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Abstract
Collective cell migration plays a crucial role in numerous biological processes, includ-
ing tumour growth, wound healing, and the immune response. Often, the migrating
population consists of cellswith various different phenotypes. This study derives a gen-
eral mathematical framework for modelling cell migration in the local environment,
which is coarse-grained from an underlying individual-based model that captures the
dynamics of cell migration that are influenced by the phenotype of the cell, such
as random movement, proliferation, phenotypic transitions, and interactions with the
local environment. The resulting, flexible, and general model provides a continuum,
macroscopic description of cell invasion, which represents the phenotype of the cell
as a continuous variable and is much more amenable to simulation and analysis than
its individual-based counterpart when considering a large number of phenotypes. We
showcase the utility of the generalised framework in three biological scenarios: range
expansion; cell invasion into the extracellularmatrix; andT cell exhaustion. The results
highlight how phenotypic structuring impacts the spatial and temporal dynamics of
cell populations, demonstrating that different environmental pressures and phenotypic
transition mechanisms significantly influence migration patterns, a phenomenon that
would be computationally very expensive to explore using an individual-based model
alone. This framework provides a versatile and robust tool for understanding the role
of phenotypic heterogeneity in collective cell migration, with potential applications
in optimising therapeutic strategies for diseases involving cell migration.
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1 Introduction

Mathematical models are essential tools for helping us to understand the key features
and mechanisms underpinning biological processes, such as collective cell migration.
Variousmodelling techniques exist to analyse cell behaviour duringmigration, ranging
from microscopic, individual cell-based models to macroscopic-level, continuum-
based models.

Stochastic individual-based models track the dynamics of single cells, describ-
ing migration through rules that dictate cell interactions with one another and their
environment (Anderson and Rejniak 2007; Van Liedekerke et al. 2015; Wang et al.
2015; Cornell et al. 2019; West et al. 2023). Deterministic continuum models, on
the other hand, usually focus on the collective migration of cells into external tis-
sue, stroma, or the local environment, containing, for example, chemo-attractants,
adhesive substances or other cell populations that impact cell migration (Trepat et al.
2012; Merino-Casallo et al. 2022). They utilise a variety of different mathematical
approaches, such as partial differential equations (PDEs), that describe the evolution
of cell densities and are amenable to both computational and analytical exploration.
While some PDE models are adaptations of classical invasion models from other
contexts, many are derived from first principles as the deterministic, continuum limit
of stochastic, discrete models, such as individual-based models. This process of for-
mally deriving the deterministic model ensures that the continuum equation provides a
mean-field representation of the underlying dynamics of the individual cells and their
environment, which is valid in specific parameter regimes (Macfarlane et al. 2022).

Mathematical models for cell invasion often assume that the cell population is phe-
notypically homogeneous, meaning every cell behaves identically in terms of division,
movement and interactions with the local environment. However, such homogeneity
is rarely present in biological systems. During collective cell migration, it is common
to observe different cell types working together to facilitate invasion. The observable
differences in physical or biochemical characteristics present within most cell popula-
tions are known as phenotypic heterogeneity. Over recent years, the role of phenotypic
heterogeneity in cell populations has garnered significant attention. Models have been
developed to account for distinctly different cell behaviours, using a discrete num-
ber of phenotypes (Chauviere et al. 2010; Stepien et al. 2018; Crossley et al. 2024b;
Falcó et al. 2024; Carrillo et al. 2024), as well as for a continuous spectrum of phe-
notypes, whereby population members exhibit a variety of behaviours to different
degrees (Bouin et al. 2012; Macfarlane et al. 2022). Variability in cell phenotypes
can be incorporated into mathematical models of cell dynamics involving differential
equations by introducing a variable to describe the phenotypic state of the cells.

When there is a discrete set of known cell phenotypes with distinct behaviors, it
may be most appropriate to model the phenotypic state as a discrete variable, typically
using integer values. However, when there are numerous (or potentially infinite) phe-
notypes with incremental differences or smoothly transitioning behaviours between
them, then a continuously structured phenotype model might bemore pertinent. In this
case, the resulting evolution equation for the cell population density often takes the
form of a non-local reaction-diffusion equation (Arnold et al. 2012; Berestycki et al.
2015; Lorenzi and Painter 2022), or a non-local advection-reaction-diffusion equation
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(Celora et al. 2021; Lorenzi et al. 2022; Celora et al. 2023). Understanding the role of
different cell phenotypes during collective migration can guide experimental design,
enhance understanding of cell behaviors, and aid the development of treatments for
diseases where collective cell migration is crucial, such as during wound healing.
However, a critical question arises when these continuummodels are constructed phe-
nomenologically, without derivation from an underlying individual-based model. In
such cases, wemay not fully understand the biological significance of the terms within
the model, especially in realising their connection to the behaviours of the individual
cells and their interactions with the local environment, leaving the meaning of various
terms in the model ambiguous. Moreover, we may unknowingly be making intrin-
sic assumptions about cell behaviour that could be invalid. This research, therefore,
focuses on constructing a general continuum model that is explicitly derived from the
individual-based behaviours of the cells and their interactions with surrounding envi-
ronmental features. This approach ensures that each term in the resulting continuum
model has a well-defined interpretation in relation to the underlying cell dynamics,
providing clarity and a deeper understanding of the biological processes being mod-
elled.We are not, however, concernedwith a detailed quantitative comparison between
individual- and population-level models as this is already well explored in the liter-
ature (Ardaševa et al. 2020; Byrne and Drasdo 2009; Lorenzi et al. 2020; Lorenzi
and Painter 2022; Macfarlane et al. 2022; Murray et al. 2009, 2011; Schaller and
Meyer-Hermann 2006).

Therefore, in this article, we present a methodology for deriving a continuously
structured PDE model for general cell migration into the local environment that is
robustly derived from an underlying individual-based model that takes into account
the individual interactions between the cells and their local environment. Using this
approach, we demonstrate the model’s applicability to various biological scenarios,
highlighting the flexibility of this general framework and the consistent, coherent con-
nections between the microscale behaviours captured in the individual-based model
and the macroscale descriptions in the resulting PDE model. For the purposes of the
derivation of the continuummodel, we have chosen cell invasion into the local environ-
ment in general, but due to its generality, the local environment could be replacedwith a
variety of substances, such as neighbouring tissues or organs, a tissue engineering scaf-
fold or a wound, during healing. The applications in this article are carefully selected
to illustrate a wide range of cell behaviours by employing different functional forms
that describe the probabilities of movement in both physical and phenotypic spaces, as
well as the behaviours governing growth at the individual-based level. However these
applications were not chosen with the aim to provide detailed biological insights at
this stage.

In Sec. 3.2, we consider a simplified model, without phenotype-driven migration,
that shows how different growth mechanisms in the population impact the cell phe-
notypes present throughout a population over time. Next, in Sec. 3.3, we study the
migration-proliferation dichotomy (that states that cells can either migrate or prolif-
erate but cannot do both at the same time) for cells migrating into the extracellular
matrix (ECM), by extending this model to consider a continuum of phenotypes with
a trade-off between the cells ability to grow and divide and their ability to move and
degrade ECM. In this model, we consider a range of different environmental features,
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such as the density of ECM, which we postulate could impact the phenotypic drift of
the cells, and compare the resulting phenotypic structure of the invading cell popula-
tion. Finally, in Sec. 3.4, we examine the results of the general macroscopic framework
for depicting the phenotypic and spatial dynamics of T cells infiltrating into a tumour,
as described by microscopic individual-based interactions. Here we consider the phe-
notype of the T cells to describe their exhaustion levels. Then, to summarise, future
research directions and concluding remarks are discussed in Sec. 4.

2 The Individual-BasedModel

In order to incorporate microscopic descriptions of the interactions occurring between
cells and their local environment, we formulate a phenotype-structured, on-lattice,
individual-based model for collective cell migration.

In this model, the cells are represented as individual, discrete agents and we assume
that the features of the local environment we are interested in, such as the ECM or
other cell types, occupy some finite volume in a limited space. In order to fit in with the
individual-based framework, we therefore choose to model the local environmental
as being composed of individual, discrete elements of the same finite volume as the
cells. Depending on the phenotype of the individual cell and the number of cells and
elements of the local environment in the same lattice site, each individual cell has a
capacity to undergo random, undirected movement, heritable phenotypic changes and
proliferation, that can be adapted to the specific biological application of interest by
employing appropriate individual-based rules to describe these changes. Furthermore,
we assume that each individual cell can also interactwith the surrounding environment,
and that the cell’s capacity to impact their local environment depends on the phenotype
of the cell.

