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Abstract
We analyse mathematical models of blood flow in two simple vascular networks in
order to identify structural features that lead to the formation of multiple equilibria.
Our models are based on existing rules for blood rheology and haematocrit splitting.
By performing bifurcation analysis on these simple network flow models, we identify
a link between the changing flow direction in key vessels and the existence of multiple
equilibria. We refer to these key vessels as redundant vessels, and relate the maxi-
mum number of equilibria with the number of redundant vessels. We vary geometric
parameters of the two networks, such as vessel length ratios and vessel diameters, to
demonstrate that equilibria are uniquely defined by the flow in the redundant vessels.
Equilibria typically emerge in sets of three, each having a different flow characteristic
in one of the network’s redundant vessels. For one of the three equilibria, the flow
within the relevant redundant vessel will be smaller in magnitude than the other two
and the redundant vessel will contain few Red Blood Cells (RBCs), if any. For the
other two equilibria, the redundant vessel containsRBCs and significant flow in the two

Yaron Ben-Ami, Philip Maini Helen Byrne and Joe Pitt-Francis have contributed equally to this work.

B George Atkinson
george.atkinson@maths.ox.ac.uk

Yaron Ben-Ami
yaron.ben-ami@maths.ox.ac.uk

Philip Maini
philip.maini@maths.ox.ac.uk

Joe Pitt-Francis
joe.pitt-francis@cs.ox.ac.uk

Helen Byrne
helen.byrne@maths.ox.ac.uk

1 Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford,
Woodstock Rd, Oxford, Oxfordshire OX2 6GG, UK

2 Department of Computer Science, University of Oxford, Parks Rd, Oxford, Oxfordshire OX1 3QG,
UK

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11538-024-01404-y&domain=pdf
http://orcid.org/0000-0002-2865-4861


   30 Page 2 of 27 G. Atkinson et al.

available directions. These structural features of networks provide a useful geometric
property when studying the equilibria of blood flow in microvascular networks.

Keywords Microvascular blood flow · Multiple equilibria · Network redundancy

Mathematics Subject Classification 74A05 · 74A60 · 74B20 · 74G65 · 74K20 ·
74K25 · 74Q05

1 Introduction

It is well established that tumour vasculature contains numerous structural abnor-
malities not found in healthy vasculature, such as: regions of densely packed small
vessels and avascular regions (Deane and Lantos 1981), increased microvascular den-
sity (Sharma et al 2010; Shieh et al 2009), and the presences of more looped structures
(Less et al 1991; Stolz et al 2022). Tumour vasculature has also been described as
being structurally and functionally abnormal (Jain 1994). Irregularity of the vascula-
ture arises from increased angiogenesis (formation of new blood vessels) (Forsythe
et al 1996; Muz et al 2015; Nagy et al 2009). Geometric irregularity affects the vas-
culature’s ability to deliver oxygen to the surrounding tumour-microenvironment. It
is a potential mechanism driving the formation of hypoxic tumour regions (i.e., low
oxygen levels) and, hence, reduced sensitivity to treatments such as radiotherapy Jain
(2005). Anti-angiogenic treatments transiently normalise tumour blood flow by prun-
ing capillaries and reducing vessel tortuosity. The associated increases in tissue oxygen
levels, have been shown to improve patient responses to treatment (Browder et al 2000;
Carmeliet and Jain 2000; Ferrara et al 2004; Jain 2001), and demonstrate the impor-
tance of understanding how vascular geometry, blood flow, and hypoxia are related.

It has long been understood that hypoxia within tumours can make cancers more
aggressive and harder to treat. Hypoxic tumour regions are associated with increasing
resistance to chemo- and radiotherapy (Menegakis et al 2021; Shannon et al 2003;
Tan et al 2009), increasing immunosupression and inhibition (Conforti et al 2003;
Sitkovsky 2009), and the emergence of highly invasive, metastatic cell phenotypes
(Chen et al 2018; Sullivan and Graham 2007). Counter-intuitively, fluctuating oxygen
levels in the tumour microenvironment can exacerbate the negative effects of hypoxia.
For example, in Chou et al (2012), tumour cells in glioblastomas exposed to cycling
hypoxia (short term fluctuations between a normoxic environment and a hypoxic
environment) became more resistant to chemotherapy than those exposed to either
chronic hypoxia (permanently hypoxic environment) or normoxia. If the mechanisms
by which cycling hypoxia emerge can be understood, new treatments that mitigate its
adverse effects could be developed.

Theoretical studies of steady blood flow in vascular networks have been used to
explore the relationship between irregular vasculature and hypoxia within tumours
(Bernabeu et al 2020; Sweeney et al 2018). These studies typically assume that a single
stable flow equilibrium exists. However, as demonstrated by Gardner et al (2010) and
Karst et al (2017), even simple networks can admit multiple equilibria and periodic
solutions (Ben-Ami et al 2022; Karst et al 2015). In particular, in a recent study of
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blood flow through a simple, triangular network, a link was established between its
structural features and the existence of oscillatory solutions and multiple equilibria
Ben-Ami et al (2022). The authors hypothesise that similar oscillations may cause
cycling hypoxia in tumours.

In this paper, we extend the work carried out by Gardner et al (2010) by studying
the key structural components of the triangle network and a network created by the
addition of a single vessel to the triangle network, which we refer to as the extended-
triangle network. By studying two simple networks which share structural properties,
we identify the presence of vessels known as redundant vessels as the key geometric
property of vascular networks leading to the emergence of multiple equilibria. We
perform a systematic bifurcation analysis in which we vary common vessel length
ratios and diameters to show that changing flow direction in the redundant vessels
is consistently associated with multiple equilibria, regardless of the length ratios or
vessel diameters. This observation explains howmultiple equilibria may form and can
also be used to identify vascular networks which may admit multiple equilibria. Such
understanding is important to the study of the formation of hypoxia within tumours.
In particular, a better understanding of the formation of multiple equilibria may also
enable us to uncover the mechanisms by which cycling hypoxia emerges.

In Sect. 2, we describe the principles of blood flow in the microvasculature and
introduce the notation we use to represent vascular networks. In Sect. 3 we explain
how the network equations associated with a network are constructed, introduce the
networks studied in this paper, and the methods we use to solve the network equations.
In Sect. 4 we present our results and demonstrate how network redundancy leads to
the existence of multiple equilibria. We summarise our conclusions in Sect. 5 where
we also discuss the implications of our work.

2 Blood Flow in theMicrocirculation

In this section, we introduce the physical principles that we use to model blood flow
through a network of blood vessels. We start in Sect. 2.1 by explaining how we model
blood flow in a single vessel. Then, in Sect. 2.2, we introduce the dependent variables,
parameters and associated notation that we use when simulating blood flow through
vascular networks. Finally, in Sects. 2.3 and 2.4, we describe the conservation laws
and splitting rules that are used to construct the governing equations.

