
Supplementary Information

S1. Details of the asymptotic expansion for higher order terms

In Sec. 2.1 of the main text, we asserted that the dominant contribution to the dynamics
of the solution was due to gradients in the radial direction, up to O(ϵ2). This can be easily
shown by grouping in terms of powers of ϵ. Below, we provide the form of the O(ϵ) and
O(ϵ2) contributions. The O(ϵ) contribution is
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∂ûi,0

∂ρ̂
+ k̄

(
∂f̂i
∂û
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û=û0

)
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where all dots are taken to be in the space of u. The O(ϵ2) contribution is:
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û1 ·

(
∂d̂i
∂û
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∂ûi,1

∂ρ̂
+

∂

∂θ

(
d̂i(û0)
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û2
j,1

∂2f̂i
∂û2
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For the Fisher-KPP equation, Eq. (S1) and Eq. (S2) reduce straightforwardly to
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S2. Numerical exploration of the approximation error for different parameter
values

In Sec. 2.2 in the main text, we demonstrated for a specific set of parameters that the
qualitative difference between solutions on the rectangle (that is, a travelling wave profile in
the x direction with no variation in the y direction) and those on the annulus (a travelling
wave profile in the θ̂ direction with little variation in the r̂ direction) is small relative to the
extent of the domain. Although the asymptotic analysis implies that this variation should
remain small whilst ϵ is small, it is reasonable to ask over what range of ϵ the result is
still valid. Therefore, in this section we provide a numerical exploration of the dynamics
for a range of values of the parameters δ, r0, and k̄, the three salient parameters in the
Fisher-KPP equation after non-dimensionalisation.

In order to fairly compare the solutions between the annulus and the rectangle, we define
the following metrics that summarise the behaviour of the u = 0.5 isoline:
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1. Planar deviation: The quantity S1 =
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)2
, which describes the root

mean square value of the dot product of points on the isoline with the radial unit vector.
For a wavefront which perfectly approximates the flat wavefront on the rectangle, the
value of this metric should be zero since the dot product will be zero. Therefore, this
metric measures the deviation of the wavefront from being planar.

2. Angular spread : The value of S2 = |θδ/2 − θ−δ/2|. This directly measures how much
the wavefront spreads over the radial direction.

3. Speed deviation: The quantity S3 = |⟨ωi⟩−ωr0|/ωr0 , where ωr0 is the angular speed of
the solution on a semi-circular arc of radius r0, computed from a separate simulation.
This constitutes a comparison with the ϵ = 0 limit, since δ = 0. In this case, all the
radial gradients are zero by definition, and it is trivial to show that the Fisher-KPP
equation is now solved over one spatial dimension, and so has an asymptotic minimum
angular speed 2

√
Dk/r20. Therefore, this is a direct comparison between the angular

speed on the circle which describes a one-dimensional planar front in θ, and on the
annulus.

Combined, these metrics describe whether the angular extent, planar nature, and speed
of the wavefront are preserved. For the following numerical exploration, we evaluate the
metrics at t = 2.5. We chose this t as a compromise, with the goal of summarising a wide
range of parameter values in mind. For large enough k or ϵ, propagation of the wavefront is
too fast, and so is affected by the boundary condition on the lower edge of the half annulus
θ = −π/2. This would affect our evaluation of the metrics over a significant number of
simulations at later t. For smaller times t = 1, 1.5, 2, the simulation results yield the same
qualitative result whilst attempting to minimise the effect of transient contributions to the
wavefront shape or extent.

S2.1. Approximation error as a function of r0 and k̄

We quantify the effect of a larger magnitude reaction term to the approximation as a function
of ϵ. However, as we showed through non-dimensionalisation, the value of δ affects the scaling
of the reaction term’s contribution, and so we choose to vary r0 to change ϵ, and k to change
k̄, with constant δ = 0.4, and D = 0.005, as in the text. The results are shown in Fig. S1.

For the metrics S1 and S2, there is a lower deviation from a planar wavefront for smaller
values of k̄ and larger r0 (smaller ϵ). The simulations cover four orders of magnitude for
k̄. However, interestingly, we see that the range of ϵ for which the approximation error is
lower decreases as k̄ becomes larger. This range of parameter values uses k/D ∼ 105, and
so although the azimuthal dynamics are small relative to the size of the wavefront when
ϵ ≲ 0.5, there is still a visible effect on the shape of the wavefront. Even in this regime, S3

demonstrates that despite having a curved profile, the wave speeds are still similar between
the ϵ → 0 limit and the finite ϵ regime, with the highest deviation of 0.29 for the smallest
r0 and largest k̄ tested. This is a 30% error, but for most of the other simulations shown,
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Figure S1: Summary metrics as a function of r0 and k̄. k̄ is plotted on a logarithmic scale in each case,
as it is varied from k̄ = 0.32, . . . , 320. a Planar deviation (S1). b Angular spread (S2). c Speed deviation
(S3). d Reference ϵ values to aid comparison. Heatmaps are scaled to the maximum and minimum values
of these metrics.

the error is below 5%, suggesting that only for k ≫ D and small r0 that substantial errors
are incurred.