Considering a one-dimensional spatial domain, we allow the cells and the local
environment to be distributed in the region x ∈ [Xmin, Xmax]. We describe the phe-
notypic state of each individual cell through a structuring variable y ∈ [Ymin,Ymax].

In this individual-based model, we discretise the time variable t ∈ R
+, as th = h�t

with h ∈ N and �t ∈ R
+. We discretise the spatial variable into an integer number

of lattice sites xi = Xmin + �x (i − 1) for �x ∈ R
+ and i = 1, . . . , Nx + 1.

We discretise the phenotype variable using y j = Ymin + �y( j − 1) for �y ∈ R
+

and j = 1, . . . , Ny + 1. In this case, �t ,�x ,�y ∈ R
+ are the time-, space- and

phenotype-step, respectively.
We introduce the dependent variable n j

i (th) ∈ N0 to model the number of cells that
occupy a position on the lattice xi × y j ∈ [Xmin, Xmax] × [Ymin,Ymax] at time th,
where N0 represents the natural numbers, including zero. Then, we define the total

cell number at a spatial position xi at time th as Ni (th) = ∑Ny+1
j=1 n j

i (th) ∈ N0 and
the number of elements of the local environment at spatial position xi at time th is
denoted by ei (th) ∈ N0.
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2.1 Modelling the Dynamics of the Cells

Wedenote by p(n, e, th) the joint probability that the number of cells in spatial position
xi in phenotypic state y j (for i = 1, . . . , Nx + 1 and j = 1, . . . , Ny + 1) at time th
(h ∈ R) is given by n = ([n11, . . . , n1Nx+1], . . . , [n

Ny+1
1 , . . . , n

Ny+1
Nx+1]) and that the

number of discrete, constitutive elements of the local environment in spatial position
xi for i = 1, . . . , Nx + 1 is given by e = [e1, . . . , ei , . . . , eNx+1].

Between a time step th and th+1 (equivalently described by th + �t ), each cell in
phenotypic state y j ∈ [Ymin,Ymax] at position xi ∈ [Xmin, Xmax] can undergo random
movement, heritable phenotypic changes and cell proliferation independently of time
and according to the following assumptions in this section. We note here that we write
n j
i (th) as n

j
i and ei (th) as ei for simplicity going forward.

2.1.1 Random Cell Movement

We model cell movement in space as an on-lattice, biased random walk between
neighbouring lattice sites. The probability of cell movement can depend on a number
of factors, such as the local environment or the phenotype of the cell, but it is easy
to relax these assumptions to consider other variables of interest. In particular, we
introduce the following two changes in state vector that describe movement left or
right in physical space of a single cell in phenotypic state y j into position xi±1 from
position xi :

Lm
i, j : [n j

1, . . . , n
j
i−1, n

j
i , . . . , n

j
Nx+1] −→ [n j

1, . . . , n
j
i−1 + 1, n j

i − 1, . . . , n j
Nx+1],

for i = 2, . . . , Nx + 1, j = 1, . . . , Ny + 1,

Rm
i, j : [n j

1, . . . , n
j
i , n

j
i+1, . . . , n

j
Nx+1] −→ [n j

1, . . . , n
j
i − 1, n j

i+1 + 1, . . . , n j
Nx+1],

for i = 1, . . . , Nx , j = 1, . . . , Ny + 1,

where Lm
i, j , R

m
i, j : NNx+1 → N

Nx+1.We assume that the probability of cell movement
depends on the phenotype of the cell and on the number of cells and elements of the
local environment in the target site, rather than the lattice site that they are currently
in. As such, we define the probability of movement to the left, to spatial position xi−1
from xi , during a single time step �t , as

β−( j, Ni−1, ei−1) ∈ [0, 1], i = 2, . . . , Nx + 1, j = 1, . . . , Ny + 1,

and the probability of movement to the right, to spatial position xi+1 from xi , during
a single time step �t , as described by the change to the state vector Rm

i, j , as

β+( j, Ni+1, ei+1) ∈ [0, 1], i = 1, . . . , Nx , j = 1, . . . , Ny + 1,

which depends on the phenotypic state of the cell, j , the number of elements of the
local environment and the total number of cells in the target site. In order to ensure
that cells cannot move to a physical site “outside of the domain" x ∈ [Xmin, Xmax], we
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assume that cells cannot move left out of site i = 1, or right out of site i = Nx +1, such
that β−( j, N0, e0) = 0 and β+( j, NNx+2, eNx+2) = 0. For i = 1, . . . , Nx + 1, j =
1, . . . , Ny + 1, cells remain in their current site (i.e., do not move) with probability

1 − β+( j, Ni+1, ei+1) − β−( j, Ni−1, ei−1) ∈ [0, 1].

2.1.2 Cell Proliferation

In order to model cell proliferation, we assume that a dividing cell is instantaneously
replaced by two identical cells of equal volume to one another and the parent cell, such
that the daughter cells inherit the spatial position and phenotypic state of the parent
cell. As such, the corresponding change in state vector during a time step �t can be
written as

Gi, j : [n j
1, . . . , n

j
i , . . . , n

j
Nx+1] −→ [n j

1, . . . , n
j
i − 1, . . . , n j

Nx+1],
for i = 1, . . . , Nx + 1, j = 1, . . . , Ny + 1.

To represent phenotype-dependent cell proliferation, we assume that the probability
of a proliferation event is dependent on the phenotypic state of the cell, and the total
number of cells and elements of the local environment in the same physical site as
the cell that is dividing. Therefore, we define the probability that a cell in site i with
phenotype j proliferates during time step �t , as

γ ( j, Ni , ei ) ∈ [0, 1], i = 1, . . . , Nx + 1, j = 1, . . . , Ny + 1.

The probability of a cell not undergoing proliferation during a time step �t can then
be written as

1 − γ ( j, Ni , ei ) ∈ [0, 1], i = 1, . . . , Nx + 1, j = 1, . . . , Ny + 1.

2.1.3 Cell Phenotypic Changes

During a single time step, �t , we model transitions in phenotype space from state y j
to y j±1 via the following changes in state vectors:

Dp
i, j : [n1i , . . . , n j−1

i , n j
i , . . . , n

Ny+1
i ] −→ [n1i , . . . , n j−1

i + 1, n j
i − 1, . . . , n

Ny+1
i ],

for i = 1, . . . , Nx + 1, j = 1, . . . , Ny + 1,

U p
i, j : [n1i , . . . , n j

i , n
j+1
i , . . . , n

Ny+1
i ] −→ [n1i , . . . , n j

i − 1, n j+1
i + 1, . . . , n

Ny+1
i ],

for i = 1, . . . , Nx + 1, j = 1, . . . , Ny + 1,

where Dp
i, j ,U

p
i, j : NNy+1 → N

Ny+1. A cell in site i transitions from phenotypic state
y j to y j+1 during time step �t with a probability that depends on the phenotypic state
of the cell and the total number of cells and elements of the local environment in the
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site i . Therefore, we can write that this transition, described by the change in state
vector U p

i, j , occurs with a probability

μ+( j, Ni , ei ) ∈ [0, 1], i = 1, . . . , Nx + 1, j = 1, . . . , Ny + 1.

Similarly, a cell in site i transitions from phenotypic state y j to y j−1 during time step
�t with a probability that depends on the phenotypic state of the cell and the total
number of cells and elements of the local environment in the site i . Therefore, we can
write that this transition, described by the change in state vector Dp

i, j , occurs with a
probability

μ−( j, Ni , ei ) ∈ [0, 1], i = 1, . . . , Nx + 1, j = 1, . . . , Ny + 1.

In order to ensure cells cannot transition to phenotypic states “outside of the domain"
y j ∈ [Ymin,Ymax], we implement μ−(1, Ni , ei ) = 0 and μ+(Ny + 1, Ni , ei ) = 0.
Taking this into consideration, the probability that a cell in phenotypic state y j and
spatial position xi will not change phenotype during a time step �t is given by

1−μ+( j, Ni , ei )−μ−( j, Ni , ei ) ∈ [0, 1], i = 1, . . . , Nx+1, j = 1, . . . , Ny+1.

