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Based on the results of phylogenetic analysis, which showed that flecks are the primitive pattern of the felid
family and all other patterns including rosettes and blotches develop from it, we construct a Turing reaction-
diffusion model which generates spot patterns initially. Starting from this spotted pattern, we successfully
generate patterns of adult leopards and jaguars by tuning parameters of the model in the subsequent phase of
patterning.
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I. INTRODUCTION

The origin of pigmentation patterns on animal coats has
certainly raised questions in every curious mind. In his story
“How the leopard got his spots” �1�, Kipling was not trying
to give the question a scientific answer. He did not mean to
be serious about Darwinism either when he said the zebra got
his stripes pattern by standing long in the checked shadow.
The law of natural selection might have already answered the
why question, but to many scientists, an answer, which mod-
ern genetics obviously can not offer, to the how question
would be more meaningful. One possible mechanism to ex-
plain how animals get their coat patterns was proposed by
Turing �2� in 1952. By assuming there are two kinds of mor-
phogens diffusing on a surface and interacting with each
other, he showed that the distributions of the morphogens
would form spatial patterns. In 1972, Gierer and Meinhardt
�3�, with the help of a computer, successfully generated spa-
tial patterns of anatomical structures in hydra using the Tur-
ing model and showed that the model was consistent with the
results of a number of regeneration and implantation experi-
ments. Since then many Turing-type models described by
coupled systems of reaction-diffusion equations have been
used for generating patterns in mammals �4,5�, fish �5–8�,
ladybugs �9�, bacterial colonies �10–12�, phyllotaxis �13,14�,
and many others. The text book Mathematical Biology �15�
written by Murray contains many such examples, as well as
analysis techniques for and properties of Turing models.

One caveat is in order. People used Turing models be-
cause these models are powerful in generating patterns, not
because there is, as yet, uncontroversial evidence that pat-
terns in biology arise as a result of a Turing reaction-
diffusion process. However, evidence of morphogens—the
essential ingredients of the Turing models—has emerged re-
cently �16�, and Turing structures were discovered in chem-
istry some 15 years ago �17,18�. Thus, soon the study of the
Turing model and its application to biological systems may
not simply be of academic interest.

Amongst the myriad of pigment patterns exhibited in the
animal kingdom, the spotted pattern of the leopard holds a
certain fascination. The “spotted” pattern of the leopard is
actually more precisely a rosette pattern. Even without the
help of the charming fable �1�, it still attracts researchers
�19–22� because it offers an optimal level of challenge for

generating it. The same may be said for the patterns on the
jaguar, which appear too complicated to be generated by a
straightforward application of a Turing model.

The pigmentation patterns on leopards and jaguars change
as they grow. In Figs. 1 and 2 we show pictures of a leopard
and a jaguar, respectively, in three stages of development
with distinct coat patterns �23�. Broadly speaking, the mark-
ings change from spots to rosettes. This pattern transforma-
tion is consistent with the results of a recent phylogenetic
analysis �24�. In light of this, we construct a model in which
we propose two stages of patterning. In the first stage, spots
are generated in a similar manner for both the leopard and
the jaguar. In the second stage, we tune model parameters to
generate, separately, the patterns of the adult animal. We
show that, in this way, the temporal sequence of patterns
shown in Fig. 1 and Fig. 2 can be produced by our model.

II. A TWO-STAGE MODEL

We use the simple reaction-diffusion model adopted by
Barrio et al. �25� which is essentially transformed so that it
has a steady state at �0,0�, that is, the variables should be
viewed as deviations from a steady state, rather than actual
concentrations. The model has very simple nonlinear inter-
action terms: quadratic and cubic interactions between two
morphogens u and v:

�u

�t
= D��2u + �u + v − r2uv − �r3uv2,

�v
�t

= ��2v + �u + �v + r2uv + �r3uv2, �1�

where D is the ratio of the diffusion coefficient of the acti-
vator u to that of the inhibitor v, and � is a scaling variable
which can be viewed either as the relative strength of the
diffusion compared to the interaction terms, or as a measure
of the length scale in the problem. It is known that D has to
be smaller than one to obtain spatially nonuniform stable
patterns. The quadratic and cubic interaction terms favor pat-
terns of spots and stripes, respectively �25–27�. We consider
the above problem on the spatial domain of a square and
impose zero flux boundary conditions. Without diffusion, the
system has two stable uniform solutions. By taking �=−�,
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the two solutions degenerate to be simply the one �u ,v�
= �0,0� at all points in space considered.

