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  Abstract
Intratumour phenotypic heterogeneity is understood to play a critical role in disease 
progression and treatment failure. Accordingly, there has been increasing interest 
in the development of mathematical models capable of capturing its role in cancer 
cell adaptation. This can be systematically achieved by means of models compris-
ing phenotype-structured nonlocal partial differential equations, tracking the evo-
lution of the phenotypic density distribution of the cell population, which may 
be compared to gene and protein expression distributions obtained experimentally. 
Nevertheless, given the high analytical and computational cost of solving these 
models, much is to be gained from reducing them to systems of ordinary differential 
equations for the moments of the distribution. We propose a generalised method of 
model-reduction, relying on the use of a moment generating function, Taylor series 
expansion and truncation closure, to reduce a nonlocal reaction-advection–diffusion 
equation, with general phenotypic drift and proliferation rate functions, to a system 
of moment equations up to arbitrary order. Our method extends previous results 
in the literature, which we address via three examples, by removing any a priori 
assumption on the shape of the distribution, and provides a flexible framework 
for mathematical modellers to account for the role of phenotypic heterogeneity in 
cancer adaptive dynamics, in a simpler mathematical framework.

1  Introduction

Intratumour heterogeneity is increasingly understood as a primary determinant of 
disease progression and therapeutic response in solid cancers (McGranahan and 
Swanton 2017; Burkhardt et al. 2022; Marine et al. 2020). While this heterogene-
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ity has long-been viewed through the lens of clonal differences, recent experimental 
and clinical studies have implicated non-genetic heterogeneity as a driver of drug 
resistance and treatment failure (Bell and Gilan 2020; Hanahan 2022; Labrie et al. 
2022). The Epithelial-Mesenchymal Transition (EMT) is a well-studied example of 
non-genetic resistance (Shi et al. 2023; Hanahan 2022), although a multitude of other 
examples exist, including adaptive rewiring of the mitogen activated protein kinase 
pathway (Labrie et al. 2022), and drug tolerant persisters in non-small cell lung can-
cer (Sharma et al. 2010; Goldman et al. 2015). Alongside its role in the development 
of drug-resistance, non-genetic plasticity is at the core of metabolic and morpho-
logical changes in cancer cells that facilite their metastatic spread and survival in 
harsh environments (Mosier et al. 2021; Shen and Clairambault 2020; Tasdogan et al. 
2020).

Recent studies indicate that epigenetic regulation of genetically identical cancer 
cells induces a reversible drug-tolerant phenotype that expands during anticancer 
therapy (Kavran et al. 2022; Shaffer et al. 2017). In particular, transcriptomic data 
have identified reversible phenotypic changes that drive the development of resis-
tance to targeted anti-cancer therapies and are mediated by a number of complex 
physiological factors (Kavran et al. 2022; Shaffer et al. 2017). Indeed, recent advances 
in multi-omics techniques have illustrated the complex dynamics of gene and protein 
expression that drive phenotypic plasticity (Chen et al. 2023; Tirosh et al. 2016). This 
ability to characterise population-level phenotypic plasticity permits a deeper under-
standing of evolution of non-genetic intratumour heterogeneity and the population 
distribution in phenotype space. Consequently, these experimental advances facili-
tate the development of mathematical models designed to capture both the shape and 
evolution of the phenotypic distribution of cancer cells.

Accordingly, there has been increased interest in the development of mathemati-
cal models to characterise the role of phenotypic heterogeneity in drug resistance 
and tumour progression (Clairambault and Pouchol 2019; Marusyk et al. 2020). A 
variety of deterministic and stochastic modelling frameworks have been proposed to 
study the evolutionary dynamics of phenotype-structured populations  (Cassidy et al. 
2021; Gunnarsson et al. 2020; Anderson et al. 2006; Stace et al. 2020). Many exist-
ing models of phenotypic plasticity have focused on characterising the dynamics of a 
fixed and finite number of phenotypes, with transitions between these discrete states 
corresponding to an evolutionary game (Kareva 2022; Craig et al. 2019; Kaznatcheev 
et al. 2019; West et al. 2018). This discrete-phenotype framework is particularly com-
mon in the study of cancer treatment and relies on the assumption of the existence 
of drug-sensitive and drug-resistant subpopulations (Smalley et al. 2019; Craig et al. 
2019; Cassidy and Craig 2019). However, as the role of continuously increasing lev-
els of drug resistance has become apparent in driving treatment response, there has 
been increased interest in understanding the adaptive dynamics that drive short-term 
phenotypic adaptation in response to, for example, the application of chemothera-
peutic drugs. Moreover, the relevance of capturing phenotypic variants on a contin-
uum extends beyond the study of the development of drug resistance, as phenotypic 
changes in cells are mediated by variations in the level of expression of relevant 
genes and proteins, which are indeed measured on a continuum.
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Dieckmann and Law (1996) proposed an adaptive dynamics framework to explic-
itly capture the dynamics of the continuous adaptation of the mean phenotypic state, 
with population level heterogeneity captured by means of stochastic fluctuations in 
phenotype space, specifically focusing on ‘mutation-selection’ dynamics which are 
easily transferable to the study of cancer (Aguadé-Gorgorió and Solé 2018; Martinez 
et al. 2021). Moreover, their derivation of an ODE system for the dynamics of the 
mean evolutionary path inspired many deterministic studies, generally more ame-
nable to analytical investigations (Gunnarsson et al. 2020; Altrock et al. 2015), of 
adaptive dynamics relying on the simplifying assumption of a monomorphic popula-
tion (Coggan and Page 2022; Martinez et al. 2021; Vincent and Brown 2005). These 
models often comprise a system of ordinary differential equations (ODEs) that model 
the evolution of both the population size and the mean trait m1(t). Nonetheless, as 
increasing importance is being attributed to population-level heterogeneity, we focus 
on deterministic frameworks providing a mean-field macroscopic description of sto-
chastic, individual-cell dynamics, that do not rely on the limiting assumption of a 
monomorphic population.

The resulting modelling approach typically describes the time-evolution of the 
entire phenotypic density function, denoted p(t, x). The dynamics of the population, 
which is continuously structured by the variable x in phenotype space, are modelled 
by a nonlocal partial differential equation (PDE) which typically takes the form of 
a reaction-advection–diffusion equation. Equations of this type may be studied with 
the theory of semigroups of operators, fixed point theorems in Banach spaces, and 
numerical methods, with semi-classical asymptotic methods having become increas-
ingly popular to study certain limit cases  (Chisholm et al. 2016c; Dieckmann and 
Law 1996; Düll et al. 2021; Perthame 2006; Perthame and Barles 2008).

This framework explicitly captures the continuous phenotypic adaptation of the 
population while preserving information on population-level heterogeneity, and is 
becoming increasingly common as experimental advances allow for direct charac-
terisation of cancer cell phenotypes. For example, Almeida et al. (2024) and Celora 
et al. (2022) leveraged time-resolved flow cytometry experiments to inform a struc-
tured PDE model of adaptation to nutrient or oxygen deprivation. Notably, in these 
works the phenotypic state x is interpreted as the level of expression of a certain gene 
or protein, although this need not be the case (Chisholm et al. 2015; Cho and Levy 
2018b).