2.2 Modelling the Dynamics of the Local Environment

Wemodel degradation of elements of the local environment through contact with cells
in the same physical site. Other cell-environment interactions, such as haptotaxis, or
environmental changes such as production by cells, could also be considered here.
The same methodology as presented in these sections can be followed to determine
the corresponding population-level PDE. In particular, we define the change in state
vector Hi : N

Nx+1 → N
Nx+1 to describe degradation of an element of the local

environment in spatial position xi as:

Hi : [e1, . . . , ei , . . . , eNx+1] −→ [e1, . . . , ei +1, . . . , eNx+1], i = 1, . . . , Nx +1.

We assume that the probability of degradation of an element of the local environment
during time step �t depends on the number of cells in each phenotypic state j in
the same spatial position xi . As such, we define the probability of a cell in site i of
phenotype j degrading an element of the local environment during a time step �t as

λ( j, n j
i ) ∈ [0, 1], i = 1, . . . , Nx + 1, j = 1, . . . , Ny + 1, .

2.3 The Corresponding ContinuumModel

In order to derive the corresponding continuum model describing the dynamics of the
entire population of cells and the local environment over time, we employ a process
known as coarse-graining. This procedure is described in full in the Supplementary
Information. Assuming that the probability of two or more events occurring in time
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step�t is sufficiently small that it can be ignored, themaster equation, which describes
the evolution of the probability density over time, is given by

�t
∂

∂t
p(n, e, th) + O(�2

t )

=
Nx+1∑

i=1

Ny+1∑

j=1

μ−( j + 1, Ni , ei )
{
(n j+1

i + 1)p(Up
i, jn, e, th) − n j+1

i p(n, e, th)
}

+
Nx+1∑

i=1

Ny+1∑

j=1

μ+( j − 1, Ni , ei )
{
(n j−1

i + 1)p(Dp
i, jn, e, th) − n j−1

i p(n, e, th)
}

+
Nx∑

i=1

Ny+1∑

j=1

β−( j, Ni , ei )
{
(n j

i+1 + 1)p(Rm
i, jn, e, th) − n j

i+1 p(n, e, th)
}

+
Nx+1∑

i=2

Ny+1∑

j=1

β+( j, Ni , ei )
{
(n j

i−1 + 1)p(Lmi, jn, e, th) − n j
i−1 p(n, e, th)

}

+
Nx+1∑

i=1

Ny+1∑

j=1

{
γ ( j, Ni − 1, ei )(n

j
i − 1)p(Gi, jn, e, th) − γ ( j, Ni , ei )n

j
i p(n, e, th)

}

+
Nx+1∑

i=1

Ny+1∑

j=1

λ( j, n j
i ) {(ei + 1)p(n, Hi e, th) − ei p(n, e, th)} . (1)

Briefly, thefirst two lines on the right hand side correspond to changes in the phenotypic
state of the cell, the second two correspond to changes in the physical position of the
cell, the penultimate line describes proliferation of the cell and the final line describes
degradation of the local environment.

2.3.1 The Coarse-Grained Model of the Cells

As is standard in the literature, we define the ensemble average for the function, f ,
of the number of cells at position i = 1, . . . , Nx + 1 in state j = 1, . . . , Ny + 1
and number of elements of local environment in lattice site i = 1, . . . , Nx + 1 in the
following way:

〈 f (n j
i , ei )〉 =

∑

n

∑

e

f (n j
i , ei )p(n, e, th). (2)

We can therefore formally derive (as seen in Supplementary Information Sec. S1) the
following equation describing the evolution of the mean number of cells in physical
site i = 1, . . . , Nx + 1 and phenotypic state j = 1, . . . , Ny + 1 based on the rules
described in Sec. 2.1:

∂

∂t
〈n j

i 〉 = 1

�t
〈β+( j, Ni , ei )n

j
i−1〉 + 1

�t
〈β−( j, Ni , ei )n

j
i+1〉

− 1

�t
〈β−( j, Ni−1, ei−1)n

j
i 〉 − 1

�t
〈β+( j, Ni+1, ei+1)n

j
i 〉
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+ 1

�t
〈μ+( j − 1, Ni , ei )n

j−1
i 〉 + 1

�t
〈μ−( j + 1, Ni , ei )n

j+1
i 〉

− 1

�t
〈μ+( j, Ni , ei )n

j
i 〉 − 1

�t
〈μ−( j, Ni , ei )n

j
i 〉

+ 1

�t
〈γ ( j, Ni , ei )n

j
i 〉. (3)

We now derive a PDE description of Eq. (3) by taking limits as�x → 0,�y → 0 and

�t → 0. In order to do this, the discrete values of 〈n j
i (th)〉 and 〈ei (th)〉 are written in

terms of the continuous variables n(x, y, t) and e(x, t), describing the cell and local
environment density, respectively, along with

ρ(x, t) =
∫ y=Ymax

y=Ymin

n(x, y, t)dy,

describing the total cell density. We find that, correct to O(�t ):

∂n(x, y, t)

∂t
= 1

�t
β+(y, ρ(x, t), e(x, t))n(x − �x , y, t)

+ 1

�t
β−(y, ρ(x, t), e(x, t))n(x + �x , y, t)

− 1

�t
β−(y, ρ(x − �x , t), e(x − �x , t))n(x, y, t)

− 1

�t
β+(y, ρ(x + �x , t), e(x + �x , t))n(x, y, t)

+ 1

�t
μ+(y − �y, ρ(x, t), e(x, t))n(x, y − �y, t)

+ 1

�t
μ−(y + �y, ρ(x, t), e(x, t))n(x, y + �y, t)

− 1

�t
μ+(y, ρ(x, t), e(x, t))n(x, y, t)

− 1

�t
μ−(y, ρ(x, t), e(x, t))n(x, y, t)

+ 1

�t
γ (y, ρ(x, t), e(x, t))n(x, y, t). (4)

Employing a Taylor series expansion around (x, y), rearranging and collecting terms,
we obtain

∂

∂t
n(x, y, t) = �x

�t

∂

∂x

(
(β−(y, ρ(x, t), e(x, t)) − β+(y, ρ(x, t), e(x, t))) n(x, y, t)

)

+ �2
x

2�t

∂

∂x

((
β− (y, ρ(x, t), e(x, t)) + β+ (y, ρ(x, t), e(x, t))

) ∂

∂x
n(x, y, t)
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− n(x, y, t)
∂

∂x

(
β− (y, ρ(x, t), e(x, t)) + β+ (y, ρ(x, t), e(x, t))

))

+ �y

�t

∂

∂ y

((
μ− (y, ρ(x, t), e(x, t)) − μ+ (y, ρ(x, t), e(x, t))

)
n(x, y, t)

)

+ �2
y

2�t

∂2

∂ y2

((
μ− (y, ρ(x, t), e(x, t)) + μ+ (y, ρ(x, t), e(x, t))

)
n(x, y, t)

)

+ 1

�t
γ (y, ρ(x, t), e(x, t)) n(x, y, t).

We take the parabolic limit as �x , �y, �t → 0 simultaneously (assuming
n(x, y, t) ∼ O(1)), and define

lim
�x ,�t→0

�x

�t

(
β−(y, ρ(x, t), e(x, t)) − β+(y, ρ(x, t), e(x, t))

)
= vm (y, ρ(x, t), e(x, t)),

lim
�x ,�t→0

�2
x

2�t

(
β−(y, ρ(x, t), e(x, t)) + β+(y, ρ(x, t), e(x, t))

)
= Dm (y, ρ(x, t), e(x, t)),

lim
�y ,�t→0

�y

�t

(
μ−(y, ρ(x, t), e(x, t)) − μ+ (y, ρ(x, t), e(x, t))

)
= v p(y, ρ(x, t), e(x, t)),

lim
�y ,�t→0

�2
y

2�t

(
μ−(y, ρ(x, t), e(x, t)) + μ+ (y, ρ(x, t), e(x, t))

)
= Dp(y, ρ(x, t), e(x, t)),

lim
�t→0

1

�t
γ (y, ρ(x, t), e(x, t)) = r(y, ρ(x, t), e(x, t)),

such that the final equation governing the dynamics of the cell population is given by

∂

∂t
n(x, y, t) = ∂

∂x

(
vm(y, ρ(x, t), e(x, t))n(x, y, t)

)

+ ∂

∂x

(

Dm (y, ρ(x, t), e(x, t))
∂

∂x
n(x, y, t)

