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1 Model analysis

The dynamics of equations (1) – (2) can be understood by considering the nullclines (lines in phase space

where v̇ and ẇ are zero, respectively), which are given by the equations

w =
f(v)− av + I

b
; (1)

w =
cv + J

d
. (2)

with f given by equation (3) in the main text.
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We define the following quantities (see Figure 1):

vss =
Id− Jb

d(a− α1) + cb
, (3)

wss =
Ic+ J(a− α1)

d(a− α1) + cb
, (4)

wmax =
α1v0 + α2(v1 − v0)− av1 + I

b
, (5)

vi =
d(α1v0 + α2(v1 − v0) + I)− bJ

cb+ ad
, (6)

vmin =
I − bwmax

a− α1
, (7)

vthr =
(α2 − α1)v0 + bwss − I

α2 − a
, (8)

vmax =
α1v0 + α2(v1 − v0)− bwss + I

a
, (9)

where vss and wss denote the stable steady state activator and inhibitor activities, respectively, wmax

denotes the maximum inhibitor activity (as ǫ → 0), vi denotes the intersection point of the w nullcline

with the extended right-most part of the v nullcline, vmin denotes the minimum activator activity (as

ǫ → 0) and vthr denotes the threshold in v that must be overcome in order for a follicle to become excited.

A follicle is in the excitable regime when the following conditions hold:

α1 < a < α2, (10)

vmin < vss < v0, (11)

vss < vi < v1. (12)

1.1 Calculating the time spent in anagen and refractory telogen

A piecewise linear approximation to the activator production dynamics allows us to derive estimates for

quantities that can be related to the PARC model. For instance, on the upwards portion of the excitable

trajectory we approximate that the fast variable is in pseudo-equilibrium, hence

ǫv̇ ∼ 0, (13)
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Figure S1. A schematic illustration of notable activator and inhibitor activities.

and the activator activity can be approximated using

v ∼
α2(v1 − v0) + α1v0 − bw + I

a
. (14)

An ordinary differential equation for the inhibitor activity on the slow time scale is then given by

ẇ = −w

(

bc

a
+ d

)

+ J +
c

a
(α1v0 + α2(v1 − v0) + I) , (15)

which can be integrated from the steady-state value of w to the maximal value, and an estimate for the

time spent on the upwards portion of the trajectory is found to be

TPA ∼
a

cb+ ad
ln





cI+J(a−α1)
d(a−α1)+cb

− c(α1v0+α2(v1−v0)+I)+Ja

da+cb

α1v0+α2(v1−v0)−av1+I

b
− c(α1v0+α2(v1−v0)+I)+Ja

da+cb



 . (16)

Similarly, the time spent on the downwards nullcline is

TR ∼
(a− α1)

cb+ d(a− α1)
ln





α1v0+α2(v1−v0)−av1+I

b
− cI+J(a−α1)

cb+d(a−α1)

δw



 , (17)

where δw represents a characteristic displacement of w from steady-state (see below).
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1.2 Calculating the time spent in competent telogen

As the system is in the excitable regime, it has a single steady-state which we define to be (vss, wss).

Assuming ǫ is sufficiently small such that the noise-modified dynamics near the steady-state are governed

by the fast-time scale equations [1, 2], we approximate that

ǫv̇ = f(v)− av − bw + I + ξ(t), (18)

w ∼ wss.

Hence, equations (19) can be written in the form

v̇ = −∇Φ +
ξ(t)

ǫ
, (19)

where the potential energy function, Φ, is given by

Φ = −
1

ǫ

∫ v [

f(v′)− av′ − bwss + I

]

dv′. (20)

When f is piece-wise linear Φ takes the form

Φ(v) =











(a−α1)
ǫ

(v
2

2 − vssv) + C1 if v < v0,

(a−α2)
ǫ

(v
2

2 − vthrv) + C2 if v0 < v < v1,
(21)

where C1 and C2 are integration constants chosen such that Φ is continuous across the internal boundaries.