Standard linear analysis �15� can be carried out to guide
the choice of parameter values D, �, �, �, r2, and r3, so that

the model exhibits “diffusion driven” �or Turing� instability,
that is, the uniform steady state is stable in the absence of
diffusion but becomes unstable when diffusion is present. In
the case of this model, the linearization is trivial since one
simply ignores the higher order terms in Eqs. �1�. As usual,
we assume that the morphogen concentrations u and v take
the form

u�x�,t� � u0e�teik�·x� ,

v�x�,t� � v0e�teik�·x� . �2�

Imposing the zero-flux condition on the boundary �which
means that morphogens do not flow out of the region con-
sidered�, results in solutions with the form Eq. �2� only being
admissible for a set of discrete values of k, which are called
admissible modes. The temporal growth rate � can easily be
found as a function of the possible modes indicated by k, by
substituting the above solution into the linearized version of
Eq. �1� yielding a dispersion relation from which one can
choose parameters to allow only a small number of modes to
grow in time �Re����0, so that the diffusion-driven insta-
bility leads to patterns� and, in particular, to enhance any
particular mode �25,28�. We use the following set of values
for parameters to generate a stable spotted pattern on a
square of 200	200 points shown in Fig. 3. The initial values
of u and v at each point are assigned randomly between 0
and 1.

D = 0.45, � = 6, � = 0.899, � = − 0.91, r2 = 2,

r3 = 3.5. �3�

With this set of parameters, the mode with k=0.27 is en-
hanced most and this corresponds to the spot pattern �Fig. 3�.
This is stage 1. We now use this as our initial distributions
for u and v to generate, in stage 2, the patterns in the adult.
The use of a spotted pattern for our initial distributions of u
and v is based on the recent report of Werdelin and Olsson
�24�. They found, regardless of which of several different
phylogenies of felids is used, that flecks �small spots not
organized into patterns� are the primitive pattern of the felid
family. All other patterns, including rosettes �small spots or-
ganized into patterns of six or fewer spots� and blotches �ir-
regularly shaped areas of dark on a usually lighter back-
ground�, develop from it. We see from Fig. 1 and Fig. 2 �23�
that the patterns on leopards and jaguars are indeed spots
�flecks� in the young, which then gradually transform into,
respectively, rosettes and blotches in the adult �29�. Pigmen-
tation pattern alteration during growth is observed in a num-
ber of animals �6,30�. For example, Asai et al. have used a
Turing reaction-diffusion model to simulate the skin pigmen-
tation patterns of the zebrafish in various stages of growth by
changing parameters with time �30�. Aragon et al. have also
used a particular pattern as a seed for generating spatial pat-
tern in sea urchins �28�.

III. PARAMETER SELECTION DURING GROWTH

We start with the parameter values given in Eq. �3� and
obtain the spotted pattern shown in Fig. 3. We then, in the

FIG. 1. Coat patterns of a leopard at different stages of growth:
�a� spots �2 days�, �b� rings �8 weeks�, �c� rosettes �adult�.
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second stage, increase r2 and decrease both � and D in steps
to generate the final adult patterns.

First we increase the value of r2 from 2 to 7. As stated
above, the quadratic term in Eq. �1� favors spots. Increasing
the value of r2 will enhance the density of spots and increase
the spatial gradients of morphogen concentration profiles.
The initial spots in Fig. 3 grow darker and begin to change
into rings �Fig. 4�a��. We next make changes to D and �. At
this point, let us discuss the effects of parameter D and �.

A general linear analysis �15,28� shows that the necessary
conditions for yielding Turing patterns are given by

fu + gv 
 0,

fugv − fvgu � 0,

Dgv − fu � 0,

�Dgv − fu�2 − 4D�fugv − fvgu� � 0, �4�

where fu, fv �gu ,gv� denote the partial derivatives of f�g�
with respect to u and v. Based on these conditions we plot
the �� ,�� parameter space to show the Turing space—the
region in which Turing patterns are predicted to occur from
the linear stability analysis �Fig. 5�. Our choice of �� ,�� is
indicated in Fig. 5.