2.1 Steady Flow in a Single Vessel

Blood transport in a microvessel is often viewed as a Newtonian fluid, with a constant
viscosity,μ, flowing according to Poiseuille’s law, within a rigid cylinder, with no-slip
conditions imposed on the walls of the cylinder (Hagenbach 1860; Poiseuille 1846).
Under these assumptions, we have that:

Q = �P

R
, (1)
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where Q is the volumetric flow rate through the vessel,�P is the pressure drop across
the length of the vessel, and R is its hydraulic resistance. For a rigid pipe, the hydraulic
resistance is defined by the following expression:

R = 128Lμ

πD4 , (2)

where L and D denote the vessel’s length and diameter, respectively.
In practice, blood contains cells and proteins suspended in plasma. The effect of

these suspended particles on the rheology can typically be ignored, with the exception
of Red Blood Cells (RBCs). Pries et al (1992) performed multiple experiments on
RBC suspensions in glass tubes to establish an empirical relationship between the
density of RBCs and the resistance of the blood. By measuring the flow in a glass tube
for a controlled pressure drop, and counting the number of RBCs travelling through
the tube, they determined the resistance to flow as a function of the haematocrit (the
ratio of the volumetric flow of the RBCs to the volumetric flow of the blood). Then by
assuming Poiseuille’s law, they derived a function for the blood’s effective viscosity.
Pries et al (1994) later used in vivo experiments to obtain a more accurate expression
for the viscosity:

μ(H , D) = μp

[
1 + (μ45 − 1)

(1 − H)C − 1

0.55C − 1

(
D

D − 1.1

)2](
D

D − 1.1

)2

, (3)

where D is the vessel diameter in μm, H is the haematocrit in the vessel, μp is the
viscosity of the plasma, andμ45, the relative apparent blood viscosity when H = 0.45,
is defined as follows:

μ45 = 6 exp(−0.085D) + 3.2 − 2.44 exp(−0.06D0.645), (4)

In equation (3), the coefficient C is defined as follows:

C = (0.8 + exp(−0.075D))

(
− 1 + 1

1 + 10−11D12

)
+ 1

1 + 10−11D12 . (5)

Then, the resistance in the vessel is given by:

R(H , D, L) = 128Lμ(H , D)

πD4 . (6)

The pressure difference across a pipe is the difference between the inlet and outlet
pressure. Therefore, steady flow in a pipe is constant flow such that the volumetric
flow is described with the following equation:

Q = (Pin − Pout )

R(H , D, L)
, (7)

where Pin and Pout are the pressures at the two ends of the vessel.
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2.2 Vascular Networks

In this section, we define the notation we use to represent vascular networks and intro-
duce the concept of a redundant vessel by exploiting properties of directed networks.
We denote byN = {N , E} a vascular network where edges E represent blood vessels
and nodes N represent vessel junctions, inlets or outlets. By convention, inlet and out-
let nodes have degree 1. All other internal nodes represent vessel junctions and must
have degree 3 or more (two vessels with a shared node of degree 2 are considered
equivalent to a single vessel). It will sometimes be convenient to distinguish between
in and out degree of a node to specify the blood flow direction. For example, a node
with and in degree of 1 and an out degree of 2, has one vessel flowing into the node,
and two vessels flowing out of the node.

Dependent variables and model parameters are indexed by the relevant nodes
or edges. For example, Px and Py denote the pressures at nodes x and y, and
Q(x,y), H(x,y), L(x,y) and D(x,y) denote the volumetric flow, haematocrit, length and
diameter in vessel (x, y) respectively. If either node x or y is a boundary node then
the associated pressure is a parameter, and denoted with a bar for clarity. For example,
if node x is a boundary node, then Px is the prescribed pressure there. If x is an inlet
node, and (x, y) an inlet vessel, then the parameter H (x,y) represents the associated
inlet haematocrit.

Rewriting the hydraulic resistance Eq. (6) in terms of the network parameters and
variables yields the following equation:

R(x,y) = 128L(x,y)μ(H(x,y), D(x,y))

πD4
(x,y)

. (8)

Further, using the network variables, Poiseuille’s law can be written as follows:

Q(x,y) = Px − Py
R(x,y)(H(x,y), D(x,y), L(x,y))

. (9)

For a vessel (x, y) ∈ E , the bloodflowdirection is dictated by the values of the pressure
variables, Px and Py . However, this does not mean that the blood flow direction in all
vessels is restricted to one direction. The blood flow in all inlet nodes must be directed
away from the inlet node and the blood flow in all outlet nodes must be directed
towards the outlet node. Since blood flows from higher to lower pressures, the values
of the inlet pressures are always larger than the values of the outlet pressures. It is
technically possible for inlet nodes to switch to outlet nodes (or vice versa) if the
boundary pressures change but we do not consider this scenario here.

The theory blood flow direction in non-inlet or outlet vessels may change as the
network parameters vary. In practice, however, the flow direction is constrained by the
network geometry. Consider, for example, a vascular network N = {N , E} with m
vessels and n nodes. Let GN be the set of all directed networks based on network N
for which the direction of flow can be induced by a distribution of nodal pressures. One
consequence of these criteria is that all networksG ∈ GN must be acyclic because flow
loops are not possible. A loop in a network is any path that starts and ends at the same
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node. Loops are not possible in vascular networks because a flow loop contradicts the
assumption that fluid flows from high to low pressure. Consider a sequence of k nodes,
{ui }ki=1, such that u1 = x, uk = x, and ui �= x for 1 < i < k. For this loop to belong
to a network G ∈ GN , this would imply that:

Px > Pu1 > .... > Puk−1 > Px . (10)

This is clearly a contradiction. Therefore, loops of flow cannot exist. An important
consequence of this property is that the number of possible flow directions in a network
is limited by its geometry.

Definition 1 (Redundant vessels) Consider a network N = {N , E}. Let GN denote
the set of all acyclic directed networks ofN such that all inlet nodes have an out degree
of 1, all outlet nodes have an in degree of 1, and all interior nodes have an in and out
degree of at least 1. If G1 = {N , E1} ∈ GN and G2 = {N , E2} ∈ GN such that a
vessel (x, y) ∈ E, (x, y) ∈ E1 and (y, x) ∈ E2, then vessel (x, y) is a redundant
vessel.

The term “redundant vessel" was first used by Ben-Ami et al (2022) to describe a
vessel for which a solution existed with zero flow in that specific vessel. However, the
key topological property of the network that led to multiple equilibria and instability
of the blood flow was the fact that the flow direction was not fixed in this vessel.
Therefore, the redundant vessel introduced by Ben-Ami et al (2022) is consistent with
Definition 1.

If a vessel is not a redundant vessel, then we term it a “fixed vessel”. From now on,
we use triangular bracket notation to denote redundant vessels. For example, if there
is a redundant vessel connecting nodes x and y, then we denote it by 〈x, y〉. Round
brackets will be used to denote fixed vessels.