Although phenotype-structured PDEs carry increased biological relevance in the 
context of heterogeneous tumours, they pose a set of challenges that do not apply to 
standard ODE modelling frameworks. For example, it is possible to establish the exis-
tence of equilibrium solutions of these PDE models via fixed point approaches in an 
appropriate Banach space. However, this fixed-point approach may not be construc-
tive and is more mathematically involved than calculating equilibrium solutions of 
ODE models, which typically only involves solving a possibly non-linear set of equa-
tions. In addition, numerical methods for PDEs are typically implemented on a case-
by-case basis, while highly efficient and accurate solvers for ODEs are found in most 
software packages. As parameter estimation typically involves many model simula-
tions, the increased numerical efficiency of solving ODE is magnified when calibrat-
ing these models against experimental data. Multi-omics approaches that characterise 
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the phenotypic distribution of tumours are becoming increasingly common. Never-
theless, experimental machines providing a full characterisation of gene and protein 
expression distributions (e.g. via flow cytometry or mass spectronomy) are yet to be 
widely available in experimental facilities due to their elevated cost, and more acces-
sible techniques (e.g. Western blotting or RNA-seq) may only describe lower order 
moments– such as the mean and variance– of the phenotype distribution. Here, we 
develop a technique to reduce phenotype-structured PDEs to a system of ODEs for 
the moments characterising the phenotypic density function p(t, x). This reduction 
will allow modellers to use existing technical tools for ODE models, such as those for 
identifiability analysis, sensitivity analysis, and model parameterisation, while main-
taining the biological relevance and interpretability of the phenotype-structured PDE. 
A similar approach has been applied in mathematical oncology (Almeida et al. 2024; 
Ardaševa et al. 2020; Lorenzi et al. 2015; Villa et al. 2021), generally building on the 
model reduction procedure developed by Almeida et al. (2019) and Chisholm et al. 
(2016b). There, the authors showed that if the initial phenotypic density distribution, 
with x ∈ R, is normally distributed with mean m1(0) and variance σ2(0), then under 
further restrictions on the population net-proliferation rate and phenotypic drift rates, 
it is possible to obtain explicit ODEs for m1(t) and σ2(t). However, while protein 
expression distributions may be approximately normal in some cases (Almeida et al. 
2024), the assumption that the phenotypic trait x is unbounded and possibly negative 
is not, in general, compatible with biological data. Moreover, the additional restric-
tions on the functional forms of terms relating to proliferation rate and phenotypic 
drift in these studies reduce the model applicability to a limited range of biological 
scenarios.

Here, we propose a generalised method to reduce phenotype-structured PDEs 
modelling cell adaptive dynamics to a system of ODEs for the moments character-
ising the phenotypic density function p(t, x). Our method allows us to extend the 
analysis presented in Almeida et al. (2019); Chisholm et al. (2016b); Lorenzi et al. 
(2015) by: 

(i)	 Relaxing the assumption of an unbounded phenotype space, thus working in a 
more biologically relevant phenotypic domain;

(ii)	 Removing all a priori assumptions on the shape of the distribution;
(iii)	Removing the additional restrictions on the phenotypic drift and net proliferation 

rate terms.

The model reduction procedure relies on the use of the moment generating func-
tion of the phenotypic distribution and techniques such as Taylor series expansion 
and moment closure that have previously been used in the stochastic modelling lit-
erature (Engblom 2006; Kuehn 2016; Fan et al. 2016; Schnoerr et al. 2017; Wagner 
et al. 2022). We thus obtain a system of ODEs for the moments characterising the 
phenotypic density function up to an arbitrary order. The remainder of the manuscript 
is structured as follows. After introducing the general phenotype-structured reaction-
advection–diffusion equation in Sect. 2, we demonstrate the model reduction proce-
dure in Sect. 3, compare results with several examples from the extant literature in 
Sect. 4, before concluding with a discussion in Sect. 5.
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2  A general phenotype-structured PDE model of cell adaptive 
dynamics

Let p(t,  x) denote the phenotypic density function of the population at time t, 
i.e. the density of cells in the phenotypic state x ∈ Ω ⊂ R at time t ∈ R⩾0, with 
Ω := [l, L] (0 < l < L) a compact and connected set. The population size at time t, 
P(t), is obtained by integrating over all possible phenotypes and is given by

	
P (t) =

∫

Ω
p(t, x)dx.� (1)

We assume that p(t, x) satisfies the following PDE

	
∂tp(t, x) − β∂2

xxp(t, x) + ∂x

[
V (t, x)p(t, x)

]
=

(
f(t, x) − P (t)

κ

)
p(t, x),� (2)

for t > 0 and x ∈ Ω. Eq. (2) is complemented with no flux boundary conditions

	 β∂xp + V (t, x)p = 0 for x ∈ ∂Ω,� (3)

where we denote the boundary of Ω by ∂Ω, and the initial condition

	
p(0, x) = p0(x) ⩾ 0, with

∫

Ω
p0(x)dx > 0,� (4)

where p0(x) denotes the phenotypic density function at time zero.
The second term on the left-hand-side of Eq. (2) models spontaneous phenotypic 

changes as a diffusive flux (Chisholm et al. 2016b, a; Cho and Levy 2018a) with con-
stant diffusion coefficient β ⩾ 0. The third term on the left-hand-side of Eq. (2) models 
environment-driven phenotypic changes by an advection term (Almeida et al. 2024; 
Celora et al. 2021) with velocity V(t, x), the time-dependency of which is likely medi-
ated by some environmental factor denoted by c(t) ⩾ 0, i.e. V (t, x) ≡ V (c(t), x). 
The reaction term on the right-hand-side of Eq. (2) models phenotype-dependent cell 
proliferation and death as in the non-local Lotka-Volterra equation  (Perthame and 
Barles 2008). The phenotype-dependent intrinsic growth rate f(t, x) is likely mediated 
by some environmental factor c(t), i.e. f(t, x) ≡ f(c(t), x), while the rate of death 
due to competition for space depends on the population size P(t), defined in (1), and 
the constant carrying capacity coefficient κ > 0.

We assume that the functions f(t, x) and V(t, x) are continuous in x at each point 
in time, i.e.

	 f(t, ·) ∈ C0(Ω) and V (t, ·) ∈ C0(Ω), ∀ t ∈ R⩾0 ,� (5)

and bounded in t for each phenotypic state, i.e.
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	 fm ⩽ f(·, x) ⩽ fM and Vm ⩽ V (·, x) ⩽ VM , ∀x ∈ Ω ⊂ R .� (6)

Models comprising PDEs in the form of Eq.  (2) can be formally derived from 
stochastic individual based models in the continuum, deterministic limit, see for 
instance (Champagnat et al. 2002, 2006; Chisholm et al. 2016b; Stace et al. 2020) 
and references therein. In particular, the diffusion and drift terms emerge as the mac-
roscopic deterministic description of a biased random walk (Chisholm et al. 2016b; 
Lorenzi et al. 2020; Stace et al. 2020). In the stochastic and statistical literature, the 
left-hand-side of Eq. (2) is usually thought of as a Fokker-Planck equation (or equiva-
lently, a Kolmogorov forward equation) (Kadanoff 2000), which arises as the govern-
ing equation for the probability density function of a set of non-interacting particles 
undergoing a biased diffusion process in x.

Remark 2.1  The phenotypic state x of a cell can be interpreted directly as the cel-
lular level of expression of some gene and/or protein which mediates the observable 
characteristics and behaviour of the cell, relevant to the specific problem of interest. 
Due to natural biological constraints, gene and protein expression levels live in a 
bounded domain, as already clarified in the Introduction, motivating the choice of 
Ω := [l, L] ⊂ R. The value of l and L, i.e. the lowest and highest gene/protein expres-
sion levels realistically admissible, should be carefully selected by the modeller and 
inferred from biological data. In practice, these bounds encompass the entirety of the 
observable data. Consequently, gene/protein expression levels outside Ω are expected 
to be biologically infeasible and can be neglected.

3  Reduction to a system of ODEs characterising the phenotypic 
distribution

The structured PDE (2) captures the dynamics of the density of cells in phenotype-
space. However, the density of cells with a given phenotype is unlikely to be the 
object of experimental or clinical interest. Rather, the evolution of the population 
size and distribution in phenotype space is relevant for understanding phenotypic 
adaptation. Consequently, we now generate a system of ODEs to characterise the 
population distribution in phenotype space. We begin by considering the size of the 
total population, P(t).

3.1  The total cell population

The population size P(t) only depends on time due to the integration over phenotype 
space. We can therefore derive an integro-differential equation for the population size 
P(t).

Lemma 3.1  Let p(t, x) satisfy Eq.  (2), with f satisfying assumption (6), along with 
boundary conditions (3), initial conditions (4) and definition (1). The population size 
P(t) evolves according to the integro-differential equation
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d
dt

P (t) =
∫

Ω
f(t, x)p(t, x)dx − P 2(t)

κ
,� (7)

complemented with the initial condition

	
P (0) =

∫

Ω
p0(x)dx > 0.� (8)

Moreover, under the assumption in Eq (5), we have that

	 0 < P (t) ⩽ P < ∞, ∀t ⩾ 0.� (9)

The proof follows standard calculations, cf. Appendix A.

