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Abstract Mathematical modeling of bacterial chemotaxis systems has been influential
and insightful in helping to understand experimental observations. We provide here a
comprehensive overview of the range of mathematical approaches used for modeling,
within a single bacterium, chemotactic processes caused by changes to external gradi-
ents in its environment. Specific areas of the bacterial system which have been studied
and modeled are discussed in detail, including the modeling of adaptation in response to
attractant gradients, the intracellular phosphorylation cascade, membrane receptor clus-
tering, and spatial modeling of intracellular protein signal transduction. The importance of
producing robust models that address adaptation, gain, and sensitivity are also discussed.
This review highlights that while mathematical modeling has aided in understanding bac-
terial chemotaxis on the individual cell scale and guiding experimental design, no single
model succeeds in robustly describing all of the basic elements of the cell. We conclude
by discussing the importance of this and the future of modeling in this area.
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1. Introduction

Bacterial chemotaxis refers to the ability of bacteria to sense changes in their extracel-
lular environment and to bias their motility towards favorable stimuli (attractants) and
away from unfavorable stimuli (repellents). Generally too small to sense a change in ex-
tracellular gradient along their own length, bacteria use a system of membrane receptors
and intracellular signals to sense, adapt, and respond to changes in their environment.
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Bacterial chemotaxis was first observed in the late 1800s (Beyerinck, 1895; Engelmann,
1881a, 1881b; Pfeffer, 1888). The motivation for studying such small organisms lies in
the belief that elucidating the mechanisms controling their behavior will help in under-
standing more complex biological pathways and organisms. Hence today, in part thanks
to the pioneering work of Adler (1966), bacterial chemotaxis is one of the most studied
and well-documented systems in biology, serving as a powerful model for higher organ-
isms. There remain, however, a number of important, unanswered questions about this
intriguing system.

There exist a number of different but related bacterial chemosensory systems (Eisen-
bach et al., 2004), of which the most widely studied is Escherichia coli (E. coli).1 E. coli
is a rod-shaped bacterium with polar clusters of membrane-spanning methyl-accepting
chemotaxis proteins (MCPs) situated at either end of the cell as shown in Fig. 1 (Mad-
dock and Shapiro, 1993; Lybarger and Maddock, 2001). Receptor types (responding to
different chemoeffectors) vary both within each bacterium as well as across the various
species. In E. coli, the most common receptors are Tar (responding to aspartate) and Tsr
(serine), with Tap (dipeptides), Trg (galactose) and Aer (oxygen) being less abundant
(Bren and Eisenbach, 2000). In the case of E. coli, the four or so flagella are located at
random points on the bacterial membrane which during smooth swimming, collectively
bundle together to propel the bacterium through the medium.

Bacteria swim in a random walk in the absence of a gradient of attractant or repellent.
In the presence of attractant gradients, this random walk becomes biased so that movement
towards a better environment is favored. E. coli alternates between counter-clockwise
(CCW) rotations of its flagella and clockwise (CW) rotations. CCW rotations result in
runs while CW rotations are responsible for tumbling and reorientation of the bacterium.
CCW rotations cause the flagella to come together forming a single flagellar bundle which
propels the bacterium through the surrounding medium. When the cells are swimming up
an attractant gradient, CCW rotation is favoured resulting in longer periods of directed
motion (runs).

The signal transduction between the receptors and the flagellar motors is controlled by
a set of well defined intracellular protein–protein interactions (Wadhams and Armitage,
2004). In the case of E. coli, one of the most common attractants used to study the bacte-
rial response is aspartate. A number of intracellular proteins (known as chemotaxis (Che)
proteins) provide the necessary signaling cascade which links the membrane receptors to
the flagellar motor as shown in Fig. 1. Both CheW and CheA are localized to the recep-
tors. CheW is thought to act as a linker between the receptor and CheA although CheA
appears to also directly interact with the receptors. To bring about tumbling, the receptors
activate CheA autophosphorylation on a conserved histidine in response to decreased at-
tractant or increased repellent concentration. One of the phosphoryl groups is transferred
to CheY. CheYP shows a reduced affinity for CheA and a higher affinity for the flagellar
motor protein FliM, and thus diffuses through the cytoplasm to the motors. CheZ acts to
dephosphorylate CheYP at the receptors to regulate the rate of signal termination.

1The work presented in this manuscript focuses mainly on E. coli given that most experimental and thus
theoretical work has been undertaken using this system. The reader should consult Garrity and Ordal
(1995), Armitage (1999), Eisenbach et al. (2004), and Wadhams and Armitage (2004) for details on other
chemotactic species.



Mathematical Approaches to Bacterial Chemotaxis I 1527

Fig. 1 A schematic representation (not to scale) of a typical E. coli bacterium (approximately 3 µm long)
showing the location of the membrane receptors and flagella. At the cell poles, the receptor proteins are
clustered along with the linker protein CheW and the kinase CheA. A decrease of attractant causes CheA
to autophosphorylate, the phosphorylated CheA, CheAP , is a phosphodonor for both CheY and CheB. The
subsequently phosphorylated CheY diffuses (indicated schematically by the dotted lines) to the flagellar
motors where it causes them to rotate in a clockwise direction. CheYP can be dephosphorylated by CheZ.
The rise in CheBP levels reduces the receptor methylation state which mediates adaptation by reducing
the ability of the receptors to activate CheA autophosphorylation. With the addition of attractant, the rate
of autophosphorylation of CheA is reduced, and thus CheYP levels fall. This fall causes the motors to
revert to CCW rotation allowing the flagella to bundle together to produce runs.

Phosphotransfer does not only occur between CheAP and CheY, a phosphoryl group
can also be transferred from CheAP to CheB. CheBP mediates the process of adapta-
tion. The phosphotransfer between CheAP and CheB occurs more slowly than the phos-
photransfer between CheAP and CheY. CheB is key to resetting the receptors into the
unstimulated state. The phosphorylated CheB acts to demethylate the receptors counter-
acting the effect of constant methyltransferase (CheR) activity which methylates specific
glutamate residues on the receptor. CheY and CheB both compete for a specific binding
domain of CheA. In the case of unstimulated bacteria, this process results in a dynamic
equilibrium between CheR and CheBP , and thus no net methylation change of the re-
spective receptors occurs. The most abundant receptor Tar has five methylation sites per
monomer (commonly denoted m = 0,1,2,3,4 in the modeling literature), which when
modified affect the activity of the receptors. State m = 4 is the highest methylation level
whereas m = 0 denotes no methylation.

The addition of attractant to the membrane receptors reduces the rate of CheA au-
tophosphorylation. This has a twofold effect. First, no phosphoryl groups are available
for phosphotransfer to CheY. The levels of CheYP in the cytoplasm of the bacteria thus
fall, CheY dominates and the flagellar motors rotate in the CCW direction. Second, a drop
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Fig. 2 Schematic representation of typical adaptation curves to impulse (A) and step (B) attractant gradi-
ents as adapted from Segall et al. (1986). In each case, the adaptation curve comprises a period of excitation
and a period of adaptation. The measured response is generally the motor bias (measure of CCW) or level
of intracellular protein concentration, for instance, the concentration of CheY or CheYP . The observed
overshoot is often explained by the negative feedback of the methylation/de-methylation process (Shimizu
et al., 2003) and was first observed by Block et al. (1982) and Segall et al. (1986).

in CheBP allows the receptors to be methylated by CheR. The rise in receptor methyla-
tion increases the rate of CheA auto-phosphorylation, thus returning the system to its
prestimulus state. The effect of a typical attractant stimulus is shown in Fig. 2.

The following are common characteristics of bacterial systems:

Adaptation: Many bacterial systems show an inherent ability to adapt to local changes
in the levels of extracellular attractant or repellent over quite wide ranges (approxi-
mately five orders of magnitude) of background concentrations (Wadhams and Armitage,
2004). Exact adaptation in a bacterial chemotaxis context means the ability to respond to
changes in the external environment and return the intracellular protein phosphorylation
levels to their pre-stimulus levels. Adaptation is not necessarily always exact as in the
case of E. coli responding to serine. Following this process, the bacteria are then able to
detect any further changes in the attractant concentration. A typical adaptation curve is
shown in Fig. 2.

Sensitivity: Studies have shown (Segall et al., 1986) that even small changes in the local
extracellular environment of bacteria, as small as ten attractant molecules per cell, can
initiate a chemotactic response from the bacteria.

Gain: The ability to sense small changes in the extracellular environment means the bac-
terium must be able to amplify the received signal, so as to modulate the intracellular
signaling cascade (Bray, 2002). Gain is generally defined as the change in motor bias
with respect to the change in occupancy of the receptors.

Robustness: In order to cope with cell-to-cell variations in levels of the signal transduc-
tion proteins the intracellular signaling network must be robust (Alon et al., 1999).
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All of the above concepts are closely interwoven. For instance, gain requires the sen-
sitivity of the system to be high enough to initiate the downward cascade of biochemical
signals. The system must be robust to cope with variations in levels of the signal transduc-
tion proteins between cells in order to be able to adapt across an extremely wide range of
background concentrations. It is important to note that these events all occur on different
timescales. Attractant binding occurs over the order of milliseconds whereas demethy-
lation is of the order of 1/10ths of seconds. In stark contrast, adaptation can take up to
seconds or minutes dependent upon the magnitude of the stimulus (Wadhams and Ar-
mitage, 2004).

Understanding the mechanisms which drive adaptation, sensitivity, gain, and robust-
ness, both individually and collectively, has been the focus of both experimentalists and
theoreticians for the past four decades. In many cases, experimental work has informed
mathematical models derived to understand concepts such as adaptation (Block et al.,
1983). In addition, mathematical models have allowed various aspects of the bacterial
system to be studied without the need for intensive experimental work, and proposed a
range of testable hypotheses for the way in which certain elements of the bacterial system
may function (Bray et al., 1998).