Near the steady-state of the excitable system, Φ takes the form of a bistable potential well (e.g. see

Figure 14 (c)) and we can estimate the mean time for a particle to escape from the stable steady-state

in the low noise limit using Kramers formula [3]:

Texc =
2π

√

−Φ′′(vss)Φ′′(vthr)
exp

(

−
(Φ(vthr)− Φ(vss))ǫ

2

Γ

)

. (22)

In the case where a follicle is coupled to its neighbours via diffusion, the estimate for the mean time

spent in competent telogen changes. We assume that a given follicle’s neighbours are fixed at the steady-

state, such that {v, w} = {vss, wss} and the follicle is in competent telogen. The threshold value of v
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beyond which the follicle becomes excited is found to be

v∗thr =
I + (α1 − α2)v0 − bwss + nDAvss

a− α2 + nDA

, (23)

(24)

where n is the number of nearest neighbours (n = 4) and DA is the diffusion coefficient. The energy Φ

is redefined to be

Φ̄(v) =











(a−α1)+nDA

ǫ
(v

2

2 − vssv) + C1 if v < v0,

(a−α2)+nDA

ǫ
(v

2

2 − v∗thrv) + C2 if v0 < v < v1,
(25)

and the mean time spent in competent telogen is

T ∗

exc =
2π

√

−Φ̄′′(vss)Φ̄
′′ (v∗thr)

exp

(

−
(Φ̄(v∗thr)− Φ̄(vss))ǫ

2

Γ

)

. (26)

As one might expect, diffusive coupling of a given competent telogen follicle to neighbours also in com-

petent telogen further stabilises the steady-state and the mean escape time increases.

1.3 The boundary between refractory and competent telogen

A one-dimensional approximation to the fast dynamics near the stable steady state is given by

ǫv̇ = −γ(v − vss) + ξ(t), (27)

where γ = a − α1, vss is the stable steady-state with the noise term defined as in equation (6) in the

main text. Notably, the noise perturbs the dynamics away from the stable steady state and the standard

deviation of the trajectory is

δv =
√

〈(v − v0)2〉 =

√

Γ

2γǫ
, (28)

where 〈.〉 denotes the mean value.

We use the standard deviation of the fast variable as a means of defining the end of refractory telogen



6

w       

v
vss

wss

δw

δv

Figure S2. A schematic illustration of the defined boundary between refractory and competent phases.
Null-clines are denoted by solid lines. δv denotes the standard-deviation of the stochastic fast variable
in the one dimensional near steady state approximation. The dashed line box denotes a boundary in
phase space where competent telogen is defined. Hence as a follicle moves through refractory telogen
(large arrow), it reaches the dashed box approximately at the large dot and we assume that the
stochastic dynanics of the fast variable provide a good approximation to the follicles dynamics.

such that when the fast variable is within a standard deviation of the steady state on the downwards

nullcline, refractory telogen ends. Using the nullcline

w =
(α1 − a)v + I

b
, (29)

we define (see Figure S2)

δw = −
(α1 − a)δv

b
=

1

b

√

Γ(a− α1)

ǫ
, (30)

such that competent telogen is defined in the region {v, w : v > vss − δv, v < vss + δv, w > wss − δw,w <

wss+δw}. Hence on the descending nullcline we only integrate the w ODE to within δw of the steady-state

value and obtain that the time spent on this part of the trajectory is given by equation (17).
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1.4 The emergence of target patterns in the deterministic model

In this section we set the noise strength Γ = 0 in order to examine the effect of increasing the parameter

α1. In Figure S3 we observe the propagation of single waves of hair growth. In Figure S4, where the

parameter α1 has been increased, a single excitation results in the the emergence of target patterns as

well as larger front propagation speeds.
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Figure S3. Propagation of a single wave in the deterministic limit (Γ = 0). Activator activities (white
- low, black - high) are plotted at t = {0, 8, 16, 24, 32, 40} days. Equations (12) and (13) from the Main
Text were solved with periodic boundary conditions. DA = 3.25e−4 and other parameter values as in
Table 2 from the Main Text.
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Figure S4. The emergence of target patterns and increased propagation speeds upon increase of the
parameter α1 (compare with Figure S3). Activator activities (white - low, black - high) are plotted at
t = {0, 8, 16, 24, 32, 40} days. Equations (12) and (13) from the Main Text were solved with periodic
boundary conditions. α1 = 0.0145, DA = 3.25e−4, Γ = 0 and other parameter values as in Table 2 from
the Main Text.
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