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We consider the shadow system of the Gierer-Meinhardt system in a smooth bounded domain
��RN,At=�2�A−A+ Ap

�q ,x�� , t�0, �����t=−����+ 1
�s ��Ardx , t�0 with the Robin boundary

condition ��A � �� +aAA=0, x���, where aA�0, the reaction rates �p ,q ,r ,s� satisfy 1	 p
	 � N+2

N−2
�
+, q�0, r�0, s
0, 1	

qr
�s+1��p−1� 	 + � , the diffusion constant is chosen such that ��1,

and the time relaxation constant is such that �
0. We rigorously prove the following results on the
stability of one-spike solutions: �i� If r=2 and 1	 p	1+4/N or if r= p+1 and 1	 p	�, then for
aA�1 and � sufficiently small the interior spike is stable. �ii� For N=1 if r=2 and 1	 p�3 or if
r= p+1 and 1	 p	�, then for 0	aA	1 the near-boundary spike is stable. �iii� For N=1 if 3
	 p	5 and r=2, then there exist a0� �0,1� and 
0�1 such that for a� �a0 ,1� and 

=2q / �s+1��p−1�� �1,
0� the near-boundary spike solution is unstable. This instability is not
present for the Neumann boundary condition but only arises for the Robin boundary condition.
Furthermore, we show that the corresponding eigenvalue is of order O�1� as �→0. © 2007 Ameri-
can Institute of Physics. �DOI: 10.1063/1.2768156�

Boundary conditions play an important role for pattern
formation in Turing systems. In most investigations Neu-
mann (no-flux) boundary conditions have been consid-
ered to model an impermeable membrane. However, for
some biological applications such as the modeling of skel-
etal limb development, this does not represent the true
biological situation and Robin (mixed) boundary condi-
tions are more realistic.1 In this paper, we show that for
Robin boundary conditions, some patterns that are stable
for Neumann boundary conditions become unstable due
to the presence of a new instability. In particular, we are
interested in spikes and our main results says that, for the
shadow Gierer-Meinhardt system, a spike near the
boundary may be destabilized by the change of boundary
conditions. This implies that some patterns become more
robust at the expense of others that turn unstable. Results
of this type are important to understand the role of the
boundary conditions in pattern selection.

I. INTRODUCTION

Since the work of Turing2 in 1952, many models have
been established and investigated to explore the instability of
homogeneous steady states, which is now called Turing in-
stability. One of the most famous models in biological pat-
tern formation is the Gierer-Meinhardt system.3–5 It can be
stated as follows:

At = �2�A − A +
Ap

Hq , x � �,t � 0,

�1.1�

�Ht = D�H − H +
Ar

Hs , x � �,t � 0,

where ��RN is a bounded, smooth domain. Further, we
assume that the reaction exponents �p ,q ,r ,s� satisfy

1 	 p 	 �N + 2

N − 2
�

+
, q � 0, r � 0 ,s 
 0,

1 	
qr

�s + 1��p − 1�
	 + � ,

where

�N + 2

N − 2
�

+
= 	+ � for N = 1,2

N + 2

N − 2
for N = 3,4, . . . .

We assume that the first diffusion constant satisfies ��1
and we will consider the case of D=�, the so-called shadow
system of the Gierer-Meinhardt system. The time relaxation
constant is chosen such that �
0 is independent of �.
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This is a typical activator-inhibitor system, where A de-
notes an activator and H denotes an inhibitor. This model has
been extensively studied in recent years, usually with Neu-
mann boundary conditions.6–12

In this work, we consider Robin boundary conditions
�also called mixed boundary conditions�, which can be stated
as follows:

�
�A

��
+ aAA = 0, 
D

�H

��
+ aHH = 0, x � �� , �1.2�

where aA�0, aH
0.
Reaction-diffusion systems have been studied mostly

with Neumann boundary conditions. From a biological view-
point, such boundary conditions correspond to an imperme-
able membrane/barrier. While in many cases this is a realistic
assumption, there are several applications, for example in
skeletal limb development, where the boundary is a source of
some chemical morphogens and a sink for others. It is there-
fore essential that the study of reaction-diffusion systems is
extended to incorporate more general types of boundary con-
ditions. For example, in Ref. 1 a comparative numerical
study of a reaction-diffusion system coming from glycolysis
with a range of different boundary conditions revealed that
certain types of boundary conditions selected particular pat-
terning modes at the expense of others. It was also shown
that the robustness of certain patterns could be greatly en-
hanced and the authors showed a possible application to
skeletal patterns in the limb. This study in Ref. 1 answered
the standard criticism of Turing patterns being too sensitive
to fluctuations for the model to be viable for robust embryo-
logical patterning.

In this paper, we take a first step in this direction. Instead
of studying multicomponent reaction-diffusion systems, we
initiate a rigorous study of stationary spikes for the shadow
system of the Gierer-Meinhardt system, given in Eqs. �1.1�
and �1.2�.

We now �formally� derive the shadow system of Eqs.
�1.1� and �1.2�. To this end, we let D→� and suppose that A
and H remain bounded. Then

�H → 0 in �

and

�H

��
→ 0 on � � .

This implies that H�x�→�, a constant in � that might de-
pend on time t. To derive the equation for �, we integrate
both sides of the second equation in �1.1� over �. For the
left-hand side, we obtain

��
�

Ht�x�dx = ���
�

H�x�dx�
t

→ �����t.

To compute the right-hand side, we begin with

D�
�

�H�x�dx = D�
��

�H

��
�x�dS

= 
D�
��

�− aH�H�x�dS

→ − 
DaH����� ,

where we have used �1.2�. Further, we compute

�
�

H�x�dx → ����

and

�
�

Ar�x�
Hs�x�

dx → �
�

Ar�x�
�s dx =

��Ar�x�dx

�s .

From these computations, we finally get the following so-
called shadow system of Eq. �1.1�:

At = �2�A − A +
Ap

�q , x � � ,

t � 0,�����t = − ���� + 
DaH������ +
1

�s�
�

Ardx,

x � �, t � 0,

�
�A

��
+ aAA = 0, x � ��, t � 0.

For simplicity, from now on we consider the case aH=0. This
means we study the shadow system with the Neumann
boundary condition for the inhibitor, which can be stated as
follows:

At = �2�A − A +
Ap

�q , x � �, t � 0,

�����t = − ���� +
1

�s�
�

Ardx, t � 0, �1.3�

�
�A

��
+ aAA = 0, x � ��, t � 0.

Let us now consider stationary solutions to the shadow
system �1.3�. Set A�x�=�q/�p−1�u�x�, aA=a. Then u satisfies

�2�u − u + up = 0 for x � � ,

u � 0 for x � � , �1.4�

�
�u

��
+ au = 0 for x � �� .

For �, we have the equation

0 = − ���� +
�qr/�p−1�

�s �
�

urdx ,

which gives
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�1+s−qr/�p−1� =
1

�����

urdx

and so

� = � 1

�����

urdx�−�p−1�/�qr−�p−1��s+1��

.

Problem �1.4� has been studied by Berestycki and Wei in
Ref. 20 and the following result has been proved:

Theorem A. Let 1	 p	 � N+2
N−2

�
+. Then there exists a num-

ber a�N , p�, where a�1, p�=1 and a�N , p��1 for N
2, such
that problem �1.4� has a solution u�,a satisfying

(1) u�,a has the least energy among all solutions to �1.4�,
i.e.,

E��u�,a� � E��u� �1.5�

for all solutions u to �1.4�, where E� is the energy functional
defined by

E��u� =
�2

2
�

�

��u�2dx +
1

2
�

�

u2dx −
1

p + 1
�

�

up+1dx

+
�a

2
�

��

u2ds , �1.6�

where u+=max�u ,0
.
(2) If 0	a	a�N , p�, then u�,a has a local maximum

point x��� with

d�x�,���
�

→ d0 � 0. �1.7�

(3) If a�a�N , p�, then u�,a has a unique local maximum
point x��� with

d�x�,��� → max
x��

d�x,��� . �1.8�

Remark 1.1. (1) The solution in part (2) of Theorem A is
called a near-boundary spike �see Fig. 1 in Sec. IV�.