The dispersion relation ��k� can be found �28� from the
characteristic equation:

�2 + ��1 + D��k2 − � − ��� + D�2k4 − ��� + D��k2

+ ��� + 1� = 0. �5�

To see the effects of the parameters D and �, we plot in Fig.
6 the dispersion relation corresponding to several values of
one parameter while keeping the others fixed. We see in gen-
eral that the available Turing modes �Re����0� shift to

FIG. 2. �Color online� Coat patterns of a jaguar at different stages of growth: �a� spots �5 weeks�, �b� irregular rings �3 months�, �c� small
spots enclosed by irregular broken polygons �adult�.
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higher wave numbers �larger k� when � is decreased �see, for
example Ref. �15��. The minimal value of wave number k
that can support the Turing pattern can be easily found to be
inversely proportional to the square root of � �28�. On the
other hand, when D is decreased, the available Turing modes
increase, and all available modes are enhanced further ��
gets larger�.

With this understanding, for the leopard pattern, we force
the system to switch to a higher wave number mode by de-
creasing � from 6 to 3.8. We immediately see a few rings
begin to break. The breaking process continues until we
change the value of D to a lower value D=0.15 to stabilize
the pattern �Fig. 4�b�� �31�. For the jaguar pattern, similar
steps are taken: increase r2 first, and then decrease �, and
finally decrease D. There are two different settings from the
case of the leopard. We increase r2 from 2 to 7 and keep it
fixed at that value for a longer time than in case of the leop-
ard so that the rings become larger and compress one another
to form hexagonal shapes. Note also that an inner ring begins
to appear so that every ring changes to a double ring �Fig.
7�a��. In the second step, we decrease � to 1.8, which is
lower than the value 3.8 in the leopard case, to “break”
modes. Thus the enhanced mode shifts to one with a higher
wave number according to the dispersion relation shown in
Fig. 8. The inner ring breaks first. When the inner rings are
broken completely and some outer rings begin to break, we
decrease D �to 0.15� to stabilize the final pattern �Fig. 7�b��
�31�.

IV. COMPARISON WITH REAL PATTERNS

Coat patterns of a typical leopard at three stages of growth
are shown in Fig. 1 �23�. Roughly speaking, the pattern
grows from spots to rings and then to rosettes. Our simula-
tion aims to follow this temporal sequence and indeed it
successfully generates the sequence of patterns �Fig. 3, Figs.
4�a� and 4�b��. Previous simulations using a one-stage Turing

model �19,20,22� might have produced final rosette patterns
similar to the patterns of real leopards, but they left the pro-
cess of the sequential development of pattern unanswered.

Our results for the pigment patterns of the jaguar �Fig. 3,
Figs. 7�a� and 7�b�� compare well with those actually ob-
served �Fig. 2�. The patterns in the adult �small spots en-
closed by irregular broken polygons� are particularly difficult
to generate using a one-stage Turing model. Even if it is
possible, it still fails to explain the temporal series of patterns
observed during the growth of the animal. Our model sug-
gests that it would be easier to obtain a complicated pattern
in steps, and at the same time, one can capture key aspects of
the temporal development.

Note that our simulations are consistent with the fact that
the number of rosettes or patches on the adult leopard or
jaguar is roughly the same with the number of spots on
younger animals. This is different from the case of angelfish
where the number of stripes increases as the fish grows �6�.

FIG. 3. Spot pattern generated by the Turing model Eq. �1�.
Parameters are D=0.45, �=6, �=0.899, �=−0.91, r2=2, r3=3.5.
The pattern is used as the initial distributions for the morphogens u
and v in the second stage of the model.

FIG. 4. Simulated patterns corresponding to the case of the leop-
ard in the second stage. Starting from the spot pattern �Fig. 3�, we
increase r2 from 2 to 7 to obtain �a�, and then decrease � from 6 to
3.8 to obtain �b�, which is then stabilized by decreasing D from 0.45
to 0.15.
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V. DISCUSSION

The choice of the parameters for producing patterns in
different steps for either the leopard or jaguar is not unique.
There are wide ranges of values of the parameters that we
can use to obtain spotted patterns, and any of which can, in
principle, be used as initial distributions to generate patterns

of the adult leopard and jaguar as long as the subsequent
variations can be adjusted accordingly. For example, two
other choices for parameters � and � in the Turing space are
�0.77,−0.91� and �0.77,−0.99� �Fig. 5�. We are able to ob-
tain similar patterns shown in Figs. 4 and 7. This is very

FIG. 5. The Turing space of the model described by Eq. �1�
�D=0.45�. The shaded region is where linear analysis predicts the
possibility of Turing patterns. Three different sets of parameters
�� ,��= �0.899,−0.91� , �0.77,−0.91� , �0.77,−0.99� used in simula-
tions are indicated by the crossed points of dashed lines.