The work reviewed here focuses on mathematical models developed to understand the
bacterial chemotactic response on the single cell scale. We begin by considering the early
work of experimentalists and theoreticians who sought to elucidate the reasons for the
observed chemotactic response by considering the idea of temporal “memory.” Section 3
focuses on the large number of models which have been proposed to explain the observed
adaptation of bacterial systems. The modeling of the biochemical phosphorylation cas-
cade is discussed in Section 4 before the models which have sought to elucidate sensitivity
via receptor interactions are discussed in Section 5. Both the importance of and various
approaches to modeling methylation and demethylation are briefly reviewed in Section 6.
Recently developed models which account for the spatial movement of proteins within the
bacterial cytoplasm are discussed in Section 7. We conclude our discussion on intracel-
lular signaling with an overview of some common modeling assumptions and outcomes
that have arisen from our review process. We do not provide an overview of modeling of
flagella motors given the recent comprehensive reviews, both experimental and theoreti-
cal, of Berg and Berry and Armitage in this area (Berg, 2000, 2003; Berry and Armitage,
1999).

While the biochemical reactions controlling chemotaxis within bacteria are now well
understood, no single mathematical model based upon experimental findings can, as yet,
produce an accurate and comprehensive description of adaptation, sensitivity, and gain as
well as being robust to changes in parameter values governing the respective processes.
Furthermore, a number of interesting questions remain regarding certain elements of how
the bacterial system functions. These issues and possible areas of future research are dis-
cussed in Section 9 of this review.

2. Early work

Early mathematical modeling work (Segel, 1976; Koshland, 1977; Block et al., 1982,
1983) focused on the adaptive behavior individual bacteria exhibited when subjected to
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Fig. 3 (a) The response regulator of Macnab and Koshland (1972) as adapted from their original manu-
script. An intracellular control factor X is upregulated by W, due to fast enzyme activity, and downregu-
lated by Y. Koshland (1977) later postulated the activity to be controlled by receptor methylation. (b) The
two-state model of Block et al. (1982) as adapted from their original paper.

changes in their extracellular environment. Such work was often combined with experi-
mental results (Block et al., 1982, 1983). In understanding such work, it is important to
remember that much of the detailed knowledge we currently have of the biochemistry
within E. coli was unknown at the time.

Macnab and Koshland (1972) were the first to postulate that bacteria use an internal
“memory” to respond to both positive and negative stimuli. They postulated the existence
of an intracellular compound W (essentially CheY) which was converted to a state X
(CheYP ), as shown in Fig. 3(a). Conversion was by enzymatic processes whose activity
was dependent upon the concentration of the external attractant. The first enzyme acts
quickly to ensure a rapid response by the bacteria to the external stimulus, while the post-
adaptation response is regulated by a slower acting enzyme (predecessor to CheBP ) which
returns X to its pre-stimulus level by degrading it to Y (CheY). In the case of positive
attractant, the first enzyme is more active than the second and this leads to X exceeding
a critical level which leads to chemotactic runs. In the case of a negative stimulus, X is
degraded and tumbling of the bacteria ensues. This notion of an intracellular or response
regulator was further extended by Koshland (1977). He noted that covalent modification of
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the receptors due to methylation was most likely responsible for controlling the proposed
enzymatic activity of the response regulator X.

The work of the Berg laboratory (Block et al., 1982, 1983) involved undertaking a
number of experiments, combined with theoretical predictions, to understand the bac-
terial response. In their 1982 paper, they considered the bacterial response to pulses of
attractant and repellent. They averaged the CW and CCW responses of individual cells to
attractant and considered the average respective probability of CCW motor rotation versus
time. Analysis of the resulting response showed that excitation and adaptation occurred
on somewhat different timescales, sufficiently separate to infer that each was controlled
by a different process. The time taken for a bacterium to respond to an attractant gradi-
ent indicated that it was able to integrate stimuli over a number of seconds in order to
determine its response. The biphasic nature of the bacterial response also showed that
bacteria were sensitive to stimuli which had occurred over the past few seconds and any
variations in concentration that occurred on a longer timescale were simply averaged out.
From their results, Block et al. (1982) postulated the existence of a two-state system, as
shown in Fig. 3(b). The respective rates, the probability of terminating a run or tumble per
unit time, were determined from plots of the CW and CCW responses.

In their 1983 paper, Block et al. considered the bacterial response to increasing concen-
tration levels (ramps) of attractant, both exponential and sinusoidal. They showed receptor
activity corresponded to the rate of change of receptor occupancy, thus indicating the bac-
teria must be able to compare current and previous levels of receptor occupancy. This was
comparable to results found by Segel (1976, 1977) in modeling populations of chemo-
tactic bacteria. In numerical simulations of the response regulator model of Koshland
(1977), Block et al. (1983) showed that resultant run and tumble distributions from their
model did agree with the experimentally derived ones, thus indicating that the transition
between either state was not random, but depended upon adaptation to the sensory input.
By extending their two-state model to include a description of adaptation and receptor
occupancy, they showed that their model agreed well with experimental evidence.

Block et al. (1983) were the first to formulate a basic model of the bacterial response
which included adaptation and alluded to the possible role of methylation in affecting
the bacterial response. They adapted the model of Delbrück and Reichardt (1956) (ini-
tially used to show light adaptation in Phycomyces) to chemotaxis, in which the degree of
adaptation was proposed to follow that of receptor occupancy

dA

dt
= 1

τ
(P − A),

where A is the concentration of an internal (adapting) cell variable which changes ac-
cording to the receptor occupancy P . In essence, A lags P and the difference between
them is referred to as the error in the signal. Here τ is an adaptation time constant. As
τ → 0, A → P and the system shows perfect adaptation. Block et al. (1983) noted that
the original Delbrück–Reichardt model could not account for the response thresholds the
bacteria exhibited to attractant and repellent, but a revised model which includes methyla-
tion can. They proposed that methylation could be the bacterium’s adaptation mechanism,
and hence the error signal could be accounted for by the difference in receptor occupancy
and methylation.
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Fig. 4 A conceptual representation of how methylation of receptors may occur. Receptors are methylated
and demethylated with a maximum of up to five sites on each receptor complex being available for methy-
lation. The above diagram shows a receptor which has four sites methylated (black circles) whilst the fifth
remains unmethylated. Receptors are methylated by CheR and demethylated by CheBP .

3. Adaptation

Following the work undertaken by members of the Berg laboratory (Block et al., 1983),
a number of researchers have sought to understand adaptation within bacterial systems
(Goldbeter and Koshland, 1982; Asakura and Honda, 1984; Segel and Goldbeter, 1986;
Hauri and Ross, 1995; Barkai and Leibler, 1997; Almogy et al., 2001; Mello and Tu,
2003a; Arocena and Acerenza, 2004), with many of the models focusing on the role of
methylation in describing the process. Such models have generally used the framework
of ordinary differential equations (ODEs) to describe the underlying processes. In order
to successfully describe adaptation, the mathematical models have had to ensure that the
steady-state bacterial response is independent of the attractant concentration. In addition,
models should also show “robustness.” Goldbeter and Koshland (1982) were the first to
propose a receptor modification model which included methylation (as demonstrated in
Fig. 4). They proposed a four state model whereby free receptors are bound by attrac-
tant and may subsequently undergo modification as shown in Fig. 5. They noted that
for perfect adaptation to be achieved within this model, the steady-state concentration
of attractant-bound receptors is independent of the attractant concentration. From their
ODE model, the authors derived analytical estimates of the adaptation time and the de-
gree to which receptor modification occurs as a function of methylation rate in either
state, namely kd and km. Analysis of various forms of the reaction rates, both depen-
dent and independent of the attractant concentration and overall receptor occupancy, and
comparison with experiment showed that the simplifying assumption km = kd = constant
did not give good model-experimental agreement. Reasonable comparison was, however,
obtained when receptor demethylation was assumed to depend on receptor occupancy.

Asakura and Honda (1984) proposed a two-state model in which multiple methylation
occurred in a preferred order. Based on experimental evidence from a number of sources,
their model assumes unbound receptors S accept attractant molecules whereby they move
to a state T , such that Ti = SiA where Si is the ith methylated unbound receptor state
and A is the attractant concentration. T state receptors can accept repellent molecules to
move back to S. Only unbound receptors can be methylated whilst bound receptors only
undergo demethylation, processes which were assumed to occur on a longer timescale
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Fig. 5 The model of Goldbeter and Koshland (1982) as adapted from their original paper. Here R repre-
sents the concentration of free receptors, C the concentration of attractant, RC the concentration of bound
receptors and RmC the concentration of bound receptors which have undergone modification. See text for
further details.

than that of attractant binding. A dynamic equilibrium of S and T receptors can thus exist
whereby methylation causes a shift of the receptors toward the T state as shown in Fig. 6.
This simple model allows for up to n methylated states of either receptor state. Analysis of
the model showed that it exhibited both excitation and adaptation and the T bound states
are independent of bound attractant concentration for certain parameter values. Asakura
and Honda (1984) noted that their model could maintain a constant steady-state fraction
of T states over a wide range of attractant and repellent concentrations so long as: (i) “the
S/T equilibria of unmethylated and fully methylated species heavily favored S and T

conformations, respectively”, i.e., L0
0 = S0/T0 � 1 and L0

n = Sn/Tn � 1, where L0
0 and

L0
n represent the zeroth and nth methylation state, respectively; and (iii) all methylation

steps were characterized by the same rate constant ratio, i.e., μ = ai/bi = Ti/Si−1. Analy-
sis for n = 1 and n = 6 methylation states revealed that in the case of n = 1 the bacterium
could still maintain a steady-state over a wide range of attractant concentrations. Increas-
ing the number of methylation states increased the sensitivity of the bacterium to the
attractant concentration, but the model sensitivity decreased more rapidly with increas-
ing attractant concentration when n = 1. From these results, Asakura and Honda (1984)
concluded that methylation plays a dual role. Firstly, it allows the bacterium to adapt to
changes in the attractant concentration and secondly, it increases the excitation sensitivity
to small changes in it. They also noted that their model responded in a similar way to the
experimental findings of Block et al. (1983) in the case of a sinusoidal input.