− n(x, y, t)
∂

∂x
Dm (y, ρ(x, t), e(x, t))

)

+ ∂

∂ y

(
v p (y, ρ(x, t), e(x, t)) n(x, y, t)

)

+ ∂2

∂ y2

(
Dp (y, ρ(x, t), e(x, t)) n(x, y, t)

)

+ r (y, ρ(x, t), e(x, t)) n(x, y, t). (5)

The differential equation governing the cell population evolution over time is comple-
mented with the initial condition

n(x, y, 0) = n0(x, y), (6)
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and is subject to zero-flux boundary conditions at x = Xmin, Xmax and y = Ymin,Ymax,
which are derived in Supplementary Information Sec. S1.1.1 and given by

vmn + Dm ∂n

∂x
− n

∂Dm

∂x
= 0 at x = Xmin, (7)

− vmn − Dm ∂n

∂x
+ n

∂Dm

∂x
= 0 at x = Xmax. (8)

on the physical domain and

v pn + ∂

∂ y
(Dpn) = 0 at y = Ymin, (9)

− v pn − ∂

∂ y
(Dpn) = 0 at y = Ymax, (10)

at the ends of phenotype space. The differences in the boundary conditions in pheno-
type and physical space are observed as a result of the varied assumptions underlying
the movement probabilities. In physical space, the probability of movement depends
on the surrounding number of cells and elements of the local environment in the target
site, whereas the probability of movement in phenotype space depends on the number
of cells and elements of the local environment in the same site as the cell.

2.3.2 The Coarse-Grained Model of the Local Environment

Using probabilistic approximations of the same form as those underlying Eq. (3),
we recover the following equation describing the evolution of elements of the local
environment in site i over time:

�t
∂

∂t
〈es〉 = −

Ny∑

j=1

〈λ( j, n j
s )es〉. (11)

Defining

lim
�t→0

1

�t
λ(y, n(x, y, t)) = ν(y, n(x, y, t),

which we can substitute into Eq. (11), rearrange and take limits as �x ,�y,�t →
0, to find that the differential equation for the evolution of the density of the local
environment, e(x, t), is given by

∂

∂t
e(x, t) = −

∫ y=Ymax

y=Ymin

ν(y, n(x, y, t))e(x, t)dy. (12)

The corresponding initial condition is then

e(x, 0) = e0(x). (13)
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Now that we have derived the coarse-grained model in full (Eqs. (5)-(10),
(12) and (13)), we present a series of applications that demonstrate the utility of
this framework through the choice of specific functional forms for the functions
vm (y, ρ(x, t), e(x, t)),Dm (y, ρ(x, t), e(x, t)),v p (y, ρ(x, t), e(x, t)),Dp(y, ρ(x, t),
e(x, t)), r(y, ρ(x, t), e(x, t)) and ν(y, n(x, y, t)). We will assume in this arti-
cle that all movement in physical space is undirected, and therefore we take
β+(y, ρ(x, t), e(x, t)) = β−(y, ρ(x, t), e(x, t), such that vm = 0 hereon in. Nev-
ertheless, the general form of the governing equations is retained, enabling readers to
readily adapt the framework to cases involving directed movement or other specific
applications.

3 Broad Spectrum Applications in Mathematical Biology

In this section, we showcase the versatility of the PDE modelling framework given by
Eqs. (5)-(10), (12) and (13) by applying it to several exemplar biological scenarios.
These applications demonstrate how the PDE framework effectively captures emer-
gent population-level dynamics across diverse biological contexts. By considering a
range of different underlying characteristics and interaction rules (prescribed in Sup-
plementary Information Sec. S2), we showcase the ability of these models to encode
complex behaviours while maintaining analytical and computational tractability.

3.1 SimulationMethods

The deterministic, continuum counterpart of the individual-based model described in
Sec. 2 is given by the PDEs in Eqs. (5) and (12), with boundary conditions given in
Eqs. (7)-(10) and initial conditions given in Eqs. (6) and (13). To solve this system
numerically, we use an advection-diffusion-reaction (A-DR) scheme that discretises
the spatial variable x using a central finite difference stencil modified from previous
work (Crossley et al. 2023), employing ghost points to enforce the zero-flux boundary
conditions. The full system of discretised equations can be found in the Supplementary
Information. In the phenotypic axis, y, we use a finite volume scheme, which divides
the axis into Ny +1 sites of equal width. The advective component is controlled using
the Koren limiter (Koren 1993). The resulting system of ordinary differential equa-
tions are then integrated in time using python’s in-built ordinary differential equation
solverscipy.integrate.solve_ivpwith the explicit Runge-Kutta integration
method of order 5 and time step �t = 0.1. The phenotype step is �y = 0.02 and
the spatial step is �x = 0.1, both of which were chosen to be sufficiently small to
ensure that we observed convergence in the solutions. Where constant speed, constant
profile travelling waves are observed, the speed is estimated numerically by saving the
solution at each time point, interpolating to find the critical spatial position x∗ such
that ρ(x∗, t) = 0.1 and then calculating the difference between two sequential critical
spatial points and dividing by the time step between them. At each spatial position, the
mean phenotype is obtained by computing the density-weighted sum of phenotypes

123



Modelling the Impact of Phenotypic Heterogeneity on Cell Migration… Page 13 of 28   123 

and normalising by the total local density. Code is available for all computations at
the following GitHub repository: https://github.com/beckycrossley/cont_phen.

3.2 Phenotypic Structuring during Range Expansion

Understanding how cell populations expand and evolve is a fundamental question in
biology, particularly in contexts such as tumour growth, microbial colony expansion,
and tissue development. A key aspect of these processes is tracking cell lineages to
uncover how phenotypic traits propagate and shape population dynamics over time. In
this section, we demonstrate how this modelling framework provides a convenient and
effective approach for studying these lineage dynamics within an evolving population.
Specifically, we consider a phenotypically structured population of homogeneous cells
(i.e., cells that share the same underlying behaviour but are distinguishable by a phe-
notypic marker) to gain deeper insights into how individual lineages contribute to the
overall invasion process. By analysing the spatio-temporal evolution of the pheno-
typic structure as the population spreads, we highlight how this approach enables the
systematic tracking of cell lineages during range expansion.

Previous studies, such as those by Marculis et al. (2020), have investigated similar
population dynamics using stage-structured integrodifference equations (Marculis and
Lewis 2020), with further extensions incorporating trade-offs between reproductive
and dispersal abilities (Marculis et al. 2020). While these approaches offer valuable
insights into structured population dynamics, they rely on discrete phenotypic stages,
which may limit the resolution of evolutionary and ecological interactions.

In contrast, this work provides a more nuanced perspective by modelling the evo-
lution of a continuously structured phenotype, y ∈ [0, 1], over space, x ≥ 0, and
time, t ≥ 0. This allows for a finer representation of phenotypic variation and sub-
sequent exploration of its role during population expansion. Specifically, we describe
the spatio-temporal evolution of the cell population, n(x, y, t), using the following
governing equation:

∂

∂t
n(x, y, t) = ∂2

∂x2
n(x, y, t) + r (ρ(x, t)) n(x, y, t). (14)

As in Marculis et al. (2020), we study Eq. (14) subject to two different functions
describing net cell proliferation:

rK (y, ρ(x, t)) = 1 − ρ(x, t), (15)

for Fisher-KPP type invasion (pulled waves) and

rA(y, ρ(x, t)) = (1 − ρ(x, t))(ρ(x, t) − p∗), (16)

for the Allee effect, with p∗ ∈ (0, 1/2) (corresponding to pushed waves), where
ρ(x, t) = ∫ y=1

y=0 n(x, y, t)dy. The individual-based functions underlying these contin-
uum equations can be found in Supplementary Information Sec. S2.1. We compliment
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Fig. 1 Evolution of the phenotypic structure of cells in Eq. (14) subject to various growth terms. (a) The
initial distribution of the cells with different phenotypes. (b) The spatial structure of the invading wave
subject to the Fisher-KPP growth term (Eq. (15)). Results in (c) and (d) show the spatial structure of the
invading wave subject to the Allee effect (Eq. (16))

this setup with an initial condition that ensures initial phenotypic structuring of the
population, which can then be tracked over time. Specifically, we take

u0(x, y) =
{
1 if x = 5y,

0 otherwise.
(17)

Recalling that cells in this case are homogeneous, and thus the phenotypic vari-
able y ∈ [0, 1] is used purely to label cells as they evolve, we can see that Fig. 1
shows the phenotypic structure of the population of cells as they invade, subject to the
aforementioned growth terms (Eq. (15) and Eq. (16)). Specifically, Fig. 1(b) shows the
spatial structure of Eq. (14) with the Fisher-KPP growth term (Eq. (15)). As invasion
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progresses, the leading edge of the expanding population is dominated by cells that
originated from the rightmost part of the initial distribution, with phenotypes closer
to y = 1. Over time, the density of these dominant phenotypes increases, and due
to diffusion, cells with these traits spread backward, integrating into the bulk of the
population.

