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The modeling of pattern formation in biological systems using various models of reaction–
diffusion type has been an active research topic for many years. We here look at a 
parameter identification (or PDE-constrained optimization) problem where the Schnaken-
berg and Gierer–Meinhardt equations, two well-known pattern formation models, form the 
constraints to an objective function. Our main focus is on the efficient solution of the asso-
ciated nonlinear programming problems via a Lagrange–Newton scheme. In particular we 
focus on the fast and robust solution of the resulting large linear systems, which are of 
saddle point form. We illustrate this by considering several two- and three-dimensional 
setups for both models. Additionally, we discuss an image-driven formulation that allows 
us to identify parameters of the model to match an observed quantity obtained from an 
image.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

One of the fundamental problems in developmental biology is to understand how spatial patterns, such as pigmentation 
patterns, skeletal structures, and so on, arise. In 1952, Alan Turing [42] proposed his theory of pattern formation in which 
he hypothesized that a system of chemicals, reacting and diffusing, could be driven unstable by diffusion, leading to spatial 
patterns (solutions which are steady in time but vary in space). He proposed that these chemical patterns, which he termed 
morphogen patterns, set up pre-patterns which would then be interpreted by cells in a concentration-dependent manner, 
leading to the patterns that we see.

These models have been applied to a very wide range of areas (see, for example, Murray [27]) and have been shown 
to exist in chemistry [6,30]. While their applicability to biology remains controversial, there are many examples which 
suggest that Turing systems may be underlying key patterning processes (see [2,8,40] for the most recent examples). Two 
important models which embody the essence of the original Turing model are the Gierer–Meinhardt [14] and Schnakenberg 
models [39] and it is upon these models which we focus.1 In light of the fact that, to date, no Turing morphogens have 
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working.
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been unequivocally demonstrated, we do not have model parameter values so a key problem in mathematical biology is to 
determine parameters that give rise to certain observed patterns. It is this problem that the present study investigates.

More recently, an area in applied and numerical mathematics that has generated much research interest is that of 
PDE-constrained optimization problems (see [41] for an excellent introduction to this field). It has been found that one key 
application of such optimal control formulations is to find solutions to pattern formation problems [11,12], and so it is 
natural to explore this particular application here.

In this paper, we consider the numerical solution of optimal control (in this case parameter identification) formulations 
of these Turing models – in particular we wish to devise preconditioned iterative solvers for the matrix systems arising 
from the application of Newton and Gauss–Newton methods to the problems. The crucial aspect of the preconditioners is 
the utilization of saddle point theory to obtain effective approximations to the (1, 1)-block and Schur complement of these 
matrix systems. The solvers incorporate aspects of iterative solution strategies developed by the first and second authors to 
tackle simpler optimal control problems in literature such as [32–35].

This paper is structured as follows. In Section 2 we introduce the Gierer–Meinhardt (GM1) and Schnakenberg (GM2) 
models that we consider, and outline the corresponding optimal control problems. In Section 3 we discuss the outer 
(Newton-type) iteration that we employ for these problems, and state the resulting matrix systems at each iteration. We 
then motivate and derive our preconditioning strategies in Section 4. In Section 5 we present numerical results to demon-
strate the effectiveness of our approaches, and finally in Section 6 we make some concluding remarks.

2. A parameter identification problem

Parameter identification problems are crucial in determining the setup of a mathematical model, often given by a system 
of differential equations, that is best suited to describe measured data or an observed phenomenon. These problems are 
often posed as PDE-constrained optimization problems [20,41]. We here want to minimize an objective function of misfit 
type, i.e., the function is designed to penalize deviations of the function values from the observed or measured data. The 
particular form is given by [11,12]:

J (u, v,a,b) = β1

2
‖u(x, t) − û(x, t)‖2

L2(�×[0,T ]) + β2

2
‖v(x, t) − v̂(x, t)‖2

L2(�×[0,T ])

+ βT ,1

2
‖u(x, T ) − ûT (x)‖2

L2(�) + βT ,2

2
‖v(x, T ) − v̂ T (x)‖2

L2(�)

+ ν1

2
‖a(x, t)‖2

L2(�×[0,T ]) + ν2

2
‖b(x, t)‖2

L2(�×[0,T ]) , (2.1)

where u, v are the state variables, and a, b the control variables, in our formulation. This is to say we wish to ensure that 
the state variables are as close as possible in the L2-norm to some observed or desired states û, ̂v , ûT , v̂ T , but at the same 
time penalize the enforcement of controls that have large magnitudes in this norm. The space–time domain on which this 
problem is considered is given by � × [0, T ], where � ⊂R

d , d ∈ {2, 3}.
Our goal is to identify the parameters of classical pattern formation equations such that the resulting optimal parameters 

allow the use of these models for real-world data. We here use models of reaction–diffusion type typically exploited to 
generate patterns seen in biological systems. The two formulations we consider are the GM1 model [14,27]:

ut − Du�u − ru2

v
+ au = r, on � × [0, T ],

vt − D v�v − ru2 + bv = 0, on � × [0, T ],
u(x,0) = u0(x), v(x,0) = v0(x), on �,

∂u

∂ν
= ∂v

∂ν
= 0, on ∂� × [0, T ], (2.2)

and the GM2 model [14,27,39]:

ut − Du�u + γ (u − u2 v) − γ a = 0, on � × [0, T ],
vt − D v�v + γ u2 v − γ b = 0, on � × [0, T ],
u(x,0) = u0(x), v(x,0) = v0(x), on �,

∂u

∂ν
= ∂v

∂ν
= 0, on ∂� × [0, T ], (2.3)

where r and γ are non-negative parameters involved in the respective models.
Both the GM1 and GM2 formulations are models of reaction–diffusion processes occurring in many types of pattern 

formation and morphogenesis processes [14,27,39]. The GM1 model relates to an “activator–inhibitor” system, whereas the 
GM2 model represents substrate-depletion. Within both models the variables u and v , the state variables in our formulation, 
represent the concentrations of chemical products. The parameters Du and D v denote the diffusion coefficients – typically 
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it is assumed that v diffuses faster than u, so Du < D v [14]. The (given) parameters r and γ are positive: the value r in 
the GM1 model denotes the (small) production rate of the activator [14], and the parameter γ in the GM2 model is the Hill 
coefficient, which describes the cooperativity within a binding process. The variables a and b, the control variables in our 
problem, represent the rates of decay for u and v , respectively. The initial conditions u0 and v0 are known.

Throughout the remainder of this article we consider the minimization of the cost functional (2.1), with PDE constraints 
taking the form of the GM1 model or the GM2 model. PDE-constrained optimization problems of similar form have been 
considered in the literature, such as in [11,12]. When solving these problems we consider a range of values of the parameters 
involved in the PDE models, as well as variations in the coefficients βi , βT ,i , νi (i = 1, 2) within J (u, v, a, b). One typically 
chooses βi (and frequently βT ,i ) to be larger than νi in order for the states to closely resemble the desired states, due to 
the input of control not being severely penalized – the case of larger νi relates to the control variables being very small, 
with the state variables therefore failing to match the desired states as closely. However it is possible to formulate these 
problems using a wide range of parameters, and so within the numerical results of Section 5 we vary the parameter setup 
to demonstrate the robustness of our methods.

Note that the PDE constraints, for either model (2.2) or (2.3), are nonlinear, and as a result the optimization problem 
min(u,v,a,b) J (u, v, a, b) is itself nonlinear (although the cost functional is quadratic). To solve this problem we are therefore 
required to apply nonlinear programming [29] algorithms. Many of these are generalizations of Newton’s method [29]. We 
here focus on a Lagrange–Newton (or basic SQP) scheme and a Gauss–Newton method. At the heart of both approaches 
lies the solution of large linear systems, which are often in saddle point form [4,9], that represent the Hessian or an 
approximation to it. In order to be able to solve these large linear systems we need to employ iterative solvers [9,37], which 
can be accelerated using effective preconditioners.

