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Abstract We develop a model of wound healing in the
framework of finite elasticity, focussing our attention on the
processes of growth and contraction in the dermal layer of the
skin. The dermal tissue is treated as a hyperelastic cylinder
that surrounds the wound and is subject to symmetric defor-
mations. By considering the initial recoil that is observed
upon the application of a circular wound, we estimate the
degree of residual tension in the skin and build an evolu-
tion law for mechanosensitive growth of the dermal tissue.
Contraction of the wound is governed by a phenomenolog-
ical law in which radial pressure is prescribed at the wound
edge. The model reproduces three main phases of the healing
process. Initially, the wound recoils due to residual stress in
the surrounding tissue; the wound then heals as a result of
contraction and growth; and finally, healing slows as con-
traction and growth decrease. Over a longer time period,
the surrounding tissue remodels, returning to the residually
stressed state. We identify the steady state growth profile
associated with this remodelled state. The model is then used
to predict the outcome of rewounding experiments designed
to quantify the amount of stress in the tissue, and also to
simulate the application of pressure treatments.
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1 Introduction

Wound healing is the physiological process by which dam-
aged tissue repairs and regenerates. Most commonly, this
tissue is the skin and the damage is caused by controlled
surgical procedures or traumatic accident. In either case, it
is desirable for the wound to heal quickly and efficiently,
restoring the skin’s mechanical, protective, and regulatory
functions. The estimated cost of pathological wound-related
surgical procedures and subsequent treatment is a staggering
£1 billion a year in the UK alone (Hex et al. 2012).

Surface wounds break only the outermost layer of the skin,
the epidermis. Epidermal wounds usually heal without com-
plications by proliferation and migration of epithelial cells
across the defect. More problematic are wounds that also
damage the underlying dermis, a thicker layer of collage-
nous elastic tissue.

Wound contraction is responsible for up to 80 % of der-
mal healing (McGrath and Simon 1983). The main process
by which this occurs is fibroblasts pulling the wound edges
inwards. Additionally, growth of new tissue within the sur-
rounding healthy dermis, also regulated by fibroblasts, may
contribute to healing. The hole that remains is initially filled
with extracellular matrix and over a longer period of time is
remodelled into scar tissue.

Immediately after injury, the residual tension in the skin
is released at the wound edge, causing retraction of the
wound edge (McGrath and Simon 1983). Healing then
proceeds through four main overlapping phases: haemosta-
sis, inflammation, proliferation, and remodelling. Firstly,
haemostasis is the formation of a blood clot in the wound
space. This forms within hours of wounding, is made pri-
marily of fibrin, and prevents blood loss. The clot acts as a
source of blood-derived chemotactic factors which initiate
the migration of inflammatory cells into the wound space
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(Wahl et al. 1989). The inflammatory phase lasts for up to
a week (Jeffcoate et al. 2004) during which inflammatory
cells clear the wound site of bacteria, dead tissue, and other
foreign bodies (Singer and Clark 1999). Fibroblasts natu-
rally present in the surrounding dermal tissue proliferate in
response to growth factors secreted by inflammatory cells
(Clark 1988) and migrate up the chemotactic gradient cre-
ated by chemoattractants from the fibrin clot. Fibroblasts
initiate the formation of collagen fibres that increase the
mass of the dermal tissue. Epithelial cells migrate and pro-
liferate into the wound in response to growth factors. This
process, termed re-epithelialisation, ensures that an epider-
mal covering is restored. Contraction of the wound edge
begins approximately 2–5 days post-wounding (Monaco and
Lawrence 2003) as fibroblasts arranged at the wound edge
crawl across the substratum towards the wound centre result-
ing in an inward movement of the dermal edges. Many
of the fibroblasts infiltrate and break down the fibrin clot,
replacing it with a collagen-rich matrix or scar tissue. Even
after the wound has healed, the scar and surrounding tissue
remodel over several months. This process is important aes-
thetically and further allows the tissue to regain mechanical
integrity.

Wound healing has been studied in a mathematical and
computational context for over 20 years. Developing accurate
mathematical models of wound healing that can be vali-
dated experimentally can play a crucial role in understanding
and exploring the mechanisms driving healing. Sherratt and
Murray (1990) were the first to translate this biological
phenomenon into mathematical terms, formulating reaction-
diffusion equations to describe epidermal wound healing.
Extensions to this model saw an investigation into healing
rates and patterns for various wound shapes (Sherratt and
Murray 1992). For full thickness wounds, mathematical mod-
els typically focus on one of the processes contributing to
dermal healing, for example wound contraction (Tranquillo
and Murray 1992; Tracqui et al. 1995; Olsen et al. 1999; Yang
et al. 2013) or tissue synthesis (Segal et al. 2012). There are
two main approaches to modelling wound contraction. One
is through partial differential equation models (PDEs) based
on the principles of mass and momentum balance. Typically,
these couple mass balances for the density of fibroblasts and
extracellular matrix (ECM) with a momentum balance for
the displacement of the cell–ECM continuum and constitu-
tive laws that define the mechanical properties of the tissue
(Tranquillo and Murray 1992; Olsen et al. 1999). The second
approach is based on a hybrid framework. Models of this kind
focus on the interactions between fibroblasts, considered as
discrete entities, and the ECM, considered as a continuous
variable. The direction of fibroblast migration is governed
by ECM fibre orientation, which cells can change (Dallon
et al. 1999; Dallon 2000; McDougall et al. 2006). Although
most models of wound healing are formulated either as sys-

tems of PDEs or as hybrid models, other less widely used
approaches merit discussion. For example, Segal et al. (2012)
studied the contribution of collagen accumulation in a wound
to healing of the tissue. Their spatially averaged model con-
sisted of a system of time-dependent, ordinary differential
equations (ODEs). Although the complexity was reduced by
adopting a spatially averaged framework, the model still had
a large number of parameters that needed to be determined
experimentally.

The various processes contributing to healing overlap;
therefore, models that combine these processes may offer
a more in-depth understanding of wound healing. Vermolen
and Javierre (2012) adapted and coupled previous models
of wound contraction (Tranquillo and Murray 1992), angio-
genesis (Maggelakis 2004), and epidermal wound closure
(Sherratt and Murray 1991) to provide a descriptive model of
dermal regeneration. The authors used their model to inves-
tigate the effects of the various contributing processes to
healing of the dermis. Although the model was more com-
plete in that many processes were included, this came at the
cost of an increased number of undetermined model para-
meters. We have previously adopted an ODE framework,
focussing on the dominant processes contributing to healing
of a full thickness wound (Bowden et al. 2014). A system of
three ODEs was derived to track changes in the epidermal
and dermal wound areas over time, coupled to a phenomeno-
logical force balance. Growth of new tissue was governed by
a modified logistic growth law with dermal growth enhanced
by mechanical stretch caused by contraction of the tissue.
Although the model combined the effects of growth and con-
traction, and contained few parameters, it neglected spatial
effects, which could play an important role in mechanosen-
sitive growth.

In the models discussed above, mechanical effects are typ-
ically included via linear elasticity, if at all. Several factors
highlight the importance of the mechanical environment in
healing and the value of a nonlinear elastic modelling frame-
work. When a circular wound is formed in mice, following
injury the skin retracts causing the wound to increase to
120 % of its initial area (McGrath and Simon 1983). The
retraction implies the presence of residual tension in the skin
that is released when the skin is cut, while the large degree
of retraction points to a nonlinear regime. It is also known
that growth can be stimulated by local changes in mechanical
stress. Such stress is generated in healing tissue by wound
contraction, largely driven by fibroblast activity at the wound
edge. While models of wound contraction typically focus on
the interior of the wound, e.g. the formation and remodelling
of the central granulation tissue into scar tissue (Cumming
et al. 2010; Yang et al. 2013), the “pulling” of the fibroblasts
on the surrounding dermal tissue directly impacts the stress
and growth in the tissue, which is crucial for the final size of
the defect and the potential for scarring.
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Morphoelasticity provides a theoretical framework for
modelling growth in elastic tissues. It enables for a math-
ematically tractable approach for studying the growth and
remodelling of elastic tissue, while allowing for large defor-
mations, anisotropy, and heterogeneity. It has been applied
to various biological tissues including arteries (Taber and
Eggers 1996; Rachev et al. 1998; Taber 1998, 2001; Goriely
and Vandiver 2010), the heart (Lin and Taber 1995), the tra-
chea (Moulton and Goriely 2011), plant stems (Goriely et al.
2010), tumours (Ambrosi and Mollica 2004; Ciarletta et al.
2011), and the skin (Ciarletta and Ben Amar 2012). Despite
this wide range of applications, few mathematical models of
wound healing incorporate nonlinear elasticity. Yang et al.
(2013) developed a biomechanical model of wound healing
that focussed on the formation and remodelling of the scar
tissue, which has nonlinear elastic properties. Wu and Ben
Amar (2015) used the decomposition of the deformation ten-
sor to study the closure of a circular epidermal wound and
investigated stress-induced instabilities of the regular wound
geometry. Contraction of the nonlinear elastic tissue was
assumed to be generated by circumferential resorption analo-
gous to a model of embryonic wound healing (Taber 2009) in
which the author formulates mechanosensitive growth laws
with an evolving target stress. The main focus of this paper is
the development of a morphoelastic model of dermal closure,
that accounts for growth and contraction. Although wound-
ing also affects the epidermal layer, we do not explicitly
model re-epithelialisation, incorporating only the effects of
the epidermis on the dermis. By postulating mechanosensi-
tive growth laws, we aim to understand how the mechanical
environment in the dermal tissue surrounding the wound
impacts the healing process. We use the model to gain mech-
anistic insights, investigate the feedback between growth and
contraction in dermal closure, and predict behaviours that can
be tested experimentally.