This is a form of what is known as surfing (Klopfstein et al. 2006)–a phenomenon
well-studied in the context of drifting genetic mutations in expanding populations.
Surfing occurs when areas of low cell density allow space for increased growth, such
as along the invading front (see Fig. 1) (Excoffier et al. 2009).

The structure observed in the case of the Fisher-KPP type growth is often described
as a ‘vertical pattern’ (Marculis et al. 2020), which indicates that the total population
is composed of different underlying phenotypes at different points in space, demon-
strating a high level of spatial structuring. However, we see that even in a continuously
structured cell population, it is those cells with the phenotypes that were nearest the
front of the initial distribution of cells that dominate during range expansion. The lower
phenotypes, which began at the rear of the invading population, primarily remain there
and diminish in size over time and increasing space.

Alternatively, if we now consider the case of Allee growth (Eq. (16)) in Eq. (14),
then the numerical results in Fig. 1 display a different pattern of invasion. As the
cells invade, a much larger proportion of all of the initially present phenotypes remain
present in the travelling wave front at later times, and throughout the bulk of the
invading population. As in the Fisher-KPP case, the cells in the rightmost portion of
the initial population, with phenotypes near 1, contribute the largest portions to the
wave. However, with the addition of the Allee effect, there now exist contributions
from all initially present phenotypic states throughout the wave. This is because the
Allee effect introduces a dependency on the total local population density, which
means cells at the leading edge, in areas of low density, have reduced proliferation,
preventing them from rapidly outcompeting other phenotypes within the cell bulk. We
note that by increasing the strength of the Allee effect, by taking p∗ closer to 0.5, the
proportion of all of the phenotypes present in the wave becomes closer to one another
(equalises). The spatial pattern observed in this case is described as ‘horizontal’ as it
does not differ in space, but still shows high phenotypic variation in the front (Roques
et al. 2012).

These structural differences at the wave front agree with those observed by Roques
et al. (2012) who consider a similar system but with discrete, rather than continuous,
phenotypes. These results indicate that the lineage structure of an invading wave
could potentially be used to distinguish between the underlying growth mechanisms
of the cell populations. It is also notable that the speed of cell invasion subject to
the Allee effect (Eq. (16)) is significantly slower than the speed of invasion in the
Fisher-KPP case (Eq. (15)). As such, although the Allee effect maintains diversity
across the travelling wave front, it also decreases the speed of invasion in doing so,
and so a trade-off is observed between diversity maintenance and speed of population
invasion, which favours faster invasion for a weaker Allee effect.
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3.3 A Go-Or-GrowModel of Cells Invading the Extracellular Matrix (ECM)

In this section, we apply the aforementioned system of Eqs. (5)-(10), (12) and (13) to
a general model for collective cell migration into the ECM, exploring how individual
cell-level properties give rise to emergent population-level behaviours. By examining
the interactions between cells and their environment at a population-level, we aim
to uncover the underlying individual cell-ECM mechanisms that drive large-scale
migration patterns and spatial organization, providing insight into how cell processes
shape collective movement in biological systems.

The ECM is a complex network of proteins and carbohydrates that supports and
provides structure for migrating cells (Winkler et al. 2020; Crossley et al. 2024a).
Its composition varies by location, making its role in collective migration difficult
to define. However, a well-agreed notion is that cells need to breakdown the ECM in
order to make space in which to invade (Nagase andWoessner 1999; Visse and Nagase
2003; Nagase et al. 2006; Jabłońska-Trypuć et al. 2016).

In thiswork,we aim tomodel the fundamental trade-off in energetic costs associated
with motility and proliferation, known as the “go-or-grow" hypothesis (Hatzikirou
et al. 2012), while also incorporating the role of ECM degradation by migrating cells.
Our goal is to use this framework to bridge the gap between individual-cell behaviours
and emergent population-level dynamics.

Previous mathematical models have captured this trade-off by considering only two
discrete phenotypes (Crossley et al. 2024b), due to limitations in the available mathe-
matical frameworks. However, biological evidence strongly supports the existence of
a continuum of phenotypes rather than a simple dichotomy (Bendall and Nolan 2012;
Campbell et al. 2021). By extending prior work to a continuously structured phe-
notypic model, we provide a more biologically realistic representation of go-or-grow
dynamics, allowing us to explore how individual-level decision-making translates into
large-scale invasion patterns.

We model the cells, denoted n(x, y, t), as able to move, proliferate and degrade
the ECM, e(x, t). To model the trade-off between ECM degradation, motility and
proliferation, we assume that cells with a larger value of the phenotype variable,
y ∈ [0, 1], have a higher proliferative potential but a lower motility and lower ECM
degrading potential whilst, in comparison, cells with a lower value of the phenotypic
variable y correspond to those with a higher motility and higher ECM degrading
potential, but a lower proliferative potential. Therefore, cells with phenotype y =
0 degrade the ECM most rapidly and are the most motile, but they are unable to
proliferate. On the other hand, cells with phenotype y = 1 are the most proliferative,
but cannot degrade the ECM or move. As in Crossley et al. (2024b), we implement
a linear relationship between the phenotype of the cells and the associated ability to
degrade the ECM, move and proliferate.

The initial functions describing the probabilities of transitions in the individual-
based model underlying these continuum equations can be found in Supplementary
Information Sec. S2.2. Hereon in, we focus on the corresponding continuum functions
stated below.
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Following the volume exclusion principles described by Crossley et al. (2023,
2024b), we assume that the probability of a cell moving randomly in physical space
linearly decreases as the occupancy of space increases. As described earlier, we also
introduce the assumption that the probability of a cell moving randomly increases as
the phenotype of the cell decreases. As such, the function describing movement in
physical space can be written as

Dm(y, ρ(x, t), e(x, t)) = (1 − y)

(

1 − ρ(x, t) + e(x, t)

κ

)

,

where κ > 0 is the total available density for cells and ECM, known as the carrying
capacity. Similarly, for all cells, the probability of cell proliferation linearly decreases
as the space around the cell fills with other cells and ECM, but it also decreases as the
phenotype decreases, such that

r(y, ρ(x, t), e(x, t)) = y

(

1 − ρ(x, t) + e(x, t)

κ

)

.

Furthermore, we assume that the degradation rate of the ECM is proportional to the
density of surrounding cells and decreases as the phenotype of the cells increases. We
write this as

ν(y, n(x, y, t)) = (1 − y)n(x, y, t).

Onemajor challenge in understanding the cell phenotype dynamics during invasion
is the lack of direct experimental observations, as visualizing phenotypic transitions
in real time is extremely difficult. As a result, there is limited guidance in the literature
on the appropriate mathematical forms for these transitions, leaving a key gap in the
understanding of how phenotype-dependent behaviours shape collective migration.

This highlights the final undetermined functions in Eqs. (5) and (12), that
describe the transitions between cell phenotypes. In this section, we systemati-
cally investigate the impact of different density-dependent phenotypic transition
rules, μ±(y, ρ(x, t), e(x, t)), along with their associated drift and diffusion terms,
v p(y, ρ(x, t), e(x, t)) and Dp(y, ρ(x, t), e(x, t)), respectively, as summarised in
Table 1. By exploring how the invasion dynamics change under different assumptions,
we aim to determine whether population-level (and therefore potentially more observ-
able) behaviours can provide insight into the underlying, unobservable phenotypic
structures, offering a potential approach for inferring hidden biological mechanisms
from macroscopic invasion patterns.