3. Nonlinear programming

A standard way of how to proceed with the above nonlinear program is to consider a classical Lagrangian approach [41]. 
In our case, with a nonlinear constraint, we apply a nonlinear solver to the first order conditions. We hence start by deriving 
the first order conditions, or Karush–Kuhn–Tucker conditions, of the Lagrangian

L(u, v,a,b, p,q) = J (u, v,a,b) + (p,R1(u, v,a,b)) + (q,R2(u, v,a,b)) ,

where R1(u, v, a, b), R2(u, v, a, b) represent the first two equations of both GM1 and GM2 models, and p, q denote the ad-
joint variables (or Lagrange multipliers). Note that for convenience our Lagrangian ignores the boundary and initial conditions. 
In general form the first order conditions are given by

Lu = 0, Lv = 0,

La = 0, Lb = 0,

Lp = 0, Lq = 0.

The equations are in general nonlinear and a standard Newton method can be applied to them to give the following 
Lagrange–Newton or SQP scheme:⎡⎢⎢⎢⎢⎢⎢⎢⎣

Luu Luv Lua Lub Lup Luq

Lvu Lv v Lva Lvb Lvp Lvq

Lau Lav Laa Lab Lap Laq

Lbu Lbv Lba Lbb Lbp Lbq

Lpu Lpv Lpa Lpb Lpp Lpq

Lqu Lqv Lqa Lqb Lqp Lqq

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

δu

δv

δa

δb

δp

δq

⎤⎥⎥⎥⎥⎥⎥⎥⎦
= −

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Lu

Lv

La

Lb

Lp

Lq

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (3.1)

where δu, δv , δa, δb, δp, δq denote the Newton updates for u, v , a, b, p, q.
Note that our formulation does not include any globalization techniques such as trust region or line search approaches 

[28]. In order for the optimization algorithm to converge these should in general be incorporated. As our focus here is on 
large-scale linear systems we do not focus on these approaches now. At this stage we simply state the systems obtained for 
both GM1 and GM2 models and refer the interested reader to Appendix A, where all quantities are derived in detail. The 
system given in (3.1) represents the most general Newton system but it is often possible to only use approximations to this 
system. The Gauss–Newton method [16] is often used as the corresponding system matrix in (3.1) – this ignores the mixed 
derivatives with respect to the primal variables, i.e. with the system matrix given by⎡⎢⎢⎢⎢⎢⎢⎢⎣

L̂uu 0 0 0 Lup Luq

0 L̂v v 0 0 Lvp Lvq

0 0 L̂aa 0 Lap Laq

0 0 0 L̂bb Lbp Lbq

Lpu Lpv Lpa Lpb Lpp Lpq

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (3.2)
Lqu Lqv Lqa Lqb Lqp Lqq
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where the matrices denoted by L̂:,: do not contain second derivative information (see [16,29] for more details). Additionally, 
to derive the infinite-dimensional Newton system we discretize the resulting equations using finite elements in space and a 
backward Euler scheme in time. The resulting system for the GM1 model is given by⎡⎢⎢⎢⎢⎢⎢⎢⎣

Au,GM1 −2τ rMup/v2 −τMp 0 −LT
u,GM1 2τ rMu

−2τ rMup/v2 Av,GM1 0 −τMq −τ rMu2/v2 −LT
v,GM1

−τMp 0 τν1M 0 −τMu 0

0 −τMq 0 τν2M 0 −τMv

−Lu,GM1 −τ rMu2/v2 −τMu 0 0 0

2τ rMu −Lv,GM1 0 −τMv 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

A

⎡⎢⎢⎢⎢⎢⎢⎢⎣

δu
δv
δa
δb
δp
δq

⎤⎥⎥⎥⎥⎥⎥⎥⎦
= f,

where

Au,GM1 = τβ1M + βT ,1MT + 2τ rMp/v + 2τ rMq,

Av,GM1 = τβ2M + βT ,2MT + 2τ rMu2 p/v3 ,

Lu,GM1 = ME + τ DuK − 2τ rMu/v + τMa,

Lv,GM1 = ME + τ D v K + τMb.

Note that M and K denote standard finite element mass and stiffness matrices, respectively. Here the matrices

ME :=

⎡⎢⎢⎢⎢⎣
M

−M M
−M M

. . .
. . .

−M M

⎤⎥⎥⎥⎥⎦ , MT :=

⎡⎢⎢⎢⎢⎣
0

0
. . .

0
M

⎤⎥⎥⎥⎥⎦ ,

correspond to, respectively, the time-stepping scheme used, and the values at the final time t = T . All other mass matrices 
Mψ = blkdiag(Mψ, . . . , Mψ) are obtained from evaluating integrals of the form [Mψ ]i j = ∫

ψφiφ j for each matrix entry and 
for every time-step, where φi denote the finite element basis functions used (see the group finite element method in [23]). 
Furthermore, the matrix K = blkdiag(K , . . . , K ). The parameter τ denotes the (constant) time-step used. The vector f is the 
discrete representation at each Newton step of the following vector function:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

β1
∫
(̂u − ū) + ∫

(−p̄t − Du�p̄ − 2r ū
v̄ p̄ + ā p̄ − 2rūq̄)

β2
∫
(̂v − v̄) + ∫

(−q̄t − D v�q̄ + r ū2

v̄2 p̄ + b̄q̄)∫
(ū p̄ − ν1ā)∫
(v̄q̄ − ν2b̄)∫

(ūt − Du�ū − rū2

v̄ + āū − r)∫
(v̄t − D v�v̄ − rū2 + b̄v̄)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where ū, v̄ , ā, b̄, p̄, q̄ denote the previous Newton iterates for u, v , a, b, p, q.
The Gauss–Newton type matrix for this problem now becomes⎡⎢⎢⎢⎢⎢⎢⎢⎣

β1τM 0 0 0 −LT
u,GM1 2τ rMu

0 β2τM 0 0 −τ rMu2/v2 −LT
v,GM1

0 0 ν1τM 0 −τMu 0

0 0 0 ν2τM 0 −τMv

−Lu,GM1 −τ rMu2/v2 −τMu 0 0 0

2τ rMu −Lv,GM1 0 −τMv 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

A

⎡⎢⎢⎢⎢⎢⎢⎢⎣

δu
δv
δa
δb
δp
δq

⎤⎥⎥⎥⎥⎥⎥⎥⎦
= fGN,

with all matrices as previously defined (see [5,16] for details on the Gauss–Newton matrix structure). We consider this 
matrix system as well as the “pure Newton” formulation of the GM1 model, as we find that the Gauss–Newton method 
often results in favorable properties from an iterative solver point-of-view.
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Moving on to the GM2 model, Appendix A reveals the following structure of the Newton system:⎡⎢⎢⎢⎢⎢⎢⎢⎣

Au,GM2 −2τγ Mu(q−p) 0 0 −LT
u,GM2 −2τγ Muv

−2τγ Mu(q−p) Av,GM2 0 0 τγ Mu2 −LT
v,GM2

0 0 τν1M 0 τγ M 0

0 0 0 τν2M 0 τγ M
−Lu,GM2 τγ Mu2 τγ M 0 0 0

−2τγ Muv −Lv,GM2 0 τγ M 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

A

⎡⎢⎢⎢⎢⎢⎢⎢⎣

δu
δv
δa
δb
δp
δq

⎤⎥⎥⎥⎥⎥⎥⎥⎦
= g,

with

Au,GM2 = τβ1M + βT ,1MT + 2τγ Mv(q−p),

Av,GM2 = τβ2M + βT ,2MT ,

Lu,GM2 = ME + τ DuK + τγ M − 2τγ Muv ,

Lv,GM2 = ME + τ D v K + τγ Mu2 ,

and g the discrete representation of the vector function:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

β1
∫
(̂u − ū) + ∫

(−p̄t − Du�p̄ + 2γ ū v̄(q̄ − p̄) + γ p̄)

β2
∫
(̂v − v̄) + ∫

(−q̄t − D v�q̄ + γ ū2(q̄ − p̄))

− ∫
(ν1ā + γ p̄)

− ∫
(ν2b̄ + γ q̄)∫

(ūt − Du�ū + γ (ū − ū2 v̄) − γ ā)∫
(v̄t − D v�v̄ + γ ū2 v̄ − γ b̄)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The main challenge is now the numerical evaluation of the discretized problems. As we here opt for an all-at-once 
approach where we discretize in space and time and then solve the resulting linear system for all time steps simultaneously, 
we need to be able to perform this operation efficiently. Similar approaches have recently been considered in [33]. The goal 
of the next section is to introduce the appropriate methodology.