(2) The solution in part (3) of Theorem A is called an
interior spike �see Fig. 2 in Sec. IV�.

(3) We remark that in case (2) of Theorem A, i.e., for 0
	a	a�N , p�, there also exists an interior spike that is a
solution of �1.4� but does not minimize �1.5� among the so-
lutions of �1.4�.

Now we consider the stability of the steady state
�A�,a ,��,a� to the shadow system �1.3�, where

A�,a = ��,a
q/�p−1�u�,a,

�1.9�

��,a = � 1

�����

u�,a
r dx�−�p−1�/�qr−�p−1��s+1��

and u�,a is the minimal energy solution of �1.4� given in
Theorem A.

In analogy to Theorem A, we also call �A�,a ,��,a� a near-
boundary spike if 0	a	a�N , p� and an interior spike if
a�a�N , p�.

FIG. 1. Near-boundary spike for variable constant aA in the Robin boundary. We have chosen aA=0.2, 0.4, 0.6, 0.8. It is numerically stable �final state is shown
for t=10 000�.
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For the Neumann boundary condition, a stability result
has been obtained in Ref. 13 for

r = 2 and 1 	 p 	 1 +
4

N

or

r = p + 1 and 1 	 p 	 �N + 2

N − 2
�

+
. �1.10�

In this paper, for Robin boundary conditions, we can give an
answer under similar conditions.

Our first result implies that if a�a�N , p�, then the inte-
rior spike is stable.

Theorem 1.2 �stability of the interior spike�. Suppose
that a�a�N , p�. Assume that either

r = 2 and 1 	 p 	 1 +
4

N

or

r = p + 1 and 1 	 p 	 �N + 2

N − 2
�

+
.

Then there exists �0�0 such that if 0	��1 and 0��
	�0, the interior spike �A�,a ,��,a� is a (linearly) stable steady
state to the shadow system �1.3�.

Our second theorem shows that if N=1, i.e., if � is an
interval, then in particular for all 1	 p�3 and 0	a	1 the
near-boundary spike is stable.

Theorem 1.3. �stability of the near-boundary spike�.
Suppose that

N = 1 and 0 	 a 	 1. �1.11�

Assume that either

r = 2 and 1 	 p � 3

or

r = p + 1 and 1 	 p 	 � .

Then there exists a �0�0 such that if 0	��1 and 0��
	�0, the near-boundary spike �A�,a ,��,a� is a (linearly)
stable steady state to the shadow system �1.3�.

Our third and last theorem shows that the near-boundary
spike may become unstable if the exponent p is increased
beyond 3.

Theorem 1.4 �instability of the near-boundary spike�.
Suppose that �1.11� holds. Assume that r=2 and p�3. Then
there exists a0�0 and 
0�0 such that if

a0 	 a 	 1 and 1 	 
 ª

2q

�p − 1��s + 1�
	 
0 �1.12�

then for 0	��1 and all �
0 the near-boundary spike

FIG. 2. Interior-boundary spike for variable constant aA

in the Robin boundary. We have chosen aA=0.2, 0.8. It
is numerically stable �final state is shown for t
=10 000�.
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�A�,a ,��,a� is an unstable steady state to the shadow system
�1.3�.

Remark 1.5. (1) The phenomenon described in Theorem
1.4 is new and unexpected. The proof shows that this insta-
bility is connected to an eigenvalue of order O�1� as �→0. It
is important to note that for N=1 and the Neumann bound-
ary condition, the minimal energy solution analogous to
Theorem A, which is a boundary spike, is stable for all p ,q ,s
such that

1 	 
 ª

2q

�p − 1��s + 1�
and 1 	 p 	 5,

see Ref. 14. This means that the instability given in Theorem
1.3 only arises for the Robin boundary condition and not for
the Neumann boundary condition.

In some sense, for the Robin boundary condition the
threshold for the instability that for Neumann boundary con-
ditions occurs only for p�5 is shifted to the range 3	 p
�5. The threshold 
=
0 corresponds to a Hopf bifurcation.

(2) Note that for the instability in Theorem 1.3 to occur,
we assume that both the constants a	1 and 
ª

qr
�p−1��s+1�

�1 are each sufficiently close to 1.
(3) Note that under the conditions (1.12) a proof similar

to the one for Theorem 1.1 shows that the interior spike is
unstable due to an exponentially small eigenvalue (this proof
is omitted). On the other hand, by Theorem 1.3, the near-
boundary spike is unstable as well, due to an O�1� instabil-
ity, compare part (1) of this remark. Thus we do not know
about any stable spiky steady state and we conjecture that

there are none. This behavior is similar to the case 

ª

qr
�p−1��s+1� 	1 for the Neumann boundary condition; see

Ref. 9. In all of these situations, due to the nonexistence of
stable steady states, oscillations with large amplitudes fre-
quently occur for the dynamical system. This effect will be
shown in the simulations of the dynamical system in the final
section of this paper (see Figs. 3 and 4).

Let us now outline the proof of Theorems 1.2–1.4 by
highlighting our strategy and explaining how we tackle the
main difficulties.

To study the stability of the steady state, we have to
linearize �1.3� at �1.9�. This results in the following eigen-
value problem:

�2��� − �� + p
A�

p−1

��
q �� − q

A�
p

��
q+1�� = ����,

r

������

A�
r−1��

��
s dx −

1 + s

�
�� = ����,

�1.13�

where ��� ,��� in Hrob
1 ����R and

Hrob
1 ��� = �� � H1���:�

��

��
+ a� = 0 on � �� .

Using �1.9�, it is easy to see that for aH=0, the eigenvalues
of problem �1.13� in Hrob

1 ����R are the same as the eigen-
values of the eigenvalue problem

FIG. 3. Stable near-boundary spike. We choose constants aA=0.8, q=2, r=2, s=0, and varying p. For p=4.0, 4.5, 4.8, and 4.85, the near-boundary spike is
shown. It is numerically stable �final state is shown for t=10 000�.
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�2��� − �� + pu�
p−1�� −

qr

s + 1 + ���

��u�
r−1��dx

��u�
rdx

u�
p = ����,

�1.14�
�� � Hrob

1 ��� .

When N=1 and 0	a	1, we have u�,a�x��w� x−x�

�
�

=w� x
� −

x�

�
�= :wx�/�

� x
�
�, where w is the unique homoclinic so-

lution of the second-order ODE,

w� − w + wp = 0, w � 0, w = w��y�� ,

�1.15�
w�y� → 0 as �y� → � .

Further, by the Robin boundary condition w�=aw,
x�

� →y0,,
where y0�0 is determined by

w��− y0� = aw�− y0� . �1.16�

Now we use the explicit representation of the solution to
the problem �1.15�, which is given by

w�y� = � p + 1

2
cosh−2 �p − 1�y

2
�1/�p−1�

.

We compute

w��y� = − tanh
�p − 1�y

2
w�y� .

This implies

w��− y0�
w�− y0�

= tanh
�p − 1�y0

2
= a .