2.3 Conservation Laws

A fundamental principle underpinning mathematical models of blood flow in the
microcirculation is mass conservation at vessel junctions. This principle applies to
RBCs and to blood as a whole, here taken to be plasma and RBCs. Conservation
of flow can be intuitively described as “flow in equals flow out." For example, for a
node with degree 3, only two flow configurations are possible, as shown in Fig. 1. We
represent conservation of flow and RBCs for the two flow configurations in Fig. 1 by
the following equations:

Q(u,v) + Q(w,v) + Q(z,v) = 0, (11)

Q(u,v)H(u,v) + Q(w,v)H(v,w) + Q(z,v)H(v,z) = 0. (12)

2.4 Splitting Rules

At a flow convergence (see Fig. 1b), conservation of RBCs is sufficient to uniquely
determine the value of H(v,w) if the inlet flows and haematocrits are known. This

123



Key Structural Features of Microvascular Networks Leading... Page 7 of 27    30 

Fig. 1 Schematic diagrams illustrating the two basic units which represent only two possible arrangements
of flow directions in and out of a vessel junction. a Bifurcation unit, with a single input and two outlet
vessels; b Convergence unit, with two inputs and a single outlet. In each diagram, pressures are defined
at the nodes (Pu , Pv, Pw and Pz ), volumetric flow rates and haematocrits in each vessel are denoted by
Q(u,v), Q(v,w) and Q(v,z), and H(u,v), H(v,w) and H(v,z) respectively. Arrows indicate flow directions

also applies to flow convergences of three or more vessels flowing into a single out
vessel. At a junctions with two or more outflowing vessels like the flow bifurcation
in Fig. 1a, conservation of RBCs is insufficient to determine the haematocrit values
in the daughter vessels: splitting rules are introduced to uniquely determine the outlet
haematocrits.

Splitting rules are used throughout the literature to define the ratio of the volumetric
flow of RBCs in a daughter vessel to that in the parent vessel (Bernabeu et al 2020;
Fenton and Zweifach 1981; Klitzman and Johnson 1982; Pries et al 1989, 1990; Pries
and Secomb 2005). While there is no consensus on how this ratio should be specified,
we use splitting rules that are functions of the flow ratio r = Q(v,w)/Q(u,v), and the
parent haematocrit, H(u,v)(Bernabeu et al 2020; Klitzman and Johnson 1982; Pries
et al 1989, 1990; Pries and Secomb 2005). For example, Pries et al (1989) proposed
the following functional form for ψ(v,w) for the (v,w) vessel of the flow bifurcation
in Fig. 1a:

ψ(v,w)(r) =

⎧⎪⎨
⎪⎩
0 if r < X0

1 if r > 1 − X0
eA(r−X0)

ρ

eA(r−X0)ρ+(1−r−X0)ρ
if X0 ≤ r ≤ 1 − X0

(13)

The behaviour of this splitting rule is determined by the X0, A, and ρ coefficients.
One example for these coefficients suggested by Pries et al (1990) is as follows:

A = − 6.96

D(u,v)

log

(
D(v,w)

D(v,z)

)
, (14)

ρ = 1 + 6.98
1 − H(u,v)

D(u,v)

, (15)
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X0 = 0.4

D(u,v)

. (16)

We refer to this splitting rule as the Pries 1990 splitting rule to distinguish it from
an alternative rule proposed by the same authors in which different functional forms
were used for the coefficients A, ρ and X0 (Pries and Secomb 2005). When the blood
flow is at a steady-state, the following equality holds:

ψ(v,w)(r) = Q(v,w)H(v,w)

Q(u,v)H(u,v)

. (17)

While, in theory, splitting rules can be defined for junctions involving any number
of vessels, they typically focus on junctions involving three vessels. Henceforth we
restrict attention to networks for which the maximum node degree is three.

3 Network Equations andMethods

Drawing on the principles introduced in Sect. 2, we now introduce the equations gov-
erning blood flow through vascular networks and then describe the methods we use
to solve the equations. In Sect. 3.1 we introduce the governing equations for a generic
network. Then, in Sect. 3.2 we describe the networks we use to study the effect of
network redundancy on the number of equilibria. We also non-dimensionalise the
network equations, and discuss the parameter values we use vary to determine the
relationship between multiple equilibria and the redundant vessels. In Sect. 3.3 we
explain how numerical continuation is used to solve the network equations and to
identify bifurcation points as key network parameters are varied.

3.1 Network Equations

In this section, we explain how we construct the steady-state equations for the depen-
dent variables associated with blood flow through a vascular network. Pressure is
prescribed at network inlets and outlets and haematocrit is prescribed at inlets. Gov-
erning equations for the nodal pressures, vessel flows and haematocrit are formulated
using the network notation introduced in Sect. 2.2. This description of blood flow in
a network is similar to that of electricity in a circuit where volumetric flow Eq. (9),
pressure difference, and hydraulic resistance Eq. (6) are analogous to current, voltage,
and electrical resistance, respectively (Pries and Secomb 2008). The solution to the
steady-state equations must satisfy the conservation laws and splitting rules defined
by Eqs. (11-13) at every node. We begin by describing the construction of the network
equations for any vascular network, N .

In addition to the network equation obeying the conservation laws, we must also
have an equation for every pressure and haematocrit variable of the network. Each flow
variable in the network can be replaced with the expression on the right hand side of
Eq. (9). Therefore, the flows are replaced by functions of pressures and haematocrits.
For both a convergence and bifurcation unit in Fig. 1 the equation associated with Pv
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is the same as the conservation of flow equation Eq. 11):

Q(u,v) + Q(w,v) + Q(z,v) = 0. (18)

The equation associatedwith H(v,w) can take one of two forms, depending if (v,w) is a
daughter vessel of a bifurcation unit (Fig. 1a) or the outflowing vessel of a convergence
unit (Fig. 1b). If (v,w) is the outflowingvessel for a convergence unit, then the equation
associated with H(v,w) is the same as the conservation of RBCs equation Eq. (12):

Q(u,v)H(u,v) + Q(z,v)H(z,v) + Q(w,v)H(w,v) = 0. (19)

If (v,w) is the daughter vessel of a bifurcation unit, then the equation associated with
H(v,w) is:

ψ(v,w)(Q(v,w)/Q(u,v), H(u,v))Q(u,v)H(u,v) − Q(v,w)H(v,w) = 0, (20)

whereψ(v,w) is the splitting rule defined in Eq. (13). Unless otherwise specified,ψ(v,w)

will refer to the Pries 1990 splitting rule defined using the coefficients in Eq. (14-16).
For a network N , we define a set of network equations by F(H,P) = 0, where

P = [Pv∈N ] is the vector of pressure variables, H = [H(u,v)∈E ] is the vector of
haematocrit variables, and:

F(H,P) =
[

[Fv∈N ][
F(v,w)∈E

] ]
, (21)

such that Fv is the left-hand side of Eq. (18), and F(v,w) is the left-hand side of Eqs.
(19) or (20). Therefore, solutions to the following system of equations F(H,P) = 0
satisfy the conservation laws and splitting rules for a network, and every variable has
a corresponding equation. The flow direction in certain vessels may change as the net-
work parameters vary, corresponding to a change in the form of F(v,w)(H , P) between
Eqs.(19) and (20), but the formulation remains consistent with the conservation laws
and splitting rules.