3.2  The moment generating function

In Lemma 3.1, we derived an integro-differential equation for the population size 
P(t). However, this integro-differential equation explicitly depends on the pheno-
typic density function. Rather than studying this explicitly, we instead characterise 
p(t, x) by recasting it as a probability distribution in phenotype space and studying 
the moments of this distribution. Hence, in what follows, we consider the phenotypic 
density function scaled by the total population size

	
p̂(t, x) = p(t, x)

P (t)
.� (10)

The distribution p̂(t, x) encodes a time-dependent probability measure µ(t) over phe-
notype space. This measure µ(t) has a Radon-Nikoydym derivative with respect to 
the Lebesgue measure λ given by the distribution p̂(t, x), i.e.

	
dµ

dλ
= p̂(t, x).

This measure µ(t) and the population size P(t) is sufficient to describe the phenotype-
structured population p(t, x). In what follows, we develop a system of ODEs to char-
acterise the moments of the distribution p̂(t, x); Curto and di Dio (2023) performed 
a similar analysis for the heat equation. We consider the moment generating function 
of the distribution p̂(t, x), given by

	
M(s, t) =

∫

Ω
esxp̂(t, x)dx.� (11)

We see from this definition that M(0, t) = 1 due to the scaling of p̂(t, x) by the total 
population size at all times t. The higher moments of p̂(t, x), where mk(t) denotes 
the k-th moment, are given by
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	 mk(t) = ∂k
s M(s, t)|s=0 for k ⩾ 1.� (12)

Similar to Curto and di Dio (2023), these higher moments are explicitly time depen-
dent. As Ω is compact, it follows from the Stone-Weierstrass theorem and the solu-
tion of the Hausdorff Moment Problem that the sequence of moments, {mk(t)}∞

k=1, 
uniquely determines the distribution p̂(t, x). Indeed, if Ω is not compact, as in some 
of our examples, then the mapping between moments and distribution is more subtle.

Using the definition (10), the ODE for the evolution of the population size P(t) in 
Eq. (7) becomes

	
d
dt

P (t) =
(∫

Ω
f(t, x)p̂(t, x)dx − P (t)

κ

)
P (t).� (13)

We note that P(t) thus satisfies a generalized logistic equation with growth rate and 
carrying capacity dependent on the phenotypic distribution p̂(t, x). Thus, we now 
focus on the evolution of p̂(t, x).

3.3  A system of integro-differential equations for the moments of p̂(t, x)

Proposition 3.2  Let p(t, x) satisfy Eq. (2), along with boundary conditions (3), initial 
conditions  (4) and definition  (1). Then, the 0-th moment of p̂(t, x) defined in  (10) 
is m0 (t) = 1  for all t ⩾ 0  and, under assumption (5), the moments mk(t) (k ∈ N, 
k ⩾ 1 ) satisfy the following system of integro-differential equations

	

d
dt

m1(t) = [−β [p̂(t, x)] |∂Ω

+
∫

Ω
V (t, x)p̂(t, x)dx +

∫

Ω
xf(t, x)p̂(t, x)dx − m1(t)

∫

Ω
f(t, x)p̂(t, x)dx

]
,

d
dt

mk(t) = βk(k − 1)mk−2(t) − βn
[
xk−1exsp̂(t, x)

]
|∂Ω + k

∫

Ω
xk−1V (x, c)p̂(t, x)dx

+
∫

Ω
xkf(x, c)p̂(t, x)dx − mk(t)

∫

Ω
f(x, c)p̂(t, x)dx k ⩾ 2,




�(14)

complemented with initial conditions

	
mk(0) =

(
1∫

Ω p0(s)ds

) ∫

Ω
xkp0(x)dx, for k ⩾ 1� (15)

and the identity m0 (t) = 1  for all t ⩾ 0 .

Proof  The proof of Proposition 3.2 relies on the use of the moment generating func-
tion of the distribution, introduced in Eq. (11) of Section 3.2, to derive the higher 
order moments.

Step 1: 0-th moment. It follows immediately from the definition of p̂(t, x) in 
Eq. (10) and the moment generating function in Eq. (11) that m0(t) = 1 for all time.
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Step 2: evolution of the moment generating function. We multiply Eq.  (2) by esx 
and integrate with respect to x to find

	

∂t

[∫

Ω
esxp(t, x)dx

]
−

∫

Ω
(esx∂x [β∂xp(t, x) − V (t, x)p(t, x)]) dx

=
∫

Ω

(
f(t, x) − P (t)

κ

)
esxp(t, x)dx.

Multiplying the first term by unity, i.e. by P(t)/P(t), and using definition (11) yields

	

∂t [M(s, t)P (t)] −
∫

Ω
(esx∂x [β∂xp(t, x) − V (t, x)p(t, x)]) dx

=
∫

Ω

(
f(t, x) − P (t)

κ

)
esxp(t, x)dx.

The second term on the left-hand-side can be integrated by parts twice and, after 
imposing boundary condition Eq. (3), this gives

	

∫

Ω
esx∂x [β∂xp(t, x) − V (t, x)p(t, x)] dx

= −sβ[exsp(t, x)] |∂Ω + βs2M(s, t)P (t) + s

∫

Ω
esxV (t, x)p(t, x)dx.

Altogether this gives

	

P (t)∂tM(s, t) + M(s, t) d
dt

P (t) = −sβ[exsp(t, x)] |∂Ω + βs2M(s, t)P (t)

+ s

∫

Ω
esxV (x, c)p(t, x)dx

+
∫

Ω
f(x, c)esxp(t, x)dx − P (t)

κ
M(s, t)m0(t).

Substituting (7) and diving by P (t) > 0, which is non-zero as proved in Lemma 3.1, 
we find

	

∂tM(s, t) = −sβ[exsp̂(t, x)] |∂Ω + βs2M(s, t) + s

∫

Ω
esxV (t, x)p̂(t, x)dx

+
∫

Ω
f(t, x)esxp̂(t, x)dx − M(s, t)

∫

Ω
f(t, x)p̂(t, x)dx,




�(16)

where we used definition (10).
Step 3: the first moment. Differentiating (16) once with respect to s gives
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∂t[∂sM(s, t)] = −β
(
[exsp̂(t, x)] |∂Ω + s[xexsp̂(t, x)] |∂Ω

)
+ β

(
2sM(s, t) + s2∂sM(s, t)

)

+
∫

Ω
esxV (t, x)p̂(t, x)dx

+s

∫

Ω
xesxV (t, x)p̂(t, x)dx +

∫

Ω
xf(t, x)esxp̂(t, x)dx

− [∂sM(s, t)]
∫

Ω
f(t, x)p̂(t, x)dx.

which, after setting s = 0, immediately gives

	

d
dt

m1(t) = −β [p̂(t, x)] |∂Ω+
∫

Ω
V (t, x)p̂(t, x)dx

+
∫

Ω
xf(t, x)p̂(t, x)dx − m1(t)

∫

Ω
f(t, x)p̂(t, x)dx,

which is the first equation in Eq. (14). This is complemented with the initial condition

	
m1(0) =

∫

Ω
xp̂(0, x)dx = 1

P (0)

∫

Ω
xp0(x)dx,

obtained from the definition (12) and initial condition (4).
Step 4: the k-th moment. For k ⩾ 2, we calculate the k-th derivatives with respect 

to s of the terms on the right-hand-side of (16) to find, by induction, the following:

	

∂k
s [sβ [exsp̂(t, x)] |∂Ω] =β(k

[
xk−1exsp̂(t, x)

]
|∂Ω + s

[
xkexsp̂(t, x)

]
|∂Ω),

∂k
s

[
βs2M(s, t)

]
=βk(k − 1)∂k−2

s M(s, t)
+ β

(
2ks∂k−1

s M(s, t) + s2∂k
s M(s, t)

)
,

∂k
s

[
s

∫

Ω
esxV (x, c)p̂(t, x)dx

]
=

∫

Ω

(
kxk−1 + sxk

)
esxV (x, c)p̂(t, x)dx,

∂k
s

[∫

Ω
esxf(x, c)p̂(t, x)dx

]
=

∫

Ω
xkesxf(x, c)p̂(t, x)dx.