So, if 0	a	1, y0 can explicitly be expressed in terms of a
as

y0 =
2

p − 1
artanh a �1.17�

and we get

w�y0� = � �p + 1��1 − a2�
2

�1/�p−1�

. �1.18�

Let �� be an eigenvalue of �1.14�. Then the following
Lemma holds.

Lemma A. (1) For a�a�N , p� we have ��=o�1� as �
→0 if and only if ��= �1+o�1��� j

� for some j=1, . . . ,N,
where � j

� is given in Theorem 3.4 below �interior spike case�.
For N=1 and a	a�N , p� there are no eigenvalues ��

=o�1� �near-boundary spike case�.
(2) If ��→�0�0, then all possible �0 are given by the

eigenvalues of the following eigenvalue problem:

�� − � + pwy0

p−1� −
qr

s + 1 + ��0

�0
�wy0

r−1�

�0
�wy0

r wy0

p = �0� , �1.19�

where (i) for a�a�N , P� we have wy0
=w, ��H1�R� �inte-

rior spike case� and (ii) for N=1 and a	a�1, P�=1 we have
wy0

=w�y−y0�, where y0 is given by the unique solution of

FIG. 4. Unstable near-boundary spike. We choose constants aA=0.8, q=2, r=2, s=0, and p=4.86. The near-boundary spike is now numerically unstable. In
the time evolution, the amplitude increases �shown for t=1000, 3000, 5000, and 6390�.
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w��y0�+aw�y0�=0, and ��Hrob
1 �R+� �near-boundary spike

case�.
Proof. When a�a�N , p�, the proof of part �1� in Lemma

A for the Robin boundary condition is similar to that in Ref.
13 for the Neumann boundary condition. In both cases, be-
cause interior spikes are considered that have exponential
decay with respect to the spatial variable, one has to expand
the solution to exponential order. There is, however, a major
difference in the stability properties. Whereas for the Neu-
mann boundary condition interior spikes are unstable, they
are stable for the Robin boundary condition. This difference
comes from the fact that the expression ��,P�

�P��, which
plays a major role in the proof �defined in Eq. �3.3��, has
different signs for the Neumann and Robin boundary condi-
tions, respectively.

When N=1 and a	1, the proof of part �1� in Lemma A
for the Robin boundary condition is similar to that in Ref. 14
for a boundary spike with the Neumann boundary condition:
In both cases, there are no small eigenvalues ��=o�1�.

The proof of �2� follows by a standard limiting process
coupled with an argument of Dancer.15

�

Notice that the eigenvalue problem in part �2� of Lemma
A �near-boundary spike case� is a half-line nonlocal eigen-
value problem NLEP with a Robin boundary condition. This
is a new type of NLEP that to the best of our knowledge has
not been studied in the literature before. We will prove re-
sults on its spectral and stability properties in the next sec-
tion. For the study on NLEP, we refer to Refs. 24–30

From now on we assume that �=0. By a regular pertur-
bation argument, the results also hold for the case of � being
sufficiently small.

II. STUDY OF THE NLEP:
PROOF OF THEOREMS 1.2 AND 1.3

In this section, we study the NLEP,

�� − � + pwy0

p−1� −
qr

s + 1

�0
�wy0

r−1�dy

�0
�wy0

r dy
wy0

p = �� ,

�2.1�
� � Hrob

1 �R+� ,

where wy0
�y�=w�y−y0� for some y0�0, and w satisfies

�1.15�. Let

L0� ª �� − � + pwy0

p−1�, � � Hrob
1 �R+� .

We set

L� ª L0� − 
�p − 1�
�0

�wy0

r−1�dy

�0
�wy0

r dy
wy0

p , � � Hrob
1 �R+� ,

where


 =
qr

�s + 1��p − 1�
� 1.

We first prove the following Lemma.
Lemma 2.1. Let ��Hrob

1 �R+� satisfy

�� − � + pwy0

p−1� = 0, ���H1�R+� = 1. �2.2�

Then ��0.

Proof. Recall that the Robin boundary condition gives

a =
wy0

� �0�

wy0
�0�

�2.3�

and by �1.15� wy0
satisfies

wy0
� = wy0

− wy0

p , �wy0
� �2 = wy0

2 −
2

p + 1
wy0

p+1. �2.4�

We multiply �2.2� by wy0
� and integrate. After integration

by parts, using �2.4� and the Robin boundary condition for �,
we get

0 = ���0�wy0
� �0� − ��0�wy0

� �0� = ��0��awy0
� �0� − wy0

� �0�� .

�2.5�

By �2.3� and �2.4� it follows that

awy0
� �0� − wy0

� �0� =
�wy0

� �0��2 − wy0
�0�wy0

� �0�

wy0
�0�

=
�wy0

� �0��2 − �wy0
�0��2 + �wy0

�0��p+1

wy0
�0�

=
p − 1

p + 1
wy0

p � 0. �2.6�

Thus from �2.5� we have

��0� = 0 �2.7�

and finally we get ���0�=0 by the Robin boundary condi-
tion. By the uniqueness properties of ODEs, we conclude
that ��y��0 on R+. The lemma is proved. �

Lemma 2.1 implies, using the Fredholm Alternative, that
the operator L0, defined on Hrob

1 �R+�, is invertible.
Since

L0wy0
= �p − 1�wy0

p , wy0
� �0� − awy0

�0� = 0

we have

L0
−1�wy0

p � =
1

p − 1
wy0

. �2.8�

Another simple calculation shows that

L0� 1

p − 1
wy0

+
1

2
ywy0

� � = wy0
, �2.9�

but note that 1
p−1wy0

+ 1
2 ywx0

� does not satisfy the Robin
boundary condition. Thus, since 1

p−1wy0
+ 1

2 ywy0
� �Hrob

1 �R+�,
we do not have L0

−1�wy0
�= 1

p−1wy0
+ 1

2 ywy0
� . To overcome this

difficulty and determine L0
−1�wy0

�, we prove the following
lemma.

Lemma 2.2. We have for a�1 that

L0
−1�wy0

� =
1

p − 1
wy0

+
1

2
ywy0

� + Awy0
� ,

where

A =
a

�p − 1��1 − a2�
.
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Proof. We need to choose A such that

A�wy0
� �0� − awy0

� �0�� + 1
2wy0

� �0� = 0.

Using �2.6�, we get

A =
p + 1

2�p − 1�
wy0

� �0�wy0

−p�0� . �2.10�

Inserting �1.18� into �2.10�, we get

A =
p + 1

2�p − 1�
� p + 1

2
�−1 a

1 − a2 =
a

�p − 1��1 − a2�
,

which proves the lemma. �

Remark 2.3 (1) In the multidimensional case it is un-
clear how to find an equivalent to the correction term given
in Lemma 2.2 �and starting with the factor A�.

(2) The extra term Awy0
� in Lemma 2.2 only appears for

Robin boundary conditions and is not present for the Neu-
mann boundary condition. As we will see, the presence of
this term under some extra conditions can lead to the desta-
bilization of the near-boundary spike.

(3) Note that A→� as a→1 and A→0 as a→0. The
first limit will play a major role for the rest of the paper. The
second limit is in agreement with intuition since in the limit
a→0 the near-boundary spike for the Robin boundary con-
dition approaches the boundary spike for the Neumann
boundary condition, where this term does not appear.

We now compute the sign of the expression

��y0� ª �
0

�

wy0
L0

−1�wy0
�dy

which will play the crucial role in the stability analysis of the
near-boundary spike.