Segel and Goldbeter (1986) defined a four state model which achieved perfect adapta-
tion. Although conceptually similar to the work of Goldbeter and Koshland (1982), their
model allowed receptor modification to occur before or after attractant binding, in essence
allowing the effect of methylation and de-methylation on unbound and attractant-bound
receptors to be considered. Similar to Asakura and Honda (1984), Segel and Goldbeter
(1986) assumed that attractant binding occurs on a faster timescale than receptor modifica-
tion, an assumption also adopted by many later models (see Appendix B for an overview).
Considering Fig. 7, the total activity of the system was defined as

A(t) = a1R(t) + a2X(t) + a3Y (t) + a4D(t), (1)
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Fig. 6 The multiple receptor methylation model of Asakura and Honda (1984). Here Si and Ti are the ith
methylated attractant-free and attractant-bound states, respectively. See text for further details. Adapted
from Asakura and Honda (1984).

Fig. 7 The four state model of Segel and Goldbeter (1986) as adapted from their manuscript. Here R rep-
resents the concentration of attractant-free, unmodified (unmethylated) receptors, D is the concentration
of attractant-free, modified (methylated) receptors, L is the ligand concentration and X and Y denote the
concentration of attractant-bound, unmodified, and modified receptors, respectively.

where ai (i = 1,2,3,4) are constants. We note that the model does not differentiate be-
tween varying levels of methylation, as later models would, but simply that receptors are
either unmodified (unmethylated) or modified (methylated). By choosing appropriate val-
ues of ai , based on deriving relationships assuming exact adaptation, Segel and Goldbeter
(1986) were able to show that the model exhibited exact adaptation. Whether this model
is robust, however, remains unclear, as no sensitivity analysis was undertaken. Segel and
Goldbeter (1986) noted that the level of receptor modification increased with increasing
levels of attractant binding and that demodification acts as a counter-weight to changes in
the attractant concentrations. The authors also derived a number of analytical estimates
for the requirements for inexact adaptation, time for adaptation, the extent of receptor
modification and the effect of quickly removing the applied stimulus following excitation
on the system response.

The work of Segel and Goldbeter (1986) has been extended by Hauri and Ross (1995)
and more recently by Arocena and Acerenza (2004). The extensions in the former in-
cluded a description of the phosphorylation pathway (and its interaction with the receptor
complexes) and increasing the number of receptor states from four to ten (five attractant-
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free, five attractant-bound). Each receptor complex T constituted an MCP receptor and
CheA and CheW molecules, an assumption since adopted by a number of researchers as
detailed in Appendix B. The Hauri and Ross model of the phosphotransfer pathway went
so far as describing the phosphorylation of CheY and CheB and their subsequent dephos-
phorylation. They did not include a description of the CheYP -flagellum motor interaction,
as little was understood about the respective interactions at the time. Instead, they noted
the frequency of counter-clockwise rotations of the flagellum (fCCW ) could be related to
the CheYP levels (YP ), as experimentally observed by Kuo and Koshland (1989)

fCCW = 1

1 + hY 5.5
P

, (2)

where h is a constant. A description of receptor methylation by CheR was also included.
Hauri and Ross (1995) further assumed that the rate of phosphorylation was dependent
upon the methylation level of the receptors and whether or not an external attractant was
bound to them. Their model sought to differentiate between two different mechanisms for
achieving adaptation, namely: (1) the effect of decreasing the rate of receptor demethyla-
tion by CheBP ; and (2) increasing the rate of receptor methylation upon attractant bind-
ing, where the difference is due to conformational change at the receptor. Hauri and Ross
(1995) noted that their model agreed well with experimental findings, in particular the
predicted timescale of initial excitation is similar and the model demonstrates exact adap-
tation for both attractants and repellents or a combination of both. However, their model
failed to account for the observed sensitivity and gain and the timescale of adaptation was
not significantly dependent upon the concentration of the stimulus. In undertaking sen-
sitivity analysis of their model by altering the rate constants, the ability of the model to
adapt is removed, thus the model is not robust.

The recent work of Arocena and Acerenza (2004) has sought to understand the effect of
receptor modification, via attractant binding (using mass action kinetics), in comparison
to covalent modification via, for example, methylation or phosphorylation, over the bac-
terial response range. Their work shows that covalent modification of the receptors allows
the bacterium to respond across five orders of magnitude of attractant binding, a wider
range than in the case of receptor modification via attractant binding. Arocena and Ac-
erenza (2004) note that two conditions are required for a high and a repeatedly similar
adaptive response for varying attractant concentrations: (1) by varying the number of re-
ceptor states in the model, it is found that the receptor modifying reactions need to include
a similar number of reaction cycles to the orders of magnitude of attractant concentration;
and (2) the receptor is able to operate at steady-state. They used an optimization scheme to
obtain estimates for their parameter values and noted that the optimized parameters gave
higher values than the experimentally reported ones. As with other models of adaptation,
they are unable to obtain the observed experimental level of sensitivity. They do, however,
postulate that a wider response range may be due to the ability of some receptors to form
clusters (for more detail, see Section 5).

In 1997, Barkai and Leibler (1997) developed a model using a single receptor species
which included the effects of phosphorylation and methylation on the receptors, but not
phosphotransfer from CheAP to CheY or CheB. As shown in Fig. 8, receptor methylation
was assumed to be by CheR and demethylation by CheBP , which only acted on active
receptors. As with previous models, the receptors existed in either an attractant-bound or
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Fig. 8 (a) Schematic of the adaptation model of Barkai and Leibler (1997) which exhibits perfect adap-
tation and is robust for a large range of parameter values. Here, Eu

m represents the receptor complex
(MCP–CheA–CheW) in the mth methylation state which is either unbound u or bound with attractant o.
Methylation of inactive receptors is by CheR (R) and demethylation of active receptors is by CheBP (B).
(b) The integral feedback control mechanism which Yi et al. (2000) argued is an inherent characteristic
of the Barkai and Leibler (1997) model. Here, I represents the model input which undergoes a functional
change according to g. The resultant difference between the actual output (A) and its steady-state value
(A0) is defined by S, which is then integrated to give X which is fed back into the input stream. In compar-
ison to Barkai and Leibler’s model, the chemoattractant is the input, the output is the receptor activity and
X represents the receptor methylation level. Both figures have been adapted from the original manuscripts.

unbound state, and could form any one of m methylated states. They were able to show
that the model exhibited perfect adaptation and was robust for a wide range of parameter
values. This latter result was important for this was the first model of perfect adaptation
that showed robustness over a wide range of parameter values. Yi et al. (2000) stated that
robustness was an inherent characteristic of an integral feedback control system, com-
monly observed in engineering systems, and showed that the model of Barkai and Leibler
could be written in a form analogous to such a system. Hence, they argued, it was not
surprising that the Barkai and Leibler model exhibited robustness. Furthermore, this work
showed that the biological system operates like many man-made engineering systems,
e.g., amplifiers.

Methylation-free adaptation has been the subject of work undertaken by Almogy et
al. (2001). They considered modeling the phosphorylation and de-phosphorylation path-
way within E. coli, but did not include receptor modification. Following experimental
results reported by Wang and Matsumura (1997) they assumed either active CheZ or a
complex formed of CheAs

2 and CheZ (CheAs–CheZ) dephosphorylated CheYP , the lat-
ter more active than the former. Their model exhibits adaptation in the case where both
CheZ and CheAs–CheZ dephosphorylate CheYP , but not when either acts individually.
The model also exhibits robustness. One important feature of the model is the assumption
that CheA molecules may dissociate preferentially from active receptors and associate
with inactive ones. Interestingly, while both concentrations of CheYP and CheZ show

2CheAs (the subscript “s” denotes short) is a truncated version of CheA only found in species with CheZ
as the CheYP phosphatase. It is expressed from an internal start site in CheA producing a protein lacking
the histidine phosphorylation site, but containing all other CheA domains.



Mathematical Approaches to Bacterial Chemotaxis I 1537

almost perfect adaptation, the concentration of CheAs–CheZ does not, tending instead to
a different steady-state value than that of the initial value. Almogy et al. (2001) note that
methylation dependent or independent adaptation processes do not alone give perfect and
robust adaptation, but combinations of them do. This, they argue, is the overall result of
the interaction between the regulatory mechanisms seeking to adapt due to changes in one
another.

More recent work by Mello and Tu (2003a) has modeled the effect of attractant binding
through to the phosphorylation of CheY. The authors derive a set of governing ODEs by
applying the law of mass action to the known reactions. Both attractant-bound and free
receptors may undergo up to n of levels of methylation and demethylation, although the
model analysis considers only a total of five states (one unmethylated, four methylated).
From both model results and further analysis, Mello and Tu (2003a) define six conditions
for perfect adaptation.

1. Attractant binding occurs on a faster timescale than methylation/de-methylation and
phosphorylation/dephosphorylation. Thus, the attractant binding reaction can be as-
sumed to be in quasi-equilibrium.

2. The association rates for methylation and demethylation, by CheR and CheBP , respec-
tively, are linearly related to the receptor activity and are zero for the unmethylated and
the fourth methylation states. The dissociation rates3 are independent of the receptor
state, either bound or unbound.

3. The receptor activity of the unmethylated and fourth methylated receptors is indepen-
dent of the receptor state.

4. The ratio of the rate of methylation for the nth methylation state by CheR to that of the
(n + 1)th de-methylation rate by CheBP is independent of the methylation state.

5. The rate of phosphorylation by CheA of CheB and CheY is proportional to the rate of
CheA autophosphorylation.

6. The condition

(
−[RF ]

KR
+ [BPF ]

KB

) 4∑
n=0

P 2
n

[
T F

n

] = 0,

must be met where [RF ] is the concentration of free (not receptor bound) CheR, [BPF ]
is the concentration of free phosphorylated CheB, T F

n is the concentration of free (nth
methylated) receptor complexes, KR and KB are the dissociation constants for CheR
and CheB, respectively, and Pn is the relative receptor activity (0 ≤ Pn ≤ 1).