4. Preconditioning and Krylov subspace solver

The solution of large-scale linear systems of the saddle point form:

Ax = b, with A =
[

A BT

B −C

]
, (4.1)

where A ∈ R
m×m , B ∈ R

n×m (with m ≥ n), C ∈ R
n×n , is a topic of major interest within the numerical analysis community 

[4,9]. Due to the vast dimensionality of the systems derived earlier we cannot use factorization-based approaches [7]. We 
hence employ a Krylov subspace method [37] where we construct a Krylov subspace of the form

Kk(A, r0) = span
{

r0,Ar0,A2r0, . . . ,Akr0

}
,

within which we seek an approximation to the solution of a given linear system. These methods are cheap as they only 
require multiplication with the system matrix, which is often possible to perform in a matrix-free way, that is to say the 
matrix A can be a black-box that only computes Aw for some vector w. As a rule-of-thumb (rigorously in the case of 
symmetric A) the eigenvalues of A determine how fast the approximate solution converges towards the true solution.

It is very well recognized that the eigenvalues of a saddle point matrix A depend strongly on the eigenvalues of the 
individual blocks A, B , C .2 Clearly the eigenvalues of the individual matrices within these blocks depend on the mesh-size 
and time-step used, as well as all the other parameters describing the PDE and the objective function. [To give one example, 
the eigenvalues of K are contained within [c1hd, c2hd−2] for constants c1, c2, where a constant mesh-size h is taken.] As a 
result, for our problem, the eigenvalues of A depend on these problem parameters. The convergence of an iterative method 

2 For illustrative purposes, a fundamental result [36] is as follows: if A is symmetric positive definite, B is full rank, and C = 0, the eigenvalues of A are 
contained within the intervals

λ(A) ∈
[

1

2

(
μm −

√
μ2

m + 4σ 2
1

)
,

1

2

(
μ1 −

√
μ2

1 + 4σ 2
n

)]
∪
[
μm,

1

2

(
μ1 +

√
μ2

1 + 4σ 2
1

)]
,

where μ1, μm are the largest and smallest eigenvalues of A, and σ1, σn denote the largest and smallest singular values of B .
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applied directly to A can therefore be prohibitively slow, especially for large problems where h and τ are small. Our goal is 
therefore to find a preconditioning matrix P such that we can solve the equivalent preconditioned system

P−1Ax = P−1b,

and P captures the properties of A well. If this can be achieved, the dependence of eigenvalues of P−1A on the problem 
parameters can be mitigated, and in the best case removed.

For a saddle point problem of the form (4.1), this is typically achieved by preconditioners of the form

P =
[

Ã 0
0 S̃

]
or

[
Ã 0
B − S̃

]
, (4.2)

where Ã approximates the (1, 1)-block A of the saddle point matrix A, and S̃ approximates the (negative) Schur comple-
ment S := C + B A−1 BT . This is motivated by results obtained in [22,26] where it is shown that the exact preconditioners 
Ã = A and S̃ = S lead to a very small number of eigenvalues for the preconditioned system, and hence iteration numbers. 
The choice of the outer Krylov subspace solver typically depends on the nature of the system matrix and the preconditioner. 
For symmetric indefinite systems such as the ones presented here we usually choose Minres [31] based on a three-term 
recurrence relation. However as Minres typically requires a symmetric positive definite preconditioner, in the case of an 
indefinite preconditioner P we cannot use this method. We then need to apply a nonsymmetric solver of which there 
exist many, and it is not obvious which of them is best suited to any particular problem. Our rule-of-thumb is that if one 
carefully designs a preconditioner such that the eigenvalues of the preconditioned system are tightly clustered (or are con-
tained within a small number of clusters), many different solvers perform in a fairly similar way. For simplicity we here 
choose Bicg [10], which is the extension of cg [17] to nonsymmetric problems and is based on the nonsymmetric Lanczos 
process [15].

4.1. GM1 model

We now wish to derive preconditioners for all of the above linear systems. When examining the GM1 model using a 
Newton method the matrix A is written in the form of the saddle point system (4.1), with

A =

⎡⎢⎢⎣
Au,GM1 −2τ rMup/v2 −τMp 0

−2τ rMup/v2 Av,GM1 0 −τMq

−τMp 0 τν1M 0

0 −τMq 0 τν2M

⎤⎥⎥⎦ ,

B =
[−Lu,GM1 −τ rMu2/v2 −τMu 0

2τ rMu −Lv,GM1 0 −τMv

]
, C =

[
0 0
0 0

]
.

Consider first approximating the matrix A. We observe that its block structure means we can also write it in saddle 
point type form. The matrix blkdiag (τν1M, τν2M) is comparatively straightforward to work with, as it is a block diagonal 
matrix consisting solely of mass matrices, so we may devise saddle point approximations with this as the leading block, i.e.,

Ã =

⎡⎢⎢⎣
Ã1 0 0 0

0 Ã2 0 0

0 0 τν1M 0

0 0 0 τν2M

⎤⎥⎥⎦ or

⎡⎢⎢⎣
−Ã1 0 0 0

0 −Ã2 0 0

−τMp 0 τν1M 0

0 −τMq 0 τν2M

⎤⎥⎥⎦ , (4.3)

for suitable choices of Ã1 and Ã2. To make these selections, we seek to approximate the Schur complement of A, that is:[
Ã1 0

0 Ã2

]
≈
[

Au,GM1 −2τ rMup/v2

−2τ rMup/v2 Av,GM1

]
︸ ︷︷ ︸

=:̃A(1,2)

−
[
τν−1

1 MpM−1Mp 0

0 τν−1
2 MqM−1Mq

]
.

We then utilize the heuristic of approximating Ã(1,2) by its own (block diagonal) saddle point approximation, leading to the 
following candidates for Ã1 and Ã2:

Ã1 = Au,GM1 − (2τ r)2Mup/v2 A−1
v,GM1Mup/v2 − τν−1

1 MpM−1Mp,

Ã2 = Av,GM1 − τν−1
2 MqM−1Mq,

which we apply within (4.3). Within our implementation we replace the matrix M−1 with diagonal approximations, in order 
for the application of our solver to be computationally feasible.

Turning our attention now to the Schur complement of the entire matrix A:
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S =
[−Lu,GM1 −τ rMu2/v2

2τ rMu −Lv,GM1

]
Ã−1

(1,2)

[ −LT
u,GM1 2τ rMu

−τ rMu2/v2 −LT
v,GM1

]
+ τ

[
ν−1

1 MuM−1Mu 0

0 ν−1
2 Mv M−1Mv

]
,

we construct an approximation

S̃ =
[−Lu,GM1 + M̂(1)

1 τ rMu2/v2

−2τ rMu −Lv,GM1 + M̂(1)
2

]
Ã−1

(1,2)

[−LT
u,GM1 + M̂(2)

1 −2τ rMu

τ rMu2/v2 −LT
v,GM1 + M̂(2)

2

]
,

for suitably chosen matrices M̂(1)
1 , M̂(1)

2 , M̂(2)
1 and M̂(2)

2 . To do this we apply a ‘matching strategy’, where we seek an 
additional (outer) term of the Schur complement approximation to match the second term of the exact Schur complement,3

as follows:[
M̂(1)

1 0

0 M̂(1)
2

]
Ã−1

(1,2)

[
M̂(2)

1 0

0 M̂(2)
2

]
≈ τ

[
ν−1

1 MuM−1Mu 0

0 ν−1
2 Mv M−1Mv

]
.