From Lemma 2.2, we have

��y0� = �
0

�

wy0
L0

−1�wy0
�dy

=
1

p − 1
�

0

�

wy0

2 dy +
1

2
�

0

�

ywy0
wy0

� dy + A�
0

�

wy0
wy0

� dy

= � 1

p − 1
−

1

4
��

0

�

wy0

2 dy −
A

2
wy0

2 �0�

= � 1

p − 1
−

1

4
��

0

�

wy0

2 dy

−
a

2�p − 1��1 − a2�
� �p + 1��1 − a2�

2
�2/�p−1�

= � 1

p − 1
−

1

4
��

−y0

�

w2dy

−
�p + 1�2/�p−1�a

2�p+1�/�p−1��p − 1��1 − a2��p−3�/�p−1� . �2.11�

Let us differentiate ��y0� with respect to y0. Using
�2.10�, we get

���y0� =
5 − p

4�p − 1�
wy0

2 �0�

+
p + 1

4�p − 1�
�wy0

2−p�0�wy0
� �0�

+ �2 − p�wy0

1−p�0��wy0
� �0��2


=
5 − p

4�p − 1�
wy0

2 �0� +
p + 1

4�p − 1���wy0
− wy0

p �wy0

2−p

+ �2 − p�wy0

1−p�wy0

2 −
2

p + 1
wy0

p+1���0�

=
�p + 1��3 − p�

4�p − 1�
wy0

3−p�0� �2.12�

by �2.4�. We arrive at the following important proposition.
Proposition 2.4. Suppose that 1	 p�3. Then

�
0

�

wy0
L0

−1�wy0
�dy � 0. �2.13�

Proof. For 1	 p�3, we get from �2.11� for y0=0 �and
so also a=0� that

��0� = � 1

p − 1
−

1

4
��

0

�

wy0

2 dy � 0.

By �2.12� we compute ���y0�
0 for all y0� �0, � � and
therefore ��y0�
0 for all y0� �0, � �. �

We now show that for p�3, in contrast to Proposition
2.4, the integral �0

�wy0
L0

−1�wy0
�dy may be negative.

Proposition 2.5. Suppose that p�3. Then for

5 − p

p − 1
�

−�2p−1�artanh a

�

w2dy 	
2�p−3�/�p−1��p + 1�2/�p−1�a

�p − 1��1 − a2��p−3�/�p−1� �2.14�

it follows that �0
�wy0

L0
−1�wy0

�dy is negative. There exists
some constant a0�p�	1 such for a0�p�	a	1, condition
�2.14� holds.

Before proceeding to the proof, it is enlightening to con-
sider the restriction posed by condition �2.14�. This is done
in the following remarks.

Remark 2.6. (1) For p=5, �2.14� is satisfied for all 0
	a	1 as l.h.s.=0 and it poses no restriction at all. This
implies that a0�p�→0 as p→5−.

(2) The solution set of �2.14� within 0	a	1 is empty if
3	 p	 p0 for some p0�3 as for p=3 r.h.s.=2a and l.h.s.
�2.

(3) We now consider the asymptotic behavior of Eq.
(2.14) in the most interesting range p→5−. In leading order
we get

�

4
�5 − p� 	 a + O�a2� + O��5 − p�2� .

(4) For p close to 5 �and possibly for the whole range of
3	 p	5� the threshold a0�p� given by (2.14) is uniquely
defined and a0�p� is monotone decreasing in p.

Proof. Condition �2.14� follows immediately from
�2.11�. The left-hand side of �2.14� is positive and remains
bounded for all a� �0,1�. The right-hand side of �2.14� tends
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to 0 as a→0+ and to +� as a→1−. By continuity, there
exists some a0�p�� �0,1� such that �2.14� is true for a0�p�
	a	1. �

Next we need the following.
Lemma 2.7. The first eigenvalue of L0, which we call


1, is positive. The second eigenvalue of L0 is negative.
Proof. Let

Q�u� =
�0

���u��2 + u2�dy + au2�0�
��0

�up+1dy�2/�p+1� .

Then wy0
up to a scaling factor is the unique minimizer of

Q�u� in Hrob
1 �R+�.

Similar to the proof of Theorem 2.1 of Ref. 16, we see
that the second eigenvalue of L0 is nonpositive, and hence is
negative since by Lemma 2.1 the kernel is trivial.

Now, to study the case r=2, we introduce a new opera-
tor,

L1� ª L0� − �p − 1�
�0

�wy0
�dy

�0
�wy0

2 dy
wy0

p − �p − 1�
�0

�wy0

p �dy

�0
�wy0

2 dy
wy0

+ �p − 1�
�0

�wy0

p+1dy�0
�wy0

�dy

��0
�wy0

2 dy�2 wy0
, �2.15�

which is defined for all ��Hrob
1 �R+�.

Then we have
Lemma 2.8. (1) The operator L1 is self-adjoint and the

kernel of L1 �denoted by X1� is given by span�wy0

.

(2) There exists a positive constant c0�0 such that

L1��,�� ª �
0

�

�����2 + �2 − pwy0

p−1�2� dy

+
2�p − 1��0

�wy0
�dy�0

�wy0

p �dy

�0
�wy0

2 dy

− �p − 1�
�0

�wy0

p+1dy

��0
�wy0

2 dy�2��
0

�

wy0
�dy�2


 c0dL2�R+�
2 ��,X1�

for all ��Hrob
1 �0, � �, where dL2�0,�� denotes the distance in

the L2 norm.
Proof. By definition �2.15�, it is an elementary calcula-

tion to show that �L1� ,��L2�0,��= �L1� ,��L2�0,�� for all � ,�
�H1�0, � �, which implies that the operator L1 is self-
adjoint.

Next we compute the kernel of L1. It is easy to see that
wy0

�kernel�L1�. On the other hand, if ��kernel�L1�, then

L0� = c1���wy0
+ c2���wy0

p

= c1���L0� 1

p − 1
wy0

+
1

2
ywy0

� + Awy0
� �

+ c2���L0� 1

p − 1
wy0

�
by Lemma 2.2, where

c1��� = �p − 1�
�0

�wy0

p �dy

�0
�wy0

2 dy
− �p − 1�

�0
�wy0

p+1dy�0
�wy0

�dy

��0
�wy0

2 dy�2 ,

c2��� = �p − 1�
�0

�wy0
�dy

�0
�wy0

2 dy
.

Hence

� = c1���L0
−1�wy0

� + c2���L0
−1�wy0

p �

= c1���L0
−1�wy0

� +
1

p − 1
c2���wy0

. �2.16�

Note that by �2.16�

c1��� = c1�����p − 1�
�0

�wy0

p L0
−1�wy0

�dy

�0
�wy0

2 dy

− �p − 1�
�0

�wy0

p+1dy�0
�wy0

L0
−1�wy0

�dy

��0
�wy0

2 dy�2 �
= c1����1 − �p − 1�

�0
�wy0

p+1dy�0
�wy0

L0
−1�wy0

�dy

��0
�wy0

2 dy�2 � .

This implies that c1���=0. By �2.16� and Lemma 2.1, this
proves �1�.

It remains to prove �2�. Suppose �2� is not true, then by
�1� there exists �� ,�� such that �i� ��0, �ii� ��wy0

, and
�iii� L1�=��.

We show that this is impossible. From �ii� and �iii�, we
have

�L0 − ��� = �p − 1�
�0

�wy0

p �dy

�0
�wy0

2 dy
wy0

. �2.17�

We first claim that �0
�wy0

p �dy�0. In fact, if �0
�wy0

p �dy=0,
then ��0 is the first �principal� eigenvalue of L0. By Propo-
sition 2.7, �=
1 and � has a constant sign. This contradicts
�ii�.

Therefore, we must have �0
�wy0

p �dy�0 Hence ��
1

and L0−� is invertible. So �2.17� implies

� = �p − 1�
�0

�wy0

p �dy

�0
�wy0

2 dy
�L0 − ��−1wy0

.

