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The development of de novo resistance is a major disadvantage in molecularly targeted therapies.
Whilemuch focus is on cell-intrinsicmechanisms, themicroenvironment is also known toplay a crucial
role. This study examines interactions between cancer cells and cancer associated fibroblasts (CAFs)
to understand the local crosstalk facilitating residual disease. Using a hybrid-discrete-continuum
model, we explore how treatment-induced stress responses can elicit CAF activation and how breaks
in treatment allow microenvironment normalisation. We investigate how fluctuating environmental
conditions shape the local crosstalk and ultimately drive residual disease. Our experimentally
calibratedmodel identifies environmental and treatment conditions that allow tumour eradication and
those that enable survival. We find two distinct mechanisms that underpin residual disease:
vasculature-limited drug delivery and CAF-mediated rescue. This work provides a better
understanding of the mechanisms that drive the creation of localised residual disease, crucial to
informing the development of more effective treatment protocols.

Among the arsenal of treatments for cancer ismolecularly targeted therapy.
These drugs act at the molecular level to inhibit pathways that facilitate
tumour growth and progression. Examples of molecularly targeted thera-
pies include inhibitors ofmutant EGFR andALK in lung cancers; inhibitors
of BRAF in melanomas; or inhibitors of mutant EGFR and HER2 in breast
cancer1–3. Because of their reduced toxicity due to the selective targeting of a
specific mutation, inhibitor targeted therapies are preferable to cytotoxic
chemotherapeutic agents which are less tumour specific4–6.

Although molecularly targeted therapies offer good initial responses,
resistance develops over time and, eventually, treatment fails6,7.
Mechanisms that drive resistance to targeted inhibitors are still under
investigation5,6. While the phenomenon of competitive release, where
intrinsically resistant cells survive therapy and continue to proliferate due
to being freed from the competition of sensitive cells, can explain why
treatment fails, it is only one facet of the complexity of drug resistance8,9.
Interactions between the tumour and the tumour microenvironment
(TME) are implicated in the development of a type of resistance
dependant on environmental conditions that we call environmentally
mediated drug resistance (EMDR)8,10. In fluctuating environmental
conditions this resistance is transient. Residual disease that occurs from
EMDR creates conditions where, in response to the selective pressure of
therapy, permanent cell-intrinsic resistance can develop.

The TME is comprised of many types of cells (including fibroblasts,
endothelial cells, immune cells), the extracellular matrix (ECM), and sig-
nalling molecules11,12. The TME plays a pivotal role in the growth of
tumours13–15, where tumour-TME interactions can both promote16–18, or
inhibit19,20, tumour growth.

Cancer associated fibroblasts (CAFs) are the main producer of ECM
and signallingmoleculeswithin theTMEand can experiencemorphological
and functional changes in the presence of cancer21,22. Recent reviews high-
light heterogeneity amongst CAF populations in both phenotype and
function, the extent of which is an active field of research21–26. CAFs also
display phenotypic plasticity, where they can switch between phenotypes
under specific conditions27. These phenotypic changes have been shown to
be reversible upon removal of the extracellular cues that drive the
changes28–30.

Of interest to our investigation of EMDR is the role of CAFs in
remodelling the TME and secreting factors essential for the reactivation of
proliferation pathways targeted by the inhibitor drug31,32. Mechanisms by
which CAFs reactivate cancer cell proliferation pathways are varied and
include both contact-mediated and non-contact-mediated cancer-stroma
interactions31,33.

The emergence of reversible CAF-driven EMDR in response to
molecularly targeted therapy has been observed experimentally31.
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Introducing breaks in drug delivery, through intermittent treatment
regimes, creates fluctuating environmental conditions that dynamically
alter extracellular cues in the TME that can delay the onset of resistance34. In
this paper we will explore the hypothesis that fluctuating environmental
conditions can result in transient populations of CAFs, activated through
cell-to-cell interactions, which play a role in the response to therapy.
Understanding the dynamics underpinning residual disease can crucially
allow us to harness the transient nature of TME reactivity to design suc-
cessful intermittent treatment regimes.