By examining the diagonal blocks of Ã−1
(1,2) , we see that this strategy motivates the approximations:

M̂(1)
1 Ã−1

1 M̂(2)
1 ≈ τ

ν1
MuM−1Mu, Ã1 := Au,GM1 − (2τ r)2Mup/v2 A−1

v,GM1Mup/v2 ,

M̂(1)
2 Ã−1

2 M̂(2)
2 ≈ τ

ν2
Mv M−1Mv , Ã2 := Av,GM1 − (2τ r)2Mup/v2 A−1

u,GM1Mup/v2 .

To achieve such an approximation, we again recommend selecting diagonal matrices M̂(1)
1 , M̂(1)

2 , M̂(2)
1 and M̂(2)

2 , with diagonal 
entries given by[

M̂(1)
1

]
j j =

√
τ

ν1
[Mu] j j · [M]−1/2

j j ·
∣∣∣[̃A1

]
j j

∣∣∣, [
M̂(2)

1

]
j j =

√
τ

ν1
[M]−1/2

j j · [Mu] j j,

[
M̂(1)

2

]
j j =

√
τ

ν2
[Mv ] j j · [M]−1/2

j j ·
∣∣∣[̃A2

]
j j

∣∣∣, [
M̂(2)

2

]
j j =

√
τ

ν2
[M]−1/2

j j · [Mv ] j j .

Now, for any practical method, we are only interested in the inverse of the Schur complement approximation S̃ . We 
therefore evaluate the inverse of the first and last block using a fixed number of steps of an Uzawa method [37] with 
preconditioners

blkdiag
((−Lu,GM1 + M̂(1)

1

)
AMG,

(−Lv,GM1 + M̂(1)
2

)
AMG

)
or

blkdiag
((−LT

u,GM1 + M̂(2)
1

)
AMG,

(−LT
v,GM1 + M̂(2)

2

)
AMG

)
,

where (·)AMG denotes the application of an algebraic multigrid method to the relevant matrix.
For the Gauss–Newton case the derivation of the preconditioners is more straightforward. The approximation of the 

Hessian is typically not as good as in the Newton setting but the Gauss–Newton matrices are easier to handle from a 
preconditioning viewpoint. To approximate A we write⎡⎢⎢⎣

β1τM 0 0 0

0 β2τM 0 0

0 0 ν1τM 0

0 0 0 ν2τM

⎤⎥⎥⎦≈

⎡⎢⎢⎣
β1τ M̃ 0 0 0

0 β2τ M̃ 0 0

0 0 ν1τ M̃ 0

0 0 0 ν2τ M̃

⎤⎥⎥⎦=: Ã,

where M̃ is equal to M for (diagonal) lumped mass matrices. If consistent mass matrices are used instead, some approxima-
tion such as the application of Chebyshev semi-iteration [43] is chosen. The inverse of the Schur complement approximation

S̃ :=
[−Lu,GM1 + M̂(1)

1 τ rMu2/v2

−2τ rMu −Lv,GM1 + M̂(1)
2

]
Ã−1

(1,2)

[−LT
u,GM1 + M̂(2)

1 −2τ rMu

τ rMu2/v2 −LT
v,GM1 + M̂(2)

2

]
,

3 This matching strategy was originally developed by the authors [33–35] to generate approximations for more fundamental PDE-constrained optimization 
problems. Considering the Poisson control problem, for instance, the Schur complement and its approximation take the form [34]:

S = K M−1 K + 1

β
M, S̃ =

(
K + 1√

β
M

)
M−1

(
K + 1√

β
M

)
,

whereupon it can be shown that the eigenvalues of ̃S−1 S are contained within [ 1
2 , 1], independently of problem parameters and matrix dimension. This 

bound can be proved due to the comparatively simple structures of the matrices involved, and thus cannot be replicated for the complex systems studied 
here, however we have found this strategy to be very effective for a range of PDE-constrained optimization problems.
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where here Ã(1,2) = blkdiag(β1τM, β2τM), M̂(1)
1 = M̂(2)

1 = τ
√

β1
ν1

Mu , and M̂(1)
2 = M̂(2)

2 = τ
√

β2
ν2

Mv , is applied at each step of 
our iterative method.

4.2. GM2 model

In a completely analogous way we can derive saddle point preconditioners for the GM2 model, for which

A =

⎡⎢⎢⎣
Au,GM2 −2τγ Mu(q−p) 0 0

−2τγ Mu(q−p) Av,GM2 0 0

0 0 τν1M 0

0 0 0 τν2M

⎤⎥⎥⎦ ,

B =
[ −Lu,GM2 τγ Mu2 τγ M 0

−2τγ Muv −Lv,GM2 0 τγ M

]
, C =

[
0 0
0 0

]
,

in the notation of (4.1).
We may approximate the matrix A, in this case using the saddle point type structure of its upper sub-matrix, by

Ã =

⎡⎢⎢⎣
Ã1 0 0 0

0 Av,GM2 0 0

0 0 τν1M 0

0 0 0 τν2M

⎤⎥⎥⎦ or

⎡⎢⎢⎣
−Ã1 0 0 0

−2τγ Mu(q−p) Av,GM2 0 0

0 0 τν1M 0

0 0 0 τν2M

⎤⎥⎥⎦ ,

where

Ã1 = Au,GM2 − (2τγ )2Mu(q−p)A
−1
v,GM2Mu(q−p).

We follow a similar strategy as before to approximate the Schur complement

S =
[ −Lu,GM2 τγ Mu2

−2τγ Muv −Lv,GM2

]
Ã−1

(1,2)

[−LT
u,GM2 −2τγ Muv

τγ Mu2 −LT
v,GM2

]
+ τγ 2

[
ν−1

1 M 0

0 ν−1
2 M

]
,

where for this problem

Ã(1,2) :=
[

Au,GM2 −2τγ Mu(q−p)

−2τγ Mu(q−p) Av,GM2

]
.

Again applying our matching strategy, we obtain the following approximation:

S̃ =
[−Lu,GM2 + M̂(1)

1 −τγ Mu2

2τγ Muv −Lv,GM2 + M̂(1)
2

]
Ã−1

(1,2)

[−LT
u,GM2 + M̂(2)

1 2τγ Muv

−τγ Mu2 −LT
v,GM2 + M̂(2)

2

]
.

Examining the diagonal blocks of ̃A−1
(1,2) (as for the GM1 model), and applying a matching strategy to approximate the second 

term of S , we motivate the following approximations:

M̂(1)
1 Ã−1

1 M̂(2)
1 ≈ τγ 2

ν1
M, Ã1 := Au,GM2 − (2τγ )2Mu(q−p)A

−1
v,GM2Mu(q−p),

M̂(1)
2 Ã−1

2 M̂(2)
2 ≈ τγ 2

ν2
M, Ã2 := Av,GM2 − (2τγ )2Mu(q−p)A

−1
u,GM2Mu(q−p).

These approximations may be achieved by constructing diagonal matrices M̂(1)
1 , M̂(1)

2 , M̂(2)
1 , M̂(2)

2 with diagonal entries given 
by [

M̂(1)
1

]
j j =

√
τ

ν1
γ [M]1/2

j j ·
∣∣∣[̃A1

]
j j

∣∣∣, [
M̂(2)

1

]
j j =

√
τ

ν1
γ [M]1/2

j j ,

[
M̂(1)

2

]
j j =

√
τ

ν2
γ [M]1/2

j j ·
∣∣∣[̃A2

]
j j

∣∣∣, [
M̂(2)

2

]
j j =

√
τ

ν2
γ [M]1/2

j j .

We can again build these choices of M̂(1)
1 , M̂(1)

2 , M̂(2)
1 , M̂(2)

2 into the approximation S̃ within our preconditioner.
For each of our suggested iterative methods, we insert our approximations of A and S = B A−1 BT into the general 

preconditioners for saddle point systems stated in (4.2).
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4.3. Computational cost

When implementing our preconditioned iterative methods, the vast majority of the computational expense occurs when 
applying the inverse of our preconditioners. We therefore now wish to detail the solves that we are required to carry out 
when applying our preconditioner to each problem.