Thus

�
0

�

wy0

p �dy = �p − 1�
�0

�wy0

p �dy

�0
�wy0

2 dy
�0

���L0 − ��−1wy0
�wy0

p dy ,

�
0

�

wy0

2 dy = �p − 1��
0

�

��L0 − ��−1wy0
�wy0

p dy ,

�
0

�

wy0

2 dy = �
0

�

��L0 − ��−1wy0
���L0 − ��wy0

+ �wy0
�dy ,
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0 = �
0

�

��L0 − ��−1wy0
�wy0

dy . �2.18�

Let h1���=�0
���L0−��−1wy0

�wy0
dy. Then h1�0�

=�0
��L0

−1wy0
�wy0

dy=�0����0 by Proposition 2.4. Moreover
h1����=�0

���L0−��−2wy0
�wy0

=�0
���L0−��−1wy0

�2dy�0. This
implies h1����0 for all �� �0,
1�. Clearly, since
lim�→+�h1���=0−, we also have h1���	0 for �� �
1 , � �.

This is a contradiction to �2.18�, and completes the
proof. �

First we have the following theorem about �in�stability
of a near-boundary spike in the case of the Robin boundary
condition including the exponents r=2,1	 p�3, which is
similar to the results for an interior or a boundary spike in
the case of the Neumann boundary condition:

Theorem 2.9. Suppose 0	a	1. If

r = 2 and 1 	 p � 3

or if

r = p + 1 and 1 	 p 	 � ,

then the following NLEP

�� − � + pwy0

p−1� − 
�p − 1�
�0

�wy0

r−1�dy

�0
�wy0

r dy
wy0

p = �� , �2.19�

� � Hrob
1 �R+� ,

for 
�1 has only stable eigenvalues but for 
	1 admits
unstable eigenvalues.

In contrast, for the exponents r=2, p�3, we have the
following instability result for the near-boundary spike in the
case of Robin boundary condition:

Theorem 2.10. If

r = 2 and p � 3,

then there exist some a0�p�� �0,1� and 
0�a��1 such that
for

a0 	 a 	 1 �2.20�

and


 	 
0�a� �2.21�

the NLEP �2.19� has a positive eigenvalue.
Remark 2.11 (1) The number a0 can be chosen accord-

ing to �2.14�. See also Remark 2.6.
�2� It follows from continuity that 
0�p�→1 as a

→a0�p�.
(3) At 
=
0�p�, Hopf bifurcation occurs. In fact, for 


large, the NLEP is stable �a rigorous proof of this will ap-
pear elsewhere�. On the other hand, for 
	
0�p�, NLEP is
unstable. Thus, as 
 increases, the eigenvalues of NLEP will
cross the imaginary axis. Since 
0�p��1, eigenvalues can-
not cross zero. Thus there exists a Hopf bifurcation. We re-
mark that in the case of the Neumann boundary condition
�i.e., a=0�, Ward and Wei9 have shown that when p�5, Hopf
bifurcation can occur for some 
�1. See the discussions in
Sec. IV of Ref. 9.

To show the instability part in Theorems 2.9 and 2.10,
we first prove the following result.

Theorem 2.12 (1) If 
	1 and r=2,1	 p�3 or r= p
+1,1	 p	�, the NLEP �2.19� has a positive eigenvalue.

(2) If r=2 and

�
0

�

wy0
L0

−1wy0
dy 	 0,

then under the condition �2.21� the NLEP �2.19� has a posi-
tive eigenvalue.

Proof. �1� Suppose 
	1. We look for a positive eigen-
value � to �2.19� which is equivalent to

� = 
�p − 1�
�0

�wy0

r−1�dy

�0
�wy0

r dy
�L0 − ��−1wy0

p , 0 	 y 	 + � ,

���0� − a��0� = 0.

Multiplying by wy0

r−1 and integrating, we get

�
0

�

wy0

r dy = 
�p − 1��
0

�

��L0 − ��−1wy0

p �wy0

r−1dy .

Using the identity

�p − 1��L0 − ��−1wy0

p−1 = wy0
+ ��L0 − ��−1wy0

we get

�
0

�

wy0

r dy = 
��
0

�

wy0

r dy + ��
0

�

��L0 − ��−1wy0
�wy0

r−1dy�
which is equivalent to

1

�
� 1



− 1��

0

�

wy0

r dy = �
0

�

��L0 − ��−1wy0
�wy0

r−1dy . �2.22�

If r=2 and 1	 p�3, then by Proposition 2.4 the right-hand
side of �2.22� is positive for �=0.

If r= p+1 and 1	 p	�, then the right-hand side of
�2.22� is positive for �=0 since

�
0

�

�L0
−1wy0

�wy0

p dy =
1

p − 1
�

0

�

wy0

2 dy � 0.

Therefore, as �→0+, the left-hand side of �2.22� tends to
+� while the right-hand side tends to some positive number.
As �→
1

−, the left-hand side tends to some positive number
while the right-hand side tends to +�. By continuity, there
exists a solution to �2.22�.

�2� If r=2, then �2.22� becomes

1

�
� 1



− 1��

0

�

wy0

2 dy = �
0

�

��L0 − ��−1wy0
�wy0

dy . �2.23�

As �→0+, the left-hand side of �2.23� tends to −� while
the right-hand side tends to some negative number. As �
→
1

−, the left-hand side tends to some negative number
while the right-hand side tends to −�.

By continuity, there exists a solution to �2.23�. �

Proof of Theorem 2.10:
The proof of Theorem 2.10 is completed by combining

Proposition 2.5 and part �2� of Theorem 2.12. �
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Proof of Theorem 2.9:
The instability part of Theorem 2.9 is contained in part

�1� of Theorem 2.12.
Now we prove the stability part of Theorem 2.9. We

divide the proof into two cases. The outline follows Appen-
dix F of Ref. 6:

Case 1. r=2, 1	 p�3.
Case 2. r= p+1, 1	 p	�.
Let �0=�R+ i�I be an eigenvalue and �=�R+ i�I an

eigenfunction of �2.19�. Since �0�0, we can choose

��kernel�L0�. Then we obtain the two equations

L0�R − �p − 1�

�0

�wy0
�Rdy

�0
�wy0

2 dy
wy0

p = �R�R − �I�I, �2.24�

L0�I − �p − 1�

�0

�wy0
�Idy

�0
�wy0

2 dy
wy0

p = �R�I + �I�R. �2.25�

Multiplying �2.24� by �R and �2.25� by �I and adding the
two equations, we obtain

− �R�
0

�

��R
2 + �I

2�dy = L1��R,�R� + L1��I,�I� + �p − 1��
 − 2�
�0

�wy0
�Rdy�0

�wy0

p �Rdy + �0
�wy0

�Idy�0
�wy0

p �Idy

�0
�wy0

2 dy

+ �p − 1�
�0

�wy0

p+1dy

��0
�wy0

2 �2dy���0

�

wy0
�Rdy�2

+ ��
0

�

wy0
�Idy�2� .