Then, differentiating (16) k times and setting s = 0, one retrieves, for k ⩾ 2,

	

d
dt

mk(t) = − βk
[
xk−1exsp̂(t, x)

]
|∂Ω + βk(k − 1)mk−2(t) +

∫

Ω
nxk−1V (x, c)p̂(t, x)dx

+
∫

Ω
xkf(x, c)p̂(t, x)dx − mk(t)

∫

Ω
f(x, c)p̂(t, x)dx,





�(17)

as in Eq. (14). This is complemented with the initial condition

	
mk(0) =

∫

Ω
xkp̂(0, x)dx = 1

P (0)

∫

Ω
xkp0(x)dx,

1 3
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obtained, again, from the definition (12) and initial condition (4), completing (15). 
� □

Remark 3.3  The integro-differential equations for mk(t) include the distribution 
p̂(t, x) evaluated on the boundary ∂Ω. Due to diffusion, the distribution is not identi-
cally zero at the boundary. However, the biological interpretation of the phenotypic 
variable (see Remark 2.1) implies that the population density at the boundary, while 
non-zero, is sufficiently small to be unobservable in biological data. Therefore, in 
what follows, we make the biologically motivated assumption that the contribution 
of the boundary terms is negligible, so

	 [p̂(t, x)]|∂Ω =
[
xkp̂(t, x)

] ∣∣
∂Ω = 0.� (18)

3.4  Restriction to a bounded phenotypic domain

The system of equations in (14) involves integrating p̂(t, x) over the entire pheno-
typic domain Ω. Consequently, without making any further assumptions on the phe-
notypic distribution, the system (14) is circular as the resulting integro-differential 
equations for the moments mn(t) a priori require the distribution p̂(t, x). Until now, 
we have considered a generic compact and connected phenotypic domain Ω = [l, L], 
intrinsic growth rate f(t, x), and adaptation velocity V(t, x). Importantly, the integral 
terms in (14) depend on these functions and implicitly on the domain Ω. Indeed, it is 
possible to restrict Ω to the unit interval via a simple linear transformation (Almeida 
et al. 2024; Stace et al. 2020).

We now show that, by considering a bounded phenotypic domain restricted to 
Ω = [0, 1], and functions f(t, x) and V(t, x) that are analytic in phenotype space, we 
can eliminate the redundancy in Eq.  (14). Specifically, building on the analytical 
strategies adopted in Dieckmann and Law (1996); Engblom (2006); Lee et al. (2009), 
we show how utilizing the Taylor expansions of both f(t, x) and V(t, x) transforms 
Eq.  (14) into a system of differential equations that depend only on the moments 
mk(t), k ⩾ 1.

Corollary 3.4  Consider x ∈ Ω ≡ [0 , 1 ]. Let p(t, x) satisfy Eq. (2), along with bound-
ary conditions (3), initial conditions (4) and definition (1). Further, assume that both 
f and V are analytic functions of x and that equality (18) holds.

Then, m0 (t) = 1  for all t ⩾ 0  by definition, and the higher order moments 
mk(t) (k ⩾ 1 ) of the phenotypic distribution p̂(t, x) satisfy the following system of 
ODEs
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d

dt
m1(t) =

∞∑
n=0

(Vn(t) − m1(t)fn(t))

[
n∑

i=0
(−1)i

(
n
i

)
(m1(t))i

]
mn−i(t)

+
∞∑

n=0
fn(t)

[
n∑

i=0
(−1)i

(
n
i

)
(m1(t))imn+1−i(t)

]

d

dt
mk(t) = − mk(t)

∞∑
n=0

fn(t)

[
n∑

i=0
(−1)i

(
n
i

)
(m1(t))imn−i(t)

]

+ βk(k − 1)mk−2(t) +
∞∑

n=0

[
n∑

i=0
(−1)i

(
n
i

)
(m1(t))i

]

[
fn(t)mn+k−i(t) + kVn(t)mn+(k−1)−i(t)

]
, k ≥ 2.





�(19)

with initial conditions given by Eq. (15), and where fn(t) and Vn(t) are defined as

	
fn(t) =

∂n
x f(t, x)|x=m1(t)

n!
and Vn(t) =

∂n
x V (t, x)|x=m1(t)

n!
.� (20)

Proof  As both f and V are analytic functions of x, we Taylor expand these functions 
about the first moment m1(t) to find

	

f(x, t) =
∞∑

n=0

∂n
x f(t, x)|x=m1(t)(x − m1(t))n

n!
and

V (x, t) =
∞∑

n=0

∂n
x V (x, t)|x=m1(t)(x − m1(t))n

n!
.

Then, using definitions (20), the binomial expansion of (x − m1(t))n gives

	

f(x, c) =
∞∑

n=0
fn(t)

[
n∑

i=0
(−1)i

(
n
i

)
xn−i(m1(t))i

]
and

V (x, c) =
∞∑

n=0
Vn(t)

[
n∑

i=0
(−1)i

(
n
i

)
xn−i(m1(t))i

]
.

Thus, utilizing the Taylor expansion of f and the definition of mn, combining (11)-
(12), gives

	

∫ 1

0
f(x, c)p̂(t, x)dx =

∞∑
n=0

[
n∑

i=0
(−1)ifn(t)

(
n
i

)
(m1(t))i

∫ 1

0
xn−ip̂(t, x)dx

]

=
∞∑

n=0

[
n∑

i=0
(−1)ifn(t)

(
n
i

)
(m1(t))imn−i(t)

]
.
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Then, for integer k, a similar calculation yields

	

∫ 1

0
xkf(x, c)p̂(t, x)dx =

∞∑
n=0

[
n∑

i=0
(−1)ifn(t)

(
n
i

)
(m1(t))imn+k−i(t)

]
,

and

	

∫ 1

0
kxk−1V (x, c)p̂(t, x)dx =

∞∑
n=0

Vn(t)

[
n∑

i=0
k(−1)i

(
n
i

)
(m1(t))imn+(k−1)−i(t)

]
.

Inserting these expansions into the ODEs (14), and using (18), immediately yields 
Eq. (19). � □

These Taylor expansions replace the integral terms in (14) by weighed moments 
of the distribution p̂(x, t). However, the resulting differential equations involve 
moments of all orders, each of which needs to be defined by a corresponding ODE. 
Consequently, replacing the integral terms by the corresponding infinite summations 
in (14) leads to a system of infinitely many ODEs wherein the differential equation 
for the k-th moment depends on higher order moments. Nevertheless, higher order 
moments are not generally used to describe biological data. Therefore, we proceed 
under the modelling assumption that the phenotypic density function p(t, x), and thus 
p̂, is sufficiently well characterised by its first N moments, so we assume that we 
can discard the higher order moments. We illustrate how this assumption has been 
applied in existing models in Sect. 4 and discuss the limitations of this assumption in 
the Discussion. Moreover, we consider the asymptotic behaviour of the terms in the 
summations, to truncate the series and close the system.

3.5  Series truncation and system closure

Consider the infinite series appearing in Eq. (19)1, i.e. the term

	
T (t) =

∞∑
n=0

fn(t)

[
n∑

i=0
(−1)i

(
n
i

)
(m1(t))imn−i(t)

]
.

Consider the fact that 0 < m1(t) < 1 for all t ⩾ 0, where the strict inequality can 
be ensured by appropriate modelling choices, as discussed in Remark 3.3. The strict 
upper bound on m1(t) implies that (m1)i → 0 as i → ∞. Having chosen f(t, x) ana-
lytic in a bounded domain, fn(t) is bounded for all n ∈ N, so the coefficients of 
(m1)i are bounded. We may choose M ∈ N at which to truncate the Taylor series 
expansions for f and V. This allows us to truncate the infinite summations at M and 
approximate T(t) by
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TM (t) =

M∑
n=0

fn(t)

[
n∑

i=0
(−1)i

(
n
i

)
(m1(t))imn−i(t)

]
.

The same truncation can be applied to the infinite summations in Eq (19) involving 
Vn.

Moreover, as a result of the assumption that the phenotypic distribution p̂(t, x) is 
sufficiently well characterised by its first N moments, we find that the system (19) can 
be approximated by a finite system of ODEs for the N moments of p̂(t, x). The overall 
dynamics of the phenotypic density function of the population are approximated by

	

d
dt

P (t) = P (t)
M∑

n=0
fn(t)

[
n∑

i=0
(−1)i

(
n
i

)
(m1(t))imn−i(t)

]
− P 2(t)

κ
,

d
dt

m1(t) =
M∑

n=0
(Vn(t) − m1(t)fn(t))

[
n∑

i=0
(−1)i

(
n
i

)
(m1(t))imn−i(t)

]

+
M∑

n=0
fn(t)

[
n∑

i=0
(−1)i

(
n
i

)
(m1(t))imn+1−i(t)

]
,

d
dt

mk(t) = −mk(t)
M∑

n=0
fn(t)

[
n∑

i=0
(−1)i

(
n
i

)
(m1(t))imn−i(t)

]
+ βk(k − 1)mk−2(t)

+ k
M∑

n=0
Vn(t)

[
n∑

i=0
(−1)i

(
n
i

)
(m1(t))imn+(k−1)−i(t)

]

+
M∑

n=0
fn(t)

[
n∑

i=0
(−1)i

(
n
i

)
(m1(t))imn+k−i(t)

]
, 2 ⩽ k ⩽ N.