The paper is organised as follows. In Sect. 2, we develop
the governing equations for the growth and mechanical
equilibrium of the tissue, using the framework of morphoe-
lasticity. The presence of volumetric growth is demonstrated
by considerations of residual tension in the skin, and the form
of mechanosensitive growth laws is motivated by a simple
analysis of homogeneous growth. In Sect. 3, we present typ-
ical results of wound healing simulations. We show that the
model can exhibit normal healing behaviour and show the
effect of key parameters on healing. We also consider the
possibility of tissue remodelling to a steady state of resid-
ual stress over a long timescale. We then use the model to
predict the outcome of hypothetical rewounding experiments
as a method of determining the stress in the tissue and the
outcome of applying pressure to control wound closure. Con-
clusions and discussion are provided in Sect. 4.

2 Model description

In this section, we develop a mechanical model of dermal
tissue subjected to a circular wound. We treat the dermal tis-
sue as a cylindrical elastic annulus surrounding the wound
such that the outer radius is far from the wound edge and the
effects of dermal tissue external to the cylinder can be approx-
imated by imposing a boundary condition at the outer edge.
Our model is developed by considering the wound geometry,
the tissue mechanics (balance of linear and angular momen-
tum) and by prescribing constitutive laws relating stress to
strain, and for growth.

2.1 Geometry

The geometry is pictured schematically in Fig. 1. In order to
incorporate the presence of residual tension in the skin, we
identify four states. The pre-wounded tissue is denoted by
state S1—this tissue is in a state of residual tension, which for
a finite cylinder can be assumed to arise from a pressure Tres

applied by the external skin. If excised, the residual tension is
relieved and the tissue relaxes to a stress-free configuration,
denoted S0. We assume a wound of radius A is formed in the
tissue at time t = 0, at which point the stress on the inner
surface is relieved and the wound fully recoils to a radius
aR by time tR—we refer to this configuration as state S2.
Fibroblast activity then creates a contraction force fc at the
inner edge, so that at times t > tR the wound radius is a; this
current state is referred to as S3. Growth does not occur until
contraction begins; thus, there is assumed to be no growth in
states S0, S1, S2.

We restrict attention to symmetric deformations; thus, all
configurations are described as cylindrical annuli. In par-
ticular, the radial and axial coordinates, R0 and Z0, in the
stress-free reference state (S0) are deformed, at time t , to r
and z in the current state (S3). The geometrical region asso-
ciated with the reference state is

A0 ≤ R0 ≤ B0, 0 ≤ Θ ≤ 2π, 0 ≤ Z0 ≤ L0,

where A0, B0, and L0 denote the wound radius, the outer
radius of the modelling domain, and the initial thickness of
the tissue in the stress-free state, respectively. This region is
deformed in the current state to

a ≤ r ≤ b, 0 ≤ θ ≤ 2π, 0 ≤ z ≤ l,

by the maps

r = r(R0, t), θ = Θ, z = λ(t)Z0, (1)

where λ is the axial stretch.
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Fig. 1 Schematic representation of the mathematical model. Distance
from the wound centre in the stress-free state can be described by the
independent variable R0, where A0 ≤ R0 ≤ B0. The cylinder rep-
resents the dermal tissue in which, under some deformation F, the
reference state is mapped to the current state. Distance from the wound
centre in the current state can be described by the dependent variable
r = r(R0, t), where a ≤ r ≤ b, at time t . In vivo, the tissue is residu-
ally stressed with external radial pressure Tres MPa and axial load Nz
N. After wounding, tension is released on the wound edge causing the
wound to recoil, resulting in the recoiled state, where aR ≤ r ≤ bR .
As the wound heals, it is subject to contraction modelled as a radial
pressure, fc MPa, on the wound edge. Far from the wound, the tissue
remains residually stressed

2.2 Morphoelastic framework

Consider an elastic body which, in its reference state, is
described by the material coordinates X. After some defor-
mation, the body in the current state is described by x =
x(X, t). The map from the reference to the current state is
described by the geometric deformation tensor (Rivlin 1948),
F = ∂x

∂X , which in a cylindrical geometry is given by

F = diag

(
∂r

∂R0
,
r

R0
, λ

)
. (2)

Following the fundamental assumption of morphoelastic-
ity, the deformation F is viewed as a combination of two
processes (Rodriguez et al. 1994). The local addition (or

stress-free
reference state

(S0)
current

state
(S1,2,3)

F

AG

stress-free
grown state

Fig. 2 A schematic representation of the deformation of an elastic
body. The deformation tensorF can be decomposed into a growth tensor
G, describing the local addition of material, and an elastic tensor A,
describing the elastic response of the body. The deformation is applied to
a stress-free state, corresponding to S0 in Fig. 1, resulting in the current
state. Depending on the deformation, the current state corresponds to
S1, S2, or S3 in Fig. 1

removal) of material to the stress-free state, described by the
growth tensorG, changes the mass of the body. To accommo-
date any growth incompatibilities that the body may undergo,
we introduce an elastic deformation, described by the elas-
tic tensor A. Thus, the geometric deformation tensor can be
decomposed as F = A · G, represented schematically in
Fig. 2.

For symmetric deformations, we write the growth tensor
as G = diag(γr , γθ , γz), where γr , γθ , and γz , represent
radial, circumferential, and axial growth (or resorption),
respectively. Note that each γi can be a function of position,
such that γi > 1 (< 1) signifies a local increase (decrease)
in mass in the direction i . The elastic tensor is given by
A = diag(αr , αθ , αz), where αr , αθ , and αz are the principle
stretches in the radial, circumferential, and axial directions,
respectively.

Mechanical testing has shown that the skin is almost
incompressible (North and Gibson 1978), and so we assume
det(A) = 1. The deformation then satisfies

∂r

∂R0
= γrγθγz R0

λr
(3)

from which we ascertain

r2(R0) = a2 + 2
∫ R0

A0

γr (R̃)γθ (R̃)γz(R̃)R̃

λ
d R̃. (4)

For given growth functions γi (R0), the deformation is fully
determined once a and λ are known. The corresponding prin-
ciple stretches of the elastic deformation tensor can be written
as
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A = diag

(
γz

αλ
, α,

λ

γz

)
, where α = r

γθ R0
. (5)

The system mechanics are described by the balance of
linear and angular momentum and a constitutive stress–strain
relationship. If the tissue has density ρ and is subject to body
forces fb, the balance of linear momentum reads

ρẍ − ∇ · T − ρfb = 0, (6)

where a dot represents a derivative with respect to time. In
Eq. (6), T is the Cauchy stress tensor. The balance of angu-
lar momentum gives that T is symmetric; in the cylindrical
geometry, it is diagonal with radial, circumferential, and axial
components denoted as Trr , Tθθ , and Tzz , respectively.