Multiplying �2.24� by wy0
and �2.25� by wy0

, respectively, and integrating, we obtain

�p − 1��
0

�

wy0

p �Rdy − �p − 1�

�0

�wy0
�Rdy

�0
�wy0

2 dy
�

0

�

wy0

p+1dy = �R�
0

�

wy0
�Rdy − �I�

0

�

wy0
�Idy , �2.26�

�p − 1��
0

�

wy0

p �Idy − �p − 1�

�0

�wy0
�Idy

�0
�wy0

2 dy
�

0

�

wy0

p+1dy = �R�
0

�

wy0
�Idy + �I�

0

�

wy0
�Rdy . �2.27�

Multiplying �2.26� by �0
�wy0

�Rdy and �2.27� by �0
�wy0

�Idy and adding, we obtain

�p − 1��
0

�

wy0
�Rdy�

0

�

wy0

p �Rdy + �p − 1��
0

�

wy0
�Idy�

0

�

wy0

p �Idy

= ��R + �p − 1�

�0

�wy0

p+1dy

�0
�wy0

2 dy
����

0

�

wy0
�Rdy�2

+ ��
0

�

wy0
�I dy�2� .

Therefore, we have

− �R�
0

�

��R
2 + �I

2�dy = L1��R,�R� + L1��I,�I� + �p − 1��
 − 2�� 1

p − 1
�R + 


�0
�wy0

p+1dy

�0
�wy0

2 dy
���0

�wy0
�Rdy�2 + ��0

�wy0
�Idy�2

�0
�wy0

2 dy

+ �p − 1�
�0

�wy0

p+1dy

��0
�wy0

2 �2 ���
0

�

wy0
�Rdy�2

+ ��
0

�

wy0
�Idy�2� .

Set

�R = cRwy0
+ �R

�, �R
� � X1,

�I = cIwy0
+ �I

�, �I
� � X1,

where X1 was defined in Lemma 2.8. Then

�
0

�

wy0
�Rdy = cR�

0

�

wy0

2 dy ,

�
0

�

wy0
�Idy = cI�

0

�

wy0

2 dy ,

dL2�R+�
2 ��R,X1� = ��R

��L2
2 , dL2�R+�

2 ��I,X1� = ��I
��L2

2 .

By some straightforward computations, we have

L1��R,�R� + L1��I,�I� + �
 − 1��R�cR
2 + cI

2��
0

�

wy0

2 dy

+ �p − 1��
 − 1�2�cR
2 + cI

2��
0

�

wy0

p+1dy

+ �R���R
��L2

2 + ��I
��L2

2 � = 0.

By Lemma 2.8 �2�, we get
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�
 − 1��R�cR
2 + cI

2��
0

�

wy0

2 dy + �p − 1��
 − 1�2�cR
2 + cI

2�

��
0

�

wy0

p+1dy + ��R + a1����R
��L2

2 + ��I
��L2

2 � � 0.

Since 
�1, we must have �R	0, which proves Theorem
2.9 in Case 1: r=2, 1	 p�3.

Now we consider Case 2: r= p+1,1	 p	�.
Then the nonlocal operator in �2.19� becomes

L� = L0� − 
�p − 1�
�0

�wy0

p �dy

�0
�wy0

p+1dy
wy0

p .

We need to define yet another new operator:

L2� ª L0� − �p − 1�
�0

�wy0

p �dy

�0
�wy0

p+1dy
wy0

p . �2.28�

We have the following result.
Lemma 2.13. (1) L2 is self-adjoint and the kernel of L2

�denoted by X2� is spanned by wy0
.

(2) There exists a positive constant c3�0 such that

L2��,�� ª �
0

�

�����2 + �2 − pwy0

p−1�2�dy

+
�p − 1���0

�wy0

p �dy�2

�0
�wy0

p+1dy


 c3dL2�R+�
2 ��,X2�, ∀ � � Hrob

1 �R+� .

Proof: The proof of �1� is similar to that of Lemma 2.8.
We omit the details. It remains to prove �2�. Suppose �2� is
not true, then by �1� there exists �� ,�� such that �i� ��0,
�ii� ��wy0

, and �iii� L2�=��.
We show that this is impossible. From �ii� and �iii�, we

have

�L0 − ��� =
�p − 1��0

�wy0

p �dy

�0
�wy0

p+1dy
wy0

p . �2.29�

Similar to the proof of Lemma 2.8, we have that �0
�wy0

p �dy
�0 and ��
1. Hence L0−� is invertible. So �2.29� implies

� =
�p − 1��0

�wy0

p �dy

�0
�wy0

p+1dy
�L0 − ��−1wy0

p .

Thus

�
0

�

wy0

p �dy = �p − 1�
�0

�wy0

p �dy

�0
�wy0

p+1dy
�

0

�

��L0 − ��−1wy0

p �wy0

p dy

and

�
0

�

wy0

p+1dy = �p − 1��
0

�

��L0 − ��−1wy0

p �wy0

p dy . �2.30�

Let

h2��� = �p − 1��
0

�

��L0 − ��−1wy0

p �wy0

p dy − �
0

�

wy0

p+1 dy .

Then we have

h2�0� = �p − 1��
0

�

�L0
−1wy0

p �wy0

p dy − �
0

�

wy0

p+1dy = 0.

Moreover, we compute

h2���� = �p − 1��
0

�

��L0 − ��−2wy0

p �wy0

p dy

= �p − 1��
0

�

��L0 − ��−1wy0

p �2dy � 0.

This implies h2����0 for all �� �0,
1�. Clearly, also
h2���	0 for �� �
1 , � �. This is a contradiction to �2.30�
and the lemma is proved. �

We now finish the proof of Theorem 2.9 in Case 2.
Let �0=�R+ i�I and �=�R+ i�I. Since �0�0, we can

choose ��kernel�L0�. Then, similarly to Case 1, we obtain
the two equations

L0�R − �p − 1�

�0

�wy0

p �Rdy

�0
�wy0

p+1dy
wy0

p = �R�R − �I�I, �2.31�

L0�I − �p − 1�

�0

�wy0

p �Idy

�0
�wy0

p+1dy
wy0

p = �R�I + �I�R. �2.32�

Multiplying �2.31� by �R and �2.32� by �I, integrating
and adding, we obtain

− �R�
0

�

��R
2 + �I

2�dy

= L2��R,�R� + L2��I,�I�

+ �p − 1��
 − 1�
��0

�wy0

p �Rdy�2 + ��0
�wy0

p �Idy�2

�0
�wy0

p+1dy
.

By Lemma 2.13 �2�,

�R�
0

�

��R
2 + �I

2� + a2dL2
2 ��,X1�

+ �p − 1��
 − 1�
��0

�wy0

p �R�2 + ��0
�wy0

p �I�2

�0
�wy0

p+1 � 0,

which implies �R	0 since 
�1.
Theorem 2.9 is thus proved in Case 2: r= p+1, 1	 p

	�. �

Note that Theorem 2.9 implies Theorem 1.2, and Theo-
rem 2.10 implies Theorem 1.3.

III. EIGENVALUE ESTIMATES:
PROOF OF THEOREM 1.1

In this section, we shall study eigenvalue estimates for
L�ª�2�−1+ p�u��p−1, defined on Hrob

1 ���, in the case of an
interior spike and finish the proof of Theorem 1.1.
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We will state a theorem for the small �i.e., o�1�� eigen-
values. But before we do this, let us first introduce some
notation and give some important lemmas.

Let

d
P0
�z� = lim

�→0

e−2�z−P0�/�dz

���e−2�z−P0�/�dz
. �3.1�

It is easy to see that the support of d
P0
�z� is contained in

B̄d�P0,����P0����.
A point P0 is called a “nondegenerate peak point” if the

following statements and hold: There exists a�RN such that

�
��

e�z−P0,a��z − P0�d
P0
�z� = 0 �3.2�

and the matrix

��
��

e�z−P0,a��z − P0�i�z − P0� jd
P0
�z��

ª G�P0� is nonsingular. �3.3�

Such a vector a is unique. Moreover, G�P0� is a positive
definite matrix. A geometric characterization of a nondegen-
erate peak point P0 is the following:

P0 � interior �convex hull of support �d
P0
�z��
 .