�(21)

The corresponding initial conditions of Eq. (21) are obtained directly from the ini-
tial phenotypic distribution p̂(0, x) via Eq. (15). While system (21) is finite, it still 
involves the moments mk for k = N + 1, ..., N + M . To close the system one may 
choose, for instance, Gaussian closure by setting

	 mk = m1mk−1 + k(m2 − m2
1)mk−2 for k = N + 1, ..., N + M,� (22)

or truncation closure by setting

	 mk = 0 for k = N + 1, ..., N + M,� (23)

– in which case system (21) reads as (32).
Other approaches to closing this system of ODEs to approximate the moments of 

the phenotypic distribution are possible (Browning et al. 2020; Wagner et al. 2022).
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4  Special cases and examples in the literature

We here expand on some examples of how our generalised approach can be applied 
to more specific cases. We recover ODE systems for the moments of the phenotypic 
distribution previously considered in the literature from the generalised system (19), 
derived in Sect. 3. This procedure also brings to light the details of how the obtained 
systems depend on the underlying assumptions on the nature of the phenotypic distri-
bution or specific modelling choices.

4.1  The case of f and V polynomials

We now focus on the case in which f(t,  x) and V(t,  x) are defined as polynomial 
functions of x, as in various mathematical models employing PDEs in the form of 
Eq. (2) for the adaptive dynamics of a phenotype-structured population of cells, e.g. 
see Almeida et al. (2024); Chisholm et al. (2016b) and references therein.

If the functions f and V are polynomials then, as in Curto and di Dio (2023), one 
need not restrict the domain to a bounded set for the results of Sect. 3 to hold. In 
fact, a polynomial of order D ∈ N can easily be expressed in the form of a Taylor 
series truncated at D, as all derivatives of order higher than D will be zero. It is 
then natural to replace M in the upper bounds of the summations in system (32) by 
D := max(Df , DV ), where f(t, x) and V(t, x) are polynomials of order Df  and DV , 
respectively. Then one need not rely on the restriction of Ω to the interval [0, 1] to 
ensure that the infinite summations, a product of the Taylor expansion of f and V, can 
be truncated at some M ∈ N which, we re-iterate, rely on the fact that 0 < m1 < 1 
under this domain restriction. This allows the extension of the results to the case 
in which Ω = R, as considered in previous works deriving a system of ODEs for 
the moments of the phenotypic density function starting from phenotype-structured 
PDEs  (Almeida et  al. 2024, 2019; Ardaševa et  al. 2020; Chisholm et  al. 2016b; 
Lorenzi et al. 2015; Villa et al. 2021).

We remark that, while choosing f and V to be polynomials allows one to bypass 
choosing M for truncation of the infinite series, it does not automatically close the 
system of ODEs for the moments, and one is still required to identify the highest 
moment required to characterise the distribution to achieve this. Further, as Ω = R 
is not compact, the moment sequence is not sufficient to characterise the distribution 
without additional assumptions. In the aforementioned papers, this was done implic-
itly by introducing stronger assumptions on the shape of the phenotypic distribution, 
which could be introduced only thanks to the use of an infinite domain.

Example from the literature: a Gaussian distribution. Consider Ω ≡ R, as well 
as f(t, x) and V(t, x) defined by

	 f(t, x) = a(t) − b(t) (x − X(t))2 and V (t, x) ≡ V0(t),� (24)

i.e. polynomials of order 2 and 0, respectively. In definition (24) for f, X(t) models 
the fittest phenotypic trait, a(t) the associated maximal background fitness and b(t) is 
a nonlinear selection gradient measuring the strength of the selective environment. 
Under the assumption of an initial phenotypic distribution p0(x) in a Gaussian form, 
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Chisholm et  al. (2016b) first showed that p(t, x) maintains a Gaussian form at all 
times, with the population size P(t), the mean m1(t) and variance σ2(t) of the distri-
bution satisfying the system of ODEs

	

d
dt

P (t) =
[
a(t) − b(t) (m1(t) − X(t))2 − b(t)σ2(t)

]
P (t) − P 2(t)

κ
,

d
dt

m1(t) = − 2b(t) (m1(t) − X(t)) σ2(t) + V0(t),

d
dt

σ2(t) =2β − 2bσ4(t),




� (25)

complemented with initial conditions P(0), m1(0) and σ2(0), i.e. the correspond-
ing moments characterising the initial Gaussian phenotypic density function p0(x). 
Analogous assumptions and results have since appeared in several following works 
by Lorenzi and coworkers (Almeida et al. 2024, 2019; Ardaševa et al. 2020; Lorenzi 
et al. 2015; Villa et al. 2021) modelling cancer adaptive dynamics in different set-
tings. System (25) can be obtained via formal calculations following the substitution 
of a Gaussian ansatz in Eq. (2) under definitions (24), with most publications working 
with the inverse variance v = (σ2)−1 for convenience.

Retrieving system (25) from our generalised approach. Now consider the case 
in which f and V are defined as in (24). We show how the example above is a sub-case 
of our generalised approach, assuming that the phenotypic distribution can be fully 
characterised by its first 2 moments. We thus consider system (21) with N = 2, the 
infinite summations including fn(t) truncated at Df = 2 and those only including 
Vn(t) truncated at DV = 0. We then choose to apply Gaussian closure– indeed the 
obvious choice in this case– and complement the ODE system with (22) for m3 and 
m4. The resulting system of ODEs is

	

d
dt

P (t) = P (t)
[
f0(t) + f2(t)(m2 − m2

1)
]

− P 2(t)
κ

,

d
dt

m1(t) = f1(t)(m2 − m2
1) + V0(t),

d
dt

m2(t) = 2V0m1 + 2β + 2f1(t)m1(m2 − m2
1) + 2f2(t)(m2 − m2

1)2,




which is equivalent to system  (25)– this is easy to check by substituting 
m2 = σ2 + m2

1, from the definition of second central moment, and applying the defi-
nitions of fi (i = 0, 1, 2) and V0 in (20) on f and V chosen in (24).

This demonstrates that system  (21) may provide a good approximation for the 
moment dynamics of Eq. (2). We stress that in this case the systems are equivalent 
only thanks to the fact that f and V are polynomials of order at most 2, and the proper-
ties (22) of a Normal distribution, which may be exploited when adopting a Gaussian 
closure. Unlike in Almeida et al. (2024, 2019); Ardaševa et al. (2020); Chisholm et al. 
(2016b); Lorenzi et al. (2015); Villa et al. (2021), our procedure does not need to rely 
on an ansatz or an infinite domain, but it holds for the more realistic case of Ω = [l, L] 
and under more general assumptions on the nature of the phenotypic distribution.
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4.2  An example for f and V smooth but not polynomial

 For f and V polynomials, the truncation of the infinite summations in system (21) is 
automatic. While polynomial definitions for f and V are widely used in continuously 
structured models in mathematical oncology, other modelling choices may lead to 
alternative definitions of these functions. In general, these functions are usually suf-
ficiently smooth to admit a Taylor series approximation (Celora et al. 2021; Cho and 
Levy 2018b). We now consider an example with f and V not polynomial, in which 
case they must be approximated by their Taylor expansions truncated at some M. Let 
f and V be defined as

	
f(t, x) = fmax

x

kx + x
and V (t, x) = Vmax tanh (xω) tanh (1 − x) .� (26)

This definition for f may be used in the case where x models the level of expression 
of some protein on the cell membrane that is required to transport nutrients into the 
cell, e.g. see Almeida et al. (2024), in which case a Hill function is natural following 
Michaelis-Menten kinetics. Then kx > 0 is the Michaelis coefficient and fmax ⩾ 0 
the maximum intrinsic growth rate. Definition  (26) for V was taken from  Celora 
et al. (2021), one of the most complex choices of V currently found in the literature, 
proposed following phenomenological rules to capture the effect of radiotherapy on 
differentiation, with Vmax ⩾ 0 and ω ∈ {1, 2}. For simplicity, we take the initial phe-
notypic distribution to be a truncated Normal distribution in the interval Ω = [l, L], 
i.e. we take