Mello and Tu (2003a) explore the robustness of their model system by considering the
effect of violating each of these conditions. They find that violating conditions (5) and (6)
has little effect on adaptation, violating condition (4) leads to the largest deviation away
from perfect adaptation, deviation away from perfect adaptation increases with increasing
difference in activity of the zeroth and fully methylated receptor for condition (3) and

3In a reaction of the form A+B
k+
�
k−

C, the dissociation constant is given by K = k−
k+ . A small dissociation

constant means A binds to B to form C more quickly than it is produced by the breakdown of C. A large
dissociation constant means the opposite, i.e., C breaks down more quickly than it is formed.
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10–15% deviation away from adaptation occurs when condition (2) is violated. Violation
of condition (1) is considered to be unrealistic given experimental evidence. By incor-
porating receptor methylation governed by CheR and CheBP as well as certain aspects
of the phosphorylation cascade, the results in this model provide a clear and comprehen-
sive check-list of conditions which are required in order for the signaling pathway within
E. coli to exhibit robust adaptation.

4. Modeling the phosphorylation cascade

Increasing experimental knowledge of the phosphorylation cascade within E. coli, partic-
ularly during the 1990s, led a number of investigators to model the cascade.

Bray et al. (1993) were the first to produce a mathematical model, called BCT, of the
phosphorylation cascade. As they note, their work is an extension of Block et al. (1982,
1983). The model extensions included incorporating the motor–CheYP interaction and
the effects of pausing between tumbling and swimming (the stationary motor case). The
authors undertook numerical simulations of their ODE model of the phosphorylation re-
actions, but excluded receptor methylation. Autophosphorylation of CheA was considered
to be governed by a Michaelis–Menten reaction, while phosphotransfer was governed by
a first order reaction and dephosphorylation was assumed to be linear. Motor bias was
considered to be dependent upon the number of CheYP molecules which bind to the mo-
tor. The model was populated with data from the experimental literature and considered
the motor response to step changes in aspartate (attractant) and nickel (repellent). Much
of the model analysis attempted to reproduce the results of mutant experiments, the model
results agreeing well with experimental evidence. However, the model was unable to re-
produce the gain reported by Segall et al. (1986) and did not exhibit adaptation.

In 1997 Spiro and coworkers (Spiro et al., 1997; Spiro, 1997) sought to incorporate
the effects of attractant binding, methylation, phosphorylation, and motor bias into a sin-
gle model. Their model, as shown in Fig. 9, accounted for a total of three methylation
states, the rate of phosphorylation increasing with each state. The methylation reaction
was assumed to obey Michaelis–Menten kinetics, given the saturating effect of CheR on
the receptors, while demethylation was described by first order reaction kinetics. While
it was further assumed that the rate of demethylation for both attractant-bound and un-
bound receptors remains the same, the rate of methylation for attractant-bound receptors
is much greater than for unbound receptors. While the Spiro et al. model was able to show
adaptation, corresponding to various levels of attractant, it could not reproduce the exper-
imentally reported sensitivity or gain, where gain was defined as g = −db/d(lnp), with
b being the motor bias and p the rate of CheY phosphorylation. The authors do hypothe-
size that cooperation between certain elements in the biochemical pathway, e.g., binding
of CheYP to the motor and CheZ activity, could be enough to obtain the desired gain
observed experimentally.

The effect of variation in the concentration of each intracellular protein on the over-
all concentration of CheYP was the subject of work by the Bray group (Levin et al.,
1998). This work was motivated by the observations of the Koshland group (Spudich and
Koshland, 1976) who observed variational differences in the response of a cloned popu-
lation of E. coli to attractant. At the time, they hypothesized that such a variation could
be due to stochastic variation in a small number of molecules, but further investigation
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Fig. 9 The model of Spiro et al. (1997) which incorporates attractant binding, methylation and phos-
phorylation. Here Ti (i = 2,3,4) represents the concentration of receptor complex (MCP–CheA–CheW)
in the ith methylation state, LTi represents an attractant-bound receptor, TiP a phosphorylated receptor
complex and LTiP an attractant-bound phosphorylated receptor complex. Methylation is governed by
Michaelis–Menten kinetics and is assumed to be more rapid when the receptors are phosphorylated than
when they are not. Figure adapted from Spiro et al. (1997).

was not possible given the lack of detail on the biochemical work. Levin et al. consid-
ered the effect that both individual and collective protein variation (Tar, CheA, CheW,
CheBP , CheR, CheY, CheYP ) has on the CheYP concentration. They developed two
models which extended the early work of Bray and Bourret (1995) (see Section 5) to
include the adaptation reactions of CheR and CheBP . The first, the “fine-tuned model,”
incorporates a similar adaptation mechanism as proposed by Segel and Goldbeter (1986).
The second, the “robust model”, includes receptor state kinetics as detailed by Asakura
and Honda (1984) and methylation as described by Barkai and Leibler (1997). Individual
protein variation effects show that increasing Tar, CheW, or CheA concentrations cause
the CheYP concentration to pass through a maximum, while increases in CheR or CheY
result in rising levels of CheYP and increases in CheB or CheZ the reverse. The refined
model does not exhibit adaptation of CheYP , but the robust model does. Noting that pro-
tein concentration in eukaryotic cells can vary by a standard deviation of as much as 10%
of the mean in any one population (Darzynkiewicz et al., 1982; Crissman et al., 1985),
Levin et al. (1998) show that the spread in CheYP concentration increases with the vari-
ance in protein concentration. The model shows that differences in bacterial behavior are,
therefore, possible if the standard deviation of the mean in concentration is approximately
10%. The variation in CheYP concentration is shown to be reduced for mutants lacking
CheR and CheB or Tar, CheW, and CheA, given the lack of receptor modification and
receptor complexes, respectively.

The Bray group (Morton-Firth and Bray, 1998) also considered a stochastic approach
to modeling the intracellular signaling pathway. Their approach was motivated by the in-
ability of previous deterministic models to reproduce the reported stochastic behavior of
motor switching as reported by Block et al. (1982, 1983) and Eisenbach (1990), and was
based on the two models of Asakura and Honda (1984) and Barkai and Leibler (1997).
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The developed stochastic simulation programme StochSim considers individual protein
molecules and the interactions which occur between them. The program chooses two
molecules at random, considers the likelihood of interaction between them and assigns a
reaction rate, randomly chosen from a predefined probability density distribution specific
to the respective reaction, should the reaction be deemed to take place. StochSim can also
account for both uni- and bi-molecular reactions as well as for molecules in various dif-
ferent states, e.g., attractant-bound or unbound receptors. Morton-Firth and Bray (1998)
applied StochSim to the methylation and phosphotransfer reactions governing bacterial
chemotaxis, where the resulting bias in terms of CheYP was defined by a Hill function
similar to that of Eq. (2). They found that the concentration of CheYP fluctuated around
the deterministically calculated values, even when the system was in a steady-state, the
fluctuations decreasing with increasing number of molecules. The length of the fluctu-
ations (∼80.7 ms) was found to be less than that of clockwise and counter-clockwise
rotations of the flagella (∼2.6 s). They concluded that while their model was unable to
account for motor switching, filtering of the CheYP fluctuations could produce tempo-
ral run and tumble distributions closer to the experimentally observed behavior, thereby
raising the possibility that the flagellar motors may filter the CheYP signal.

Recent work by Rao et al. (2004b) has focused on comparing the intracellular signaling
pathway of E. coli and Bacillus subtilis (B. subtilis). B. subtilis has a similar intracellular
pathway to E. coli but, importantly, has a number of “extra” chemotaxis signaling proteins
(Ches), namely, CheC and CheD, localized to the receptors and responsible for negative
and positive receptor methylation, respectively, and CheV, which is predicted to down-
regulate receptor activity by impeding CheW function. Rao et al. (2004b) modeled the
intracellular pathway of E. coli by combining the two-state model of Barkai and Leibler
(1997) with the phosphorylation cascade model proposed by Sourjik and Berg (2002a),
the latter extended to include the phosphorylation of CheB. The B. subtilis pathway was
modeled on a variation of the E. coli pathway in which receptors were considered to
exist in either an active, inactive, weakly active, or weakly inactive state. Results from the
two models showed that both E. coli and B. subtilis can adapt to external stimuli and the
respective pathways are robust, a somewhat unsurprising result given the model is based
upon that of Barkai and Leibler (1997). B. subtilis was found to be no more sensitive than
E. coli to changes in attractant concentration. Rao et al. (2004b) also showed that deletion
of CheR and/or CheB (methylation independent chemotaxis) in B. subtilis still led to
oscillations in CheYP due to the presence of the CheV and CheY feedback loops. From
this result, they hypothesized that the CheY pathway provides adaptation and methylation
was later added (as an evolutionary step) to provide a more robust, adaptive pathway in B.
subtilis. In all, whilst both species of bacteria have related intracellular signaling pathways
it is unclear why B. subtilis is apparently far more robust than E. coli.

5. Sensitivity and gain—the role of receptor clustering

Surprisingly, while many of the models detailed in the previous sections have increased
our understanding of the role of methylation and phosphotransfer in respect of bacterial
excitation and adaptation, they repeatedly fail to reproduce the experimentally observed
sensitivity and gain (Segall et al., 1986; Sourjik and Berg, 2002b). In more recent years,
experiments have shown that receptor clustering is a possible mechanism for explaining
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this sensitivity and gain. Mathematical models have played an important role in assessing
the plausibility of such a mechanism, the details of which are discussed in this section.