The stress–strain constitutive relationship for an incom-
pressible hyperelastic material (Eringen 1962) is given by

T = A · ∂W

∂A
− pI, (7)

where the hydrostatic pressure p ensures incompressibility
and W = W (αr , αθ , αz) is the strain-energy function. We
model the dermal tissue as a neo-Hookean material (Rivlin
1948) with strain-energy function

W (αr , αθ , αz) = μ

2

(
α2
r + α2

θ + α2
z − 3

)
. (8)

Expressing Eq. (7) in component form, we have

Trr = αrWr− p, Tθθ = αθWθ − p, Tzz = αzWz− p, (9)

where Wi = ∂W/∂αi .
The mechanical description is completed by prescrib-

ing appropriate boundary conditions. For example, we may
specify the radial stress Trr |r=a,b and/or the axial load,
Nz = ∫

Tzz dA, with integration over the top of the annulus.

2.3 Residual stress

Implicit in the constitutive law in Eq. (7) is the assumption
that F describes a deformation from a stress-free reference
state. Since the skin is naturally residually stressed in vivo,
we require a map from the observed residually stressed state
to the unknown stress-free state. In other words, S1 is the typi-
cal observed pre-wound state, but the mechanical description
entails a map from S0 to S3; hence, we must first determine
the state S0. In this section, we determine the state S0 and esti-
mate the value of Tres by considering the initial recoil upon
wounding. Typical wound healing data are given as a time
series of averaged wound areas (Bowden et al. 2014) where
initial measured quantities include the initial wound radius
A, the recoiled wound radius aR , and the tissue thickness L .

Given these measurements, the reference geometry and the
residual stress can be calculated in the following way.

Let F1 and F2 denote the deformations from the stress-
free state S0 to the residually stressed (S1) and recoiled (S2)
states, respectively, i.e. F1 = ∂X

∂X0
and F2 = ∂xR

∂X0
.

Assuming no body forces and that mechanical equilibrium
is reached after the deformations F1 and F2, Eq. (6) reads

∇ · T = 0, (10)

For plane stress, the only non-trivial component is

∂Trr
∂r

+ 1

r
(Trr − Tθθ ) = 0. (11)

In state S1, the residual tension is assumed to be due to pres-
sure at the external boundary, so that Trr (B0) = Tres.1 Upon
injury, the wound edge is relieved of tension, causing it to
retract to a size bigger than that of the initial wound. There-
fore, in the recoiled state S2, we have Trr (A0) = 0. Far from
the wound, we expect the healthy dermis to remain residually
stressed so that Trr (B0) = Tres in S2.

The deformationF1 is found by solving Eq. (3) withG = I

(no growth has occurred yet)

R = R0√
λ1

, (12)

where λ1 is the axial stretch associated with the deformation
F1 and is determined by imposing R(B0) = B in Eq. (12),
resulting in

R = B

B0
R0. (13)

The components of the elastic tensor are

αr = αθ = B

B0
, and αz = B2

0

B2 . (14)

Since αr = αθ , Eqs. (9) give Trr = Tθθ and imposing
Trr (B0) = Tres in Eq. (11), we deduce that Trr ≡ Tres is
constant. From Eq. (9), the axial stress is also constant and
can be determined from the boundary condition

Nz = 2π

∫ B

0
Tzz R dR = πTzz B

2. (15)

If we assume no axial load in state S1 (Nz = 0), then Tzz = 0
and the residually stressed state is one of constant planar
isotropic stress with T∗ = diag(Tres, Tres, 0).

1 We note that there is a one-to-one map between all states. Our conven-
tion is generally to view all spatially dependent variables as functions
of the independent variable R0. So, for example, we write Trr (R) as
Trr (R0) = Trr (R(R0)).
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For a neo-Hookean material with Nz = 0, Eqs. (8), (9),
and (14) imply

Tres + μ

(
B4

0

B4 − B2

B2
0

)
= 0. (16)

For the deformation F2, Eq. (4) with G = I and r(A0) =
aR gives

r2 = R2
0 − A2

0

λ2
+ a2

R, (17)

where λ2 is the axial stretch associated with the deformation
F2. The radial stress is determined by substituting Eqs. (8)
and (9) into Eq. (11) and integrating subject to Trr |r=aR = 0:

Trr = μ

2λ2

[
log

(
λ2(r2 − a2

R) + A2
0

A2
0

)
− log

(
r2

a2
R

)

+
(
A2

0

λ2
− a2

R

)(
1

r2 − 1

a2
R

)]
(18)

We also have the axial boundary condition

Nz = 2π

∫ b

a
Tzzr dr = 0 (19)

with Tzz = Trr + αzWz − αrWr from Eq. (9). Imposing
Trr |r=bR = Tres, Eqs. (16) and (18) can then be equated to
eliminate Tres, giving

1

2λ2

[
log

(
B2

A2

)
− log

(
b2
R

a2
R

)
+

(
A2

0
λ2

− a2
R

)(
1

b2
R

− 1

a2
R

)]

+
(
B4

0
B4 − B2

B2
0

)
= 0. (20)

Given the measurements of the initial and recoiled wound
radii, A and aR , the thickness of the tissue, L , in vivo, the
tissue stiffness, μ, and the outer radius, B, Eqs. (16), (19),
and (20) can be solved simultaneously for Tres, B0, and λ. The
stress-free reference geometry, {A0, B0, L0}, and the residual
stress, Tres, are then fully determined.

2.4 Domain size

From Eq. (16), we note that the residual stress depends on
the outer radius B. However, we expect this to saturate with
large B; thus, we seek a domain size large enough that Tres

in Eq. (16) is not affected by small changes in the location
of the outer radius. Before continuing, we note that there
exists a wide range of parameter values and wound sizes
in the literature. This is partly due to measurements being
taken from different species. Since most data available are
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Fig. 3 Residual stress as a function of the outer radius. The residual
stress is calculated according to Eq. (16) for a wound with A = 4 mm,
aR = 4.4 mm, and L = 0.1 mm for increasing B. The shear stress is
μ = 0.1 (solid line), μ = 0.3 (dashed line), and μ = 0.5 MPa (dotted
dashed line). The calculated residual stress increases with shear stress
and for large enough modelling domain Tres plateaus

for wound healing in mice, we choose our reference variables
and parameter values accordingly. Following the experiments
of McGrath and Simon (1983) (in which circular wounds in
mice retract to a radius approximately 110 % of the initial
cut), we take an initial wound radius A = 4 mm that recoils to
aR = 4.4 mm. For these values, we compute Tres in Eq. (16)
while varying B—the result is plotted in Fig. 3 for three
different choices of μ. We observe that Tres asymptotes as B
increases; and thus assign the outer radius of the domain to
B = 20 mm.

2.5 Shear elastic modulus

Measured values for the shear elastic modulus μ for dermal
tissue may vary by a factor of 3000 depending on the model
and experimental apparatus used (Diridollou et al. 2000).
A large range of residual stress in the skin has also been
reported, between 0.005 and 0.1 MPa (Diridollou et al. 2000;
Jacquet et al. 2008; Flynn et al. 2011). As the stress has linear
dependence on μ, we can use the residual stress calculation
to estimate a physiological range for μ.

In Fig. 4, we plot Tres against μ. For 0.02 < μ < 0.52
MPa, the residual stress lies within the previously reported
range 0.005 < Tres < 0.1. Although the biological literature
estimates that the shear stress can take values between 0.006
and 20 MPa, our model suggests that μ > 0.52 MPa yields
unphysiological values of the residual stress.

2.6 Contraction alone

The calculations of Sect. 2.3 have established the stress-free
state and the residual tension. We can now turn to the heal-
ing of a wound. Our primary modelling aim is to explore
mechanosensitive growth in the healing dermal tissue. This
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Fig. 4 Residual stress as a function of the shear elastic modulus. The
residual stress is calculated according to Eq. (16) for a wound with A =
4 mm, aR = 4.4 mm, and L = 0.1 mm for varying μ. For biologically
realistic values of the residual stress as stated in the literature, the shear
elastic modulus must lie in the range 0.02 < μ < 0.52 MPa

requires the definition of an evolution law for the growth ten-
sor G. To motivate this, as a starting point we consider the
possibility that no growth occurs. That is, we suppose that
wound closure is driven by contraction only, and we use the
mechanical framework to quantify the degree of stress that
would be generated in the tissue in this scenario.