	

p(0, x) = P (0)
exp

[
− (x−x̄0)2

2σ2
0

]

∫ L

l
exp

[
− (s−x̄0)2

2σ2
0

]
ds

.� (27)

The first step in the application of system (21) to approximate the moment dynamics 
is to carefully select the domain bounds, to ensure that (18) is satisfied. In Celora et al. 
(2021) the authors select x ∈ [0, 1] but under definition (26) for V we expect the mass 
to concentrate around x = 1 over time and thus a wider domain is necessary. Here we 
use a parameter set for which the interval [l, L] = [0, 1.2] is sufficiently large– with β 
and σ2

0  sufficiently small and x̄0 sufficiently far from these boundaries. We thus apply 
the transformation x → x/L prior to solving the ODE system numerically, to ensure 
that 0 < m1(t) < 1 for all t ⩾ 0 as required in Sect. 3.5. The results of numerical 
simulations shown in Fig. 1 (as well as Figs. 3 and 4 in the Supplemental Informa-
tion) have been rescaled back to the original domain (by means of mk → mk × Lk).

Setting ω = 1 in the definition  (26) for V, we see in Fig.  1 that the ODE sys-
tem (21) under Gaussian closure (22) provides a really good approximation of the 
dynamics of the moments of the phenotypic density function satisfying PDE (2) for 
many combinations of N and M, without needing to consider N and M particularly 
large. In fact, it is interesting to notice from the zoomed in insets that the best approx-
imation– among those tested– is obtained when selecting N = 2 and M = 2 rather 
than for higher values of N and M (c.f. N = 2 and M = 3, or N = 3 and M = 1). 
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As expected when looking at the solution of the PDE (cf. first column in Fig. 1), 
truncation closure does not perform as well as Gaussian closure (see also Fig. 3 in 
the Supplemental Information). In the more complex case of ω = 2, for which we 
observe a higher skewedness of the phenotypic distribution at intermediate times, 
not all choices of N and M provide as good an approximation (see also Fig. 4 in the 
Supplemental Information). Nevertheless, the observation that N = 2 and M = 2 
yields the best approximation among those tested holds also in this case, where we 
also tested N = 3 and M = 3. Ultimately, we expect the combination of N and M 
that best approximate the moment dynamics to vary with the definitions of f and V, 
as well as the best choice of closure for system (21). Indeed the presence of a linear 
diffusion term in PDE (2) may favour Gaussian-like features.

Fig. 1  Comparison between the numerical solution of PDE (2), complemented with Eq. (1) and bound-
ary conditions (3), and that of the ODE system (21) under Gaussian closure (22), for f and V defined 
in (26) (ω = 1) and initial condition (27). The phenotypic density function p(t, x) obtained by solving the 
PDE is shown in the first column for t ∈ [0, 35] (panel A) and at selected times t∗ = 2, 4, 6, 8, 12 (D). 
The corresponding moments are plotted with a blue solid line in the remaining panels: the popula-
tions size P(t) (B), the first moment m1(t) (C), the second moment m2(t) (E) and the third moment 
m3(t) (F). The moments obtained from the ODE system are also shown in each panel under different 
choices of N and M: N = 2 and M = 1 (brown dotted line), N = 2 and M = 2 (brown dashed line), 
N = 2 and M = 3 (brown dash-dotted line), N = 3 and M = 1 (green dotted line). Zoomed-in 
insets are provided to facilitate comparison among approximations. The results correspond to the pa-
rameter set: fmax = 2, km = 0.4, Vmax = 0.5, ω = 1, κ = 0.1, β = 10−4, x̄0 = 0.2, σ0 = 0.02, 
l = 0, L = 1.2. The numerical schemes rely on a first order forward difference approximation for the 
time derivatives, second order central difference for the diffusion term and first order upwind for the 
advection term
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4.3  Link with canonical model of adaptive dynamics

We have seen how our model reduction procedure may perform well for non-
polynomial, but sufficiently smooth, functions f and V. Models of adaptive dynam-
ics (Dieckmann and Law 1996; Vincent and Gatenby 2008), which model the size 
and mean trait of the population via two ODEs, typically utilize the “G function” 
formalization (Coggan and Page 2022). This “G function” links the population fitness 
to the phenotypic evolution by assuming that the population evolves to maximize 
the population fitness. In general, these adaptive dynamics models do not restrict 
the phenotype space Ω, but rather implicitly assume that the functions f and V are 
only weakly non-linear and that the population is monomorphic so that higher order 
moments are negligible (Dieckmann and Law 1996). In practice, this corresponds 
to setting M = N = 1 in Sect. 3.5, and neglecting terms involving mk, mk

1 , fk or 
Vk for k ⩾ 2. These assumptions are possibly quite strong when considering cancer 
evolution (Aguadé-Gorgorió and Solé 2018), particularly due to the role of pheno-
typic diversity in the population-level response to therapy. Here, we utilize the model 
proposed by Pressley et al. (2021) to illustrate the possible consequences of these 
modelling assumptions.

4.3.1  Application to adaptive dynamics in cancer

In recent work, Pressley et al. (2021) developed a mathematical framework to capture 
continuous adaptation to treatment, in which the cellular phenotype is considered 
as a direct measure of cell resistance to anti-cancer therapy. The authors consider a 
monomorphic population with population size P(t) and phenotype m1(t)– where we 
use this notation as the phenotype of a monomorphic population corresponds to the 
mean phenotypic state (i.e. the first moment) of a very sharp (Dirac delta) phenotypic 
distribution. Their model is given by

	

d
dt

P (t) = P (t)G(m1(t), P (t)),

d
dt

m1(t) = α ∂xG(x, y)|(x,y)=(m1(t),P (t)) .




� (28)

In Eq. (28), α is the speed of phenotypic adaptation and the function G captures the 
net proliferation rate of the population P in the presence of anti-cancer treatment 
under the assumption that all tumour cells have phenotype m1. Specifically, Pressley 
et al. (2021) set

	
G(m1(t), P (t)) = r(m1(t))

(
1 − P (t)

κ

)
− d − c(t)

k + bm1(t)

where κ is the carrying capacity of the population, d is an intrinsic death rate in the 
absence of treatment, and
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c(t) =

{
1 during treatment,
0 otherwise,

models the anti-cancer treatment. The treatment effect is modulated by the treatment 
resistance of the population with mean phenotype m1(t). The magnitude of the resis-
tance benefit is modelled by b and treatment resistance has a half-effect value of k. 
Pressley et al. (2021) used this model to quantify the benefits of adaptive therapy. 
They applied treatment until the tumour reached half the initial size, P (t) = P (0)/2. 
Treatment was then interrupted and withheld until the tumour reached the initial size, 
P (t) = P (0), at which point treatment was re-applied. The model includes the cost 
of resistance by decreasing the intrinsic growth rate r(m1(t)) of a population with 
mean phenotype m1(t) by

	 r(m1(t)) = rmax exp(−gm1(t)),

where rmax is the maximal growth rate and g is the cost of resistance.
We now show how our framework can extend Eq. (28) to include population het-

erogeneity by considering higher order moments and setting N = M = 2 in Eq. (21). 
Pressley et al. (2021) assume that the mean phenotype changes with direction deter-
mined by the gradient of G and scaled by an adaptation speed α. Under these assump-
tions, the velocity V (t, m1) in the advection term of Eq. (2) is given by

	 V (t, m1) = α∂xG(m1, P ).� (29)

This assumption on the velocity of the advection term represents gradient ascent 
toward the phenotype of optimal fitness. For notational simplicity, we write for k ∈ N

	∂xG(m1, P ) = ∂xG(x, y)|(x,y)=(m1(t),P (t)) and ∂k
xG(m1, P ) = ∂k

xG(x, y)
∣∣
(x,y)=(m1(t),P (t)) .