To enact our preconditioner for the GM1 model, we are required to perform the following:

– Solves for Ã1 and Ã2 (‘mass-like’ matrices),
– Chebyshev semi-iteration/diagonal solves for τν1M, τν2M (mass matrices),
– 1 multigrid per Uzawa iteration for each of −Lu,GM1 + M̂(1)

1 , −Lv,GM1 + M̂(1)
2 , −LT

u,GM1 + M̂(2)
1 , −LT

v,GM1 + M̂(2)
2 (to apply 

S̃−1).

From a computational point-of-view, the most straightforward operations involve inverting mass matrices, with the multi-
grid operations the most expensive.

For the Gauss–Newton approach for the same problem, the preconditioner is cheaper to apply, with the following oper-
ations dominating the computational cost:

– Chebyshev semi-iteration/diagonal solves for β1τM, β2τM, τν1M, τν2M (mass matrices),
– 1 multigrid per Uzawa iteration for each of −Lu,GM1 + M̂(1)

1 , −Lv,GM1 + M̂(1)
2 , −LT

u,GM1 + M̂(2)
1 , −LT

v,GM1 + M̂(2)
2 (for the 

new choices of M̂(1)
1 , M̂(1)

2 , M̂(2)
1 , M̂(2)

2 ).

Further, the dominant computational operations for solving the GM2 model are:

– Solves for Ã1, Au,GM2 (‘mass-like’ matrices),
– Chebyshev semi-iteration/diagonal solves for τν1M, τν2M (mass matrices),
– 1 multigrid per Uzawa iteration for each of −Lu,GM1 + M̂(1)

1 , −Lv,GM1 + M̂(1)
2 , −LT

u,GM1 + M̂(2)
1 , −LT

v,GM1 + M̂(2)
2 (to apply 

S̃−1).

We believe the amount of computational work required to apply our preconditioner is satisfactory when taking into 
account the complex structure and large dimension of the matrix systems.

4.4. Alternative methods

Before presenting numerical results we wish to briefly discuss alternative approaches for the solution of the optimization 
problem, or the linear systems at the heart of the nonlinear solver. Due to the highly complex structure of the problem 
statements and associated matrix systems, we are not aware of any robust methods that have previously been developed 
for solving these systems. We believe that this underlines the value of investigating preconditioned iterative methods for 
this important class of problems. However we wish to outline other classes of methods which could potentially be applied 
to these problems, in many cases building on the work described in this article.

The method we have presented is applied when using either a Newton or a Gauss–Newton approach for the nonlinear 
program. Alternatively, we could apply a simple gradient descent coupled with a line search procedure [29], which typically 
converges very slowly. Another alternative would be to employ an interior point scheme [44], which also requires the 
solution of saddle point problems, and we believe that many of our proposed techniques could be carried over to this 
case. In [21] the authors follow a so-called one-shot method that can be viewed as a stationary iteration of the form 
xk+1 = xk + P−1rk . The preconditioner in this case is given by a block matrix that requires the (approximate) inversion of 
the adjoint and forward PDE operator, as well as the solution of a complicated Schur complement system (here written for 
the Gauss–Newton system (3.2) with the block containing second derivatives with respect to Lagrange multipliers equal to 
zero):

S A ≈
[
L̂aa

L̂bb

]
+
[
Lap Laq

Lbp Lbq

][
Lup Luq

Lvp Lvq

]−1 [ L̂uu

L̂v v

][
Lpu Lpv

Lqu Lqv

]−1 [Lpa Lpb

Lqa Lqb

]
.

Note that this is in general harder to approximate than the Schur complements obtained using our approach, as we here 
have the sum of mass matrices and inverse PDE operators within the Schur complement approximation. As it is the action 
of S−1

A that is important for preconditioning purposes, this approximation is extremely difficult to apply in practice.
Recently, operator preconditioning approaches have proven successful for many PDE preconditioning problems (see [25,

45]). Their use for nonlinear problems has recently attracted attention within the field [1,38], and we are currently investi-
gating how to extend these approaches to the reaction–diffusion type setting.

Of the approaches currently within reach, the stationary iteration approaches were found not to converge, and the above 
approximation S A is of a very complex nature and is infeasible to apply. The only alternative approach which we found 
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Fig. 4.1. Iteration numbers for Uzawa scheme with a block triangular version of our preconditioner. Plots are shown for every SQP step, however they can 
often not be distinguished due to very similar convergence behavior. The smaller example uses 729 degrees of freedom in space, and the larger example 
4096.

to generate sensible results for a range of parameter regimes is that of an Uzawa method, using a preconditioner of the 
form derived in this paper. In Fig. 4.1 we show the iteration numbers that are required using such an approach for two 
different meshes and two regularization parameters. We note that, while the results show that this method performs well, 
we are required to move from the block diagonal preconditioner derived in this section to a more expensive block triangular 
preconditioner, as the Uzawa method diverges when a block diagonal approach is taken. Apart from this change, the major 
computational operations required per Uzawa iteration are largely similar to those required to apply our preconditioner 
with a single Uzawa step. We also highlight that this method is itself only feasible due to the preconditioners derived in 
this paper.

5. Numerical results

We now wish to apply our methodology to a number of test problems. All results presented in this section are based 
on an implementation of the presented algorithms and (block diagonal) preconditioners within the deal.II [3] framework 
using Q 1 finite elements. The AMG preconditioner we use is part of the Trilinos ML package [13] that implements a 
smoothed aggregation AMG. Within the algebraic multigrid routine we typically apply 10 steps of a Chebyshev smoother 
in combination with the application of two V-cycles. Typically we apply 4 iterations of the Uzawa scheme within our 
Schur complement approximation, to guarantee high accuracy. For our implementation of Bicg we use a stopping tolerance 
of 10−4. Our experiments are performed for T = 1 and τ = 0.05, i.e. 20 time-steps. Typically, the spatial domain � is 
considered to be the unit square or cube. All results are performed on a Centos Linux machine with Intel(R) Xeon(R) CPU 
X5650 @ 2.67 GHz CPUs and 48 GB of RAM.

5.1. GM2 model

For both GM2 and GM1 models we start creating desired states using Gaussians placed at different positions in the unit 
square/cube that might depend on the time t . In Fig. 5.1 we illustrate two instances of the desired state and computed 
results for the GM2 formulation, with the parameters set to Du = 1, D v = 10, β1 = β2 = 1, γ = 50, and ν1 = ν2 = 10−6. As 
the regularization parameters become smaller we see that the desired and computed states are very close. This is reflected 
in the third set of images within Fig. 5.1, where the control is shown with sometimes rather high values. In Table 5.1
we present Bicg iteration numbers for solving this test problem for a range of degrees of freedom and regularization 
parameters – the results indicate that our solver is robust in a large number of problem setups.

5.2. GM1 model with Newton and Gauss–Newton methods

For the next problem we examine, the desired state for the GM1 model is created using Gaussian functions placed in 
the unit cube. This is illustrated in Fig. 5.2, where we present the desired state for the first component, the computed 
first state variable, and the corresponding control variable. The parameters for this case are chosen to be β1 = β2 = 102, 
ν1 = ν2 = 10−2, Du = 1, D v = 10, and r = 10−2. For many interesting parameter setups (including for a range of values 
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Fig. 5.1. Desired state for 8th and 12th grid points in time (upper two), computed state using the GM2 model (middle two), and the computed control 
(lower two) for two reactants using the GM2 model. The parameters are set to be Du = 1, D v = 10, β1 = β2 = 1, γ = 50, and ν1 = ν2 = 10−6.

Table 5.1
Results on unit square with Du = 1, D v = 10, β1 = β2 = 1, and γ = 50. Stated are Bicg iteration numbers for each Newton step.