Mathematical modelling has been used extensively to explain the
complexdynamicsof theTME35–38. Someexamples include the investigation
of the interactions between non-small cell lung cancer (NSCLC) and CAFs
under targeted therapy with alectinib using evolutionary game theory
techniques39 and a multiscale model that characterises the role of CAFs in
metastasis40. A minimal ODE model integrated with in-vitro and in-vivo
experimental data is introduced to quantify the contribution of CAFs to
resistance41. The significant heterogeneity of TME-specific properties
observed in-vivo indicates the role of specific environmental factors in drug
resistance. The variation can be explained by spatial constraints within the
tissue, stromal support from theTMEor some combination of the two. This
minimal model does not capture spatial attributes on a single cell scale that
drive response to treatment. Since much of the heterogeneity in this
response can be attributed to specific TME conditions, we explore the
hypothesis that the interactions between cancer and stroma cells in response
to environmental and intercellular signals are keydrivers of EMDR.Cancer-
stroma interactions can be both antagonistic (such as competition for space
and resources) and mutualistic (activation of stroma by tumour-produced
signals and the EMDR) under therapy. This interplay can lead to non-trivial
complex local dynamicsandunderstanding these is important for thedesign
of effective treatment regimes.

Individual agent-based models are extensively used to model biolo-
gical systems on the cellular level, with a variety of approaches and
techniques36,42–49. We propose a hybrid discrete-continuum model to
investigate how interactions at the cellular level affect tumour growth when
undergoing intermittent treatment with targeted therapy. Cells in the
model are discrete entities with individual attributes. They follow a set of
probabilistic rules that determine their behaviour. This results in complex
emerging dynamics at the cell population (tissue) level.

We investigate how the dual nature of local interactions between
cancer and stroma cells result in complex emerging dynamics when
undergoing molecularly targeted therapy. We explore the potential of
introducing treatment holidays to reduce the incidence of EMDR, harnes-
sing the transient and reversible nature of drug-induced changes in the
TME. This scenario poses the problem of modelling diffusion and growth
dynamics across different temporal and spatial scales: the timescale of cel-
lular processes, and the timescale of intermittent treatment scheduling; the
spatial scale of drug diffusion, and the spatial scale of short-range cell-to-cell
crosstalk and interactions. The model we present allows us to capture and
analyse how all these scales come together to modulate EMDR. We show
that local drugdiffusiondynamicsplaya crucial role in the crosstalk between
cancer cells andCAFs, anddetermines theoverall response to treatment.We
further investigate the resulting residual disease and characterise its spatial
features at the tissue and cell scales, whichdiscriminate treatment outcomes.
Ultimately, understanding these dynamics will enable new effective ways to
control the emergence of resistance brought about by tumour-TME
interactions.

Results
Wemodel the temporal and spatial dynamics of a solid tumour growing in a
pre-existing homeostatic non-cancerous tissue, and responding to therapy
with an inhibitor drug delivered via the tissue’s vascular system. With our
model we set out to explore the implications of the transient and reversible
nature of stroma reactivity in the context of intermittent treatment with the
inhibitor drug.Wefirst consider a range of intermittent treatment schedules
and determine a regime that displays long-term control of tumour burden.

We then characterise the residual disease in relation to the temporal evo-
lution ofTMEand cancer-stroma crosstalk through the course of treatment.
Specifically, we focus on co-localisation and density of activated stroma and
cancer cells over time. Finally, exploring the diffusion dynamics of the
inhibitor drug delivered via the bloodstream and of themolecular signalling
in the TME, we establish a link between treatment outcome and local vessel
density. Ultimately, our spatial and temporal analysis sheds light on the
complex dynamics behind the development of transient resistance observed
in tumours undergoing targeted therapy with inhibitor drugs.

Hybrid discrete-continuummodel
We adopt a hybrid discrete-continuum model to describe the dynamics of
cells acting as individual agents, coupled with the reaction-diffusion
dynamics of drug and concentrations of signalling molecules that mediate
EMDR (Fig. 1). The modelling framework was first introduced to model
nematode movement and chemotaxis50.

We introduce the proliferation signal, p(x, t), which represents the local
net accumulation of pro-growth versus pro-apoptotic signalling within the
tissue10. The local signal intensity, sensed by a cancer cell, will determine its
viability and proliferative status, based on two thresholds (proliferation
above hp, death below hd, and growth-inhibited for intermediate values
of p(x, t)).