For a proof of the above, see Theorem 5.1 of Ref. 17.
Next, we introduce the following definition:
For each P��, let w�,P be the unique solution of

�2�u − u + wp� x − P

�
� = 0 in �, �

�u

��
+ au = 0 on � � .

�3.4�

Let ��,P�x�=w� x−P
�

�−w�,P�x�. Then ��,P satisfies

�2���,P − ��,P = 0 in � ,

a��,P + �
���,P

��
= aw� x − P

�
� + �

�w� x − P

�
�

��
on � � .

�3.5�

For x���, we have

aw� x − P

�
� + �

�w� x − P

�
�

��

= aw� x − P

�
� + w�� x − P

�
� �x − P,��

�x − P�

= w� x − P

�
��a −

�x − P,��
�x − P�

+ O� �

d�P,�����

 �a − 1 − ��w� x − P

�
� ,

where w��y�=
dw�r�

dr for r= �y� and a−1−��0. Therefore,
there exist two positive constants C1 and C2 such that

C1��,P,1 � ��,P � C2��,P,1, �3.6�

where ��,P,1 satisfies

�2���,P,1 − ��,P,1 = 0 in � , �3.7�

��,P,1 + a−1�
���,P,1

��
= w� x − P

�
� on � � .

The study of ��,P,1 depends on the following lemma.
Lemma 3.1 �theorem 3.8 of Ref. 18�. Suppose that

d�P ,����d0�0. Let ��,P
D be the unique solution of

�2���,P
D − ��,P

D = 0 in � , �3.8�

��,P
D = w� x − P

�
� on � � .

Then for any arbitrarily small ��0, the following holds for
� sufficiently small:

��
���,P

D

��
� � �1 + ����,P

D . �3.9�

From Lemma 3.1 we conclude that on ��,

��,P
D + a−1�

��,P
D

��
� ��,P

D �1 + a−1�1 + ���

� �1 + a−1�1 + ���w� x − P

�
�

and

��,P
D + a−1�

��,P
D

��

 ��,P

D �1 − a−1�1 − ���


 �1 − a−1�1 − ���w� x − P

�
� .

Using a comparison principle, it is straightforward to
derive the following lemma:

Lemma 3.2. There exist two positive constants C1 and
C2 such that

C1��,P
D � ��,P,1 � C2��,P

D .

The convergence of �3.8� is well understood. It is studied
in Sec. 4 of Ref. 19. By Lemma 4.6 of Ref. 19, we have the
following convergence results:

Lemma 3.3. �i� Let V��y�ª��,x�
�x�+�y� /��,x�

�x��. Then
V��y�→V0�y� locally, where V0�y� is a solution of

�u − u = 0, u�0� = 1, u � 0 in RN. �3.10�

Moreover, for any ��0,

sup
y���

e−�1+���y��V��y� − V0�y�� → 0. �3.11�

�ii� As �→0,

− � log���,x�
�x��� → 2d�x0,��� . �3.12�

For P��, let

��,P = ��y��y + P � �
 ,
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S��u� = �u − u + up for u � Hrob
1 ���,P�, � j =

�

�Pj
,

K�,P = span ��� jw�,P�j = 1, . . . ,N
 � Hrob
1 ���,P� ,

K�,P
� = �u � Hrob

1 ���,P���
�

u� jw�,P = 0, j = 1, . . . ,N
1

2�� ,

and

C�,P = span ��� jw�,P�j = 1, . . . ,N
 � L2���,P� ,

C�,P
� = �u � L2���,P���

�

u� jw�,P = 0, j = 1, . . . ,N
1

2�� .

Let Q�
0
ªP0+��1/2�d�P0 ,���a, where P0 is a nonde-

generate peak-point �i.e., it satisfies Eqs. �3.2� and �3.3�� and
�ªB�0��Q�

0�, where �0 is sufficiently small.
For each P�� we can find a solution ��,P�K�,P

� such
that

S��w�,P + ��,P� � C�,P

as was shown in Ref. 20.
Now we state our theorem on the small eigenvalues.
Theorem 3.4. The eigenvalue problem

�2�� − � + pu�
p−1� = ��� in � ,

�3.13�

�
��

��
+ a� = 0 on � �

admits the following set of o�1� eigenvalues:

� j
� = �c0 + o�1����,P0

�P0�� j, j = 1, . . . ,N ,

where � j , j=1, . . . ,N, are the eigenvalues of the matrix
G�P0� introduced in Eq. (3.3) and

c0 = 2d−2�P0,���
�RNpwp−1w�V0��r�dy

�RN� �w

�y1
�2

dy

	 0, �3.14�

where V0�r� is the unique radial solution of the problem
�3.10�. Furthermore, the eigenfunction �suitably normalized�
corresponding to � j

� , j=1, . . . ,N, is given by

� j
� = �

l=1

N

�aj,l + o�1���� �w�,P

�Pl
�

P=P�

, �3.15�

where a� j = �aj,1 , . . . ,aj,N�t is the eigenvector of G�P0� corre-
sponding to � j, namely

G�P0�a� j = � ja� j, j = 1, . . . ,N .

Proof of Theorem 3.4: Let

u� = w�,Q�
+ v�,Q�

.

Let ��� ,��� be a pair such that

L��� = ���� in �, �
���

��
+ a� = 0 on � � . �3.16�

We normalize �� such that �����=1.
We now assume that ��→0 as �→0. Then, after a scal-

ing and limiting process �see Refs. 19, 21, and 22�, we have
�̃��y�=���Q�+�y�→�0, where �0 is a solution of

�v − v + pwp−1v = 0 in RN, v � H1�RN� .

By Lemma 4.2 of Ref. 22, there exists sj such that �0

=� j=1
N sj

�w
�yj

.
This suggests that we decompose �� as ��

=� j=1
N sj

��� jw�,Q�
+ �̄�, where �̄��K�,Q�

� and �sj
� � �C. Since

�����=1, we have ��̄����C and �̄� satisfies

�L� − ����̄� + �
j=1

N

sj
��p�u��p−1�� jw�,Q�

− pwp−1�� jw�

= ���
j=1

N

sj
��� jw�,Q�

. �3.17�

Since ��→0, then by the same argument as in Proposition
6.3 of Ref. 23 we have that ��,Q�

� �L�−��� :K�,Q�

� →C�,Q�

� is

invertible. Since �̄��K�,Q�

� , we have

��̄��H1���,Q�
�

= O���
j=1

N

sj
��p�u��p−1�� jw�,Q�

− pwp−1�� jw��
L2���,Q�

�
�

= O�����,Q�
�Q����1+��/2��

j=1

N

�sj
��� .

Multiplying �3.17� by ��k�w�,Q�
� and integrating, we ob-

tain

�
j=1

N

sj
��

��,Q�

�p�u��p−1�� jw�,Q�
− pwp−1�� jw���kw�,Q�

dx

= ���
j=1

N �
��,Q�

sj
��� jw�,Q�

��kw�,Q�
dx

+ �
��,Q�

�p�u��p−1�̄���k�w�,Q�
� − pwp−1�̄���kw�dx

+ O�������̄��H1���,Q�
�� .