DoF ν1 = ν2 = 10−2 ν1 = ν2 = 10−4 ν1 = ν2 = 10−6

Newton Bicg Newton Bicg Newton Bicg

507,000 step 1 18 step 1 16 step 1 16
step 2 20 step 2 15 step 2 15
step 3 20 step 3 15 step 3 15
step 4 20 step 4 15 step 4 15
step 5 20 step 5 15

1,996,920 step 1 23 step 1 17 step 1 17
step 2 23 step 2 18 step 2 16
step 3 24 step 3 18 step 3 16
step 4 23 step 4 18 step 4 16
step 5 23 step 5 18
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Fig. 5.2. Desired state, computed state and computed control for the first reactant in the GM1 model with parameters at β1 = β2 = 102, ν1 = ν2 = 10−2, 
Du = 1, D v = 10, and r = 10−2.

Table 5.2
Results on unit cube with β1 = β2 = 102, Du = 1, D v = 10, and r = 10−2. We here vary the mesh-size and the regularization parameters ν1 and ν2. Stated 
are Bicg iteration numbers for each Gauss–Newton step.

DoF ν1 = ν2 = 10−2 ν1 = ν2 = 10−4 ν1 = ν2 = 10−6

GN Bicg GN Bicg GN Bicg

87,480 step 1 11 step 1 11 step 1 9
step 2 11 step 2 11 step 2 9
step 3 11 step 3 11 step 3 9
step 4 11 step 4 11
step 5 11 step 5 11

589,560 step 1 11 step 1 13 step 1 11
step 2 11 step 2 12 step 2 11
step 3 11 step 3 12 step 3 11
step 4 11 step 4 12 step 4 11
step 5 11 step 5 12

4,312,440 step 1 11 step 1 13 step 1 11
step 2 11 step 2 12 step 2 11
step 3 11 step 3 12 step 3 11
step 4 11 step 4 12 step 4 11
step 5 11 step 5 12

of r) it is not trivial to find a configuration of the Newton scheme that demonstrates satisfying convergence properties. 
We instead focus on the Gauss–Newton method here, and we illustrate the Bicg iteration numbers achieved for a range of 
problems in Table 5.2 – these results demonstrate much greater robustness, with rapid convergence of the inner solver.

As we have already highlighted, the complex structure of the linear systems makes the design of efficient preconditioners 
harder when the Newton scheme is applied compared to the Gauss–Newton scheme. We use the results presented in 
Table 5.3 to illustrate the performance of both Newton and Gauss–Newton schemes. We observe that the Newton method 
and our associated preconditioner perform well when the regularization parameters are chosen to be rather large. In this 
case, whereas the Gauss–Newton scheme generates low iteration numbers, it seems to generate less meaningful numerical 
results. Whereas, in the case of smaller regularization parameters, the Gauss–Newton scheme requires a greater number of 
outer iterations, the number of inner Bicg iterations remains low. For this setup the preconditioner for the Newton scheme 
does not allow the method to converge, and therefore the scheme failed. This makes clear that careful choices concerning 
the outer iteration and preconditioner need to be made, in order to achieve good performance of the method for a particular 
parameter case.

Additionally, we illustrate in Table 5.4 the performance of the Gauss–Newton scheme when the tolerance of the inner 
solver is relaxed. We can see that for this mesh the choice of a tolerance decrease from 10−4 to 10−2 does not have a 
significant influence on the output of the optimization routine and the number of outer iterations.

We also wish to highlight that it is possible to include additional control constraints a ≤ a ≤ ā and b ≤ b ≤ b̄, to be 
enforced along with the systems of PDEs (2.2) or (2.3). Our approach to deal with these additional bounds is to include 
a Moreau–Yosida penalization [18] that can be used with a non-smooth Newton scheme. The structure of the Newton 
system is very similar to the one without control constraints, and we refer to [32] for more details on the derivation of the 
non-smooth Newton system and the choice of preconditioner. In Table 5.5 we present results for the setup 0 ≤ a and 0 ≤ b, 
where the Gauss–Newton scheme is used in conjunction with Bicg.
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Table 5.3
Results on unit cube with β1 = β2 = 1, Du = 1, D v = 10, and r = 10−4. We here vary the mesh-size and the regularization parameters ν1 and ν2. We show 
the iteration numbers for Bicg, the value of the data misfit term ‖y − ŷ‖2 in the objective function, and the relative change in the optimization variable 
between two consecutive Gauss–Newton iterations (GN�). The outer iteration is stopped if GN� is smaller than 10−4.

DoF Newton GN GN

87,480 ν1 = ν2 = 102 ν1 = ν2 = 102 ν1 = ν2 = 10−3

Bicg/‖y − ŷ‖2/GN� Bicg/‖y − ŷ‖2/GN� Bicg/‖y − ŷ‖2/GN�

step 1 2/4.67/– 2/38.53/– 2/38.53/–
step 2 5/4.27/7.4 × 10−2 7/38.45/3.6 × 10−3 16/5.1 × 10−1/9.8 × 10−1

step 3 5/4.27/1.2 × 10−2 7/38.45/9.7 × 10−4 19/3.8 × 10−2/2.1 × 100

step 4 5/4.27/1.9 × 10−3 7/38.45/3.3 × 10−6 16/3.3 × 10−2/4.3 × 10−1

step 5 5/4.27/2.2 × 10−4 15/3.3 × 10−2/2.7 × 10−3

step 6 5/4.27/1.8 × 10−5 15/3.2 × 10−2/7.9 × 10−5

Table 5.4
Results on unit cube with β1 = β2 = 102, Du = 1, D v = 10, and r = 10−2. We here vary the mesh-size and the regularization parameters ν1 and ν2. We 
show the iteration numbers for Bicg and the value of the objective function J (·). The outer iteration was stopped if the relative difference between two 
consecutive iterates was smaller than 10−4.

DoF Newton GN GN

87,480 tol = 10−4 tol = 10−2 tol = 10−1

Bicg/J (·) Bicg/J (·) Bicg/J (·)
step 1 2/1926.98 2/1926.98 2/1926.98
step 2 11/13.57 7/13.58 3/12.63
step 3 11/1.78 7/1.79 3/1.19
step 4 11/2.20 5/2.20 3/2.30
step 5 11/2.20 5/2.22 3/2.17
step 6 11/2.20 5/2.22 3/2.18
step 7 5/2.22 3/2.18
step 8 3/2.18
step 9 3/2.18

Table 5.5
Results on unit cube with β1 = β2 = 102, Du = 1, D v = 10, and r = 10−2. We here vary the mesh-size and the regularization parameters ν1 and ν2. Stated 
are Bicg iteration numbers for each Gauss–Newton step. The tolerance for the Gauss–Newton method is 10−2.

DoF ν1 = ν2 = 10−2 ν1 = ν2 = 10−4

GN Bicg GN Bicg

130,680 step 1 2 step 1 2
step 2 9 step 2 13
step 3 13 step 3 14

507,000 step 1 4 step 1 4
step 2 9 step 2 15
step 3 10 step 3 15

1,996,920 step 1 10 step 1 10
step 2 14 step 2 17
step 3 14 step 3 17

We now wish to compare the performance of our preconditioned Bicg approach with an unpreconditioned version of the 
same solver. We do so in order to demonstrate the clearly superior convergence properties of the preconditioned method, 
and show the very high accuracy to which our solver is able to solve the matrix systems. Fig. 5.3 illustrates the residual error 
of the unpreconditioned and preconditioned approaches for two test problems: it is clear that running the preconditioned 
method for only a few iterations easily outperforms the unpreconditioned version. Indeed the unpreconditioned method 
appears to diverge in many cases, demonstrating the need to construct effective preconditioners for the complex matrix 
systems involved.

