S3 CME for discrete model

Let $q(n_1, n_2, t)$ be the density for n_1 sensitive cells and n_2 resistant cells. Let λ_i denote the proliferation rate of each cell population, and δ_i denote the death rate of each cell population (one of which will be zero). We have that

$$\frac{\mathrm{d}q(n_1, n_2, t)}{\mathrm{d}t} = (n_1 - 1)\lambda_1 q(n_1 - 1, n_2, t) + (n_1 + 1)\delta_1 q(n_1 + 1, n_2, t)
+ (n_2 - 1)\lambda_2 q(n_1, n_2 - 1, t) + (n_2 + 1)\delta_2 q(n_1, n_2 + 1, t)
+ n_1 r_{12} q(n_1 + 1, n_2 - 1, t) + n_2 r_{21} q(n_1 - 1, n_2 + 1, t)
- (n_1 \lambda_1 + n_1 \delta_1 + n_2 \lambda_2 + n_2 \delta_2) q(n_1, n_2, t).$$
(1)

To obtain the mass function for the total cell count, q(n,t), we consider that

$$q(n,t) = \sum_{n_1=0}^{\infty} q(n_1, n - n_1, t).$$
 (2)

In practice, we consider a partial sum truncated at $n_1 = 50$, which we find to be sufficient given the maximum cell counts observed in Fig. 8 of the main text.