We investigate three phenotypic drift mechanisms influencing cell transitions:
firstly, cell-dependent drift, where cells shift toward more motile phenotypes at higher
cell densities; next, ECM-dependent drift, where cells adopt more ECM-degrading
phenotypes as ECM density increases; and finally, space-dependent drift, where cells
become more proliferative as available space increases. Each drift term is bounded
between zero and one, which is consistent with the constraints placed on the total cell
and ECM density. By comparing these mechanisms for phenotype change, we assess
how different environment- and density-dependent phenotypic transitions shape the
structure of the migrating cell front.
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Table 1 Table listing the functions employed in Eq. (5) describing the probabilities of transitions up and
down in phenotype space, resulting in the phenotypic drift, v p(y, ρ(x, t), e(x, t)), and phenotypic diffusion,
Dp(y, ρ(x, t), e(x, t)), functions shown

Phenotypic drift μ−(y, ρ, e) μ+(y, ρ, e) v p(y, ρ, e) Dp(y, ρ, e)

Cell-dependent
ρ

κ
1 − ρ

κ
2
ρ

κ
− 1 1

ECM-dependent
e

κ
1 − e

κ
2
e

κ
− 1 1

Space-dependent
ρ + e

κ
1 − ρ + e

κ
2
ρ + e

κ
− 1 1

Fig. 2 Evolution of the phenotypic structure of cells in Eqs. (5)–(12) subject to various phenotypic drift
terms, with the corresponding ECM density shown as a dashed grey line. (a) The initial distribution of
the ECM and the cells with different phenotypes. (b) The spatial structure of the invading wave subject to
cell-dependent phenotypic drift. (c) The spatial structure of the invading wave subject to ECM-dependent
phenotypic drift. Results in (b) and (c) are all plotted at t = 30 and simulations are carried out with κ = 1.
See Table 1 for explicit forms of the phenotypic drift terms

We simulate this system of Eqs. (5)-(10), (12) and (13) subject to the following
initial conditions:

n0(x, y) = exp
(−100(x2 + y2)

)

max
(∫ Xmax

Xmin
exp

(−100(x2 + y2)
)
dx

) , (18)

e0(x) =
{
0 if n0(x, y) > 0.001,

0.5 otherwise.
(19)

By examining the simulation results shown in Fig. 2 we can see that for a fully
mixed initial population of cells, the phenotypic drift terms considered produce trav-
elling wave solutions with similar, constant speeds of invasion. See Supplementary
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Information Figs. S1 and S2 for a comparison including space-dependent phenotypic
drift, which shows very similar results to cell-dependent drift.

In the case of cell-dependent phenotypic drift, we notice that there is a larger density
of cells with lower phenotypes, which correspond to more motile and ECM degrading
but less proliferative cells, in the bulk of the wave. At the front, we instead see a
higher proportion of more proliferative and immobile cells, which are able to divide
into the available space. As such, in the bulk of the wave the mean phenotype remains
the same but as x increases, we observe a gradual increase in mean phenotype at the
wave front where extremely low cell densities induce cells to switch to a proliferative
phenotype. Very similar patterning is observed in the space-dependent phenotypic drift
case, without the sharp change in phenotype at the very front of the travelling wave
(results in Supplementary Information). In this context, this model predicts that the
density of the ECM has minimal impact on the phenotypic structure of the invading
wave.

However, when examining ECM-dependent phenotypic drift in Fig. 2(c), we notice
that the cells with higher phenotypes, corresponding to less motile and less degrading
but more proliferative, now constitute a larger proportion of the population behind
the invading front. Compared to cell- or space-dependent phenotypic drift, the mean
phenotype of cells in the bulk is significantly higher. However, at the front of the
invading wave in the ECM-dependent case, we see a larger proportion of cells with
low phenotypes, namely, cells that have a higher ability to degrade the ECM and move
into the subsequently available space.

As a result of the phenotypic structures developed when the system is subject to
different phenotypic drift functions, the spatial structure of the individual phenotypes
within the invading wave could be used to better understand the underlying mecha-
nisms governing phenotypic transitions during collective cell migration into the ECM.

3.4 T Cell Exhaustion

In this subsection,we demonstrate the broad applicability of the framework by deriving
a population-level PDEmodel for T cell exhaustion, starting from an individual-based
description of the underlying dynamics. This approach systematically coarse-grains
the underlying cell processes, ensuring that the resulting PDEs are not merely phe-
nomenological but instead retain a direct mechanistic link to individual cell properties.
Specifically,we incorporate aTcell populationwith varying levels of exhaustion invad-
ing into a tumour, and examine the role of phenotype-dependent drift in shaping its
exhaustion dynamics. This application highlights how this framework can be adapted
to capture complex immune responses while preserving biologically meaningful con-
nections between individual- and population-level behaviour.

T cells are a key component of the immune system, with an important role to play in
locating and attacking tumour cells (Weninger et al. 2001). When space is available,
T cells will infiltrate into the tumour where they kill malignant cells by releasing
cytotoxic enzymes. During the sustained activation of T cells required to combat and
restrict further growth of a tumour, T cells will differentiate and eventually “exhaust”
(Yi et al. 2010). This occurs as a result of continued exposure to the antigens of the
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tumour cells and as T cells exhaust, their effector functions reduce (Blank et al. 2019;
Chow et al. 2022). Exhaustion results in diminished cytokine production, impaired
proliferation and reduced motility in the T cells (Miller et al. 2019). Completely
exhausted T cells are no longer able to move or grow (Wherry and Ahmed 2004),
and have impaired toxicity, which reduces their ability to kill off tumour cells (Jiang
et al. 2015). Furthermore, T cells will die much faster the more exhausted they are
(Wherry andAhmed 2004). Understanding the dynamics of the T cells as they infiltrate
a tumour and their exhaustion during this process is crucial to developing treatments
for tumours, and so we develop a mathematical model to gain further insights.

As such, after applying the T cell specific individual-based model functions
described in the Supplementary Information Sec. S2.3 to the coarse-graining process,
we investigate the spatio-temporal evolution of T cell density, denoted T (x, y, t),
invading into a population of tumour cells, with density denoted by C(x, t). Similarly
to before, we define ρ(x, t) as

ρ(x, t) =
∫ y=Ymax

y=Ymin

T (x, y, t)dy.

In this application, the phenotype of the cells, y ∈ [0, 1], represents the exhaustion
of the T cells. As such, T cells with phenotype y = 1 are naïve, and are able to move
freely and randomly in physical space, whilst also attacking nearby tumour cells and
dividing (Worbs and Förster 2009; Reina-Campos and Goldrath 2019). However, T
cells with phenotype y = 0 are considered exhausted, or terminally-differentiated
memory T cells, which are considered to be in a resting state (Sprent and Surh 2011;
van den Broek et al. 2018). The resulting model takes the following form:

∂

∂t
T (x, y, t) = ∂

∂x

(

Dm(
y, ρ(x, t),C(x, t)

) ∂

∂x
T (x, y, t)

− T (x, y, t)
∂

∂x
Dm(

y, ρ(x, t),C(x, t)
)
)

+ ∂

∂ y

(

v p(y, ρ(x, t),C(x, t)
)
T (x, y, t)

)

+ ∂2

∂ y2

(

Dp(y, ρ(x, t),C(x, t)
)
T (x, y, t)

)

+ r
(
y, ρ(x, t),C(x, t)

)
T (x, y, t), (20)

where the net proliferation of the T cells, which depends on the exhaustion of the T
cells and the available surrounding space for growth, can be described by

r(y, ρ(x, t),C(x, t)) = γ1y

(

1 − ρ(x, t) + C(x, t)

κ

)

− γ0(1 − y),

where γ1 ≥ 0 describes the growth rate, and γ0 ≥ 0 describes the death rate of the T
cells. κ > 0 is the carrying capacity for the cells, as described in Sec. 3.3.
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T-cell movement in physical space is assumed to be random and undirected, but it
is prevented by the presence of other T cells or tumour cells (in line with the volume-
filling assumptions described in Sec. 3.3). As such, diffusion in physical space is given
by

Dm(y, ρ(x, t),C(x, t)) = y

(

1 − ρ(x, t) + C(x, t)

κ

)

,

which describes a higher diffusion rate for T cells with a higher phenotype.
Furthermore, we wish to model the phenotypic transitions of the T cells, or how

exhausted the T cells become as they move, grow and interact with tumour cells.
We have already assumed that the higher the phenotype of a T cell, the higher its
probability of moving and growing, and this in turn will exhaust it. We also know that
the tumour cells can be killed by the T cells, which we assume will further exhaust
the T cells at a rate proportional to the number of interactions they have with the
surrounding tumour cells. Therefore, we model the drift in phenotype space as

v p(y, ρ(x, t),C(x, t)) = y(k1 + k2C(x, t)),

where k1, k2 ≥ 0 describe the exhaustion rate of the T cells as a result of movement
and growth, and as a result of interactions with the tumour cells, respectively. We
allow for some small randomness in the exhaustion levels of the T cells by including
a diffusive term in phenotype space of the form

Dp(y, ρ(x, t),C(x, t)) = ε 	 1.