5.3. Image-driven desired state and GM1 model

An attractive feature of this methodology is that it is also possible to obtain desired states by reading in pattern infor-
mation from an image. This may be done for the GM1 and GM2 models, whether or not control constraints are included. 
Image-driven parameter estimation techniques can also be found in [19]. For this problem, we choose to take an image sim-
ilar to those used in [24] – this involves reading in a pattern found on a mature jaguar. As this problem is not necessarily 
time-dependent we wish to illustrate the performance of our method by scaling the desired pattern by τi , where i denotes 
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Fig. 5.3. Residual errors of unpreconditioned (red) and preconditioned (blue) Bicg method for two test problems (DoFs 4096). (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 5.4. Results for image-driven model: Shown are computed state, desired state, and computed control for the parameter setups using β1 = β2 = 102, 
ν1 = ν2 = 10−7, Du = 1, D v = 10, and r = 10−5.

the relevant index in time. The results for applying the Gauss–Newton scheme to this image-driven problem are shown in 
Fig. 5.4.

In Fig. 5.4(b) we show the desired state used, with the computed state presented in Fig. 5.4(a) and the associated control 
in Fig. 5.4(c).

The parameters for this setup are β1 = β2 = 102, ν1 = ν2 = 10−7, Du = 1, D v = 10, and r = 10−5. For the computations 
from which Fig. 5.4 is generated, a tolerance of 10−2 is taken for the Gauss–Newton scheme. Within these computations 8
steps of the Gauss–Newton iteration are required, with an average of 20.5 Bicg iterations per Gauss–Newton step.

Overall the numerical results presented for the above experiments indicate that we are able to solve a wide range of pa-
rameter identification problems from pattern formation, with our observed Bicg iteration numbers (as well as computation 
times) being low for a large number of parameter regimes. Furthermore, the iteration numbers behave in a fairly robust 
way as the parameters involved in the problem are varied.

6. Concluding remarks and future work

In this article, we have considered the development of preconditioned iterative methods for the numerical solution 
of parameter identification problems arising from pattern formation. We have constructed our methods using effective 
strategies for approximating the (1, 1)-block and Schur complement of the saddle point systems that result from these 
problems.

The numerical results we have obtained when applying our techniques to a number of test examples (using both GM1
and GM2 models) indicate that our proposed solvers are effective ones for a wide range of parameter setups. Another 
key aspect of our methodology is that we are able to feed desired states (or “target patterns”) into our implementation 
using experimental or computational data, and use this to obtain appropriate solutions to the Turing model in question. 
Furthermore, our solvers are found to be effective at handling additional inequality constraints on the control variables.

There are a number of related areas of research which we hope to consider, including the incorporation of additional 
constraints on the state or control variables (for instance integral constraints, or bounds on the state variables), different 
time-stepping schemes, and possibly different techniques for the outer iteration. We also wish to investigate a version of 
the problem where the L2-distance between the states and desired states is only measured at the final time t = T (i.e. 
where β1 = β2 = 0), as we find that such problems have considerable physical applicability. Furthermore, we now hope to 
tackle other problems of significant interest to the mathematical biology community using the methodology presented in 
this paper.
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Appendix A. Derivation of the Newton systems

For the Gierer–Meinhardt (GM1) formulation, we examine the forward equations

ut − Du�u − ru2

v
+ au = r, on � × [0, T ],

vt − D v�v − ru2 + bv = 0, on � × [0, T ],
u(x,0) = u0(x), v(x,0) = v0(x), on �,

∂u

∂ν
= ∂v

∂ν
= 0, on ∂� × [0, T ],

and the adjoint equations (see [11])

−pt − Du�p − 2r
u

v
p + ap − 2ruq = β1(u − û), on � × [0, T ],

−qt − D v�q + r
u2

v2
p + bq = β2(v − v̂), on � × [0, T ],

p(x, T ) = βT ,1(u(x, T ) − û(x, T )), q(x, T ) = βT ,2(v(x, T ) − v̂(x, T )), on �,

∂ p

∂ν
= ∂q

∂ν
= 0, on ∂� × [0, T ],

where p and q denote the adjoint variables.
We now employ a Newton iteration, by writing at each Newton step

u = ū + δu, v = v̄ + δv, a = ā + δa, b = b̄ + δb, p = p̄ + δp, q = q̄ + δq,

where ū, v̄ , ā, b̄, p̄, q̄ denote the most recent iterates of u, v , a, b, p, q, with δu, δv , δa, δb, δp, δq denoting the changes in 
the solutions at each Newton step.

Applying this to the forward equations yields

(ū + δu)t − Du�(ū + δu) − r(ū + δu)2

v̄ + δv
+ (ā + δa)(ū + δu) = r, on � × [0, T ],

(v̄ + δv)t − D v�(v̄ + δv) − r(ū + δu)2 + (b̄ + δb)(v̄ + δv) = 0, on � × [0, T ],
(ū + δu)(x,0) = u0(x), (v̄ + δv)(x,0) = v0(x), on �,

∂(ū + δu)

∂ν
= ∂(v̄ + δv)

∂ν
= 0, on ∂� × [0, T ],

whereupon we can use the assumption (ū + δu)2 ≈ ū2 + 2ū · δu and the resulting derivation

(ū + δu)2

v̄ + δv
≈ v̄ − δv

v̄2
(ū2 + 2ū · δu) ≈ ū2 v̄ − ū2 · δv + 2ū v̄ · δu

v̄2

to write

(δu)t − Du�(δu) + r
ū2 · δv − 2ū v̄ · δu

v̄2
+ ū · δa + ā · δu = r −

(
ūt − Du�ū − rū2

v̄
+ āū

)
, on � × [0, T ], (A.1)

(δv)t − D v�(δv) − 2rū · δu + v̄ · δb + b̄ · δv = −(v̄t − D v�v̄ − rū2 + b̄ v̄), on � × [0, T ], (A.2)

(δu)(x,0) = (δv)(x,0) = 0, on �, (A.3)
∂(δu)

∂ν
= ∂(δv)

∂ν
= 0, on ∂� × [0, T ]. (A.4)

Considering now a Newton iteration applied to the adjoint equations, we have
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−(p̄ + δp)t − Du�(p̄ + δp) − 2r
ū + δu

v̄ + δv
(p̄ + δp) + (ā + δa)(p̄ + δp) − 2r(ū + δu)(q̄ + δq)

= β1((ū + δu) − û), on � × [0, T ],

−(q̄ + δq)t − D v�(q̄ + δq) + r
(ū + δu)2

(v̄ + δv)2
(p̄ + δp) + (b̄ + δb)(q̄ + δq)

= β2((v̄ + δv) − v̂), on � × [0, T ],
(p̄ + δp)(x, T ) = βT ,1((ū + δu)(x, T ) − û(x, T )), on �,

(q̄ + δq)(x, T ) = βT ,2((v̄ + δv)(x, T ) − v̂(x, T )), on �,

∂(p̄ + δp)

∂ν
= ∂(q̄ + δq)

∂ν
= 0, on ∂� × [0, T ].

Now, using the approximations

ū + δu

v̄ + δv
(p̄ + δp) ≈ (ū + δu)(v̄ − δv)(p̄ + δp)

v̄2

≈ ū v̄ p̄ + v̄ p̄ · δu − ū p̄ · δv + ū v̄ · δp

v̄2
,

(ū + δu)2

(v̄ + δv)2
(p̄ + δp) ≈ (ū + 2ū · δu)(v̄2 − 2v̄ · δv)(p̄ + δp)

v̄4

≈ ū

v̄3
(ū v̄ p̄ + 2v̄ p̄ · δu − 2ū p̄ · δv + ū v̄ · δp),

we may write

−(δp)t − Du�(δp) − 2r
ū p̄ · δv − v̄ p̄ · δu − ū v̄ · δp

v̄2
+ p̄ · δa + ā · δp − 2r(ū · δq + q̄ · δu) − β1δu

= β1(ū − û) −
(

−p̄t − Du�p̄ − 2r
ū

v̄
p̄ + ā p̄ − 2rūq̄

)
, on � × [0, T ], (A.5)

−(δq)t − D v�(δq) + rū
2v̄ p̄ · δu + ū v̄ · δp − 2ū p̄ · δv

v̄2
+ q̄ · δb + b̄ · δq − β2δv

= β2(v̄ − v̂) −
(

−q̄t − D v�q̄ + r
ū2

v̄2
p̄ + b̄q̄

)
, on � × [0, T ], (A.6)

