,,,
and for each i, either x' or (xi)v, where if x' = (%1, .. X ), then (xi)v = (xy/,...,x;). Note
that as in the proof of (C.2.2.2), we have T((x")";7) = T(x';7)", where the latter (-)" is
the involution on A;. Now, we can apply the induction hypothesis, or (C.3.4.2) applied to m
elements, to see that ¥ is a linear combination of products of elements either in L“]L/, or of the
form T(x';7) — T(x';7)", which lie in L}"i. Therefore, > € U(L7).

It then follows that the sum of the terms in (C.3.4.7) with m = n lies in U(L]) as well,

which is, again, a restatement of (C.3.4.2). O

C.3.5. Next, for two self-dual weak stability conditions 7, 7 on I, define elements

W(I; T, i’) = Z U(eg(l), cee sy ea(n); T, 7,~') . ea(l) Koeee % eg(n) y (C.3.5.1)
ceQ,
WSd(I; T,7) = Z USd(xl, s X T, T) Xy % e % X, (C.3.5.2)
.'X'EPI
in the algebra A;.

C.3.6. Theorem. We have

W(l;r,2) e L;, (C.3.6.1)

ws(I;7,7) e U(LT). (C.3.6.2)

173



Proof. Applying (C.3.2.6) and (C.3.2.8) with 7 = 0, we may rewrite

W(Lri)= ). U Y 08) - T(J) % o 5 T(Jps7) (C3.6.3)
m21,1=Jju--uj,:
J; # @ forall i.
Write y; = 3¢, €

WL E) = Y UM, v 0,8) - T(x ) w o w T(x™51) = T(J 5 7))

m>0,1=Jju-uj,uj, x' €P;:
J; # @ for alli.
Write yi = Djes, % (C.3.6.4)

Reasoning as in the proof of Theorem C.3.4, we can deduce (C.3.6.1) and (C.3.6.2) from Theor-
ems C.2.2 and C.3.4. Indeed, we no longer need to use induction, and instead of proving that

some of the terms lie in L; or U(L]), the argument now shows that all the terms are in L; or

U(LT). O
Finally, we deduce Theorem 7.2.3 from Theorem C.3.6.

C.3.7. Proof of Theorem 7.2.3. We only prove the self-dual case, as the linear case is already
proved by Joyce [85, Theorem 5.4], and can alternatively be shown using a similar argument.

For a permissible self-dual stability condition 7 on 2, Let L, ¢ M(Z"; Q) be the smallest Q-
linear subspace containing €, (7) for all @ € ny(2)\ {0} and closed under the involution (-)"
and Lie brackets as in §7.2.2, and let M, ¢ M(Z Scl;(Q) be the smallest subspace containing
e;d(r) forall p € no(&"Sd) and closed under the operation a © (=) fora € L.

We may rewrite (7.1.3.4) as

f'(r) = 2 2”1n! ' 2

n>0 k: I = ()N {0}, p € my(LY):
Write I = {1,...,n} 0= (k(@)+x()) +p
> U (ay, oo, @i T, T2) €4, (T,) © 0 € (7,) 0 €53(z,) |, (C3.7.1)
x € P

Write o; = x(j) if x; = ¢;,
or write a; = k(j)" if x, = e

since every term in (7.1.3.4) appears 2" n! times in (C.3.7.1).
Now, every sum in the square brackets in (C.3.7.1) lies in M, . This is because we can
define an involutive algebra homomorphism ¢: A; — M(Z;Q) by sending e; to €,(;) (7. )

and e’ to €,(;)v(7,). We have ¢(L;) € L, ,s0 ¢(L7) C Ly,. The sum in the square brackets
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is p(W(I;7,,7.)) o e;d(ar), so by Theorem C.3.6, it lies in U(L7) o ef,d(r+) C M.,
Moreover, the above also shows that every sum in the square brackets can be written as
a sum of terms of the form in (7.2.3.2), with the U(...) coefficients. Each of these new terms

appears 2" n! times in (C.3.7.1). This proves the theorem.

C.4 Some combinatorial identities

Finally, we prove some combinatorial identities that were used in the arguments above. It is
interesting that by working with wall-crossing structures, we are able to write down several
combinatorial identities involving the Bernoulli numbers, namely, Lemmas C.4.2 to C.4.4, and

it is unclear whether there are deeper reasons why these identities are true.

C.4.1. Lemma. For any integersi,k,n suchthat1 <i<nandl <k <n-1, we have

L ngs n_i,(—l)q ( ’; ) = (—1)itk (’:_—11) =1y (’; - :) , (C.4.1.1)

0<k-g<i-1

Proof. We have

e 5 e[ (4)

q=k-i+
k—i n—i
= rh.s.