3.2 Network Geometries

The aim of this paper is to understand the relationship between the number of steady-
state solutions and the number of redundant vessels in a network. As such, it is
important to study more than one network. It is, however, difficult to compare net-
works with different geometries. In order to obtain ameaningful comparison, we study
two networks which share common features, but have different numbers of redundant
vessels: the triangle network, which has one redundant vessel (see Fig. 2a) and the
extended-triangle network, which has two redundant vessels (see Fig. 2b). The trian-
gle network was studied by Gardner et al (2010), and is one of the simplest networks
that admits multiple equilibria. The extended-triangle network is the simplest addi-
tion to the triangle network which adds an additional redundant vessel. Therefore,
comparing the number of equilibria of the triangle network with the extended-triangle
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Fig. 2 Schematic diagrams of a the triangle network and b the extended-triangle network. The redundant
vessels (Definition 1) are represented by dashed lines. The flow in the redundant vessels, the nodal pres-
sures, inlet haematocrits and relevant vessel lengths are labelled on both diagrams. All other variables and
parameters can be inferred from the node numbering. The arrows indicate the possible flow directions in
each vessel. All unlabelled vessel lengths have default length of L

network will clearly demonstrate the impact of the level of network redundancy on
the multiplicity of solutions.
Direct comparison of the triangle and extended-triangle networks is not possible
because they have different parameters and variables. Therefore, in what follows,
we will compare variables which provide similar information about the equilibria and
vary parameters which have a similar effect on the network equilibria. Given our focus
on the impact of vessel redundancy on network equilibria, we compare the equilibria
of the two networks by comparing the flow variables in the redundant vessels (Q〈4,5〉
for the triangle network, and Q〈4,5〉 and Q〈7,8〉 for the extended-triangle network).

Many network parameters could be used to demonstrate differences between the
two networks. We focus on two vessel length ratios, α and β, because they have a
similar effect on the flow in both networks. L denotes the reference length for both
networks, which is the default length for most vessels and we define the length ratios
α and β with respect to this reference length in the following way:

α = L〈4,5〉
L

(22)

in the triangle network and

α = L〈4,5〉
L

= L〈7,8〉
L

(23)

in the extended-triangle network. Additionally,

β = L(4,6)/L, (24)

for both networks. The above definitions of α and β for the triangle network are
identical to those used by Gardner et al (2010). As the resistance to flow Eq. (6) is
proportional to L , the ratio α affects the hydraulic resistance in all redundant vessels.
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The ratio β sets the length of one of the fixed vessels in the triangle subnetwork
common to both networks. This subnetwork comprises nodes 4, 5 and 6, and vessels
(4, 6), (5, 6) and 〈4, 5〉. We assume equal inlet pressures and haematocrits for both
networks (see Fig. 2), and so β determines the degree of network asymmetry. All other
vessels in both networks are of length L .

The governing equations for both networks can be constructed from the schematics
in Fig. 2 and by following the steps outlined in Sect. 3.1. Statements of the governing
equations for both networks can be found in Supplementary Material S1.

3.2.1 Dimensionless Network Equations

To facilitate comparison of the two networks described in Fig. 2, it is important that
the network equations and variables are dimensionless. The haematocrit variables are
already defined as ratios and so their values are always between 0 and 1, but the vol-
umetric flows depend on network parameters such as boundary pressures. Therefore,
we need to first convert the flow variables into dimensionless quantities to compare
the equilibria of the two networks. Conservation of flow guarantees that the volumet-
ric flow in any vessel is always less than the total flow into a network. Therefore we
nondimensionalise volumetric flow in vessel (x, y) with respect to the total flow into
the network:

Q̂(x,y) = Q(x,y)

Qin
. (25)

Here, Q̂(x,y) is the dimensionless flow, and Qin is the total flow into the network.
For the triangle network, Qin = Q(1,4) + Q(2,5); for the extended-triangle network,
Qin = Q(1,7) + Q(2,8). With 0 ≤ |Q̂(x,y)| ≤ 1 for all vessels, it is easier to make
direct comparison of the flows in the two networks.

An additional advantage of using dimensionless flows is that they are independent
of the reference vessel length, L . As such, we can study the effect of varying the vessel
length ratios α and β (see Eqs. (22–24)), without reference to L .

If the flow variables on the left-hand side of Eqs. (11) and (12) are replaced by
dimensionless variables, mass is still conserved at every node:

(Q(u,v) + Q(w,v) + Q(z,v)︸ ︷︷ ︸
=0

)/Qin = 0,

(Q(u,v)H(u,v) + Q(w,v)H(w,v) + Q(z,v)H(v,z)︸ ︷︷ ︸
=0

)/Qin = 0.

If we replace the flows in Eq. (20) with the dimensionless flow, the equations dictating
RBC splitting at flow bifurcations are unaffected by the change in variables:

ψ(v,w)

(
(Q(v,w)/Qin)

(Q(u,v)/Qin)
, H(u,v)

)
Q(u,v)

Qin
H(u,v) − Q(v,w)

Qin
H(v,w) = 0, (26)

(ψ(v,w)(Q(v,w)/Q(u,v), H(u,v))Q(u,v)H(u,v) − Q(v,w)H(v,w))/Qin = 0. (27)
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As the conservation laws andflow ratios are unaffected by normalisation,we can define
the network equations in terms of the flow ratios without changing the solutions to the
network equations. Henceforth, we drop the hat notation in Eq. (25) and all volumetric
flows are normalised.

In addition to normalising the flows, we will also use dimensionless quantities
to describe the pressures and vessel diameters of the network. The pressures are
normalised by replacing pressure the variable Pv with (Pv − P3)/(P1 + P2), and
the boundary pressure parameters Pv with (Pv − P3)/(P1 + P2). The normalised
pressures do not change the equilibria of a network for normalised volumetric flow
variables.

Unlike vessel lengths and network pressures, vessel diameters cannot be replaced
by diameter ratios. This is because changing the scale of the diameters changes the
behaviour of the viscosity equation (see Eq. 3), and the coefficients of the splitting
rule Eq. (14–16). Therefore, we normalise the diameter by units of 1μm.

3.2.2 Network Parameters

When performing bifurcation analysis, unless otherwise stated, we use the following
default parameter values for both networks (see Fig. 2):

P1 = P2 = 0.5, D = 10, α = 0.1, β = 1,

H (1,7) = H (2,8) = H (1,4) = H (2,5) = Hin = 0.45,

where D is the diameter of all network vessels, and α and β are the vessel length
ratios defined in Eqs.(22–24). Thus, we impose symmetric inlet conditions, and fix
a common value for all vessel diameters. Later on, by changing the value of β, we
emphasise the effect of network asymmetry (recall that network asymmetry increases
as |β − 1| increases). We do not choose values for the reference length L because the
value does not effect the values of the dimensionless parameters or variables.