Wound contraction in adult dermal wounds is driven by
fibroblasts that localise on the wound edge and pull the tis-
sue inwards (Ehrlich 1988; Ehrlich and Rajaratnam 1990).
Dermal closure can reduce a wound by up to 80 % of its
original area. If there is no growth, we can simply impose
a deformation from the post-wound state S2 to an equilib-
rium configuration in which the wound radius has decreased
by the appropriate amount. From Eqs. (8), (9), and (11), we
deduce that the radial stress at the inner boundary required
to deform the wound radius from its original size to its final
contracted size ac is given by

Trr (A0) = Tres − μ

2λ

[
log

(
B2

0

A2
0

)
− log

(
B2

0 − A2
0 + λa2

c

λa2
c

)

+
(
A2

0 − λa2
c

) (
1

B2
0 − A2

0 + λa2
c

− 1

λa2
c

)]
, (21)

where λ is determined by solving Eq. (19) and the reference
variables A0 and B0 are as calculated in Sect. 2.3.

Mechanical testing reveals that, on average, mouse skin
fails to withstand stresses higher than 2 MPa (Bermudez et al.
2011) and samples of dermis from diabetic mice tear at
stresses as low as 0.5 MPa. In Fig. 5, we plot the stress at
the inner edge as a function of μ. We find that, for a wide
range of μ, the radial stress on the wound edge is higher than
0.5 MPa. This suggests that if healing occurs by contraction
alone, then stresses higher than the tissue can withstand will
be generated. Thus, for dermal closure to reduce a wound
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Fig. 5 Radial stress on the inner boundary required for dermal closure
with no growth. Equation (21) is solved for varied values of μ and
Nz with reference variables: A = 4 mm, aR = 4.4 mm, B = 20 mm,
and final wound radius ac = 1.8 mm. For a wide range of parameter
values, the radial stress calculated is higher than that the dermal tissue
can physically withstand
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Fig. 6 Radial and circumferential stress for dermal closure with no
growth. Equations (8), (9), and (11) are solved with Trr (B) = Tres.
We take μ = 0.2 and λ = 1 with reference variables: A = 4 mm,
aR = 4.4 mm, B = 20 mm, and final wound radius ac = 1.8 mm. The
radial, Trr , and circumferential, Tθθ , stresses are plotted as functions of
position

by up to 80 %, volumetric growth must contribute to closure,
relieving the high tension generated by contraction.

We further note that the circumferential stress at the wound
edge can be computed from Eqs. (8), (9), and (21), reveal-
ing that it is highly compressive. This can be observed for the
planar case (λ = 1) in Fig. 6 where we plot the radial and cir-
cumferential stresses as functions of position for contraction
only.

2.7 Anisotropic homogeneous growth

Before proposing an evolution law for spatially dependent
growth, it is instructive to analyse the effect of pure growth
in a simple setting. We neglect all body forces and boundary
loads and consider the effect of time-independent anisotropic
but homogeneous planar growth on an annulus of tissue. That
is, we take γr and γθ as constants (with γz = 1 and λ = 1)
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Fig. 7 Analysis of compatible growth laws. Equation (23) is solved
numerically using the root-finding algorithm fsolve in MATLAB to
find the curves in (γr , γθ ) space such that a = A0 (solid blue) and
b = B0 (dashed red). The dashed black line represents no growth, i.e.
γrγθ = 1. Regions 1 to 6 represent different grown configurations of the
dermal cylinder. Reference variables are A0 = 4 mm and B0 = 5 mm
corresponding to a proliferative band of width 1 mm surrounding the
wound

and consider the deformation and stress state due to growth
alone in the (γr , γθ ) plane.

The deformation and stress satisfy

∂r

∂R0
= γrγθ

R0

r
, (22a)

∂Trr
∂R0

= μγrγθ R0

r2

(
r2

γ 2
θ R

2
0

− γ 2
θ R

2
0

r2

)
, (22b)

Solving Eqs. (22) subject to stress-free boundary conditions,
we obtain an implicit equation for the current wound radius
a in terms of γr , γθ , and the reference variables:

0 = γr

2γθ
log

(
B2

0

A2
0

)
− γθ

2γr
log

(
γrγθ (B2

0 − A2
0) + a2

a2

)

+ γθ

2γr

(
a2 − γrγθ A

2
0

) (
1

a2 − 1

γrγθ (B2
0 − A2

0) + a2

)
.

(23)

Similarly, we can obtain an implicit equation for the outer
radius of the cylinder, b, by using Eq. (22a) to substitute for
a. Equation (23) allows us to explore the effect of differential
radial (γr ) and circumferential (γθ ) growth. In Fig. 7, we
show how the (γr , γθ ) parameter space can be decomposed
into distinct regions, each associated with a different grown
configuration.

For normal healing, the inner radius should decrease as
the wound repairs. At the same time, the outer radius should
not change markedly so that material is not compressed or
pulled far from the wound. This behaviour with a < A0 and
b ≈ B0 corresponds to those parts of regions 5 or 6 in Fig. 7
that are close to the curve b = B0. We observe that, close
to the curve b = B0, as γr increases, γθ decreases, indicat-
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Fig. 8 Radial and circumferential stress for homogeneous planar
growth. Equations (22) are solved with stress-free boundary conditions,
and the radial, Trr , and circumferential, Tθθ , stresses are plotted as func-
tions of position. We take μ = 0.2 and λ = 1 with reference variables:
A = 4 mm, aR = 4.4 mm, and B = 20 mm. The growth components
are γr = 1.6 and γθ = 0.95 marked by a filled circle in Fig. 7

ing that growth must be anisotropic. This is consistent with
the modelling assumptions of Wu and Ben Amar (2015), in
which the authors assign γθ < 1 in order to obtain wound
closure. If growth were isotropic, i.e. γr = γθ , the configu-
ration of the cylinder would lie in region 4 (along the dotted
line) and growth would cause the wound to expand. We also
observe that, in the regions of interest, growth creates a com-
pressive radial stress, Trr < 0 (see Fig. 8). The growth thus
serves to counteract the excessive tension created by contrac-
tion. On the other hand, both growth and contraction create
a compressive hoop stress near the wound edge. A highly
compressive hoop stress can result in circumferential buck-
ling (see Wu and Ben Amar (2015), for example), which
could mark the onset of scarring. The effect of contraction
and growth is counteracted by the fact that the hoop stress is
tensile in the recoiled wound; in any case, we leave a stability
analysis within this framework for future work.

2.7.1 On geometry

The above analysis highlights the interplay between geome-
try and mechanics in the wound healing process. In essence,
filling a wound in a circular geometry involves a packing
problem. In a circular geometry, in order to extend inwards
radially the tissue must also vary in the orthogonal direction,
undergoing circumferential resorption and/or being put in cir-
cumferential compression. In a one-dimensional Cartesian
geometry—a “slash wound”—no such geometrical issues
exist. The tissue can grow in one Cartesian direction with
no change in deformation or stress induced in the orthogonal
directions.

Such issues, clearly visible at the tissue level, must be
resolved through coordinated activities at the cell level. From
a tissue scale modelling viewpoint, such processes are man-
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ifest in feedback between mechanical stress and growth. For
this, we next turn to heterogeneous growth laws.

2.8 Mechanosensitive growth laws

In general, our growth laws comprise an evolution equa-
tion for the growth tensor of the form Ġ = H(G,T, . . .)

and may incorporate the effects of, for example, biochem-
istry and temperature. In this work, as we are interested
in mechanically stimulated growth, we postulate the form
Ġ = K(T − T∗)G, with K a diagonal tensor so that stress
in a given direction induces growth only in that direction. In
component form, this is expressed as

∂γr

∂t
= k(Trr − Tres)γr , (24a)

∂γθ

∂t
= m(Tθθ − Tres)γθ , (24b)

∂γz

∂t
= nTzzγz . (24c)

In Eqs. (24), k, m, and n are growth rate parameters and
Tres is the resting residual stress. We note that contraction
leads to high radial tension ensuring that Trr > 0 and close
to the wound edge Tθθ < 0. This observation suggests that
γr and γθ will naturally evolve towards the “wound filling”
location of the phase space in Fig. 7 if k,m, and n are non-
negative. To begin with, and for simplicity, we will take
k = m = n, that is, the sensitivity of the tissue to stress-
induced growth is equal in all directions. Initially, no growth
occurs so that G|t=0 = I. Equations (24), with k,m, n > 0,
imply that stress higher than the resting value Tres stimu-
lates growth, whereas stress lower than the residual stress
causes resorption. This has been observed in wound heal-
ing where fibroblast proliferation and collagen synthesis are
enhanced in the presence of tension (Kessler et al. 2001) and
release of tension can induce apoptosis (Grinnell et al. 1999;
Chipev and Simon 2002). Similar assumptions and growth
laws have been used in other biological applications such as
embryonic wound closure (Taber 2009) and remodelling of
arteries (Alford et al. 2008).