Now, it is well-known that tumour cells are also mobile and able to grow (Suresh
2007). As such, we can derive an equation similar to Eq. (12) which also includes
terms describing random movement and proliferation derived in the same manner as
those in Eq. (5). The resulting equation governing the evolution of the density of the
tumour cells in space, x ≥ 0, and time, t ≥ 0, is therefore given by

∂

∂t
C(x, t) = ∂

∂x

(

DC(
ρ(x, t),C(x, t)

) ∂

∂x
C(x, t)

− C(x, t)
∂

∂x
DC(

ρ(x, t),C(x, t)
)
)

−
∫ y=1

y=0
ν(y, T (x, y, t))C(x, t)dy + g(ρ(x, t),C(x, t))C(x, t). (21)

We note here that the term DC (ρ(x, t),C(x, t)) behaves similarly to Dm(y, ρ(x, t),
C(x, t)) and that g(ρ(x, t),C(x, t)) behaves like the growth term in the previous
application, but without the phenotype dependence.

Assuming that the motility and proliferation of tumour cells is restricted in regions
of high cell density, we take

g(ρ(x, t),C(x, t)) = rC

(

1 − ρ(x, t) + C(x, t)

κ

)

,
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DC (ρ(x, t),C(x, t)) = 1 − ρ(x, t) + C(x, t)

κ
,

with rC ≥ 0 describing the growth rate of the tumour cells. Finally, T cells with a
higher phenotype are less exhausted, and therefore kill tumour cells at a higher rate.
As such, we write

ν(y, T (x, y, t)) = λ̄yT (x, y, t),

where λ̄ ≥ 0 describes the rate of degradation of the tumour cells by the T cells, or
the toxicity of the T cells on the tumour.

We simulate the system of Eqs. (20)–(21) subject to the following initial conditions:

T0(x, y) = exp
(−100(x2 + (y − 1)2)

)

max
(∫ Xmax

Xmin
exp

(−100(x2 + (y − 1)2)
)
dx

) , (22)

C0(x) =
{
0 if n0(x, y) > 0.001,

0.5 otherwise.
(23)

Examining Fig. 3 it is clear that two main invasion behaviours are exhibited,
which depend on the parameters of the system. The first, which can be observed
in Fig. 3(b) and Fig. 3(c), shows T cells that attack the tumour cells and produce trav-
elling wave type profiles that invade through the tumour cells into the domain, killing
off the tumour as they do so.

In these simulations, altering the parameters of the system, namely the exhaustion
rate of the T cells, leads to a range of different predicted behaviours. The initial
population of T cells were naïve. As such, the phenotypic structure of the invading
wave of T cells with a lower exhaustion rate consisted of a larger range of phenotypes
of cells (see Fig. 3(b)). Consequently, the invading wave retains cells with a high
phenotype. Comparatively, by increasing the exhaustion rate of the T cells, a travelling
wave of invasion can still be observed (see Fig. 3(c), for example), but with a much
more restricted set of phenotypes in the bulk of the wave. The very front of the wave
contains T cells with higher phenotypes that are the least exhausted, but the total
density of T cells invading into the tumour cells is decreased, and subsequently, so is
the invasion speed.

In another scenario, whereby the growth of the tumour cells exceeds the degradation
of the tumour cells by the T cells, results similar to those in Fig. 3(d) are found, where
the T cells exhaust extremely quickly as a result of a high number of interactions
with tumour cells. This continued exposure quickly exhausts the T cells, which in turn
increases death and creates available space for subsequent colonization by the tumour
cells. In Fig. 3(d), all of the T cells have died and we observe that the tumour cells
(plotted as a dashed grey line) are growing to fill the domain far ahead of the location
of the initial population of T cells.

Due to the large number of parameters in Eqs. (20)–(21), complete exhaustion and
death of the T cells can also be observed by decreasing the diffusion coefficient of the
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Fig. 3 Evolution of the phenotypic structure of population of T cells invading into population of tumour
cells as described in Eqs. (20)–(21) subject to various exhaustion rates, with the corresponding tumour cell
density shown as a dashed grey line. (a) The initial distribution of the cells. Results in (b), (c) and (d) show
the spatial structure of the invading wave subject to exhaustion rates 0.1, 0.5 and 1.0, respectively. Solutions
are plotted at t = 50, and simulations are carried out with ε = 0.01, γ0 = 1, γ1 = 10, rC = 0.1, κ = 1,
and λ̄ = 10

T cells, increasing (decreasing) the death (growth) rate of the T cells, decreasing the
toxicity of the T cells or increasing the growth or motility rates of the tumour cells. In
all of these cases, the tumour cells will eradicate the T cells and growth of the tumour
to fill the available space will be observed. This is an example of competitive exclusion
(Strobl et al. 2020). The opposite effects on each of these parameters provides examples
of when the T cells are able to either completely eradicate or prevent further growth
of the tumour cells. These behaviours have been observed experimentally (Schreiber
et al. 2011) and thus the modelling results shown in this work could provide useful
insights into developing treatments for tumours in the future, once biologically realistic
parameter sets are investigated.
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4 Discussion

In conclusion, numerous biological processes can be described in a simple form by
phenotypically structured cell migration. Yet, general frameworks for modelling this,
built from vastly adaptable underlying individual-based principles, are largely under-
studied (Villa et al. 2024). In this article, we have demonstrated how to derive a general
model for phenotypically structured cell migration from the underlying individual-
based processes, that can be used to reproduce a variety of results in the literature,
whilst modelling a continuum of phenotypes.

Whilst we have illustrated that the general modelling framework is easily adaptable
and can be applied to a range of biological systems considering spatial invasion of
structured populations, we highlight the need for adaptation of the underlying assump-
tions to the specific modelling question of interest. For instance, the continuummodel
derived in this work employed distinctly different boundary conditions in the phys-
ical and phenotypic domains. These differences arose from the varying assumptions
about the processes governing movement in each domain. However, these conditions
can be straightforwardly modified through analogous derivations. We therefore stress
that this work represents an important first step towards generalising this modelling
approach.

In changing the form of the phenotypic drift terms, caremust also be taken to ensure
that limits taken in moving from the individual-based derivation to the continuum
model are satisfied. For reaction-diffusion models with drift terms, the impact of
these scalings andquantitative comparisons between the individual-based and resulting
continuummodels in such limits are well-studied in the literature (Lorenzi et al. 2020;
Macfarlane et al. 2022).

The continuum modelling framework presented in this work describes invasion in
two dimensions: space and phenotype. We could extend this into higher dimensions,
both spatially and phenotypically, such that two or three dimensional experiments,
such as those looking at the evolution of tumour spheroids for example, can be more
accurately modelled, and the results validated against data. An example of a two-
dimensional phenotype space could be the separation of proliferation and motility
into two different dimensions, rather than the one-dimensional trade-off discussed in
the example in this work.

Beyond this, we have applied this system of Eqs. (5)-(10), (12) and (13) to several
biological scenario to demonstrate its versatility and utility. We recognise that these
applications are for illustrative purposes only, and thus we employ several biological
simplifications. We therefore propose that this framework could provide a base model
for continuum modelling of invasion processes derived from underlying individual-
based assumptions. The modelling framework presented would therefore benefit from
expanding or adapting the forms of the functions to the specific biological application
of interest, and the addition of extra details from various sub-models in the literature
that may have been validated with experimental data would be needed in order to use
this modelling approach to infer specific conclusions about the application of interest.
For example, in the go-or-grow application, we have considered the volume-filling
effects of both the cells and the ECM. However, if we were to consider modelling a
chemoattractant, for example, the volume-filling assumptions underlying this model
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would no apply to the chemoattractant itself. As such, the derivation of the model
would need to be adjusted accordingly, using the same methodology to determine the
resulting population-level model.