We note that, for the simulation with (r = 0.40, log10 k̄ = 2.51 (3 s.f.)), S2 shows a smaller
deviation. Inspection of this simulation showed that ’dip filling’ had begun near the lower
boundary of the annulus θ = −π/2 by t = 2.5 for this parameter combination, leading to a
smaller spread in the isoline angle in this case.

S2.2. Approximation error as a function of r0 and δ

In the main text, we demonstrated that there was a qualitative trend in the angular deviation
of the u = 0.5 isoline as r0 and δ were varied, to increase the value of ϵ. However, the
quantitative spread in the angular deviation is of different magnitude between these cases.
Therefore, we quantify the effect of varying each of these parameters independently on the
deviation from the planar wavefront solutions on the circle (see Fig S2).
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Figure S2: Summary metrics S1, S2 and S3 as a function of δ and r0. a Planar deviation (S1). b Angular
spread (S2). c Speed deviation (S3). d Reference ϵ values to aid comparison. Heatmaps are scaled to the
maximum and minimum values of these metrics. For δ ≥ 2r0, an annular geometry is no longer formed, and
so no simulations exist for this case (coloured grey).

For all metrics, the approximation error decreases with increasing r0 and increases with
increasing δ, as demonstrated in the main text. For S1, for each r0 this error increases as
ϵ increases towards 2 (as δ approaches 2r0), and the wavefronts gain a more curved profile.
S2 also increases for larger values of δ (and thus ϵ), showing that the wavefront spreads
out despite being mostly flat. Due to the larger radii, smaller angles are subtended as r0
increases, but the distance travelled between the isoline at the inner and outer edges of the
annulus scales linearly with δ (not shown). Finally, S3 shows the deviation in angular speed
is largest for large ϵ.

S3. Simulation methods

Meshes were produced using Gmsh’s python interface, implementing Delaunay triangulation
with the characteristic length parameter lc, which controls the length scale of elements near
to the vertices defined at the corners of the mesh. For the rectangular and annulus meshes
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used for Sec. 2.2 and Sec. 2.3, lc = 0.001, for the annuluses in Sec. 2.4, lc = 0.0025, and for
the numerical exploration in the SI, the annulus meshes used lc = 0.005 and the arc meshes
lc = 0.0005. We provide the number of elements in each simulation in Fig. S1 in Tab. S1,
and Fig. S2 in Tab. S2. All spatial simulations were performed using the finite element
method, implemented in FENICSX using a Lagrange space with continuous elements of
order one; measures and calculations involving the gradient of u interpolated the solution
and its derivatives into a discontinuous Lagrange space of order zero. Time stepping was
implemented using a Crank-Nicolson discretisation with timestep δt = 0.01, in which the
average of the reaction and diffusion terms between two timesteps were taken to represent
their values at the intermediate timestep.

S3.1. Number of elements for initial simulations in the main text.

Number of elements for simulation on the base rectangle (width = π, height = 0.4): 2910928.
Number of elements used for simulation on the base annulus (r0 = 1, δ = 0.4): 2912289.
Number of elements used for simulation of annuluses with varying r0 (r0 = 0.25, 0.4, 0.67,
δ = 0.4): 118165, 187779, 313049.
Number of elements used for simulations of annuluses with varying δ (r0 = 1, δ = 0.6, 1, 1.6):
707175, 1167593, 1864381

r0 Number of ele-
ments in arc

Number of ele-
ments in annulus

0.4 2518 47611
0.6 3774 71333
0.8 5032 94981
1.0 6288 118125
1.2 7544 141855
1.4 8802 165507
1.6 10058 189105
1.8 11314 212779
2.0 12572 236581

Table S1: Number of elements used in each simulation for the numerical exploration with varying k̄ and r0
values in Sec. S2.1.
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r0 ; δ 0 0.2 0.4 0.6 0.8 1.0 1.2
0.2 252 12305 - - - - -
0.4 504 24329 47611 71179 - - -
0.6 756 36065 71333 106391 141435 176991 -
0.8 1008 48007 94981 141559 187779 235461 280973
1.0 1260 60053 118125 176659 234815 294015 351415
1.2 1508 72057 141891 211985 281733 351883 421735
1.4 1760 84061 165543 247261 328761 400519 491987
1.6 2012 96161 189105 281781 375325 468235 562235
1.8 2264 107597 212775 317085 422639 526651 630723
2.0 2516 119871 236581 352657 468297 585549 701075

r0 ; δ 1.4 1.6 1.8 2.0
0.2 - - - -
0.4 - - - -
0.6 - - - -
0.8 329809 - - -
1.0 410705 467913 528913 -
1.2 492089 561581 632127 701475
1.4 572557 655209 735797 816847
1.6 654491 747995 840687 933481
1.8 736487 841403 946015 1050527
2.0 818525 933695 1051281 1167593

Table S2: Number of elements used in each simulation in the numerical exploration of varying δ and r0
values. Due to the length of the entries, the table is continued over multiple lines.
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