5.1. Early work

Work by Bray and Bourret (1995) on receptor biochemistry sought to elucidate the bind-
ing steps involved in the formation of the Tar–CheW–CheA complex (denoted TTWWAA
for short, where CheW is a monomer and CheA is a dimer), receptor complex. By consid-
ering an ODE network model of the various formations that the complex could assume,
they found from a total of ten possible complexes that the smallest working reaction net-
work consisted of six complexes. This receptor formation model was then coupled to their
1993 phosphorylation model (Bray et al., 1993) to investigate how differences in cor-
responding receptor complex formation affected the phosphorylation rate of CheY, and
hence the respective motor bias. By considering seven, ten, and twelve reaction networks,
Bray and Bourret (1995) showed the bias was sensitive to the concentrations of Tar, CheW
and CheA and the bias was lowest when the concentration of the complex TTWWAA was
at a maximum. All of the networks showed that the bias differed from one only over small
changes in the concentration of CheW. Bray and Bourret (1995) noted that the binding
constants for all of the receptor forming networks were three to four orders of magnitude
smaller than the experimentally determined values. Fixing the rates at their experimental
levels failed to produce the expected bias.

The work of Bray et al. (1998) made an important contribution in understanding the
role receptor clustering may play in providing a bacterium with the ability to sense small
changes in its extracellular environment. They hypothesized that receptors do not work
individually, but collectively. Although receptor clustering had been demonstrated exper-
imentally as early as 1993 (Maddock and Shapiro, 1993) Bray et al. (1998) provided a
theoretical interpretation of the effect such clustering may have on the sensitivity and
response of a bacterial system. By considering each receptor as a discrete entity, which
existed in either an attractant-bound or unbound state (the latter being more active than
the former), they assumed that the inactivation of a single receptor caused a number of
its neighbors to become inactive. Thus, the inactivation of a single receptor is magnified
and can inhibit the phosphorylation cascade to the flagellum. By considering an array
of 2,000 receptors, Bray et al. (1998) showed a number of important results. Firstly, the
ability of the receptor network to respond to attractant decreased as the number of re-
ceptors which were inactivated by binding increased. This is a result of the majority of
unbound receptors within the network assuming the reduced activity of the bound state.
Hence, sensitivity increases, but with a loss in attractant range to which the bacteria could
respond. The solution to this is for the bacteria to adapt, thereby freeing receptors to re-
spond to further changes in attractant concentration. Bray et al. (1998) further showed
that the best bacterial response (a range of five orders of magnitude) is achieved when
receptor clustering is maximized at low attractant concentration and minimized at high
concentrations.

5.2. The Ising model approach

Following the work of Bray et al. (1998), an increasing number of models, using differ-
ent modeling approaches, have sought to elucidate the effect of receptor coupling on the
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Fig. 10 A schematic representation of the Ising model applied to receptor–receptor interactions on a
two-dimensional lattice array. Receptors exist in either an inactive (patterned box) or active state (clear
box) and can flip between them randomly (thermal fluctuations). The binding of an attractant molecule
inactivates the bound receptor and surrounding receptors become inactive dependent upon the coupling
strength between them. The four cases above show: significant coupling (middle left), some coupling
(upper right), no coupling (bottom right) and random thermal fluctuations (far lower right). Note that
attractant-bound receptors (denoted by a star) are in this case inactive, but for diagrammatic purposes are
not shaded.

bacterial response. A number of authors (Shi and Duke, 1998; Duke and Bray, 1999; Shi,
2000, 2001, 2002) have applied the Ising model (Toda et al., 1983) to study receptor–
receptor interactions and the effect of attractant binding on the activity of a receptor array.
The Ising model is a statistical mechanics description of how an array of particles, for
instance electrons, behave when a magnetic field is applied to them. Most importantly it
allows for a description of particle coupling, i.e., the effect of the state of one particle
being allowed to change the state of neighboring particles, dependent upon the strength
of a coupling energy.

The Ising model is, therefore, an appropriate analog of receptor–receptor coupling as
shown in Fig. 10; the average magnetization of a lattice of particles corresponds to the
activity of the receptor array and the strength of the local magnetic field represents the at-
tractant concentration. The receptors exist in either one of two states (commonly denoted
i = ±1) between which they flip. The energy of the array is defined by a Hamiltonian

H(t) = −
∑
〈ij 〉

JijSiSj −
∑

i

Bi(t)Si, (3)

where Si and Sj represent the spin of the ith and j th particles (in this case, the ith and j th
receptor dimers), respectively, Jij is the coupling strength between them (generally taken
to be constant) and Bi(t) is the strength of the local magnetic field (in this case attrac-
tant concentration). In the absence of attractant binding (the applied magnetic field), the
receptors are free to flip randomly between their states. These are thermal fluctuations or
noise. Given the large difference in timescales of attractant binding, phosphorylation, and
adaptation, these fluctuations can be considered to be in quasi-equilibrium. Ising models
have also been used to describe receptor–receptor interactions in other cellular systems
(Guo and Levine, 1999, 2000).
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Shi and Duke (1998) were the first to apply the Ising model to receptor–receptor inter-
actions in bacterial chemotaxis. Using mean-field analysis and considering various limits
of the thermal fluctuation, their work showed that the sensitivity of the receptor array
depended greatly on the strength of the receptor–receptor coupling, but less so on the
strength of the attractant binding. While adaptation is also included in the model by sim-
ply inducing a “magnetic field” opposite to that induced by attractant binding, it is not
studied in detail. Shi and Duke (1998) note that receptor–receptor coupling enhances the
sensitivity of the bacterium in detecting attractant gradient changes.

Duke and Bray (1999) undertook Monte Carlo simulations of the model of Shi and
Duke (1998) using an array of 50 × 50 receptors. Here, each receptor was coupled to its
four nearest neighbors and the paper considered the array response to varying levels of
attractant over differing timescales. Results showed that the receptor array could detect a
relative change in attractant concentration over five orders of magnitude. A 30% reduction
in signal is achieved when doubling the attractant concentration over four orders of mag-
nitude, in comparison to 10% for an uncoupled array of receptors. Duke and Bray (1999)
argued that a linear system, i.e., one in which the receptors are uncoupled, can not give
the required sensitivity at high concentrations given the difference in coupling energies
is too large and can not be accommodated without affecting the response at lower lev-
els of concentration. However, in the nonlinear coupled model, the number of receptors
which have been modified by methylation and are attractant-bound cancel each other out
and the receptors are not biased toward an active or inactive state. They are thus free to
be influenced by further localized receptor coupling at higher attractant concentrations.
It was further noted that the geometry of the array is important—the receptors need to
be arranged in a well-ordered lattice given the sensitivity of the response to the coupling
energy.

Shi (2000) later extended this earlier work (Shi and Duke, 1998) by incorporating the
effects of CheBP and CheR. Here, an adaptive Ising model was used in which a source
of negative feedback from the receptor system, in this case the effects of methylation by
CheR and demethylation by CheBP , was fed back into the output from the system (the
phosphorylation of CheAP ). Attractant binding to the receptors is assumed to be the input.
In effect, this adds a second governing equation to Eq. (3)

dSi

dt
= −σSi(t − tr ), (4)

where tr is the delay time, the sum of the time taken for demethylation and phosphoryl
transfer from CheAP to CheB. Given the difference in timescales of attractant binding,
phosphorylation, and adaptation, Shi (2000) coarse-grained the governing Hamiltonian
and showed that the feedback effect of CheR and CheBP was sufficient to naturally at-
tenuate the receptor activity back to zero following an initial stimulus, i.e., perfect adap-
tation. They also noted that the feedback relaxed certain conditions on the strength of the
receptor–receptor coupling, thus making the model more robust. The model also remained
sensitive to repeated changes in the attractant concentration.

Shi later considered (Shi, 2001) how the models presented in Shi and Duke (1998) and
Shi (2000) could be compared with experimental findings. He compared theoretical pre-
dictions of the ratio of attractant binding to receptor–receptor interactions, the adaptation
time, and the ratio of pre- versus post-stimulus CheA phosphorylation with experimental
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evidence and found that all agreed well with experiment. Thus, he argued, the statistical
mechanics approach adopted by Shi and Duke (1998) and Shi (2000) provides a good
and plausible description of receptor–receptor interactions. It was noted that unlike Hill
functions, where the physical meaning of non-integer values of the Hill coefficient (Mur-
ray, 1993) are unclear, each of the expressions obtained from this statistical mechanics
approach are physically descriptive.

The effect of receptor movement on the receptor array activity was considered in Shi
(2002). Using mean-field analysis, Shi (2002) obtained expressions for the receptor ar-
ray activity and the average number of receptors. Monte Carlo simulations showed that
clustering is important in order for there to be interactions amongst the receptors, but that
the correlation amongst receptors died off exponentially quickly in terms of interactions
with non-nearest neighboring receptors, i.e., nearby receptors are closely correlated and
those at a distance are not. These results were unaffected by the receptor–receptor cou-
pling strength and the fraction of attractant-bound receptors. It was noted that receptors in
the same state clustered together to decrease the total energy of the system, and thus Shi
(2002) argued it is the receptor state, rather than whether they are attractant-bound or not,
which is most likely to affect the interaction between receptors.

5.3. Recent modeling work

The Bray group (Morton-Firth et al., 1999) extended the work of Barkai and Leibler
(1997) by modeling the Tar receptor and the related methylating and phosphorylating re-
actions using StochSim (Morton-Firth and Bray, 1998; Novère and Shimizu, 2001). Like
Barkai and Leibler (1997), Morton-Firth and Bray (1998) assumed that only active re-
ceptors were demethylated by CheBP . Early simulations showed that if CheR is active at
saturation then adaptation cannot be exact, i.e., there is a 6–7% variation in post- versus
pre-stimulus levels of CheYP . They also noted that the experimentally determined con-
centration of CheR was not high enough for the Michaelis–Menten kinetics assumption
of the substrate being in excess of the enzyme to hold for a receptor–CheR interaction.
It was thus assumed that CheR only affects inactive receptors, which also meets the re-
quirement that methylation is activity dependent. Whilst model results for the duration of
bacterial response agree well with experimental data over four orders of magnitude, the
model fails to show sensitivity at low aspartate concentrations and shows a 2% error in the
pre- versus post-stimulus levels of CheYP . The adaptation error was found to arise from:
(1) the level of activation of the receptor complex (receptors bound with either CheB or
CheR can not bind CheR or CheB, respectively, thus a number of inaccessible receptors
is created. This means the rates of methylation and demethylation are not exactly propor-
tional to the number of active and inactive receptors, and hence any error in adaptation
will increase with increasing attractant concentration); and (2) deviations in the rate of
CheY phosphorylation, due to differences in phosphorylation and dephosphorylation of
active and inactive receptor complexes.