2.9 Timescales and recoil dynamics

The recoiled state S2 is defined to be in mechanical equilib-
rium. From wound healing data (Bowden et al. 2014), we
observe that the recoil of the wound occurs over a period
of up to one day. As the dermis moves, this causes friction
against the underlying subdermis. Assuming that there is a
frictional body force resisting radial motion of the dermis,
Eq. (6) can be written as

ρẍ − ∇ · T + qẋ = 0, (25)

where q is a friction coefficient. We now use dimensional
arguments to justify whether the time-dependent terms in
Eq. (25) are relevant during healing. Let χ denote a charac-
teristic length and te, td , and tg the elastic, drag, and growth
timescales, respectively. From Eqs. (7) and (8), we deduce
the Cauchy stress tensor scales with the shear elastic modu-
lus, μ. The elastic timescale can be determined by balancing
the first two terms in Eq. (25), giving te = (ρχ2/μ)1/2.

The healing of the wound occurs on the growth timescale,
which is in the order of days (Ghosh et al. 2007). Typical
values for the tissue density, 10−6 kg mm−3, shear elastic
modulus, 0.2 MPa (see Sect. 2.5), and characteristic length,
4 mm, reveal that te ≈ O(10−4) seconds. Unsurprisingly,
te � tg and it is appropriate to neglect inertial terms in
Eq. (25).

Balancing the second and third terms in Eq. (25) gives
a drag timescale of td = qχ2/μ. The drag timescale sets
the time of wound recoil, which is in the order of hours.
This gives q ≈ O(10−3) MPa·days·mm−2. Once the recoil
is complete, the tissue velocity is much slower, and the drag
plays a negligible role, i.e. the tissue is essentially in mechan-
ical equilibrium during the growth and contraction phase.

2.10 Contraction

We model wound contraction by prescribing the radial stress
at the inner boundary such that

Trr |r=a = fc. (26)

In practice, contraction is achieved by fibroblasts which
migrate into the tissue and localise around the wound edge.
For simplicity, we represent the contractile activity of the
fibroblasts as

fc(t) = f a(t)H (t; tc, tm), (27)

where f is the contraction coefficient, a is the wound radius,
and H is a linear switch function, parameterised by tc and
tm , given by

H (t) =
⎧⎨
⎩

0 for t < tc
t−tc
tm−tc

for tc < t < tm
1 for t > tm .

(28)

The switch function approximates the time taken for fibrob-
lasts to migrate to the wound edge and begin contracting
the tissue. Contraction begins approximately 2 days post-
wounding and attains its maximal value approximately
5–14 days after injury (Monaco and Lawrence 2003). In
Eq. (28), tc is the time at which fibroblasts start to localise
around the margin and tm is the time at which the fibroblasts
exert their maximum contractile effect.
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2.11 The full model

For completeness, we now state the full model, in terms of
the independent variables R0 and t :

∂r

∂R0
= γrγθγz

R0

λr
, (29a)

∂Trr
∂R0

= γrγθγz R0

λr

[
αŴα

r
+ q

∂r

∂t

]
, (29b)

Tθθ = Trr + αŴα, (29c)

Tzz = Trr + λŴλ, (29d)

∂γr

∂t
=

{
0 for t ≤ tR
k(Trr − Tres)γr for t > tR

, (29e)

∂γθ

∂t
=

{
0 for t ≤ tR
m(Tθθ − Tres)γθ for t > tR

, (29f)

∂γz

∂t
=

{
0 for t ≤ tR
nTzzγz for t > tR

, (29g)

In Eqs. (29), t = tR is the time at which the wound has
fully recoiled. The recoil phase occurs in the order of hours,
ending before growth and contraction begin (tR < tc). The
boundary conditions are given by

Trr (A0, t) = f a(t)H (t) and Trr (B0, t) = Tres, (29h)

r(A0, t) = a(t), (29i)

Nz(t) = 2π

λ(t)

∫ B0

A0

γrγθγzTzz R0 dR0 ≡ η(1 − λ(t)), (29j)

where the two extra boundary conditions (Eqs. 29i and 29j)
are used to determine the time-dependent unknowns a(t) and
λ(t). Note that the axial boundary condition (Eq. 29j) is of
the form of a spring axial load, which we use to model the
resistance of the epidermal layer to axial deformation of the
underlying dermal layer. The initial conditions for the com-
ponents of the growth tensor are given by

γr (R0, 0) = 1, γθ (R0, 0) = 1, and γz(R0, 0) = 1.

(29k)

Also, Ŵ is an auxiliary strain-energy function of only two
variables, using incompressibility:

Ŵ (α, λ) = μ

2

(
γ 2
z

α2λ2 + α2 + λ2

γ 2
z

− 3

)
. (29l)

3 Results

3.1 Numerical implementation

Equations (29) were solved numerically in MATLAB. All
dependent variables are stored as functions of R0 with spatial

discretisation dx = 0.1. For each time increment (dt = 0.05
days), the growth in Eqs. (29e)–(29g) was updated via a for-
ward Euler scheme (Press et al. 1994). The integral boundary
condition in Eq. (29j) was rewritten as a differential equation
by letting

∂ I

∂R0
= γrγθγzTzz R0, (30a)

with

I (B0) = Nz

2π
and I (A0) = 0. (30b)

The radial deformation and radial stress were then deter-
mined using the boundary value problem solver bvp4c for
a system of three differential equations given by Eqs. (29a),
(29b), and (30a) subject to boundary conditions in Eqs. (29h),
(29i), and (30b). The unknowns a and λ were included in
the boundary value problem solver as free parameters which
were determined, for each time increment, by prescribing the
two extra boundary conditions.

3.2 Model behaviour

In this section, we present typical model solutions, obtained
using the parameter values stated in Table 1. These either
are taken from the biological literature or were estimated by
matching model behaviour to previous healing curves (Bow-
den et al. 2014).

The plot of the dermal wound radius, a(t), presented in
Fig. 9 reveals three distinct phases of healing. During the first
phase, which lasts for approximately two days, the wound
retracts to a radius 110 % of its initial size as a result of
the residual tension in the surrounding tissue and the wound
radius plateaus before growth and contraction are activated.
During the second phase (2 < t < 14 days), the wound
radius decreases rapidly due to contraction at the wound edge
and proliferation of the surrounding tissue. At later times (t >

14 days), as the wound radius decreases, contraction slows
down, since it is proportional to the wound radius. As a result
of the mechanosensitive properties of the tissue, growth also
slows down and the wound radius begins to plateau. We note
that the healing curve is qualitatively similar to experimental
data (McGrath and Simon 1983; Bowden et al. 2014).

In Fig. 10, we plot the corresponding growth and stress
components, associated with the simulation in Fig. 9, as
functions of the undeformed radius R0 at days 2, 14, and
25. As expected, since growth is mechanosensitive, with the
growth rates in Eqs. (24) depending linearly on the stress,
the growth and stress profiles are qualitatively similar with
the radial stress and growth increasing over time as the con-
traction force increases. Contraction reaches a maximum at
day 14, and we observe that the radial stress at day 25 is
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Table 1 Model parameters

Parameter Physical interpretation Units Physical range References Default

k Radial growth MPa−1 days−1 k > 0 0.2

m Circumferential growth MPa−1 days−1 m > 0 0.2 (0.1)

n Axial growth MPa−1 days−1 n > 0 0.2 (0.1)

f Contraction MPa mm−1 0 < f < 1.325 Uhal et al. (1998) and Wrobel et al. (2002) 0.2

tc Contraction begins days 2 − 5 Monaco and Lawrence (2003) 2

tm Maximum contraction days 5 − 14 Monaco and Lawrence (2003) 14

q Friction MPa days mm−2 q = O(10−3) Estimated (see Sect. 2.9) 0.002

μ Shear elastic modulus MPa 0.02 < μ < 0.52 Estimated (see Sect. 2.5) 0.2

Nz Axial load N

η Load coefficient N 10

A Initial wound radius mm A > 0 McGrath and Simon (1983) 4

aR Recoiled wound radius mm aR > A McGrath and Simon (1983) 4.4

B Domain size mm B > aR Estimated (see Sect. 2.4) 20

L Tissue thickness mm L > 0 Bowden et al. (2014) 0.1

Table summarising the parameters that appear in our mathematical model along with their physical interpretation, default values, and supporting
references. Values in brackets are adopted after Sect. 3.4

Time (days)
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m
)
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1
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3

4

phase I phase II phase III

Fig. 9 Typical model solution with healing phases. Equations (29) are
solved numerically, and the wound radius a(t) is plotted as a function of
time. Reference variables and parameters are specified using the default
values in Table 1. The healing curve can be separated into three distinct
phases representing the initial recoil, a proliferative and contracting
phase, and finally the rate of closure slows down as contraction and
growth decrease

less than that on day 14. As expected, radial growth and
stress are larger closer to the wound edge. The dermis is
in compression in the circumferential and axial directions
and, as a consequence, material is resorbed in these direc-
tions. With γθ < 1 < γr , we are in a regime associated
with normal healing (see Sect. 2.7), for which the wound
radius decreases while the outer radius remains approxi-
mately constant. We interpret the removal of tissue from the
circumferential direction (γθ < 1) as tissue remodelling—
the net change in volume is locally given by (det G − 1),
which is positive.