3.3 Numerical Continuation

Given the nonlinearity of the network equations, solving the network equations, and
finding instances of multiple equilibria is difficult. Therefore, we use numerical con-
tinuation to find an initial equilibrium of the network equations, and to generate
bifurcation diagrams of the equilibria. To find an equilibrium of the system of network
equations, we use a homotopy function:

h(H,P, λ) = F(H,P)(1 − λ) + G(H,P)λ, (28)

where F is the set of network equations described in Sect. 3.1, G is a starting system
of equations of our choosing, and λ is a parameter between 0 and 1. If the solution to:

h(H,P, 1) = G(H,P) = 0, (29)

123



Key Structural Features of Microvascular Networks Leading... Page 13 of 27    30 

is known, then a solution to:

h(H,P, 0) = F(H,P) = 0, (30)

can be found by tracking the solution from λ = 1 to λ = 0. λ is tracked by generating
a Davidenko differential equation for h, for which λ is the independent variable and
(H,P) are the dependent variables. This equation is derived by taking the first deriva-
tive of h = 0with respect to λ (Allgower and Georg 2003). Then tracking the solution
as λ is varied is equivalent to numerically solving the Davidenko differential equation
from λ = 1 to λ = 0.

Bifurcationdiagrams for the network equilibria canbe foundusing a similarmethod.
Let λ be a network parameter of interest. If (H0,P0, λ0) is a solution to:

F(H,P, λ) = 0, (31)

then the bifurcation diagramof the equilibria of the system asλ varies can also be found
by tracking a solution to Eq. (31) using a similar Davidenko differential equation.

Further details on numerical continuation and our choice of the starting system
G can be found in Supplementary Material S2. We use Auto (Doedel et al 1999) to
generate the bifurcation diagrams in Sect. 4.

4 Results

In this section we investigate the relationship between network equilibria and flow in
the redundant vessels. We begin by showing how the equilibria of the two networks in
Fig. 2 change as we vary the length ratios, α and β, defined in Sect. 3.2.2. In Sect. 4.1
we vary α and β to investigate the impact of the different length ratios on the number
of equilibria. In Sect. 4.2 we investigate how the number of equilibria change as Hin

and D vary. In Sect. 4.3 we vary the inlet pressures of the extended-triangle network,
and show that the mechanism by which much equilibria emerge is independent of the
choice of splitting rule.

4.1 Effect of VaryingVessel Length Ratios on Network Equilibria

4.1.1 Vessel Length Asymmetry

In this section,wefix the length ratio of the redundant vessels (α = 0.1), and investigate
how the number and nature of the steady-state solutions (network equilibria) change
as the length ratio associated with network asymmetry, β, is varied in the triangle
and extended-triangle networks. We do not vary the reference length, L , because, as
discussed in Sect. 3.2.1, it does not affect the normalised variables of the network and,
hence, the qualitative behaviour of the model solutions.

The results presented in Fig. 3a and b showhow the equilibria of the triangle network
change as β varies. When 0 ≤ β � 0.96, there is a unique solution for which Q〈4,5〉 <

0. When β ≈ 0.96, two additional solution branches emerge from a fold bifurcation,
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withQ〈4,5〉 > 0onboth branches.Asβ increases, one solution branch crossesQ〈4,5〉 =
0 and then collides with the solution branch for which Q〈4,5〉 < 0 at a second fold
bifurcation, when β ≈ 1.04. The value of Q〈4,5〉 on this branch connecting the two
fold bifurcations are intermediate between the corresponding values on the other two
branches, for fixed values of β. The other solution branch persists for all values of
β � 0.96, and is characterised by Q〈4,5〉 > 0. Therefore, the characteristics of the
different solution branches are identifiable by their position on the S-shaped structure
created by the two fold bifurcations. Taken together, Fig. 3a and b show that the solution
branches can be distinguished by the flow in the redundant vessel, but that they are
not uniquely defined by flow direction.

The flow pattern for equilibria on the solution branch connecting the two fold
bifurcations motivates the following definition:

Definition 2 Let 〈x, y〉 be a redundant vessel in a network. Suppose that the network
admits three equilibria which we denote a, b and c. Let Q(i)

〈x,y〉, (i = a, b, c) denote
the associated volumetric flow rates in the redundant vessel. Suppose, further, that
equilibria a and c have negative and positive flows respectively, so that:

Q(a)
〈x,y〉 < 0 < Q(c)

〈x,y〉.

Equilibrium b is said to have intermediate flow in redundant vessel 〈x, y〉 if:

Q(a)
〈x,y〉 < Q(b)

〈x,y〉 < Q(c)
〈x,y〉.

If the flow in the redundant vessel for a particular equilibrium does not satisfy the def-
inition of intermediate flow, then the flow in the redundant vessel is termed positive or
negative depending on its sign. Henceforth, we describe equilibria as having negative,
intermediate or positive flow, or flow state, in a redundant vessel.

Applying Definition 2 to the triangle network (see Fig. 3a and b), we deduce that
the solution branches are characterised by the type of flow in the redundant vessel:

(+) for positive flow (blue curve),

(0) for intermediate flow (green curve),

(−) for negative flow (red curve).

For an equilibrium with intermediate flow, the haematocrit value in the redundant
vessel is approximately 0 due to the form of the splitting rule. The flow ratio must
exceed the threshold coefficient X0 to realise a non-zero haematocrit value (see Eq.
13). For the triangle network, the equilibrium solution with intermediate flow has
Q〈4,5〉 = 0 when β = 1. We conclude that, when β ≈ 1, the flow ratio is less than
X0 and, consequently, there will be no haematocrit in the redundant vessel for most
equilibria with intermediate flow (i.e., H〈4,5〉 = 0).

The asymmetric haematocrit distribution in vessels (4, 6) and (5, 6) is an emergent
property of multiple equilibria in the triangle network. Figure S3 shows how H(4,6)
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and H(5,6) change as β varies. For the (+) equilibrium, we have

H(4,6) > Hin = 0.45 > H(5,6), (32)

and conversely for the (−) equilibrium. Inequality (32) holdswhen the triangle network
is symmetric (β = 1). Asymmetric haematocrit distributions in a symmetric triangle
network arise when there is non-zero flow in the redundant vessel and due to the
plasma skimming property of blood at bifurcation and convergence units (see Section
S3 for details).

Thenotation for theflowstate in a redundant vessel generalises naturally to networks
with multiple redundant vessels. For example, since the extended-triangle network has
two redundant vessels, the possible equilibria can be represented as follows:

(−,−), (−, 0), (−,+),

(0,−), (0, 0), (0,+),

(+,−), (+, 0), (+,+).

As for the triangle network, the extended-triangle network admits multiple equilibria
in a neighbourhood of β = 1 (see Fig. 3c–f). When β is sufficiently small or large, the
extended-triangle network admits a unique equilibrium for which the flow direction in
both redundant vessels is the same. We note that the extended-triangle network admits
multiple equilibria for a larger range of values of β than the triangle network (17.5
times larger).