Morton-Firth et al. (1999) also considered the effect of aspartate binding on methyla-
tion of the Tar and Tsr receptors. As expected, methylation of the Tar receptor increased
with aspartate binding, but unexpectedly decreased in the case of the Tsr receptor. They
noted that aspartate binding to the Tar receptors lowers CheBP affinity for the Tar recep-
tors such that it is released into the cytoplasm. The reduction in CheBP formation due to
the phosphotransfer from CheAP means the increase in CheBP occurs over a very short
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timescale, the same timescale over which there is an observed decrease in the Tsr receptor
methylation. Analysis of whether methylation of Tar receptors occurs in a sequentially or-
dered or independent (random) manner showed that ordered methylation is important for
adaptation; the randomly methylated systems failed to adapt and showed a 50% deviation
in pre- versus post-stimulus activity.

Levin et al. (2002) used deterministic simulations and StochSim (Morton-Firth and
Bray, 1998; Novère and Shimizu, 2001) to simulate the diffusion and binding of CheR
within a cluster of receptors. They devised a generalized “dumbell” model of enzyme-
receptor binding, whereby each end of the molecule contains a binding site separated by
a flexible chain. The probability of particle attachment was explored when either one or
both ends of the molecule were attached to a surface. A more detailed analysis of this
situation was recently provided by Windisch et al. (2006). The attachment and partial
detachment of the molecule from the surface meant it was able to wander across the
receptor surface, a process termed “molecular brachiation.” Levin et al. (2002) noted that
this generalized model was analogous to CheR binding to and detaching from a receptor
cluster and showed that when the dissociation constant is of the order of that observed
experimentally, the CheR molecules had sufficient time to both visit and methylate the
receptor sites. When receptor–molecule association was increased to mimic binding to
a corresponding single high-affinity site, the delayed time meant fewer receptors were
visited and was not in agreement with experimental evidence. Levin et al. (2002) further
noted that CheB was likely to behave in a similar manner. However, the modeling could
not account for the effects of receptor size or shape and the likelihood of some receptors
not being able to bind CheR, i.e., Trg and Tap. They also noted that the dissociation
constant may vary with attractant binding; CheR preferentially methylates receptors that
inactivate CheA while CheBP preferentially demethylates receptors that activate CheA.
This may also lead to the two enzymes excluding one another from different domains.

Bornhorst and Falke (2003) have addressed the issue of the inability of a two-state
model of receptor modification to predict the experimentally observed changes in attrac-
tant affinity for varying ranges of adaptation. The general two-state model describes re-
ceptors as existing in either an on- or off-state. The authors propose a model whereby
altering the attractant affinity of the receptor off-state gives an appropriate fit to the exper-
imental data. They conclude that this result produces a heterogenous off-state population
of receptors and note that changes in attractant-receptor affinity for on-state receptors,
maximal kinase stimulation of either state, receptor–receptor interactions, or the forma-
tion of a receptor-kinase signaling complex do not provide adequate matches of model
output with experimental data.

The work of Shimizu et al. (2003) considered a spatially extended version of the
StochSim algorithm coupled with an Ising type model of receptor–receptor interactions.
Their model included a description of methylation and adaptation based upon the work
of Barkai and Leibler (1997) in which receptors can be in up to five different methyla-
tion states. Shimizu et al. (2003) examined the importance of the receptor array geometry
(hexagonal, trigonal, or square) and size on the overall sensitivity, gain and signal-to-noise
ratio of the receptor array. They found that the array sensitivity increases up to a certain
lattice size and gain is largest for trigonal lattice arrays, i.e., when the number of nearest
neighbors is highest. However, increasing the interactions amongst receptors decreases
the signal-to-noise ratio, but increases the gain. Both the signal-to-noise ratio and gain
are insensitive to the attractant concentration. Shimizu et al. (2003) chose the most stable
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array configuration, a square lattice, and showed that coupling amongst receptors gives a
better comparison with experimental data (motor bias) than the uncoupled case. Gain is
larger for smaller changes in receptor occupancy when the receptors are coupled. Cou-
pling is also shown to be important in describing the observed overshoot phenomenon.
The uncoupled model can only produce overshoot in cases where the methylation and
demethylation levels are increased 100-fold, whereas overshoot is easily reproduced for
only small changes in methylation and demethylation in the coupled model. Coupling be-
tween receptors was also predicted to generate spatial patterns of methylation in the two-
dimensional array of receptors, something that would be impossible to test experimentally
with present techniques. Even with coupling there are still, as Shimizu et al. (2003) ob-
serve, significant differences between the model and the experimentally reported gain.

Bray and Duke have summarized experimental evidence indicating that conforma-
tional changes can propagate through protein lattices (Bray and Duke, 2004). They pro-
pose a statistical mechanics model, analogous to the Ising model, to consider the dynam-
ical propagation of conformational change within a ring of proteins (Duke et al., 2001).
Their model shows that conformational spread progresses over a number of steps, i.e., the
ring does not automatically switch between an “off” and “on” state, but varying numbers
of proteins become turned “on” by propagation or “diffusion” of a single signal through
neighboring proteins.

Goldman et al. (2004) undertook Monte Carlo simulations of a lattice gas model of
protein–protein (receptor–receptor) interactions with a defined two-dimensional lattice.
Their model considered the effects of geometry between the individual proteins, i.e.,
the bond angle, and also the overall geometry of the lattice array (trigonal, square, or
hexagonal). They showed that protein clusters of a single species formed nonlinearly
and the bonding and clustering of the proteins was spread heterogenously across the
two-dimensional space. As with the previous Ising models (Shi and Duke, 1998; Duke
and Bray, 1999), their work demonstrated that this clustering depended upon the local
protein concentration and the bond strength between each protein. This result was un-
affected by the different lattice types. In the case of the two protein species within the
two-dimensional lattice, changing the initial ratio between the two species affected the
number of bonds formed, and thus the respective clustering. From this result, Goldman et
al. (2004) were able to determine a maximum aggregation ratio.

Recent work by a number of authors (Albert et al., 2004; Mello and Tu 2003b, 2005;
Mello et al., 2004; Rao et al., 2004a) has sought to elucidate the mechanisms responsible
for receptor interactions inferred by the work of Sourjik and Berg (2002b, 2004). Sourjik
and Berg (2002b) studied the sensitivity of the chemotactic response, in particular focus-
ing on the role of CheR and CheBP . Their work suggested that signal amplification is
dependent upon CheBP and the degree to which receptors are modified. They also noted
that receptor–receptor interactions may provide an explanation for the observed sensitiv-
ity of the cell. In Sourjik and Berg (2004), they studied the effect on CheA activity that
variations in receptor concentrations (Tar and Tsr) had, both individually and together.
They noted that the activity of the cells containing both Tar and Tsr was greater than
could be explained by the activation of just one receptor type when either aspartate or ser-
ine was present. They inferred coupling between Tsr and Tar receptor clusters to explain
the observed activity.

Mello and Tu (2003b) and Mello et al. (2004) extended the Ising model to include a
description of receptor methylation and demethylation. Their model does not include a
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description of CheR or CheBP , but assumes that receptors can occupy up to five different
methylation states. Following on from the work of Barkai and Leibler (1997), Mello and
Tu (2003b) and Mello et al. (2004) assumed that only inactive receptors could be methy-
lated and active ones demethylated. Their initial work (Mello and Tu, 2003b) focused on
reproducing the experimental results of Sourjik and Berg (2002b) for both mutant (CheR
and CheB deleted) and wild type E. coli. Undertaking mean-field analysis of their model,
they showed that mutant results agreed well with the experimental data. However, match-
ing the wild-type data required different parameters and this, the authors noted, was most
likely due to the multiple methylation levels of the wild-type bacteria versus the single
methylation levels of the mutants. Mello and Tu (2003b) noted that the interesting re-
sult of Sourjik and Berg (2002b) on Tsr receptor activity at concentration levels below
which such receptors are generally active can be explained by strong coupling between
Tar and Tsr receptors and the associated methylation of each. Analysis of the sensitiv-
ity and gain showed that the model could only give a 20-fold increase in gain versus the
36-fold increase reported by Sourjik and Berg (2002b). It was also shown that attractant
binding is dependent upon receptor activity; a result of methylation and the assumption
that attractant can only bind active receptors and release from inactive ones.

Mello and Tu (2003b) further extended their work in Mello et al. (2004) where they
undertook both mean-field analysis and Monte Carlo simulations of the model in which
multiple methylation states were allowed. An important finding of this later work was that
receptor coupling has a large effect on the activity of the array for differing methylation
levels. Stronger coupling leads to a steeper response versus attractant curve. In order to
obtain the experimentally observed range of sensitivity across four orders of magnitude,
Mello et al. (2004) noted that the receptor-attractant dissociation constant must depend
upon the methylation level of the receptors, although they do not provide explicit model
examples of this. The authors also addressed the issue of overshoot following adaptation
and showed that it may be a result of signal amplification; a change in methylation for one
receptor is amplified by coupling amongst the receptors. It was further shown that model
estimates using the mean-field analysis compared well with experimental data, and that
numerical solutions of the full model agreed with those of the mean-field analysis.