(δp)(x, T ) = βT ,1(δu)(x, T ), (δq)(x, T ) = βT ,2(δv)(x, T ), on �, (A.7)

∂(δp)

∂ν
= ∂(δq)

∂ν
= 0, on ∂� × [0, T ]. (A.8)

Now, the forward and adjoint equations can clearly be derived by differentiating the Lagrangian

JGM1(u, v,a,b, p,q) = β1

2
‖u − û‖2

L2(�×[0,T ]) + β2

2
‖v − v̂‖2

L2(�×[0,T ])

+ βT ,1

2
‖u − ûT ‖2

L2(�) + βT ,2

2
‖v − v̂ T ‖2

L2(�)

+ ν1

2
‖a‖2

L2(�×[0,T ]) + ν2

2
‖b‖2

L2(�×[0,T ])

−
∫

�×[0,T ]
p

(
ut − Du�u − ru2

v
+ au − r

)

−
∫

�×[0,T ]
q
(

vt − D v�v − ru2 + bv
)

,

with respect to the adjoint variables p, q and the state variables u, v , respectively. Within this cost functional, we have 
excluded the constraints on the boundary conditions for readability reasons. To obtain the gradient equations we require for 
a closed system of equations, we also need to differentiate the above cost functional with respect to the control variables a
and b. Differentiating with respect to a gives the requirement
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∫
�×[0,T ]

(up − ν1a) = 0,

and differentiating with respect to b yields similarly that∫
�×[0,T ]

(vq − ν2b) = 0.

Applying a Newton iteration to these equations gives constraints of the form∫
�×[0,T ]

(p̄ · δu + ū · δp − ν1δa) = −
∫

�×[0,T ]
(ū p̄ − ν1ā), (A.9)

∫
�×[0,T ]

(q̄ · δv + v̄ · δq − ν2δb) = −
∫

�×[0,T ]
(v̄q̄ − ν2b̄), (A.10)

at each Newton step.
Therefore the complete system which we need to solve at each Newton step corresponds to the adjoint equations 

(A.5)–(A.8), the gradient equations (A.9) and (A.10), and the forward equations (A.1)–(A.4).
We now turn our attention to the Schnakenberg (GM2) model, where we wish to deal with the forward equations

ut − Du�u + γ (u − u2 v) − γ a = 0, on � × [0, T ],
vt − D v�v + γ u2 v − γ b = 0, on � × [0, T ],
u(x,0) = u0(x), v(x,0) = v0(x), on �,

∂u

∂ν
= ∂v

∂ν
= 0, on ∂� × [0, T ],

and the adjoint equations (see [11])

−pt − Du�p + 2γ uv(q − p) + γ p = β1(u − û), on � × [0, T ],
−qt − D v�q + γ u2(q − p) = β2(v − v̂), on � × [0, T ],

p(x, T ) = βT ,1(u(x, T ) − û(x, T )), q(x, T ) = βT ,2(v(x, T ) − v̂(x, T )), on �,

∂ p

∂ν
= ∂q

∂ν
= 0, on ∂� × [0, T ].

Now, substituting

u = ū + δu, v = v̄ + δv, a = ā + δa, b = b̄ + δb, p = p̄ + δp, q = q̄ + δq,

into the forward equations at each Newton step gives

(ū + δu)t − Du�(ū + δu) + γ ((ū + δu) − (ū + δu)2(v̄ + δv)) − γ (ā + δa) = 0, on � × [0, T ],
(v̄ + δv)t − D v�(v̄ + δv) + γ (ū + δu)2(v̄ + δv) − γ (b̄ + δb) = 0, on � × [0, T ],

(ū + δu)(x,0) = u0(x), (v̄ + δv)(x,0) = v0(x), on �,

∂(ū + δu)

∂ν
= ∂(v̄ + δv)

∂ν
= 0, on ∂� × [0, T ],

which we may expand and simplify to give

(δu)t − Du�(δu) + γ (δu − ū2 · δv − 2ū v̄ · δu) − γ δa

= −(ūt − Du�ū + γ (ū − ū2 v̄) − γ · ā), on � × [0, T ], (A.11)

(δv)t − D v�(δv) + γ (ū2 · δv + 2ū v̄ · δu) − γ δb = −(v̄t − D v�v̄ + γ ū2 v̄ − γ · b̄), on � × [0, T ], (A.12)

(δu)(x,0) = (δv)(x,0) = 0, on �, (A.13)
∂(δu)

∂ν
= ∂(δv)

∂ν
= 0, on ∂� × [0, T ]. (A.14)

Applying the same substitutions to the adjoint equations gives
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−(p̄ + δp)t − Du�(p̄ + δp) + 2γ ū v̄((q̄ + δq) − (p̄ + δp)) + γ (p̄ + δp) = β1((ū + δu) − û), on � × [0, T ],
−(q̄ + δq)t − D v�(q̄ + δq) + γ ū2((q̄ + δq) − (p̄ + δp)) = β2((v̄ + δv) − v̂), on � × [0, T ],

(p̄ + δp)(x, T ) = βT ,1((ū + δu)(x, T ) − û(x, T )), on �,

(q̄ + δq)(x, T ) = βT ,2((v̄ + δv)(x, T ) − v̂(x, T )), on �,

∂(p̄ + δp)

∂ν
= ∂(q̄ + δq)

∂ν
= 0, on ∂� × [0, T ],

which may then be expanded and simplified to give

−(δp)t − Du�(δp) + 2γ (v̄q̄ · δu + ūq̄ · δv + ū v̄ · δq − v̄ p̄ · δu − ū p̄ · δv − ū v̄ · δp) + γ δp − β1δu

= β1(ū − û) − (−p̄t − Du�p̄ + 2γ ū v̄(q̄ − p̄) + γ p̄), on � × [0, T ], (A.15)

−(δq)t − D v�(δq) + γ (ū2 · δq + 2ūq̄ · δu − ū2δp − 2ū p̄ · δu) − β2δv

= β2(v̄ − v̂) − (−q̄t − D v�q̄ + γ ū2(q̄ − p̄)), on � × [0, T ], (A.16)

(δp)(x, T ) = βT ,1(δu)(x, T ), (δq)(x, T ) = βT ,2(δv)(x, T ), on �, (A.17)

∂(δp)

∂ν
= ∂(δq)

∂ν
= 0, on ∂� × [0, T ]. (A.18)

The forward and adjoint equations can be derived by differentiating the Lagrangian

JGM2(u, v,a,b, p,q) = β1

2
‖u − û‖2

L2(�×[0,T ]) + β2

2
‖v − v̂‖2

L2(�×[0,T ])

+ βT ,1

2
‖u − ûT ‖2

L2(�) + βT ,2

2
‖v − v̂ T ‖2

L2(�)

+ ν1

2
‖a‖2

L2(�×[0,T ]) + ν2

2
‖b‖2

L2(�×[0,T ])

−
∫

�×[0,T ]
p
(

ut − Du�u + γ (u − u2 v) − γ a
)

−
∫

�×[0,T ]
q
(

vt − D v�v + γ u2 v − γ b
)

,

with respect to u, v , p and q, similarly as for the GM1 model. The gradient equations for this problem may be derived by 
differentiating this Lagrangian with respect to the control variables a and b, which gives the conditions∫

�×[0,T ]
(ν1a + γ p) = 0,

∫
�×[0,T ]

(ν2b + γ q) = 0.

Applying Newton iteration to these equations gives∫
�×[0,T ]

(ν1δa + γ δp) = −
∫

�×[0,T ]
(ν1ā + γ p̄), (A.19)

∫
�×[0,T ]

(ν2δb + γ δq) = −
∫

�×[0,T ]
(ν2b̄ + γ q̄), (A.20)

at each Newton step.
Hence the system of equations which need to be solved at each Newton step are the adjoint equations (A.15)–(A.18), the 

gradient equations (A.19) and (A.20), and the forward equations (A.11)–(A.14).
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