A similar relationship between the flow in the redundant vessels and the equilibria
can be observed in the bifurcation diagrams of the extended-triangle network. The
bifurcation diagrams for the extended-triangle networks contain eight fold bifurca-
tions, which we refer to as either inner or outer fold bifurcations, depending on their
proximity to β = 1. The two fold bifurcations at β ≈ 0.35 and β ≈ 2.35 are the
two outer fold bifurcations, and the six fold bifurcations at β ≈ 0.96 and β ≈ 1.04
are the inner fold bifurcations. The bifurcation structure between the two outer fold
bifurcations in Fig. 3e are similar to the S-shaped fold bifurcation structure for the tri-
angle network in Fig. 3a. Applying the definition of intermediate flow to the solution
branch connecting the two outer fold bifurcations reveals that these equilibria have
intermediate flow in vessel 〈7, 8〉. The equilibria belonging to the other two solution
branches have either positive or negative flow depending on the sign of Q〈7,8〉. Each
one of these solution branches contain two inner fold bifurcations, these two inner
fold bifurcations also form an S-shaped fold bifurcation structure similar to that of
the triangle network (See Fig. 3c). The solution branches connecting these inner fold
bifurcations are characterised by intermediate flow in vessel 〈4, 5〉, and the other two
solution branches have either positive or negative flow in vessel 〈4, 5〉. Therefore, all
equilibria can be uniquely defined by the combination of flow in the two redundant
vessels.

As with the triangle network, for a given equilibrium solution, haematocrit values
in the redundant vessels can be used to identify redundant vessels with intermediate
flow: H〈7,8〉 ≈ 0 for the (0,−), (0, 0) and (0,+) equilibria, and H〈4,5〉 ≈ 0 for

123



   30 Page 16 of 27 G. Atkinson et al.

the (−, 0), (0, 0) and (+, 0) equilibria. The haematocrit in the redundant vessels is
approximately 0 for the same reason that the haematocrit in the redundant vessel of
the triangle network was approximately 0 for the equilibria with intermediate flow
(Fig. 3b).

The overlap of the regions generated by the inner S-shaped bifurcation structures
on the three coloured solution branches creates a range of values of β for which 9
equilibria exist; and there is a distinct equilibrium for each combination of flow states
in the redundant vessels. This interval is similar in size to that for which the triangle
network admits multiple equilibria. We note further that the range of β values for
which the extended-triangle network admits multiple equilibria can be subdivided
into smaller sub-intervals containing 3, 5, 7 and 9 equilibria.
Every equilibrium of the two networks has a unique combination of flow states in
the two redundant vessels. Therefore, the maximum number of equilibria admitted
by the triangle and extended-triangle networks are 3 and 9 respectively. However, the
networks do not always admit the maximum number of equilibria. Indeed, not every
flow configuration is viable for all sets of parameter values. Regardless of whether a
network admits the maximum number of equilibria, Fig. 3 illustrates that equilibria
can be distinguished by the type of flow in at least one redundant vessel.

4.1.2 Effect of Varying the Length of the Redundant Vessels

Fig. 3 demonstrates that the extended-triangle network possesses more equilibria than
the triangle network and that it admits multiple equilibria for a wider range of values of
β whenwefixα = 0.1.Recall thatα is the ratio of the length of the redundant vessels to
the reference vessel length, and that the hydraulic resistance in a vessel is proportional
to its length. Figure4 shows how the number of equilibria in the extended-triangle
network changes when we vary α and fix β = 1.025. As α increases, the resistance
to flow in the redundant vessels increases. When the resistance becomes sufficiently
large, certain equilibria cease to be valid and pairs of solutionsmeet at fold bifurcations,
causing the number of equilibria to decrease from 9 to 1 as α increases.

4.1.3 Effect of Varying˛ andˇ

Figs. 3 and 4 show how the bifurcation structures of the triangle and extended-triangle
networks change as the length ratios β and α vary. We now perform a more compre-
hensive study, to investigate how the number of equilibria change as α and β vary, for
fixed values of the inlet haematocrit, Hin . The results presented in Fig. 5a and c show
that, when Hin = 0.35 and Hin = 0.45 respectively, the triangle network admits a
unique equilibrium for most values of α and β (we note that Fig. 5c shows the same
information about the triangle network as Fig. 5c and d in (Gardner et al 2010)).There
is a small, tapering region where |β − 1| and α are small, in which three equilibria
exist but this region is much larger when Hin = 0.45. Figure5b and d reveal a similar,
but more detailed, structure for the extended-triangle network, when Hin = 0.35 and
Hin = 0.45 respectively. There is a small, tapering region where |β − 1| and α are
small, in which the extended-triangle network admits 9 equilibria. This region is sur-
rounded by narrow regions in which the network admits 7, 5 and 3 equilibria. Outside
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Fig. 3 Series of bifurcation diagrams showing how the flow and haematocrit in the redundant vessels in the
triangle and extended-triangle networks change as the length ratio β varies. a, b volumetric flow Q〈4,5〉 and
haematocrit H〈4,5〉 in the triangle network. c, f volumetric flows Q〈7,8〉 and Q〈4,5〉, and haematocrits H〈7,8〉
and H〈4,5〉, in the extended-triangle network. Key: each equilibrium is labelled −, 0 or + depending on
whether the flow in the redundant vessels is negative, intermediate, or positive respectfully. The arrows on
the network diagrams indicate the vessels for the corresponding flow plot, and defines which flow direction
is considered positive
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Fig. 4 Bifurcation diagrams showing how the equilibria of the extended-triangle network change as α varies
when β = 1.025. a Q〈4,5〉 . b Q〈7,8〉. Key: for each equilibrium, the flow in the redundant vessels is labelled
−, 0 or+ if it is negative, intermediate, or positive, respectfully, depending on the flow state when α = 0.1.
As α increases, the equilibria meet at fold bifurcations beyond which the equilibria cease to be viable

this region of (α, β) parameter space, the extended-triangle network admits a unique
equilibrium. Figure5e shows how the area of the region of (α, β) parameter space in
which the models exhibit multiple equilibria changes as the inlet haematocrit varies.
For both networks, the total area increases as the inlet haematocrit increases, revealing
that multiple equilibria are more prevalent in the (α, β) plane as Hin increases.

As in Fig. 3, all equilibria have unique flow configurations. When β = 1 and the
networks are symmetric, blood may flow in either direction through the redundant
vessels, and so the networks admit more flow configurations when |β −1| � 1. When
|β − 1| 	 1, the degree of network asymmetry increases and, for most values of α,
both networks admit a unique equilibrium. If, however, α is sufficiently small, then
we continue to observe multiple equilibria: the shorter redundant vessels compensate
for the increased network asymmetry by offering less resistance to blood flow. The
extended-triangle network can accommodate a greater degree of asymmetry because
it has two redundant vessels in which the blood flows in parallel, thus, the resistance is
reduced compared to the single redundant vessel in the triangle network. This effect is
significant because the interval of β for which the extended-triangle network admits
multiple equilibria is up to 17.5 times larger than the interval for the triangle network
when Hin = 0.45 (see Fig. 5c and d).