We emphasize that this definition of V (t, m1) follows from the modelling assump-
tions made by Pressley et al. (2021). However, our approximation framework applies 
in general to other choices for V and f. Taking N = M = 2– motivated by the results 
of Sect. 4.2– in system (21) and using Gaussian closure, we obtain
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d
dt

P = P

[
G(m1, P ) + ∂2

xG(m1, P )
2

(
m2 − m2

1
)]

,

d
dt

m1 =
(
α +

(
m2 − m2

1
))

∂xG(m1, P )

+
[

α

2
∂3

xG(m1, P ) − m1
∂2

xG(m1, P )
2

] (
m2 − m2

1
)

+ ∂3
xG(m1, P )

6
m3,

d
dt

m2 = 2 [α∂xG(m1, P )m1

+α∂2
xG(m1, P )

(
m2 − m2

1
)

+ α

2
∂3

xG(m1, P )
(
m3 − 2m1m2 + m3

1
)]

2β − m2

[
∂2

xG(m1, P )
2

(
m2 − m2

1
)]

+ ∂xG(m1, P ) (m3 − m1m2) + ∂2
xG(m1, P )

2
(
m4 − 2m1m3 + (m2

1)m2
)

.




�(30)

where we do not explicitly show the time-dependence of the moments to simplify the 
notation. Similarly, we take N = M = 2 and use truncation closure to find

	

d
dt

P =P

[
G(m1, P ) + ∂2

xG(m1, P )
2

(
m2 − m2

1
)]

,

d
dt

m1 =
(
α + m2 − m2

1
)

∂xG(m1, P )

+
[
α

∂3
xG(m1, P )

2
− 3m1(t)∂2

xG(m1, P )
2

] (
m2 − m2

1
)

,

d
dt

m2 =2β + 2α∂xG(m1, P )m1 − G(m1, P )m2

+
[
2α∂2

xG(m1, P ) − m2
∂2

xG(m1, P )
2

] (
m2 − m2

1
)

.




� (31)

In both Eqs. (30) and  (31), the population growth rate now depends not only on the 
fitness of the mean phenotype, G(m1, P ), but also on it’s curvature and the variance 
of the population about the mean phenotype, σ2 = m2 − m2

1. Further, the differen-
tial equation for m1(t) links the phenotypic evolution with σ2 in a similar manner to 
Dieckmann and Law (1996) in the context of genetic mutation.

To illustrate the impact of including phenotypic heterogeneity, we simulated the 
adaptive therapy regimen in Eqs. (28),  (30) and  (31). We set α = 0.0001 and other-
wise used the same parameter values and initial conditions as Pressley et al. (2021), 
with P (0) = 6000 and m1(0) = 0. In Eq. (30) and Eq. (31), we set m2(0) = m1(0)2 
to represent an initially monomorphic population, and set β = 0.0002. In Panels A 
and B of Fig. 2, we show the predicted tumour population during adaptive therapy. 
Eq. (28) predicts long-term tumour control, with the Time-To-Progression– i.e. the 
first time t = tT T P  at which P (tT T P ) = 0.7κ– of at least 800 days. Conversely, the 
models that include population heterogeneity, i.e. Eqs. (30) and  (31), both predict 
the evolution of treatment resistance and failure of adaptive therapy within 28 days. 
In Panel C of Fig. 2, we show the cumulative dose during adaptive treatment, which 
highlights the development of resistance predicted by both Eqs. (30) and (31). This 
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highlights that population diversity may accelerate the development of treatment 
resistance as has been observed in many experimental (Bódi et al. 2017; McGrana-
han and Swanton 2017; Sottoriva et al. 2013; Marine et al. 2020; Craig et al. 2019) 
and theoretical (Almeida et al. 2019; Ardaševa et al. 2020; Lorenzi et al. 2015; Villa 
et al. 2021; Köhn-Luque et al. 2023; Cassidy and Humphries 2019; Lavi et al. 2013; 
Greene et al. 2014; Nichol et al. 2016) studies. We emphasize that the parameters 
used in this simulation were not obtained by fitting the model to data, but rather cho-
sen to qualitatively illustrate the influence of including population heterogeneity in a 
model of adaptive evolution of treatment resistance.

5  Discussion

Mathematical models have become increasingly important in our understanding of 
the mechanisms driving cancer evolutionary dynamics and the role of intratumour 
phenotypic heterogeneity. Phenotype-structured PDE models describe the temporal 
dynamics of both the tumour size and phenotypic composition. In the context of 
adaptive dynamics in continuously structured phenotype space, these PDE models 
carry a distinct advantage in that individual model terms are directly biologically 
interpretable.
Benefits of reducing a phenotype-structured PDE to a system of ODEs. While 
phenotype-structured PDE models are well-poised to interpret biological data, they 
carry, by their very nature, challenges that do not apply to the ODE models that 
are routine in the interpretation of data. For example, for a mathematical model to 
be uniquely parameterised it must be identifiable (Bellman and Åström 1970; Raue 
et al. 2009; Cassidy 2023). Outside of recent work (Browning et al. 2024; Boiger 

Fig. 2  Population heterogeneity drives treatment resistance in the adaptive dynamics model imple-
mented by Pressley et al. (2021). Panels A and B show the dynamics of the simulated tumour popula-
tion with and without heterogeneity. The horizontal lines in Panel B show when treatment is applied. 
Panel C shows the cumulative dose administered during the adaptive therapy treatment for each simu-
lation. In all cases, the N = M = 1 approximation, corresponding to the Pressley model in Eq. (28), 
is shown in blue while the orange and green curves show the N = M = 2 approximation models with 
Gaussian and truncation closures, i.e. the models given by Eqs. (30) and (31) respectively. Other than 
the adaptation speed, α = 0.00001, and diffusion coefficient β = 0.00002, all simulations used the 
parameter values given in Pressley et al. (2021)
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et al. 2016; Stapor et al. 2018), most computational tools for parameter identifiabil-
ity analysis are developed for ODE models (Bellman and Åström 1970; Raue et al. 
2009). Therefore, assessing parameter identifiability in PDE models often requires 
an ODE surrogate such as an equivalent or approximate system of moment equations 
(Browning et al. 2020). Parameter identifiability is particularly pertinent in the case 
of phenotype-structured PDE models, as determining the phenotypic distribution 
of a tumour sample is experimentally demanding (Brestoff and Frater 2022; Pigli-
ucci 2010). Furthermore, numerical methods for phenotype-structured PDEs are not 
widely implemented in existing scientific software (Carpenter et al. 2017). Conse-
quently, fitting these PDE models to experimental data often requires the develop-
ment of problem specific software. The resulting numerical methods are typically 
more computationally expensive than for ODE models. As parameter estimation 
typically involves many simulations of the mathematical model which amplifies the 
increased computational cost of solving the PDE. Therefore, the ability to reduce 
a phenotype-structured PDE to a system of ODEs while maintaining the ability to 
characterise the tumour composition allows for significant computational efficiency.
Summary and novelty of our model-reduction procedure. Accordingly, we pro-
posed a generalised method to reduce a phenotype-structured PDE model of cancer 
adaptive dynamics to a system of ODEs for the moments of the phenotypic distribu-
tion, up to an arbitrary number of moments. This reduction allows modellers to use 
existing technical tools for ODE models while maintaining the biological relevance 
and the interpretability of the phenotype-structured PDE. The model-reduction pro-
cedure we propose relies on the use of the moment generating function of the pheno-
typic distribution, a Taylor series expansion of the phenotypic drift and proliferation 
rate functions, and truncation closure. Our work extends the analysis of Almeida 
et al. (2019) and Chisholm et al. (2016b), to a more biologically relevant phenotypic 
domain and a model without any a priori assumptions on the shape of the distribution 
or the dependency of the phenotypic drift and proliferation rate on the phenotypic 
trait. Our work also extends the analysis of Dieckmann and Law (1996) that ties a 
stochastic model of mutation-selection dynamics to the adaptive dynamics models 
in Section 4.3. Here, we have used both truncation and Gaussian closures for the 
resulting system of ODEs describing the moments of the phenotypic distribution p̂. 
However, other approaches are possible and evaluating these alternative closures is 
an obvious area for future research.
Strengths and limitations. Our model reduction procedure is independent of both 
the shape of the phenotypic distribution and the functional form of the terms that 
characterise adaptation. This generality and flexibility lends our analysis suitable 
for adaptation in a wide range of contexts, both within mathematical oncology and 
more broadly. We expect many of the advantages conferred by the reduced model to 
become even more pertinent in high-dimensional phenotype spaces, particularly in 
the context of mechanistic interpretation of correspondingly high-dimensional multi-
omics data. The necessity to impose a system closure yields an approximation of 
the underlying dynamics. However, we highlight that the presented approach can 
be applied up to an arbitrary order. The question of how many moments a problem 
requires, the closure to apply, or the effect of closure on parameter identifiability, 
remains open even in fields where moment closures have a long history (Smith et al. 
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2007; Kuehn 2016; Ghusinga et al. 2017; Schnoerr et al. 2017; Browning et al. 2020; 
Wagner et al. 2022). We expect unimodal phenotypic distributions to be well char-
acterised by lower-order moments. For high-dimensional problems, the question of 
closure type and order is likely determined by computational cost. Ultimately, we 
provide a general and flexible framework for describing adaptation in a continuously-
distributed phenotype space whilst retaining the computational and analytical advan-
tages of ODE-based approaches.
Consequences and perspectives in cancer adaptive therapy. Our work relaxes the 
assumptions of near-linear growth rates or vanishing variance underlying the canoni-
cal equation of adaptive dynamics (Dieckmann and Law 1996) by explicitly linking 
the higher-order moments of the population distribution in phenotype space with 
the resulting impacts on population growth and adaptation. To illustrate the possible 
effects of including population heterogeneity, we considered the model of adap-
tive dynamics in response to adaptive therapy by Pressley et al. (2021). We show 
that including phenotypic heterogeneity in the Pressley et al. (2021) model can lead 
to failure of an adaptive therapy strategy that would otherwise result in long-term 
tumour control. While this result is unsurprising (Bódi et al. 2017), it illustrates how 
phenotypic heterogeneity can drive treatment resistance (Aguadé-Gorgorió and Solé 
2018; Hanahan 2022). Consequently, our results illustrate a simple way to introduce 
population heterogeneity in ODE models investigating the development of treatment 
resistance, and  importance in the emergent model dynamics