The recent work of Albert et al. (2004) has focused on an ODE model of receptor
“team” formation to explain the observed gain within E. coli. The authors argue that the
Ising model approach to receptor clustering does not allow the form of the interaction
between receptors to be specified, and thus experimental justification is difficult. Citing
the experimental work of Ames et al. (2002) and Kim et al. (2002), Albert et al. (2004)
assume that attractant binding destabilizes teams of receptor dimers within the receptor
clusters. The groups consist of either individual receptor units (homodimers), two dimers
(two-fold dimers) or three dimers (trimers of dimers). The trimers of dimers are assumed
to form stable complexes when coupled with CheA and CheW and are assumed to be
the model output which drives autophosphorylation of CheA. Albert et al. (2004) con-
struct a network diagram of the respective pathways which form the different possible
attractant-bound and unbound receptor dimer teams. The model is only valid for the short
timescale of attractant binding, and thus does not include a description of methylation
or the phosphorylation cascade. Model results show good qualitative agreement with the
experimental work of Li and Weis (2000), Bornhorst and Falke (2001), Levit and Stock
(2002) and Sourjik and Berg (2002b). Importantly, the theoretically determined Hill co-
efficients for the description of kinase activity as a function of attractant concentration
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are more closely aligned with the experimentally observed range. In order to explain the
work of Sourjik and Berg (2002b), with respect to the receptor activity of Tar and Tsr, Al-
bert et al. (2004) extend their model to differentiate between the two receptors, but allow
receptor team interactions. They note that the analysis of a network of trimers of dimers
is unduly complicated, and hence only consider up to two-fold receptor dimer formation.
Model comparison with the experimentally observed sensitivity of CheR–CheB mutants
and wild-type bacteria in Sourjik and Berg (2002b) shows good agreement.

Rao et al. (2004a) considered a two-state allosteric model of receptor clustering based
on the work of Monod et al. (1965) and Shimizu et al. (2000). Their model focuses on
describing the activity of receptor complexes (trimers of dimers) and the activity between
them. The receptors are assumed to exist in either a relaxed or tense (active) state, the
more stable state assisted by the association of CheW and CheA with the receptor clus-
ters. Receptor methylation increases the level of receptor activity whilst attractant binding
increases the likelihood of destabilizing the complexes, returning the complexes to the
relaxed state. Rao et al. (2004a) note that attractant sensitivity is determined by the co-
operative interaction between the receptor complexes and shows that the lowest methyla-
tion state has the greatest effect on increasing the number of active receptors. They model
receptor clustering on a hexagonal lattice by using the Metropolis algorithm approach of
Bray and Duke (2004) and assume that the receptor–receptor signaling is localized. Rao
et al. (2004a) compared their model results with those of Sourjik and Berg (2002b) for
mixed receptor types: two Tar and one Tsr receptor; and one Tar and two Tsr receptors.
They found that both configurations fit well with the experimental data and further noted
that their results agreed well with those of Mello and Tu (2003b). Other findings were that
increased receptor methylation stabilizes the complexes (a result of the reduced attractant
affinity for higher methylated receptors), and receptor cluster size is determined by the
local concentration of receptor type, CheW and CheA.

A number of recent models (Mello and Tu, 2005; Skoge et al., 2006; Endres and
Wingreen, 2006) have used the Monod–Wyman–Changeux (MWC) (Monod et al., 1965)
model to understand receptor–receptor interactions. The MWC model accounts for clus-
ters of receptor types rather than the interaction between individual receptors, thus details
on the interaction between individual receptors is not required. The MWC model requires
defining an energy Hamiltonian, where each receptor state, e.g., active or inactive, has
a different corresponding energy level. Mello and Tu (2005) used the MWC model to
reproduce the response of mutant and wild-type bacteria to serine and methyl-aspartate
as reported by Sourjik and Berg (2004). Their model included a description of Tar and
Tsr receptors and they found it could account for each of the fourteen response curves
reported by Sourjik and Berg (2004). The authors also explored the response when a mix-
ture of serine and methyl-aspartate is applied to the receptor cluster. They found that when
both attractants are present one suppresses the response of the receptor cluster to the other
attractant. Furthermore, the presence of one attractant increases the sensitivity of the re-
ceptor cluster to the other attractant. The receptor response to the two attractants is not
additive.

Recent work by Skoge et al. (2006) has compared model predictions of one- and two-
dimensional Ising models and those of the MWC model with the experimental results
of Sourjik and Berg (2002b, 2004). They show that the MWC model provides a better
prediction of the differing responses of wild-type, CheR mutant and CheR–CheB mu-
tant strains to attractant concentration than do Ising models. Given the dependency of the
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MWC on the number of receptors in either an on- or off-state, the authors infer that clus-
tering of each type of receptor is required in order to reproduce the observed experimental
differences in the mutant and wild-type bacteria. The importance of differing attractant
dissociation constants for receptors in either state is discussed as is the sensitivity at low
attractant concentrations.

Endres and Wingreen (2006) have also applied the MWC model to receptor clustering.
The experimental basis for their work is that of Li and Hazelbauer (2005) who showed that
CheR and CheBP act on groups of five to seven receptors, thus forming “assistance neigh-
borhoods.” Endres and Wingreen (2006) adopt the adaptation model of Barkai and Leibler
(1997) in allowing CheR to only methylate inactive receptors and CheBP to demethylate
active ones (see Section 6) and model receptor groups consisting of six receptors. Both
Tar and Tsr receptors, and their response to asparate and serine, respectively, are included
in the model. Endres and Wingreen (2006) show that the resultant mixed cluster types are
both highly sensitive and exhibit the experimentally observed adaptation response, with-
out the need for changing attractant-binding affinities. They note two different adaptation
responses at high attractant concentrations: (i) cessation of receptor response due to re-
ceptor saturation by the attractant; or (ii) full receptor methylation which causes them to
stop adapting. By modeling separate clusters of both Tar and Tsr receptors, they argue that
even at high aspartate concentrations when the Tar receptors are fully methylated, and thus
unable to sense changes in attractant concentration, the low-affinity binding of asparate
to Tsr means there are still enough free receptor sites to initiate receptor signaling. Thus,
the bacterium can still respond to attractant concentration changes.

6. The role of methylation in intracellular signaling

The models which have included a biochemical description of methylation, i.e., involv-
ing CheR and/or CheBP , will be described briefly give its importance in adaptation. The
model descriptions of Barkai and Leibler (1997), Spiro et al. (1997), Morton-Firth and
Bray (1998) and Mello and Tu (2003a) have made assumptions regarding whether CheR
and CheBP affect active or inactive receptors as detailed in Table 1. Experiments have
not been done to determine whether either protein is solely targeting receptors in either
state or receptors in both states. While other models have included general descriptions of
methylation or covalent modification (Asakura and Honda, 1984; Hauri and Ross, 1995),
they have not explicitly included descriptions of the methylating and demethylating pro-
teins and their effect on differing receptor activity.

Table 1 A comparison of models which have made different assumptions regarding the methylation and
demethylation of active or inactive receptors. “All” here indicates that all receptors, irrespective of whether
they are active or inactive, are affected by either CheR or CheBP as indicated

Reference CheR CheBP

Inactive All Active All

Barkai and Leibler (1997)
√ √

Spiro et al. (1997)
√ √

Mello and Tu (2003a)
√ √

Morton-Firth and Bray (1998)
√ √
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Table 1 shows that the model of Barkai and Leibler (1997) is the most general and
places the least restrictions on the mechanism of adaptation required for robustness. The
more specific models of Mello and Tu (2003a) and Spiro et al. (1997) specify that methy-
lation and demethylation occur in a sequential order which, as noted by Asakura and
Honda (1984), is required for adaptation. It is further noted that Morton-Firth et al. (1999),
Yi et al. (2000) and Mello and Tu (2003a) show that perfect adaptation is only possible if
the methylation and demethylation rates depend upon receptor activity.

Each of the papers discussed here has used different models of the methylation path-
way, encompassing various modeling approaches and has focused on slightly different
aspects of methylation and demethylation. The analysis and reported outcome of each
model differ, making a detailed and meaningful comparison difficult.

7. Spatial modeling of the intracellular signaling cascade

Apart from the work of Lipkow et al. (2005), no other mathematical modeling work on
intracellular signaling has considered the importance of spatial localization and diffusion
of the cytoplasmic proteins on network performance. Lipkow et al. (2005) focused on
the distribution and diffusion of CheY, CheYP , and CheZ in a single E. coli cell. Three-
dimensional stochastic simulations of individual protein molecules were undertaken using
the Smoldyn program based on Smoluchowski dynamics (Andrews and Bray, 2004). In
respect of CheZ localization, Lipkow et al. (2005) showed that when the protein is re-
stricted to the ends of the cell, where the receptors and high concentrations of CheAP

are found, the concentration of CheYP is constant throughout the cytoplasm. However,
when CheZ is allowed to diffuse freely through the cytoplasm an exponential gradient in
CheYP , highest at the anterior end, is seen across the length of the cell. Simulations show
that the average lifetime of a CheYP protein is 0.1 s, but this may vary depending on the
spatial position of CheZ, i.e., whether at the poles or evenly distributed throughout the
cytoplasm. Lipkow et al. (2005) also analyzed the effects of receptor-to-motor separation
and macromolecular crowding. Analysis of motor position revealed that when CheA is
phosphorylated at the anterior end, a wave of CheYP travels between the receptors and
the motors. To reproduce the effects of macromolecular crowding (anomalous diffusion),
Lipkow et al. (2005) introduced arrays of impenetrable blocks within the cytoplasm. This
increased the steepness in the CheYP concentration gradient when CheZ is distributed
evenly throughout the cytoplasm. Lipkow et al. (2005) hypothesize that this is due to
retardation of diffusion of CheYP away from the poles of the cell.

Lipkow has recently extended her previous model to introduce the novel concept of
dynamic protein localization (Lipkow, 2006), demonstrated with CheZ and CheYP . The
work notes that a variant of CheA (CheAs ) is important for the localization of CheZ near
the receptor poles. The model assumes that CheZ location is dependent upon the concen-
tration of attractant or repellent. In the case of an attractant gradient, where a decrease in
CheYP results, CheZ molecules are free to diffuse in the cytoplasm of the cell. When a
repellent is detected, leading to increased levels of CheYP , CheZ, and CheYP oligomer-
ize with CheAs at the poles. The clustering of CheZ leads to enhanced dephosphorylation
of CheYP , thus introducing a negative feedback upon the concentration of CheYP within
the cell. Lipkow notes that this leads to a robust “second tier” of adaptation; this feed-
back system can explain the overshoot of CheYP levels in CheR/CheB mutant bacteria,



Mathematical Approaches to Bacterial Chemotaxis I 1551

i.e., adaptation which is methylation independent as has been observed experimentally by
Stock et al. (1985).