We first estimate the left-hand side of �3.18�. To begin
with, we calculate

037106-14 Maini, Wei, and Winter Chaos 17, 037106 �2007�

Downloaded 30 Sep 2007 to 163.1.149.49. Redistribution subject to AIP license or copyright, see http://chaos.aip.org/chaos/copyright.jsp



− �
��,Q�

�pwp−1�� �w

�Pj
�

P=Q�

− p�w�,Q�
+ v�,Q�

�p−1�� �w�,P

�Pk
�

P=Q�

�dy

= − �2�
��,Q�

�pwp−1� �w

�Pj
�

P=Q�

− p�w�,Q�
�p−1� �w�,P

�Pj
�

P=Q�

�� �w�,P

�Pk
�

P=Q�

dy + O����,Q�
�Q���1+��

= − �2�
��,Q�

� �

�Pj
�

P=Q�

�wp − �w�,Q�
�p�� �w�,P

�Pk
�

P=Q�

dy + O����,Q�
�Q���1+��

= − �2�
��,Q�

� �

�Pj
�

P=Q�

�pwp−1��,Q�
�Q� + �y��� �w�,P

�Pk
�

P=Q�

+ O����,Q�
�Q���1+��

= 2��,P0
�P0��1 + o�1���

RN
pwp−1�

��

e�z−P0/�z−P0�,y�e�z−P0/�z−P0�,2�Q�−P0�/��d
P0
�z�� z − P0

�z − P0�� j

�w

�yk
dy + O����,Q�

�Q���1+��

= 2��,P0
�P0��1 + o�1���

RN
pwp−1�

��

e�z−P0/�z−P0�,y�e�z−P0,a�� z − P0

�z − P0�� j

d
P0
�z�

�w

�yk
dy + O����,Q�

�Q���1+��

=
2�

d2�P0,���
��,P0

�P0���
��

e�z−P0,a��z − P0�i�z − P0�kd
P0
�z� + o�1�� ,

where

� ª �
RN

pwp−1w��y�V0��y�dy .

For the left-hand side of �3.18�, we have

l.h.s. of �3.16� = �
j=1

N

sj
���

��,Q�

�p�w�,Q�
�p−1�� jw�,Q�

− pwp−1�� jw���kw�,Q�
dy� + O����,Q�

�Q���1+��

= �
��

e�z−P0,a�� z − P0

�z − P0�
,s��� z − P0

�z − P0��k

��,P0
�P0�d
P0

�z��− 2� + o�1�� ,

where s�= �s1
� , . . . ,sN

� �.

Similar but simpler computations for the right-hand side
of �3.18� give

r.h.s. of �3.16� = ���
j=1

N

sj
��B� jk + o�1��

+ O��
j=1

N

�sj
�����,Q�

�Q����1+���
+ O�������

j=1

N

�sj
�����,Q�

�Q����1+��/2�� ,

where B=�RN� �w
�y1

�2dy.
Hence we have

���� = O���,Q�
�Q��� = O���,P0

�P0��

and �� /��,P0
�P0�→�0, s�→s, where ��0 ,s� satisfies

�− 2��G�P0�s = Bd2�P0,����0s .

Thus
Bd2�P0,���

−2� �0 is an eigenvalue of G�P0�. Therefore,
�� /��,P0

�P0�→� j, s�→a� j, where

� j =
− 2�

Bd2�P0,���
� j, G�P0�a� j = � ja� j, j = 1, . . . ,N .

By an argument of Dancer,15 we know that these are the
only small eigenvalues of the order o�1� as �→0.

This finishes the proof of Theorem 3.4. �

Completion of the Proof of Theorem 1.1:
The small eigenvalues given by Theorem 3.4 all have a

negative real part. By a proof along the lines of the proof of
Theorem 2.9 �replacing wy0

by w and considering interior
spikes instead of near-boundary spikes�, the large eigenval-
ues all have negative real part. Finally, Theorem 1.1 follows
by combining these two results.

IV. NUMERICAL SIMULATIONS

We show numerical simulations that display the various
effects that have been analytically proved in this paper.

We consider the Gierer-Meinhardt system �1.1� and �1.2�
on �= �−1,1� for the following parameters: diffusion con-
stants �2=0.01, D=109, time relaxation constant �=10−9,
Robin boundary condition parameters varying aA, aH=0, re-
action constants varying p and q, r=2, s=0.

037106-15 Robin boundary conditions Chaos 17, 037106 �2007�

Downloaded 30 Sep 2007 to 163.1.149.49. Redistribution subject to AIP license or copyright, see http://chaos.aip.org/chaos/copyright.jsp



First we consider the classical Gierer-Meinhardt system
with p=2, q=1. We show stable near-boundary spikes for
various aA �Fig. 1� and interior spikes for various aA �Fig. 2�.
We see that a change of aA has a strong influence on a near-
boundary spike, but only a minor influence on an interior
spike.

Then we numerically explore the instability in the dy-
namics of near-boundary spikes. We consider the Gierer-
Meinhardt system for various p, q=2, r=2, s=0 with the
Robin boundary condition for aA=0.8. We start with p=4.0
and then increase p incrementally in steps of 0.01. The final
steady state �stable stationary near-boundary spike� for the
previous p is used as an initial condition for the next one.
The final steady state is displayed for p=4.5, 4.8, and 4.85
�Fig. 3�.

At p=4.86, a rather dramatic change of stability is ob-
served: The solution oscillates with large frequencies �Fig.
4�. The simulations show a sharp peak, and the simulation
breaks down: The amplitudes of the solution become very
large, and the finite-element software is no longer able to
resolve the solution since this peak has a very high amplitude
appearing on a very small spatial scale. This is similar to
phenomena that occur for supercritical systems. In some
sense the Robin boundary condition is able to squeeze the
threshold between sub- and supercritical behavior to lower
reaction rates that corresponds to the formula 
0�a��1.

Comparing the threshold p=4.86 with the theoretical re-
sults, one could first test if the instability comes from the
threshold a=a0�p� given in Proposition 2.5. The asymptotic
result in Remark 2.6 implies that for p=4.86 we get a0�p�
�0.11, which is far from the numerical value a=0.8. On the
other hand, we have 
=4/3.86−1.04, which is larger than 1
but very close to 1. So the instability here comes from the
threshold given by 
	1.04. We also make the interesting
numerical observation that even if a is far away from a0�p�,
the threshold 
0�a� can be very close to 1. This implies that
one has to be very careful in numerical simulations in order
not to miss this extended but small parameter range of insta-
bility that is stated in Theorem 1.3.

V. DISCUSSION

This paper is just the start of our research program into
the role of boundary conditions for reaction-diffusion sys-
tems. We have only considered the shadow system of the
Gierer-Meinhardt system for the Robin boundary condition.
It is also important to investigate the influence of the Robin
boundary condition for general reaction-diffusion systems,
starting with the full Gierer-Meinhardt system.

More specifically, for the full Gierer-Meinhardt system
�1.1� in one space dimension an important issue is under-
standing the role of the Robin boundary condition for the
inhibitor H, whereas in this paper we have only investigated
the Robin boundary condition for the activator A. How does
the Hopf bifurcation threshold change if Robin boundary
conditions are put on H? What can be said about positive
eigenvalues? This is also an interesting question for the
shadow system.

As a approaches 1, by Theorem A the minimal energy
solution changes from being a near-boundary spike to being
an interior spike. How can this change of behavior be ana-
lyzed in the case in which a is exponentially close to a and
this changeover takes place, in particular with respect to a
stability analysis?

Multiple spikes are another interesting topic. Contrary to
Dirichlet or Neumann boundary conditions, for Robin
boundary conditions one does not have spikes of equal am-
plitudes and distances and even the existence is a challenging
question.

Higher-dimensional problems will be addressed in the
future, and they are naturally very important for biological
applications. We hope to gain a better understanding of the
processes that are behind the selection of some relevant pat-
terns out of the many possible patterns in a reaction-diffusion
system. Here the boundary conditions play a major role and
stability analysis seems to be the appropriate mathematical
tool to address these issues in a rigorous framework.
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