3.3 Sensitivity of final wound radius to model
parameters

Ultimately, we are interested in the time to closure and the
quality and mechanical properties of the healed tissue. In
Fig. 11, we show how the wound radius at day 25 changes as
we vary the default model parameters by ±10 %, one para-
meter at a time. We observe that increasing the radial growth
sensitivity k causes the wound radius to decrease. Increasing
the rate of circumferential absorption (since the circumferen-
tial stress is negative) accelerates wound closure in a manner
similar to that seen by increasing the contraction coefficient.
Interestingly, circumferential resorption has previously been
used as a contractile mechanism in a model of epidermal
wound closure (Wu and Ben Amar 2015). The effect of axial
growth on the wound radius is negligible, and as expected,
increasing tissue stiffness has a detrimental effect on wound
closure, since a stiffer tissue will deform less when subject
to a given force.

3.4 Anisotropic growth rate constants

We expect that, as the wound heals, the dermal tissue experi-
ences a net gain in material. In Figure 12, we demonstrate the
effect on the net change in volume on day 25 as we vary the
growth rate parameters by ±50 %. We find that the default
set of parameters (with all growth rates equal) results in a net
loss of material. In order for the wound to heal with a net gain
in material, we require a higher radial than circumferential
(k > m) growth rate. This anisotropy in growth rate essen-
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Fig. 10 Typical model solution for the stress and growth. Equa-
tions (29) are solved numerically. a The radial stress Trr , b the
circumferential stress Tθθ , c the axial stress Tzz , d the radial growth
γr , e the circumferential growth γθ , and f the axial growth γz are plot-
ted as functions of position at 2 (solid line), 14 (dashed line), and 25

(dotted dashed line) days. Reference variables and parameters are spec-
ified using the default values in Table 1. The radial stress is higher closer
to the wound edge, resulting in higher radial growth there. The tissue is
in compression circumferentially and axially, resulting in resorption of
material in these directions
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Fig. 11 Effect of model parameters on final wound radius. Equa-
tions (29) are solved numerically. Each model parameter is varied by
±10 % of its default value, and the wound radius at day 25 is recorded.
The dashed line indicates the wound radius when all parameters are
fixed at their default values. All reference variables and parameters are
specified using the default values in Table 1. Increasing the radial and
circumferential growth parameters, k and m, and the contraction coef-
ficient, f , decreases the wound radius at day 25. Increasing the axial
growth parameter, n, has negligible effect on the wound radius at day
25. Increasing the tissue stiffness, μ, decreases the wound radius at day
25

tially requires that a cell can sense the radial direction; in fact,
this may not be so surprising. Fibroblast cells migrate radi-
ally in response to chemical growth factor gradients (Pierce
et al. 1989; Chung et al. 2001), and hence, a directional bias
for radial growth is feasible. Therefore, we take k > m in
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Fig. 12 Effect of model parameters on net change in volume. Equa-
tions (29) are solved numerically. Each parameter is varied by ±50 %
of its default value, and the net change in volume at day 25 is recorded.
The dashed line indicates the net change in volume when all parameters
are fixed at their default values. All reference variables and parameters
are specified using the default values in Table 1. For the given default
parameters, there is a net loss in material. A net gain in material can be
achieved by either increasing the radial growth rate k or decreasing the
circumferential growth rate m

the remainder of this work so as to incorporate a radial bias
(k = 0.2, m = 0.1, n = 0.1).

3.5 Remodelling after closure

We anticipate that, after the wound has closed, the dermal
tissue remodels to its natural state of residual stress. The
formation of granulation tissue in the wound space (later
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remodelled into scar tissue) prevents the dermis from clos-
ing completely. Therefore, there is a point at which the
dermal edge halts. The mechanism by which this occurs is
not known, but could involve a combination of contraction
ceasing (due to inactivation of fibroblasts), the radial stress
reaching a threshold value and the granulation tissue in the
wound space acting as a physical barrier, preventing further
inward movement of the dermis. The questions we consider
are whether the halted tissue will reach an equilibrium state,
returning to the base residual stress and, if so, how long the
remodelling will take.

We simulate the remodelling period of the dermal tissue by
halting the wound edge at some point t = T . We choose T =
25 days as a representative time by which the granulation
tissue fills the wound space, but note that the stimulus that
halts movement of the dermal edge could easily be modified
to account for other effects.

We solve Eqs. (29) for 0 ≤ t ≤ T . For t > T , we
switch the boundary conditions from the fixed load speci-
fied in Eqs. (29h)–(29j) to a fixed displacement so that

r(A0, t) = a(T ), r(B0, t) = b(T ), λ(t) = λ(T ). (31)

This fixes the deformation, preventing the wound from clos-
ing further. Due to incompressibility and a fixed deformation,
there can be no net change in material so that ∂

∂t (det(G)) =
0. We therefore have the following system for t > T (=25
days):

∂γr

∂t
= k(Trr − Tres)γr , (32a)

∂γθ

∂t
= m(Tθθ − Tres)γθ , (32b)

∂γz

∂t
= nTzzγz, (32c)

Tθθ = Trr + αŴα, (32d)

Tzz = Trr + λŴλ, (32e)

∂

∂t
(γrγθγz) = 0. (32f)

Expanding Eq. (32f) and inserting Eqs. (32a)–(32c) yields
a relationship for the stress in terms of the growth and the
strain

Trr = (k + m)Tres − mαŴα − nλŴλ

k + m + n
, (33a)

Tθθ = Trr + αŴα, (33b)

Tzz = Trr + λŴλ, (33c)

where Ŵ is defined in Eq. (29l). The components of the
growth tensor satisfy Eqs. (32a)–(32c), and the stress is
updated according to Eqs. (33).

In Fig. 13a–c, we plot the components of the stress tensor
at days 25, 50, and 100. At day 25, we observe a large radial
tension at the wound edge, with circumferential and axial
compression of similar magnitude. Over the remodelling
period, these profiles relax to a steady state with the stress
returning to the isotropic planar stress state Trr = Tθθ = Tres,
Tzz = 0. In Fig. 13d, e, the components of the stress and
growth tensors are plotted as functions of position at day 200,
after the system has reached steady state. Figure 13f shows
how the spatial averages of the components of the growth ten-
sor evolve over time. We find that growth has slowed down
by day 50 and that by day 100 the remodelling phase is essen-
tially complete.