8. The physics of individual cell chemotaxis

Since the work of Berg and Purcell (1977), which was based on physical arguments to
describe how bacteria sensed their external environment and responded to it, a number of
papers have focused on similar issues. We detail the work of these papers in this section.

The early work of Berg and Purcell (1977) focused on the physics of attractant particles
interacting with receptors on the bacterial surface. Berg and Purcell obtained estimates
of the effective absorption by specific receptors, the effect of initial deflection from the
surface followed by secondary absorption, bacterial movement on uptake of attractant, the
effects of possible local stirring by bacterial movement and the benefits which swimming
imparts on the interactions between a bacterium and its environment. Their work showed
that swimming (using flagella) is highly useful in non-uniform environments of attractant.
If the attractant is spatially non-uniform, stirring of the bacterium’s local medium as a
method of increasing the likelihood of detecting attractant is too energy inefficient except
if the medium viscosity is high. Energy expenditure is highly dependent upon the bacterial
radius and calculations showed that receptors may only necessarily cover a small region
of the membrane surface.

Strong et al. (1998) and Bialek and Setayeshgar (2005) extended the work of Berg and
Purcell (1977). Strong et al. (1998) considered the optimal bacterial strategy for E. coli
when the signal-to-noise ratio (SNR) is low or high. A high SNR means a bacterium can
evaluate the chemotactic gradient in the direction it is swimming in a shorter time than
any other processes it is undertaking. A low SNR means the bacterium needs to filter out
background noise in order to determine the signal and also requires a threshold attractant
level at which to respond. Strong et al. (1998) note that although the high SNR problem
may not necessarily be realistic it is more mathematically tractable in terms of possible
solutions. Estimates of the time spent tumbling and the tumble angle as a function of the
tumbling time are derived. The low SNR problem is more difficult mathematically and the
authors note that by assuming: (i) completely disorientating tumbles are of finite duration
and; (ii) instantaneous tumbles do not completely disorientate the bacteria, asymptotic
solutions to the filter behavior can be found for various timescales. The authors discuss
ways of comparing their theoretical predictions with experiment.

The work of Bialek and Setayeshgar (2005) focused on deriving an accurate limit to
which bacterial receptors are able to respond to a change in concentration of signaling
molecules. Their work was motivated by the claim of Berg and Purcell (1977) that the
bacterial ability to sense a change in the attractant gradient is independent of the size
of the receptor cluster detecting the change and the assumptions underlying this finding.
Bialek and Setayeshgar (2005) show that a noise level can be defined which is independent
of kinetic parameters and that there exists a minimum noise “floor” due to diffusion of
attractant molecules. Comparison with experiment shows that bacterial systems operate
near this theoretically derived limit of diffusive noise.
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9. Discussion and future directions

Mathematical modeling is a useful tool which can provide insight into often complex
biological problems. The case of bacterial chemotaxis is a good example. This review
has highlighted the development of mathematical models over the past thirty years that
have aided in our understanding of intracellular signaling within bacteria. This has in-
cluded understanding the mechanisms responsible for providing the initial excitatory re-
sponse, adaptation, sensitivity, and gain. Of particular note is the elucidation that receptor–
receptor interactions can explain the observed sensitivity and gain of the system. Mathe-
matical modeling in this area has allowed a number of different hypotheses to be tested,
using various mathematical techniques, and where necessary, the model outcomes to be
examined experimentally. Such methodology is not uncommon in applied mathematical
modeling of real world phenomena: models based on current knowledge can be used to
test theoretical hypotheses without the need for often expensive experiments.

This overview has highlighted a number of characteristics which are inherent to a num-
ber of these models, in particular those which have focused on adaptation and modeling
the phosphorylation cascade. Detailed notes on each model discussed are given in Appen-
dix A and an overview of model properties is provided in Appendix B.

General assumptions which have been made by a number of modelers include the
following.

• Attractant is assumed to be in excess and binding is assumed to be rapid.
• One of the most common receptor types to be modeled is the Tar receptor. This is not

unexpected given that a large degree of the experimental literature has focused on the
response of E. coli to asparate which is detected by this receptor. Tar is also one of the
most abundant receptors within the cytoplasmic membrane.

• In models which have focused on adaptation and/or the phosphorylation cascade, re-
ceptors are commonly modeled as complexes consisting of MCP, CheW, and CheA.
This is justified by the tight association of CheW and CheA to the MCP receptors.

• Descriptions of motor bias. Given the limited detail available on the interaction of both
CheYP and CheY with the cytoplasmic FliM end of the flagellar motors and that this
interaction may be quite complex, it has been a common, simplifying assumption of a
number of authors that the fraction of time a motor spends spinning counter-clockwise
can be expressed in terms of CheYP by a Hill function (see Eq. (2)). Such relation-
ships are based upon experimental observations (Segall et al., 1986; Kuo and Koshland,
1989).

While these assumptions hold for a number of models, we note that the modeling
work highlighted here has in each case generally only focused on one aspect of the bac-
terial system, for instance receptor clustering, the phosphorylation cascade, sensitivity,
etc. A range of different mathematical approaches have been used to tackle such issues.
These differences have meant comparison between all of the models presented in this re-
view, and particularly a difference in reported outcomes, has not been straightforward,
e.g., modeling methylation as discussed in Section 6. As such, we have attempted to draw
as many general conclusions from the work reviewed here as is plausible.

What is the future of mathematical modeling in helping to understand bacterial chemo-
taxis? In order to answer this question, we reflect upon the exact goal of understanding
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Table 2 Known biological attributes of bacterial chemotactic systems. For more information on all these,
the reader should consult the website (http://www.pdn.cam.ac.uk/groups/comp-cell/Chemotaxis.html)

Parameter Extent of experimental information

Chemotaxis proteins: Identified, with roles assigned to all of them.
Methyl accepting chemotaxis Detect changes in chemoeffector concentration.
proteins (MCPs)
CheA Histidine protein kinase. Autophosphorylation rate is

controlled by the MCPs.
CheW Scaffold protein helping to link CheA to MCPs.
CheY Response regulator—controls motor switching.
CheB Response regulator—MCP methylesterase.

Mediates adaptation.
CheR MCP methyltransferase. Mediates adaptation.
CheZ CheYP phosphatase. Mediates signal termination.

Chemotaxis protein structure High resolution structures are available for all
of the soluble signal transduction proteins and for
soluble domains of the chemoreceptors.

Chemotaxis protein copy number Determined for all proteins.
Chemotaxis protein localization Determined for all proteins.
Interaction kinetics between the Rate constants and equilibrium constants have been
chemotaxis proteins. determined in vitro for an extensive range of

chemotaxis proteins and complexes.
Some in vivo data on these interactions is available.

bacterial chemotaxis systems. Is it not to elucidate the mechanisms of sensing and mov-
ing in order that we may be able to predict the behavior of bacterial chemotactic systems
in the environment? In order to meet this overall aim, the recent use of multiscale ap-
proaches (Emonet et al., 2005; Erban and Othmer, 2004, 2005; Kreft et al., 1998) appears
a plausible way of integrating and understanding the effects of individual cell behavior on
the bacterial population macroscale. However, in order to do this, we note that no single
mathematical model yet exists on the single cell scale to explain the full behavior exhib-
ited by an individual cell. This is not a failure of the modeling. Rather it is telling us that
we do not yet fully understand the system—either there are key biological components
still to be discovered, or we are not correctly integrating the processes we are including.
A fully comprehensive model would include receptor sensitivity, phosphotransfer, adap-
tation, motor response, and appropriate gain and either the full single cell model or an
appropriately reduced form would be used to inform the macroscale behavior.

It is also worthy of note that there exists a range of unanswered questions regarding
single cell behavior. The spatial organization of proteins within the cytoplasmic domain
plays an important, as yet unconfirmed, role in the signaling cascade. Protein diffusion and
localization, in particular that of CheY, CheYP , and CheZ, as recently noted by the work
of Lipkow (Lipkow et al., 2005; Lipkow, 2006), can have important consequences on
the overall behavior of the signaling system. Further investigation of protein localization
within the cell is thus required.

Furthermore, prokaryotes and eukaroytes are not simply well-stirred “bags of fluid” as
is often assumed in modeling their intracellular signaling pathway. Instead, they may be
densely packed with, e.g., membrane, protein, or cytoskeletal filaments which may hinder
protein diffusion. Such delays may have important consequences for protein interactions,

http://www.pdn.cam.ac.uk/groups/comp-cell/Chemotaxis.html
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and thus affect the overall network response. In this case other modeling alternatives, for
instance anomalous diffusion (Metzler and Klafter, 2000), are worthy of investigation.

A list of further issues include:

1. modeling individual receptor types, apart from Tar (e.g., Tsr) on their own;
2. modeling repellents and the bacterial response;
3. modeling mixed receptor types, including Tar and Tsr, Tar and Trg and Tsr and Aer;
4. modeling mixed concentrations of receptors and repellents with mixed families of re-

ceptor types;
5. modeling attractants that do not use MCPs for signaling, e.g., the action of transporting

PTS sugars causes an MCP independent metabolic change altering CheA activity; and
6. does metabolic activity modify the bacterial response to attractant and repellent gradi-

ents?

For a more detailed list of outstanding issues in bacterial chemotaxis, the reader should
consult http://www.pdn.cam.ac.uk/groups/comp-cell/Questions.html.

With the current, and ever growing biological knowledge of bacterial species and sys-
tems in general, as detailed in Table 2, the likelihood that many of these questions will
be answered, with the assistance of appropriately formulated mathematical models, is an
ever increasing one.
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