Additionally, in the case of T cell infiltration into tumour cells, where we interpret
the phenotype of the cell as its exhaustion level, we are making a first step into the
spatio-temporal modelling of T cell movement with phenotypic structuring, and there
remains a large number of questions to be asked. For example, what are the specific
functions that most accurately describe the exhaustion of the T cells, or what does it
really mean to be exhausted in this context (Blank et al. 2019)?

Overall, when simulation results from a particular biological scenario present vastly
different phenotypically structured solutions, this general modelling framework could
provide a useful tool for developing understanding of the mechanisms underlying
heterogeneity during migration, such as the bet-hedging strategies observed as a result
of environmental pressures in Almeida et al. (2024). The framework presented in this
work has been derived from descriptions of interactions at an individual-based level
and can be easily adapted to investigate a variety of biological applications. As a
result, the versatility of this tool could help us understand the role of heterogeneity in
a wide range of circumstances and its resulting insights could ultimately be used to
help inform subsequent important treatment decisions.
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Jabłońska-Trypuć A, Matejczyk M, Rosochacki S (2016) Matrix metalloproteinases (MMPs), the main
extracellularmatrix (ECM) enzymes in collagen degradation, as a target for anticancer drugs. J Enzyme
Inhib Med Chem 31(sup1):177–183

JiangY, Li Y, Zhu B (2015) T-cell exhaustion in the tumormicroenvironment. Cell Death&Dis 6(6):e1792–
e1792

Klopfstein S, Currat M, Excoffier L (2006) The fate of mutations surfing on the wave of a range expansion.
Mol Biol Evol 23(3):482–490

Koren B (1993) A robust upwind discretization method for advection, diffusion and source terms, vol 45.
Centrum Wiskunde & Informatica, Amsterdam

Lorenzi T, Painter KJ (2022) Trade-offs between chemotaxis and proliferation shape the phenotypic
structuring of invading waves. Int J Non-Linear Mech 139:103885

Lorenzi T, Macfarlane F, Villa C (2020) Discrete and continuum models for the evolutionary and spatial
dynamics of cancer: a very short introduction through two case studies. Trends in Biomath: Model
Cells, Flows, Epidemics, and the Environ pp 359–380

123

http://arxiv.org/abs/1512.00903
http://arxiv.org/abs/2412.08535


Modelling the Impact of Phenotypic Heterogeneity on Cell Migration… Page 27 of 28   123 

Lorenzi T, Perthame B, Ruan X (2022) Invasion fronts and adaptive dynamics in a model for the growth of
cell populations with heterogeneous mobility. Eur J Appl Math 33(4):766–783

Macfarlane FR, Lorenzi T, Painter KJ (2022) The impact of phenotypic heterogeneity on chemotactic
self-organisation. Bull Math Biol 84(12):143

Macfarlane FR, Ruan X, Lorenzi T (2022) Individual-based and continuum models of phenotypically
heterogeneous growing cell populations. AIMS Bioeng 9(1):68–92

Marculis NG, Lewis MA (2020) Inside dynamics of integrodifference equations with mutations. Bull Math
Biol 82(1):7

Marculis NG, Evenden ML, Lewis MA (2020) Modeling the dispersal-reproduction trade-off in an
expanding population. Theor Popul Biol 134:147–159

Marculis NG, Garnier J, Lui R et al (2020) Inside dynamics for stage-structured integrodifference equations.
J Math Biol 80:157–187

Merino-Casallo F, Gomez-Benito MJ, Hervas-Raluy S et al (2022) Unravelling cell migration: defining
movement from the cell surface. Cell Adhesion & Migr 16(1):25–64

Miller BC, Sen DR, Al Abosy R et al (2019) Subsets of exhausted CD8+ T cells differentially mediate
tumor control and respond to checkpoint blockade. Nat Immunol 20(3):326–336

Murray PJ, Edwards CM, Tindall MJ et al (2009) From a discrete to a continuum model of cell dynamics
in one dimension. Phy Rev E-Stat Nonlinear and Soft Matter Phy 80(3):031912

Murray PJ, Walter A, Fletcher AG et al (2011) Comparing a discrete and continuum model of the intestinal
crypt. Phys Biol 8(2):026011

Nagase H, Woessner JF (1999) Matrix metalloproteinases. J Biol Chem 274(31):21491–21494
Nagase H, Visse R, Murphy G (2006) Structure and function of matrix metalloproteinases and TIMPs.

Cardiovasc Res 69(3):562–573
Reina-CamposM,GoldrathAW(2019)AntitumourT cells stand the test of time.Nature 576(7787):392–394
Roques L, Garnier J, Hamel F et al (2012) Allee effect promotes diversity in traveling waves of colonization.

Proc Natl Acad Sci 109(23):8828–8833
Schaller G, Meyer-Hermann M (2006) Continuum versus discrete model: a comparison for multicellular

tumour spheroids. Philos Trans of the Royal Soc A Math Phys and Eng Sci 364(1843):1443–1464
Schreiber RD, Old LJ, Smyth MJ (2011) Cancer immunoediting: integrating immunity’s roles in cancer

suppression and promotion. Sci 331(6024):1565–1570
Sprent J, Surh CD (2011) Normal T cell homeostasis: the conversion of naive cells into memory-phenotype

cells. Nat Immunol 12(6):478–484
Stepien TL, Rutter EM, Kuang Y (2018) Traveling waves of a go-or-grow model of glioma growth. SIAM

J Appl Math 78(3):1778–1801
Strobl MA, Krause AL, Damaghi M et al (2020) Mix and match: phenotypic coexistence as a key facilitator

of cancer invasion. Bull Math Biol 82:1–26
Suresh S (2007) Biomechanics and biophysics of cancer cells. Acta Biomater 3(4):413–438
Trepat X, Chen Z, Jacobson K (2012) Cell migration. Compr Physiol 2(4):2369
Van Liedekerke P, Palm M, Jagiella N et al (2015) Simulating tissue mechanics with agent-based models:

concepts, perspectives and some novel results. Comput Part Mech 2:401–444
VillaC,Maini PK,BrowningAP, et al (2024)Reducing phenotype-structured pdemodels of cancer evolution

to systems of odes: a generalised moment dynamics approach. arXiv preprint arXiv:2406.01505
Visse R, Nagase H (2003) Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure,

function, and biochemistry. Circ Res 92(8):827–839
WangZ,Butner JD,KerkettaR, et al (2015)Simulating cancer growthwithmultiscale agent-basedmodeling.

In: Seminars in Cancer Biology, Elsevier, pp 70–78
Weninger W, Crowley MA, Manjunath N et al (2001) Migratory properties of naive, effector, and memory

CD8+ T cells. J Exp Med 194(7):953–966
West J, Robertson-Tessi M, Anderson AR (2023) Agent-based methods facilitate integrative science in

cancer. Trends Cell Biol 33(4):300–311
Wherry EJ, AhmedR (2004)MemoryCD8T-cell differentiation during viral infection. J Virol 78(11):5535–

5545
Winkler J, Abisoye-Ogunniyan A, Metcalf KJ et al (2020) Concepts of extracellular matrix remodelling in

tumour progression and metastasis. Nat Commun 11(1):5120
Worbs T, Förster R (2009) T cell migration dynamics within lymph nodes during steady state: an overview

of extracellular and intracellular factors influencing the basal intranodal T cell motility. Vis Immun
71–105

123

http://arxiv.org/abs/2406.01505


  123 Page 28 of 28 R. M. Crossley et al.

Yi JS, Cox MA, Zajac AJ (2010) T-cell exhaustion: characteristics, causes and conversion. Immunol
129(4):474–481

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123


	Modelling the Impact of Phenotypic Heterogeneity on Cell Migration: A Continuum Framework Derived from Individual-Based Principles
	Abstract
	1 Introduction
	2 The Individual-Based Model
	2.1 Modelling the Dynamics of the Cells
	2.1.1 Random Cell Movement
	2.1.2 Cell Proliferation
	2.1.3 Cell Phenotypic Changes

	2.2 Modelling the Dynamics of the Local Environment
	2.3 The Corresponding Continuum Model
	2.3.1 The Coarse-Grained Model of the Cells
	2.3.2 The Coarse-Grained Model of the Local Environment


	3 Broad Spectrum Applications in Mathematical Biology
	3.1 Simulation Methods
	3.2 Phenotypic Structuring during Range Expansion
	3.3 A Go-Or-Grow Model of Cells Invading the Extracellular Matrix (ECM)
	3.4 T Cell Exhaustion

	4 Discussion
	Acknowledgements
	References