3.5.1 Sensitivity of remodelling time to model parameters

We now investigate how the duration of the remodelling
phase changes as we vary parameters associated with the
growth and tissue stiffness. The results are given as a bar
graph of the time taken for the tissue to reach a steady state
in Fig. 14. Steady state is defined as2

∂γr

∂t
= ∂γθ

∂t
= ∂γz

∂t
= 0. (34)

In order to make a reliable comparison, the model para-
meters are not changed for the first 25 days of healing.
After day 25, when the tissue begins to remodel, each
model parameter is varied by ±10 % of its default value.
We observe that the tissue stiffness has the greatest effect
on the remodelling time, such that as μ is increased by
10 %, the time taken for the tissue to reach steady state
is reduced by approximately 10 days. For the remaining
model parameters tested, the remodelling time is between
120 and 150 days. Comparing the sensitivity of the remod-
elling time to the model parameters with that of the final
wound radius, we observe some significant differences.
In Fig. 11, the radial and circumferential growth para-
meters had a similar effect on the final wound radius;
however, in Fig. 14 circumferential growth has a much
greater effect than radial growth. This may be due to the
degree of radial versus circumferential stress the tissue
needs to recover. We observe in Fig. 13a, b that at day
25 the radial and circumferential stresses at the wound
edge are 0.2451 and −0.2621 MPa, respectively. With a
positive resting stress (Tres = 0.0376 MPa), the growth
rates in Eqs. (24) imply that the circumferential growth
rate dominates the radial growth rate. Surprisingly, vary-
ing the axial growth rate, which had negligible effect on

2 Numerically, we define steady state to be such that each ∂γi
∂t is below

a positive threshold value close to zero. For the simulations in Fig. 14,
the threshold was taken to be 10−5.
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Fig. 13 Remodelling of the dermal tissue. Equations (29) are solved
numerically for 0 < t < 25. At t = 25, the position of the wound
edge is fixed by switching the boundary condition from a fixed load
(Eqs. 29h–29j) to a fixed displacement specified by Eq. (31). a The
radial stress Trr , b the circumferential stress Tθθ , and c the axial stress
Tzz are plotted as functions of position at 25, 50, and 100 days. d The

radial, circumferential, and axial growth and e stress are plotted as func-
tions of position at 200 days. f The average radial, circumferential, and
axial growth are plotted as functions of time. Reference variables and
parameters are specified using the default values in Table 1. The growth
reaches a steady state by approximately day 100, and the stress returns
to the isotropic planar stress T∗
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Fig. 14 Effect of model parameters on remodelling time. Equa-
tions (29) are solved numerically for 0 < t < 25. At t = 25, the
position of the wound edge is fixed by switching the boundary condi-
tion from a fixed load (Eqs. 29h–29j) to a fixed displacement specified
by Eq. (31). During the remodelling phase, each model parameter is
varied by ±10 % of its default value and the time taken to reach steady
state is recorded. The dashed line indicates the remodelling time when
all parameters are fixed at their default values. Reference variables and
parameters are specified using the default values in Table 1

the healing curve, has a significant effect on the remod-
elling time. We postulate that this is due to the fixed axial
deformation3.

3 To test this, we ran simulations where the axial deformation was
not fixed according to λ(t) = λ(T ), but instead satisfied the spring
condition in Eq. (29j). In this case, the sensitivity of the remodelling
time to the axial growth parameter was significantly lower than that
presented in Fig. 14.

3.5.2 Steady state solution

Figure 13 shows that, for the default parameter values in
Table 1, the stress reaches a steady state for which T = T∗.
The growth laws in Eqs. (24) ensure that this is the only steady
state solution. A natural question is whether the growth pro-
file (for example, that shown in Fig. 13d) needed to reach
this state is unique. At steady state, we have

∂r

∂R0
= γθγrγz R0

λr
(35a)

Tθθ = Trr + αŴα (35b)

Tzz = Trr + λŴλ. (35c)

For a fixed deformation with T = T∗, solving Eqs. (35) for
the components of the growth tensor gives

γθ =
√

λ

γz

r

R0
(36a)

γr =
√

λ

γz

∂r

∂R0
(36b)

(γz

λ

)3 − Tres

μ

(γz

λ

)2 − 1 = 0. (36c)
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Since λ,μ > 0, Eq. (36c) has only one real root for Tres >

− ( 27
4

) 1
3 μ given by

γz =
(

C

6μ
+ 2T 2

res

3μC
+ Tres

3μ

)
λ, (37)

where C =
⎡
⎣12μ2

√
12T 3

res + 81μ3

μ
+ 8T 3

res + 108μ3

⎤
⎦

1
3

and three distinct real roots for Tres < − ( 27
4

) 1
3 μ. That is, if

the residual stress is negative (i.e. the skin is in compression
before wounding) and large enough, there are three possible
choices for γz at steady state. Therefore, the roots of Eq. (36c)
depend on the residual stress where there is always one pos-

itive root. For Tres < − ( 27
4

) 1
3 μ, there is a fold bifurcation

with two extra roots; however, these are both negative. The
qualitative behaviour of this bifurcation does not change for
different values of μ and λ.

Since the growth profiles of γr and γθ depend on γz and we
require γz > 0 in Eqs. (36) for physiologically real solutions,
we conclude that the steady state profiles of the growth com-
ponents in Fig. 13d, associated with T = T∗ and Tres > 0,
are unique.

3.6 Model experiments

The model we have developed provides a framework for
investigating wound healing from a mechanical point of view.
This can have particular value in the context of experiments
in which the mechanical environment is explicitly altered.
In this section, we consider two such scenarios, rewounding
and the application of pressure during healing.

3.6.1 Rewounding

The mechanical model gives access to the stress state in the
tissue at any point or time. It is difficult to access the stress
profile experimentally, but the effect of stress can clearly
be seen when it is relieved. Rewounding, i.e. recutting a
wound in the same location, provides one means of access-
ing the mechanical state. In the same manner as the degree
of recoil upon initial wounding can be used to measure the
residual tension in the healthy skin, measuring the degree of
recoil upon rewounding gives a measure of the stress state
in the skin during the healing process. Similar experiments
have previously been used to determine whether the embry-
onic “purse-string” mechanism is in tension (Davidson et al.
2002).

A hypothetical rewounding experiment also provides a
means of calibrating our model. We have found that dif-
ferent balances of growth and contraction can generate

similar healing profiles. Alternatively, wound closure can
also be achieved with conceptually opposing growth laws and
mechanical boundary conditions (Taber 2009). Currently,
most experimental data comprise time series of averaged
wound areas. With such data, it is not possible to distinguish
such cases: additional information about the stress during
healing is needed to calibrate the model and compare alter-
native hypotheses. In theory, a rewounding experiment could
be repeated at regular intervals during healing to give a time
series of spatially averaged stress measurements.

Here, we simulate rewounding, using the model to predict
the retraction of a wound in response to a second injury.
By varying the radial growth and contraction coefficients, k
and f , we compare two cases: (a) healing with high growth
and low contraction and (b) healing with low growth and
high contraction. While the evolution of the wound radius in
each case is similar (see Fig. 15), the stress generated in the
tissue differs markedly. When the rate of contraction is high,
the stress at the wound edge is much greater than when the
contraction rate is small (results not shown). In the absence
of measurements of the stress profile, making a new wound
and recording the retracted area would enable us to estimate
the tension in the skin and to determine whether contraction
or growth dominates healing. The retraction of the second
injury in Fig. 15b, when the dermal tissue is subject to low
growth and high contraction, is much greater than that in
Fig. 15a where the dermal tissue is subject to higher growth
and lower contraction.

3.6.2 Pressure treatments

Pressure therapy involves the application of pressure to
control wound healing. The most common application of
pressure therapy for the management of hypertrophic scars
is via pressure bandages (Kischer 1975). Despite their wide-
spread use, the mechanism by which pressure bandages
improve healing is not fully understood and the clinical
effectiveness of this non-invasive therapy remains to be sci-
entifically proven (Anzarut et al. 2009). It has been suggested
that mechanical pressure induces a hypoxic atmosphere
resulting in death of fibroblasts and therefore reduced tissue
synthesis (Kischer 1975). Alternatively, mechanical pressure
may inhibit the activity of fibroblasts by reducing the rate at
which they secrete TGFβ, a growth factor which stimulates
fibroblasts to contract and produce tissue (Martin 1997).

As well as the application of pressure to retard the prolifer-
ative activity of fibroblasts during healing, negative pressure
wound therapy (NPWT), or vacuum-assisted closure (VAC),
is used to stimulate tissue regeneration in non-healing
wounds. NPWT and VAC have been shown to increase blood
flow and granulation tissue formation, to decrease bacteria,
and to stimulate tissue synthesis through increased mechan-
ical tension (Mendez-Eastman 2001; Huang et al. 2014).
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Fig. 15 Predicted outcome of rewounding experiments. Equa-
tions (29) are solved numerically, and at t = 25 a wound of radius
1 mm is cut. The wound radius is plotted as a function of time for a

high growth and low contraction (k = 0.8, f = 0.3), b low growth and
high contraction (k = 0.1, f = 0.5). All other reference variables and
parameters are specified using the default values in Table 1
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Fig. 16 Effect of axial load on the healing dermis. Equations (29) are
solved numerically. From day 5–20, axial load is assigned for NPWT
(Nz = 10 N, −), control (Nz = 0 N, - -), and pressure bandage
(Nz = −10 N, · -). a The wound radius a(t), b the total tissue vol-

ume, and c the tissue thickness l(t) are plotted as functions of time.
Reference variables and parameters are specified using the default val-
ues in Table 1

The pressure needed for effective treatment is unknown,
although values in the range 9–90 mmHg (0.001–0.01 MPa)
have been reported (Giele et al. 1997). Alternatively, NPWT
tends to generate up to 125 mmHg of suction in the wound
area (approximately 0.017 MPa). In this section, we use our
mechanical model to investigate the effects of applying pres-
sure to the surrounding dermal tissue during healing. Using
Eq. (29j) with a modelling domain of radius 20 mm, the pres-
sures discussed here can be approximated by axial loads
ranging from −12.5 to 21.5 N.