FIG. 6. Dispersion relation ��=0.899,�=−0.91� for �a� D
=0.45, �=6 �solid line�, 3.8 �dotted line�, 1.8 �dashed line�. When D
is fixed, the growing modes shift to high wave numbers as � de-
creases; �b� �=3.8, D=0.45 �solid line�, 0.3 �dotted line�, 0.15
�dashed line�. When � is fixed and D decreases, all available modes
are enhanced further.

FIG. 7. Simulated patterns for the jaguar in the second stage.
Starting from the spot pattern �Fig. 3�, we increase r2 from 2 to 7
for a sufficiently long time to obtain the pattern in �a�. Next we
decrease � from 6 to 1.8 to obtain the pattern �b�, which is then
stabilized by decreasing D from 0.45 to 0.15.

FIG. 8. Dispersion relations for the parameters used in sequence
in simulating the jaguar patterns. 1 :D=0.45, �=6→2:D=0.45, �
=1.8→3:D=0.15, �=1.8.
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important because the requirement of fine tuning in param-
eters can hardly explain why the general patterns for these
animals are robust. In general, robustness is difficult to ob-
tain for global patterning mechanisms. The work of Dillon et
al. �32� and Crampin et al. �33� has shown how modifying
the Turing system through controlling the boundary condi-
tions or incorporating domain growth can greatly increase
the robustness of certain patterns. In the present study, the
crucial point for generating patterns of the felid family by a
Turing model is by use of the two-stage growth process in
which the spotted pattern is generated in the first stage. The
final patterns are determined by suitable changes of param-
eters and the timing of their changes in the second stage. In
particular, the timing of the last decrease of parameter D
plays an important role. In the case of jaguar, when � is
decreased, the inner rings normally break into four small
spots and some of these spots gradually disappear. A timely
decrease of D produces our final pattern �Fig. 7�b��. Due to
the complexity of the parameter space, it is formidable for
the present to map out all the possible ranges of parameters
that can yield desired patterns. Moreover, in the second stage
process we are dealing with spatially dependent patterns and
so to fully understand the effects of parameter values would
require a stability analysis in a highly nonlinear regime. This
could only be done numerically. However, as we see below,
the general intuition we have gained on how a certain param-
eter affects the system in the linear regime seems to hold in
this much more complex situation.

In the second stage of the simulation, we change the pa-
rameters r2, �, and D sequentially from one value to another.
Although we do not have precise evidence that parameters
change in the system, we are motivated to change the diffu-
sion coefficient since it sets the overall scale of the system

and this changes as the individual grows. Since the growth of
an animal is a continuous process, the change of � is more
likely to change continuously as well. In view of this, we
have further adopted two continuous transition processes for
parameters r2, �, and D changing from one value to another.
The first is a linear function for the change of a parameter g
from gi to gf �30�:

g�t� = gi + c�gf − gi� , �6�

where c is the changing rate of the parameter g during the
changing period. Another more smooth function at both ends
of the changing period is given by the logistic growth func-
tion:

g�t� =
gf

1 + e−ct�gf/gi − 1�
. �7�

Again, the value of c governs the changing rate. We found
that it is possible to find a range of possible values of c for
each parameter r2, �, and D so that the results obtained in
Sec. III hold. Namely, we can obtain similar final patterns for
either the leopard or the jaguar with those using sudden
changes of parameters. For example, for the case of jaguar
pattern Fig. 7�b�, we use Eq. �7� to change � from 6 to
approach 1.8. A similar pattern to Fig. 7�b� is obtained when
the changing rate c is greater than 1.0. We are currently
working on the details of these simulations and their analy-
sis.