4.2 Effect of VaryingVessel Diameters and Inlet Haematocrit on the Number of
Equilibria of the Extended-Triangle Network

In Sect. 4.1 we observed that hydraulic resistance influences the number of equilibria
in a given network. In this section we extend that analysis by studying the effect of
resistance changes induced by varying the blood viscosity. As discussed in Sect. 3.2.1,
the relative viscosity of the blood depends nonlinearly on the vessel’s haematocrit
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Fig. 5 Regions distinguished by the number of equilibria admitted by the triangle and extended-triangle
networks, as the length ratios α and β vary for different inlet haematocrit values, Hin . a, b The regions of
(α, β) parameter space for the triangle and extended-triangle networks, when Hin = 0.35, respectively. c,
d The regions of (α, β) parameter space for the triangle and extended-triangle networks, when Hin = 0.45,
respectively. e Stacked bar chart showing how the size of the areas of (α, β) parameter space in which the
two networks admit multiple equilibria change as we vary the inlet haematocrit, Hin . The left bar stack of
each pair corresponds to the triangle network and the right stack to the extended-triangle network. The insets
in (a), (b) and (d) are zoomed in views of the region surrounding β = 1. As expected, the extended-triangle
network admits multiple equilibria over a larger region of (α, β) parameter space
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and diameter values (Eq. 3). When D is varied, this nonlinearity alters the daughter to
parent vessel flow ratios at equilibrium and, hence, the haematocrit values also change.
Accordingly, we now investigate the effect of varying the vessel diameter D and the
inlet haematocrit Hin .

In Fig. 6 we show how the equilibria of the extended-triangle network change when
D = 10, and Hin varies. When Hin = 0, there is no haematocrit in any vessel
and the network equations are linear, and so the extended-triangle network admits
a unique equilibrium for which Q〈7,8〉 = Q〈4,5〉 = 0. As Hin increases, equilibria
emerge at fold bifurcations until 9 equilibria with unique flow configurations exist.
We term the values of Hin at these fold bifurcations as critical values of the extended-
triangle network. The value of Hin at the fold bifurcations close to Hin ≈ 0.32
coincides with the emergence of (+,+) and (−,−) equilibria and, therefore, we refer

to this critical value as H
(3)
in . The extended-triangle network admits 5 equilibria in

the interval (H
(3)
in , H

(3)
in + ε). However, since 0 < ε � 1, and two of the equilibria

meet at a bifurcation, we neglect this small interval of 5 equilibria when describing the

bifurcation structure. We also identify H
(5)
in and H

(9)
in , critical values of Hin at which

5 and 9 equilibria emerge, respectively.
We identified the critical inlet haematocrit values for D ∈ [10, 200]. Figure7

partitions the (D, Hin) plane into distinct regions according to the number of equilibria
admitted by the extended-triangle network. The boundary between these regions are
critical values of the inlet haematocrits. As in Fig. 6, the extended-triangle network
admits a unique equilibrium when Hin = 0, and the number of equilibria increases
as Hin increases until the network admits 9 equilibria. This trend is consistent for all
values of D, and shows that the network is more likely to admit multiple equilibria
when the value of Hin is large. One possible explanation for this phenomenon is that
multiple flow pathways arise in response to more RBCs in the network. When the
inlet haematocrit is small, the RBCs have sufficient space within the side vessels, and
the redundant vessels remain empty or almost empty. Larger inlet haematocrit values
introduce additional RBCs that are redirected down the redundant vessels to account
for the increased mass moving through the network. As the extended-triangle network
is geometrically symmetric, the blood flowing in one direction in a redundant vessel
is equivalent to the blood flowing in the opposite direction, therefore, the number of
equilibria increases due to the increased number of viable flow pathways.

In Fig. 6, the values of H
(3)
in and H

(9)
in are close together when D = 10. This behaviour

ismirrored by the small region of 3 equilibria that separates regions of 1 and 9 equilibria
in Fig. 7. The insets in Fig. 6 also reveal a region of 5 equilibria which emerges at a

critical value of H
(5)
in for which (+, 0) and (−, 0) equilibria are created. This region

is small in comparison to the size of the other regions because the critical value H
(9)
in ,

at which the (+,−), (0,−), (0,+) and (−,+) equilibria emerge, is only slightly

larger than H
(5)
in (0 < H

(9)
in − H

(5)
in � 1). This trend continues as D increases until

D ≈ 25. At this vessel diameter, the network admits a critical value H
(7)
in instead

of H
(5)
in because, as Hin increases, the (+,−), (0,−), (0,+) and (−,+) equilibria

emerge before the (+, 0) and (−, 0) equilibria. This new region of 7 equilibria remains
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Fig. 6 Bifurcation analysis of the equilibria of a symmetric extended-triangle network (Fig. 2b, with β = 1,
α = 0.1) as the inlet haematocrit varies. We plot the flow in the redundant vessels. a Q〈4,5〉, b Q〈7,8〉)
associated with each equilibrium as the inlet haematocrit varies. Solution branches associated with different
flow configurations meet at fold bifurcations whose locations determine the smallest haematocrit values

H
(3)
in , H

(5)
in , and H

(9)
in , at which the network admits 3, 5 and 9 equilibria, respectively. The insets aremagnify

the behaviour near points of interest

small. The regions containing 5 and 7 equilibria are visible in Fig. 7b and d, and the
point at which the network transitions between the two regions is visible in Fig. 7c.

In Fig. 7, the curves separating regions of the (D, Hin) plane containing 1, 3 and 9

equilibria are approximately parallel to each other. On these critical curves, H
(3)
in and

H
(9)
in attain their maximum values at approximately the same value of D (D ≈ 50),

and then decrease to constant values as D → ∞. A similar pattern was observed by
Gardner et al (2010) for the triangle network when the same parameters were varied
(see Figure 7a in their paper).

The functional form of the relative viscosity provides a heuristic explanation of this
behaviour. Recall that

μ(H , D) = μp

[
1 + (μ45 − 1)

(
(1 − H)C − 1

0.55C − 1

)(
D

D − 1.1

)2](
D

D − 1.1

)2

.

(33)

If D 	 10, then, from Eqs. (5 and 4) the parameters C and μ45 are approximately
constant:

C ≈ −0.8 and μ45 ≈ 3.2, (34)

and Eq. (33) reduces to give

μ(H , D) ≈ μp

(
1 + 2.2

(
(1 − H)−0.8 − 1

0.55−0.8 − 1

)
μp ≡ μ(rel)∞ (H). (35)
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With μ(rel)(H , D) ≈ μ
(rel)∞ (H), the volumetric flow Q(x,y) in vessel (x, y) can be

approximated as follows:

Q(x,y) ≈ (Px − Py)D4π

128L(x,y)μpμ
(rel)∞ (H(x,y))

. (36)

As the network equations are defined in terms of flow ratios, if we use Eq. (36) to
approximate Eq. (9) and scale by the inlet flow (see Eq. (25)), then the network
equilibria do not change as D varies. We conclude that for sufficiently large values of
D (D 	 10), the network equilibria are independent of the diameter D.

The above explanation neglects the impact that vessel diameters have on the split-
ting rules. In practice, the coefficients of the splitting rule usually depend on vessel
diameters. Consider, for example, the model proposed by Pries et al (1990), where
the splitting rule depends on the vessel diameters (Eqs. (14–16)). However, these
coefficients can also be approximated by constants for sufficiently large values of D,
therefore, the effect of the coefficients of the splitting rule are also negligible.