We simulate treatment for a period of 15 days. The wound
begins to heal load-free (Nz = 0 N). On day 5, pressure
is applied by assigning a nonzero axial load (Nz = 10 or
Nz = −10 N). Pressure is released on day 20, and the wound
continues to heal load-free until day 25.

In Fig. 16a, we show how the wound radius responds
to different axial loads. We observe that the effect of axial
load on the wound radius is negligible. However, Fig. 16b
reveals that the tissue volume is greatly affected by applying
a constant axial load. When the load is positive, for example
corresponding to NPWT, the tissue mass added during the

treatment period is 3 times greater than in the control case.
When the load is negative, for example in the application
of a pressure bandage, there is a loss in total tissue volume.
In Fig. 16c, the tissue thickness is plotted as a function of
time. We observe that, although the changes in volume do
not affect the wound radius, they contribute to the thickness
of the tissue. We also observe that when the load is released,
the thickness of the dermal tissue returns to a value closer
to the control case, but there is still a noticeable difference,
most likely due to the difference in tissue volume observed
in Fig. 16b. These results suggest that although applying an
axial load has negligible affect on the healing curve, it could
be used to control the total amount of tissue produced in the
surrounding dermis during healing.

4 Discussion

In this paper, we have developed a mechanical model of
dermal wound healing in which closure is driven by contrac-
tion of the wound edge and mechanically induced volumetric
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growth. Our first step was to establish the degree of residual
tension in the pre-wounded tissue by analysing the recoil that
is observed after circular punch biopsies in mice. Volumet-
ric tissue growth was motivated by the unrealistically high
stresses that would be generated in the tissue surrounding
the wound area if healing were to occur through contraction
alone. A simple analysis of homogeneous growth revealed
that normal healing should be characterised by anisotropic
growth, with the addition of material in the radial direction
and removal of material in the circumferential direction. In
the full model, we have postulated simple mechanosensi-
tive growth laws that enable us to isolate the effects of such
anisotropy during healing simulations.

Typical solutions of the model revealed three distinct
phases of healing. Initially, the wound retracts and the radius
plateaus due to no growth or contraction (up to 2 days). The
wound radius then decreases over approximately 14 days as
a result of contraction and mechanosensitive growth. Finally,
contraction and mechanosensitive growth slow down. Over
a much longer time period (approximately 100 days), the
dermal tissue remodels, returning to its homeostatic rest-
ing stress. We show that there is only one steady state for
the stress, corresponding to T = T∗, with one associated
nonnegative steady state growth profile. The system takes
approximately 120–150 days to remodel, depending on the
choice of model parameters.

Fundamental difficulties in linking modelling and experi-
mental efforts in wound healing relate to over-
parameterisation of the mathematical models and the techni-
cal difficulty associated with obtaining suitable experimental
data for model validation. While our modelling framework
neglects many features of the wound healing process, such
as an explicit description of fibroblast activity, it has the
advantage of characterising wound healing of a nonlinear
elastic tissue in a simple manner and with a small num-
ber of parameters. We have shown that the model captures
well the qualitative features of healing curves obtained in
mice. The problem is that such features are not unique, even
while varying a set of only 4 free parameters. For instance,
we find that if one is only tracking the wound radius over
time, two different parameter regimes—one with high growth
and low contraction, and one with low growth and high
contraction—can both produce the same healing curve for
the wound radius. However, such cases can be distinguished
if additional mechanical information is available. We have
simulated rewounding experiments, in which the wound is
recut before it is fully healed. The degree of recoil can be used
to distinguish between cases and calibrate the model. Such
experiments can also provide useful information about the
mechanical state of the healing tissue and the mechanosen-
sitivity of the growing tissue.

Our framework is also well suited to investigate pressure
treatments. By applying an axial load to the healing dermis,

we observed that loads reported in the literature do not change
the behaviour of the healing curve but can have a significant
effect on the total volume of tissue produced during healing.
Therefore, if the dermis is hyperproliferative during healing,
applying pressure to the area can normalise the overall tissue
volume. Similarly, if the dermis in under-proliferative, apply-
ing suction can normalise the volume of tissue produced.

We have considered circular wounds, as arising, for exam-
ple, from a circular punch biopsy. We have, therefore,
restricted our modelling to a cylindrical geometry. Assuming
that the tissue is homogeneous, we showed that residual stress
in the unwounded skin is isotropic. Under this assumption, a
circular wound will remain circular when cut and, hence, we
have restricted attention to symmetric deformations. A sta-
bility analysis would be straightforward and could provide
information on scarring; see, for instance, Wu and Ben Amar
(2015). We employed the simplest isotropic constitutive
equation for a hyperelastic material (neo-Hookean) allowing
for analytical progress. Other constitutive equations, such as
Mooney–Rivlin or Fung, could easily be incorporated. How-
ever, considering a more realistic anisotropic strain-energy,
such as that determined by Annaidh et al. (2012), would be
much more complicated and the simplicity and analytical
power of the proposed model would be lost.

Due to the lack of experimental data on wound heal-
ing in humans, we have presented results using parameter
values and tissue dimensions obtained from experiments in
mice. Given accurate experimental data, the parameters in
the model could be adapted to simulate healing in humans.

The mechanosensitive growth laws in our model are
similar to those used in a model of embryonic wound heal-
ing (Taber 2009). In embryonic wound healing, contraction
is generated by a “purse-string” (Martin and Lewis 1992;
Davidson et al. 2002), modelled by circumferential resorp-
tion at the wound edge in both Taber (2009) and Wu and
Ben Amar (2015). By combining experimental and compu-
tational approaches, Wyczalkowski et al. (2013) investigate
in more detail possible mechanisms of the “purse-string”. It
has been shown that the contraction mechanism in dermal
wound closure does not proceed via a “purse-string” (Gross
et al. 1995) and was therefore not considered in the present
study. While the growth profiles in Fig. 10 are qualitatively
similar to those found in Taber (2009), there are fundamen-
tal differences. Taber’s growth laws are formulated with zero
net change in volume and feedback such that compression
relative to the target stress stimulates growth. In comparison,
our model has the feedback in the opposite direction (with
tension stimulating growth) and a net volumetric growth that
serves to counteract the tension due to contraction. The key to
such opposing forms is a difference in activity at the wound
edge and how this translates to a boundary condition for the
mechanics. In the Taber’s model, the wound edge is stress-
free and hence, below the resting stress, so that a negative
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growth law induces the required radial growth. Here, the
contractile force places the wound edge above the resting ten-
sion, so that a positive growth law is needed. Nevertheless,
that models with contrasting feedback can generate similar
healing profiles suggests a clear need for further investigation
both on the tissue and on cellular scales. Different modelling
approaches will generally have differing mechanical signa-
tures, and experiments such as the rewounding discussed in
the present work could be used to discriminate between them.

In order to focus on the mechanical environment in the tis-
sue, we have restricted to mechanically stimulated growth,
such that stress greater (less) than the residual stress results in
addition (removal) of material. With the growth laws formu-
lated in this manner, growth will not occur unless contraction
is active. It is quite likely that basal or chemically stimulated
growth occurs in the absence of contraction and we intend
to include this in future modelling efforts. Our sensitivity
analysis in Sect. 3.4 showed that, to achieve a net gain in
material, mechanosensitive growth should have a radial bias.
This could be achieved with a growth factor gradient in the
radial direction. A natural next step is to couple a mathemat-
ical description of fibroblast and growth factor activity to the
contraction function and the evolution of growth laws pro-
viding a more mechanistic approach to the main processes
driving dermal wound closure and the inclusion of chem-
ically stimulated growth. Validation of our model against
experimental data is required; for example, the rewounding
experiments discussed in this paper are currently underway.
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