To gain some insights to the patterns, we compute the
power spectra of the simulation patterns using the two-
dimensional Fourier transform. In Fig. 9 we show our simu-
lation patterns of the jaguar at four consecutive steps to-
gether with their two-dimensional power spectra. We see

FIG. 9. Simulation patterns of the jaguar at four sequential steps �a�–�d� and the corresponding spectra of two-dimensional Fourier
transform �e�–�h�. The dimensions of the spatial pattern are 200	200 pixels. Using pixel as the unit of length, the distance between two
spots in patterns �a� and �b� is about 25 on average. Thus the first conspicuous frequency in the power spectrum is about 0.04 which appears
in �e� as the smallest white ring in the middle. The smallest white ring in �g� has a radius of about 0.08. This can be understood since the
average distance between bands of the rings in �c� is about one half of the distance between spots in �a� or �b�. The frequency range is from
0 �center� to 0.5 �edge� in �e�–�h�. We have taken log values of the intensity to increase contrasts of the spectra �e�–�h�.
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that, as the spatial patterns go from small spots to larger
spots, then rings, and finally broken rings, the high frequency
modes �white regimes with large radii to center� are gradu-
ally enhanced while the lowest conspicuous frequency mode
�the white ring with smallest radius in Fig. 9�e�� disappears
at the third step �Fig. 9�g��. It is even clearer from Fig. 10
where we plot one-dimensional power spectra by taking in-
tensity along the horizontal line through the center of every
two-dimensional frequency domain in Fig. 9. In the first step,
when the spatial pattern consists of spots, there is a peak at
low frequency 0.041 in the power spectrum. When the pa-
rameter r2 is increased in the second step, this peak is en-
hanced and some high frequency modes begin to appear. For
the rings pattern �Fig. 9�c��, this low frequency peak disap-
pears, consistent with Fig. 6�a� where we see the effect of
decreasing �. The most enhanced frequency is now 0.081
which is about two times the value for the case of the spot
pattern. This can be understood because the average distance
between the bands of the rings is about one half of the dis-
tance between spots. In our final pattern for the jaguar we
have some broken rings which means more high frequency
modes appear in the power spectrum.

We can directly see the relation between a spatial pattern
and its frequency modes by comparing the result of the in-
verse Fourier transformation of the truncated frequency do-
mains with the original pattern. Take the pattern of the third
step shown in Fig. 9�c� for example. Truncating the fre-
quency at the value 0.061 �Fig. 11�a��, the resultant pattern
�Fig. 11�b�� of the higher frequency part matches the original
pattern �Fig. 9�c�� very closely, while that of lower frequency
part �Fig. 11�c�� can be hardly recognized to be related to the
original pattern. On the other hand, the spot pattern �Fig.
9�a�� can be reproduced almost completely using a low-pass
filter.

VI. CONCLUSION

A recent phylogenetic analysis showed that flecks are the
primitive pigmentation pattern of the felid family and all

other patterns, including rosettes and blotches, develop from
it. The development of the coat makings of the leopard and
jaguar is consistent with this result. Based on this result, we
took a simple Turing model and generated patterns at differ-
ent growth stages of the leopard and jaguar by tuning param-
eters of the model in steps. We first generated the spotted
pattern for the young leopard and jaguar. In the second stage,
three parameters were changed in sequence to enhance, to
shift, and to stabilize spatial modes consistent with the
pattern transformation observed during the growth of the
animals. The rosette patterns on adult leopards were obtained
in three steps, while the more complicated patterns on
adult jaguars were obtained similarly with a different set of
parameters.

Turing models have been demonstrated previously in
many examples to generate patterns similar to those ob-
served in nature. However, few studies address the pattern
changes during growth. In this article we have successfully
used a simple Turing model to generate the temporal evolu-
tion of coat markings in the leopard and jaguar at different
stages of growth by tuning the parameters of the model dur-
ing growth. It is not unreasonable to propose that parameters
of the model would change during growth. Note that al-
though we have not explicitly included growth of the domain
in this study, the parameter � is inversely related to domain
scale, so we would expect that an increase in domain size
would correspond to a decrease in this parameter.

In conclusion, we have shown the ability of a Turing
reaction-diffusion model to exhibit a temporal sequence
of spatial patterning that is consistent with some examples
in nature. This lends further support to the role of morpho-
gens in developmental biology but of course does not prove

FIG. 10. Intensity of the power spectrum of Figs. 9�e�–9�h�
along the horizontal line from center to one edge. Two frequency
ranges �0,0.2� �0.1,0.5� are plotted separately to show details.

FIG. 11. Truncating the power spectrum of Fig. 9�g� at fre-
quency 0.061 �black circle shown in �a��, the inverse Fourier trans-
form of the high frequency part �b� reproduces the original spatial
pattern �Fig. 9�c�� well, while the low frequency part �c� has little
resemblance to the original one.
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it. To extend this work further requires the experimental
identification of the morphogens in this context.
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