Although we have not considered vessel length in this section, we note that the
vessel length to diameter ratio might be unrealistic for a range of values of D that
we have considered. However, we have chosen not to vary the reference vessel length
L because as discussed in Sects. 3.2.1 and 4.1.1, the value of L does not affect the
normalised variables.

4.3 Different Splitting Rules

In addition to varying geometric parameters for the triangle and extended-triangle net-
works, we also varied the inlet pressures (Figures S4 and S5) for the extended-triangle
network and compared the equilibrium solutions for five splitting rules, including the
Pries 1990 splitting rule. Our results are presented in Supplementary Material S4 and
show that the equilibria emerge in sets of three, distinguished by the flow in one of
the redundant vessels, regardless of the choice of splitting rule.

5 Conclusions

In this paper, we have performed a systematic bifurcation analysis of two idealised
networks, the triangle and extended-triangle networks, to investigate how the number
of steady flow solutions changes as vessel length ratios and vessel diameters vary.
In so doing, we have identified a consistent relationship between multiple equilibria
and network redundancy, whereby multiple equilibria arise from the multiple flow
directions that can be realised in redundant vessels. Other authors have identified
multiple equilibria in idealised networks and observed that some of these equilibria
differ in terms of the flow direction through one or more vessels (Gardner et al 2010;
Karst et al 2017). However, to our knowledge, we are the first to identify redundant
vessels as the key vessels for generating multiple equilibria. Furthermore, we can
distinguish equilibria by characterising the flow in the redundant vessels as negative,
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Fig. 7 Bifurcation diagram showing how the (D, Hin) plane partitions into distinct regions according to
the number of equilibria admitted by the extended-triangle network

intermediate or positive. By focusing on the triangle and extended-triangle networks,
we have demonstrated the impact of additional network redundancy on themultiplicity
of equilibria.Byextrapolatingourfindings,wepredict that the number of equilibria that
a network admits is limited by the number of permutations of negative, intermediate
and positive flow across its redundant vessels.

The type of flow in the redundant vessels is identifiable from the structure of the
bifurcation diagrams. For example, the solution branches of the bifurcation diagrams
of the triangle and extended-triangle networks in Fig. 3 contain a common S-shaped
bifurcation structure coinciding the with different flow states in the redundant vessels.
Both networks have a common length ratio, β, which controls the degree of network
asymmetry. The bifurcation diagram of the flow in the redundant vessel of the triangle
network in Fig. 3a contains the S-shaped structure created by the two fold bifurcations
as β varies. Therefore, the equilibria belonging to the solution branch connecting the
two fold bifurcations clearly have intermediate flow.

The bifurcation diagram for the extended-triangle network as β varies in Fig. 3c
and e shares the same S-shaped fold bifurcation structure. We distinguish between
fold bifurcations base upon their distance to β = 1: we refer to fold bifurcations close
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to this value as inner fold bifurcations, and bifurcations which are further away are
referred to as outer fold bifurcations. The bifurcation diagram contained two outer fold
bifurcations, and six inner fold bifurcations. The structure of the solution branches
between the outer fold bifurcations is similar to the S-shaped bifurcation structure
observed in the bifurcation diagram for the triangle network. Therefore, the extended-
triangle network admits three solution branches between the twoouter fold bifurcations
which are characterised by different flow in the first redundant vessel, closest to the two
inlets. Each one of these solution branches contain a S-shaped bifurcation structure
coinciding with different flow states in the second redundant vessel. The S-shaped
bifurcation structure, for each of the redundant vessels, was also present when the
inlet pressures of the extended-triangle network were varied in Sect. 4.3. Hence the
bifurcation diagrams of varying β and the inlet pressures could be used to identify the
combinations of flow in the two redundant vessels of the extended-triangle network.

Network redundancy does not guarantee the existence of multiple equilibria. For
example, as a network becomes more asymmetric, the number of equilibria decreases,
with highly asymmetric networks admitting a unique equilibrium. While it is not
feasible to exhaustively test every parameter in the two networks studied in this paper,
the relationship between the existence of multiple equilibria and flow is consistent
across a wide range of vessel length ratios and vessel diameters. Furthermore, network
redundancy may increase the range of parameter values for which multiple equilibria
are found. For example, the interval of β for which the extended-triangle network
admitted multiple equilibria was 17.5 times larger than in the interval of multiple
equilibria for the triangle network in Fig. 3. This effect is particularly prominent when
the redundant vessels are short relative to other vessels (see Fig. 5). Building upon this
result, we hypothesise that networks with shorter redundant vessels, a characteristic
of vasculature known to be present in tumours (Bernabeu et al 2020), are more likely
to admit multiple equilibria.

Our results suggest that networks which are symmetric and contain more redundant
vessels admit more equilibria than asymmetric networks with fewer redundant vessels.
However, in diseases, such as cancer, the vasculature is often highly irregular, with
heterogeneity in vascular density, and abnormal dilation in some vessels (Jain 2005).
Our network analysis suggests that such asymmetric tumour vasculature is unlikely
to admit multiple equilibria. However, our results also indicate that networks with a
greater number of redundant vessels admit multiple equilibria across a wider range of
parameter values. Therefore, if a tumour vascular network contains greater redundancy
than the surrounding healthy vasculature, then we predict that it will admit more equi-
libria than the healthy vasculature. In order to estimate a network’s redundancy, we can
use Topological Data Analysis (TDA) to count the number of looped structures. Con-
sider, for example, the difference between the triangle and extended triangle networks:
the extended triangle network contains an additional loop and an additional redundant
vessel. Stolz et al (2022) used TDA to quantify the number of loops in large, tumour
vascular networks. Their analysis revealed that networks exposed to anti-angiogenic
agents contained fewer loops than untreated networks. In future work, it would be
interesting to investigate the relationship between the number of equilibria and the
number of loops admitted by a tumour vascular network.
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Most studies linking blood flow to the emergence of hypoxia in tumours conclude
that hypoxia arises from the non-uniform distribution of haematocrit associated with
a unique stable equilibrium (Bernabeu et al 2020; Sweeney et al 2018). The source of
heterogeneity is often attributed to abnormal vesselmorphology in large heterogeneous
vascular networks. Here, we have shown that relatively small networks with redundant
vessels may admit multiple equilibria. Furthermore, in Sect. 4.1, we saw how network
redundancy can generate flow solutions with asymmetric haematocrit distributions
in the symmetric triangle network. We conclude that multiple equilibria could be an
additional cause of hypoxia within tumours. Therefore, in future work it would be
of interest to investigate whether the existence of multiple equilibria is linked with
heterogeneous haematocrit distributions in large vascular networks.

It would also be of interest to characterise the stability of the different equilibria
and to investigate whether the networks admit oscillatory solutions. Ben-Ami et al
(2022) linkedmultiple equilibriawith the existence of oscillatory bloodflowdynamics,
and suggested that similar oscillations may be responsible for cycling hypoxia in the
tumour microenvironment (ie short term fluctuations between normoxic and hypoxic
conditions(Michiels et al 2016)). Another possible cause of cycling hypoxia, that
we will investigate in future work, is stochastic switching between different stable
equilibria.
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