In this context, our work is directly relevant to recent multi-omics-level experi-
ments characterising cellular phenotypes. However, these high dimensional data sets 
are challenging to interpret and thus numerous dimensionality reduction methods 
have been proposed (Oshternian et al. 2024; Burkhardt et al. 2022). Amongst these 
are phenotype classification methods that summarise these data sets with a selected 
number of moments  (Vogelstein et al. 2021; Tang et al. 2010). As such, moment-
based descriptions are increasingly considered to describe phenotypic states and our 
modelling therefore offers a direct link with these emerging clinically relevant data 
sets. For example, bulk and single-cell sequencing have both identified continuous 
phenotypic adaptation in response to treatments in patient-derived xenografts car-
rying the BRAFV600E mutation (Xue et al. 2017). Köhn-Luque et al. (2023) have 
shown how to use in vitro dose-response experiments to parameterize mathematical 
models of phenotypically distinct sub-populations through the PhenoPop method, 
corresponding to a discrete phenotype distribution. The resulting models capture 
the sub-population dynamics but assume that each sub-population is homogeneous. 
Our results complement this approach by allowing for the PhenoPop method to also 
describe the population heterogeneity.
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Consequently, the framework derived in this work could facilitate both the devel-
opment of mathematical models and the calibration of these models by multi-omics 
data to understand how phenotypic heterogeneity drives the evolution of treatment 
resistance to targeted therapies.

Proof of Proposition 3.1

Integrating Eq.  (2) with respect to x over Ω, and interchanging integration and dif-
ferentiation, gives

	
d
dt

P (t) =
∫

Ω
∂x[β∂xp(t, x) − V (t, x)p(t, x)]dx +

∫

Ω

(
f(t, x) − P (t)

κ

)
p(t, x)dx,

where we have also used definition (1). Applying the boundary condition (3), and 
again using (1), immediately gives Eq. (7). The initial condition (8) can be obtained 
by integrating the initial condition (4) directly. The strict positivity of P(0) follows 
directly from the assumption imposed on p0(x) in (4). Under assumption (6), from 
Eq. (7) the following inequality holds

	
d
dt

P (t) ⩽ fM

∫

Ω
p(t, x)dx − P 2(t)

κ
⩽

(
fM − P (t)

κ

)
P (t),

which, setting P := max(P (0), fMκ), gives the upper bound in (9). Similarly, we 
have

	
d
dt

P (t) ⩾ fm

∫

Ω
p(t, x)dx − P 2(t)

κ
⩾

(
fm − P (t)

κ

)
P (t).

We note that the lower bound for d
dtP (t) is a scalar logisitic differential equation. 

Thus, Gronwall’s inequality immediately yields the strict positivity of P(t) for all 
t > 0. � □

Full system under truncation closure

System (21) under truncation closure (23) can be rewritten as

1 3

Page 25 of 32     22 



C. Villa et al.

	

d
dt

P (t) = P (t)
M∑

n=0
fn(t)




n∑
i=max(0,n−N)

(−1)i

(
n
i

)
(m1(t))imn−i(t)


 − P 2(t)

κ
,

d
dt

m1(t) =
M∑

n=0
(Vn(t) − m1(t)fn(t))




n∑
i=max(0,n−N)

(−1)i

(
n
i

)
(m1(t))imn−i(t)




+
M∑

n=0
fn(t)




n∑
i=max(0,n+1−N)

(−1)i

(
n
i

)
(m1(t))imn+1−i(t)


 ,

d
dt

mk(t) = −mk(t)
M∑

n=0
fn(t)




n∑
i=max(0,n−N)

(−1)i

(
n
i

)
(m1(t))imn−i(t)


 +

βk(k − 1)mk−2(t)

+ k
M∑

n=0
Vn(t)




n∑
i=max(0,n+(k−1)−N)

(−1)i

(
n
i

)
(m1(t))imn+(k−1)−i(t)




+
M∑

n=0
fn(t)




n∑
i=max(0,n+k−N)

(−1)i

(
n
i

)
(m1(t))imn+k−i(t)


 , 2 ⩽ k ⩽ N.




�(32)

Supplementary figures

See Figs. 3 and 4.

Fig. 3  Comparison between the numerical solution of PDE (2), complemented with Eq. (1) and bound-
ary conditions (3), and that of the ODE system (21) under truncation closure (23), for f and V defined 
in (26) (ω = 2) and initial condition (27). The moments corresponding to the phenotypic density func-
tion p(t, x) obtained solving the PDE are plot with a blue solid line: the populations size P(t) (panel 
A), the first moment m1(t) (B), the second moment m2(t) (C) and the third moment m3(t) (D). The 
moments obtained from the ODE system are also shown in each panel under different choices of N 
and M: N = 2 and M = 1 (brown dotted line), N = 2 and M = 2 (brown dashed line), N = 2 and 
M = 3 (brown dash-dotted line), N = 3 and M = 1 (green dotted line), N = 3 and M = 1 (green 
dashed line). The results correspond to the parameter set: fmax = 2, km = 0.4, Vmax = 0.5, ω = 2, 
κ = 0.1, β = 10−4, x̄0 = 0.2, σ0 = 0.02, l = 0, L = 1.2. The numerical schemes rely on a first 
order forward difference approximation of the time derivatives, second order central difference for the 
diffusion term and first order upwind for the advection term
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Fig. 4  Comparison between the numerical solution of PDE (2), complemented with Eq. (1) and bound-
ary conditions (3), and that of the ODE system (21) under Gaussian closure (22), for f and V defined 
in (26) (ω = 2) and initial condition (27). The phenotypic density function p(t, x) obtained solving the 
PDE is shown in the first column for t ∈ [0, 35] (panel A) and at selected times t∗ = 3, 6, 9, 12, 15 (D). 
The corresponding moments are plot with a blue solid line in the remaining panels: the populations size 
P(t) (B), the first moment m1(t) (C), the second moment m2(t) (E) and the third moment m3(t) (F). 
The moments obtained from the ODE system are also shown in each panel under different choices of N 
and M: N = 2 and M = 1 (brown dotted line), N = 2 and M = 2 (brown dashed line), N = 2 and 
M = 3 (brown dash-dotted line), N = 3 and M = 1 (green dotted line), N = 3 and M = 1 (green 
dashed line). The results correspond to the parameter set: fmax = 2, km = 0.4, Vmax = 0.5, ω = 2, 
κ = 0.1, β = 10−4, x̄0 = 0.2, σ0 = 0.02, l = 0, L = 1.2. The numerical schemes rely on a first 
order forward difference approximation of the time derivatives, second order central difference for the 
diffusion term and first order upwind for the advection term
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