C.4.2. Lemma. For any integers1 < i < n, we have -

i-1 n—i
(-1) (n—1)! n—1\ i, .

s Ly n_p g Bp+q(x)=(l._1)x (1-x)"", (C.4.2.1)

p=0 q=

where By (x) denotes the k-th Bernoulli polynomial.

Proof. Let [(x) and r(x) denote the left and right sides of (C.4.2.1), respectively. By (C.4.1.1),
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we have

1) = 2 By + k1 A [ () e (5 ) o

(TR ne £ S () me),

k=n—i+1

Since Bi(x + 1) — Bi(x) = k xk=1, we have

l(x+1)—l(x):(ril__11>-l§(—l)i<: )( X)k 14 X‘i ("})xk—ll.

k=n-i+1

On the other hand,
1) =) = (1) [k D e - 1 0]

n—1
) B 8 e ()]
-1 k=i k=n—i+1 k
Therefore, [(x + 1) — [(x) = r(x + 1) — r(x), which means that
I(x)-r(x)=c
for some constant c. To show that ¢ = 0, we use the fact that

1 1, k=0,
/Bk(x)dx:
0 0, k>0,

SO

On the other hand,

where B denotes the beta function. This shows that ¢ = 0.
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C.4.3. Lemma. For any integers1 <i < n,

= Z‘ (-1)92P%971 (n - 1)1 5 (z)
p=0 g=0 (n—p—q)'p'q' b 2

n (_1)n—i+12k—1( _1)!
> k(n—K) (n—10)! (i:k—n—l)![Bk(§>_Bk(x;—l)]

k=n-i+1

- <’:__11) xTH1-x)". (C4a3.0)

Proof. Let [;(x), [,(x) and r(x) denote the first and second terms on the left-hand side
of (C.4.3.1), and the right-hand side, respectively.

By (C.4.1.1), we have

o () B S e () o (2 2
1

k=1
() RS () m) -
S, G (e

k=n-i+1

Proceeding as in the proof of Lemma C.4.2, we see that

Li(x+2) - Li(x) =

(i-1) Z“’( et (] }C)xk—ll.

k=n-i+1

Similarly,

n _q\n—it+l _
L(x+2)—L(x)= Y (n—k)(v(;ll)_,) ((ln+k111n_l)' [x571 = (x + 1)F]

(;:}C)[xk_l —(x+ l)k_l].

k=n-i+1

)}

Setting [(x) = I;(x) + I,(x), we see that

k=n—i+1

I(x+2)-1(x)

1

(IS () B

Py 1) l('_k>(x+1)"‘l

+ (_1)n—i+1 [xn—l _ (x + 1)n—1]l
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This means that

I(x)-r(x)=c

for some constant c. To show that ¢ = 0, we use the facts that

2 2, k=0,
./oBk<E)dx_zo, .

SO

2 ~ l)nl(n—l)'
/ol(x)dx__+ Z k(n—-k)!(n—i)l(i+k-n—-1)!"

k=n-i+1

On the other hand, we have seen in the proof of Lemma C.4.2 that

1
/ r(x)dx = 1 .
0 n
We then calculate

/lzr(x)dx—< ) /( )1+ x)  Ndx
()L e (o)

k=n—i+1
< (-1)" " (n - 1)!
k(n—K)'(n-Dl(itk-n-1

k=n-i+1

This shows that ¢ = 0 and we are done.
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C.4.4. Lemma. For any integers1 <i < n,

i-1 n-i -1 p2p+q—1 — 1)
Z( ) (n )Bp+q(£)

= (n—p-qlplq 2
) n (=1)itk=n=1ok=1 1)1 [ (f)—B <x+1>]_0 (Cad1)
k=n—i+1k(n_k)!(n—i)!(i+k—n—1)! k 2 k 9 =0.

Proof. Let [(x) denote the left-hand side. From a similar calculation as in the previous lemma,

we have

?:;).[i(_l)i—l(::li)xqur i (_1)n—i+1<ri:;c)(_x_l)k—ll.

k=i k=n—i+1

11) =)@+ x)" = ((x - 1) + 1)1"l (x +1)"7]

Therefore, [(x) is constant. Again, calculating as before,

9 ) . n (_1)i+k—n (Tl _ 1)|
/ ) de=ss 2 Tl DG E-r=)

1
_(n—l‘)‘/ X1 - x) " dx
n-—1 0

where the second integral was evaluated as in the proof of Lemma C.4.2. This shows that

I(x)=0. 0
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