Modulation of the proliferation signal is provided by the cancer cells,
the inhibitor drug, and a subset of non-cancer cells in the TME that are able
to engage in crosstalk with the cancer cells when challenged with drug
treatment. In our model we refer to all non-cancer cells in the TME as
stroma. We designate as reactive the subset of the stroma population that,
through cell-to-cell contact, is able to interact with the cancer cells. The
experimental counterpart of these cells are CAFs that display some level of
differentiation when drug-naive, and a rescue capability to cancer cells in
close proximity upon delivery of the drug31. The remaining stroma is con-
sidered passive.

We introduce a generic inhibitor drug, d(x, t), that is delivered through
the blood circulatory system, diffuses through the tissue, and targets a key
driver mutation in the cancer cells. The inhibitor drug inhibits pro-growth
signalling and enhances pro-apoptotic signalling, ultimately reducing the
viability of cancer cells. We assume that reactive stroma proximal to cancer
is activated by the local drug concentration, namely when d(x, t) is above
threshold hr. Although targeted therapies do not directly affect CAFs (being
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Fig. 1 | Key interactions between cancer cells and the TMEproposed in themodel.
Cancer cell, , behaviour is dependent on the local concentration of the pro-

liferation signal, , with thresholds for death, hd, and proliferation, hp. Cancer cells
provide autocrine promotion of local proliferation signal at rate β. TME comprises of
both passive, , and reactive stroma. Reactive stroma can be in either an activated,

, or deactivated, , state. A targeted inhibitor drug, , depletes proliferation

signal at rate δ and is removed from the system through vessel sites at rate μ. Local

concentration of targeted drug above threshold hr triggers activation of reactive
stroma cells adjacent to a cancer cell, in turn providing paracrine promotion of the
proliferation signal at rate γ. Activated reactive stroma reverts to a deactivated state if
the drug concentration falls below hr.
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mutation specific), CAF activation reflects therapy-triggered wound/stress
response from tumour cells. In the first instance, we adopt the simplest
description of tumour-stroma crosstalk requiring contact-mediated acti-
vation (although we explore the effect of non-contact-mediated crosstalk in
Supplementary Information S.1). Given that diffusion of signalling mole-
cules is physically limited by ECM and uptake by local cancer cells, it is
reasonable to assume highest levels of crosstalk at the tumour-stroma
interface. Once activated, reactive stroma provides paracrine production of
the proliferation signal that can rescue cancer cells by returning them to a
viable, proliferative state. While there is no definite evidence of tumour
microenvironment renormalisation after the cessation of treatment,
clinical studies show a renewed response upon re-administration of TKI
therapies51–53. Furthermore, in-vivo data points at the normalisation of the
TME following the cessation of inhibitor drug delivery as a possible
explanation for re-sensitisation, which, in turn, allows further response
upon the reintroduction of treatment54. Therefore, activation of reactive
stroma in our model is transient and contingent on therapy-triggered
recruitment cues from cancer cells.

Tuning intermittent treatment to control tumour burden and
reduce total treatment days
We explore alternative treatment scenarios of intermittent treatment
(Fig. 2). After detection (t = 0) the tumour will continue to grow unless
treatment to reduce the tumour is initiated. The tumour burden increases
rapidly as cancer invades thehomeostatic tissue (Fig. 2c).Alternatively, if the
tumour is treated with the inhibitor drug continuously from detection, we
observe at first a reduction in tumour burden as the proliferation signal is
brought below the proliferative threshold and the bulk of cancer cells
become quiescent and die. However, as treatment continues, there is pro-
gressive activation of reactive stroma, eventually resulting in overall growth
of the tumour (Fig. 2d). Through paracrine promotion of the proliferation
signal, reactive stroma is able to rescue a portion of the cancer cells,
returning them to a proliferative state. However, the cumulative effect of
stroma activation, under continuous treatment conditions, operates on a

longer timescale compared to that of proliferation signal depletion. This
results in a delay before regrowth is observed, following the initial response.
The resulting tissue is composed of a mass of surviving, proliferative cancer
cells infiltrated by activated reactive stroma.

The transient and reversible nature of stroma activation, triggered by
drug treatment, can be exploited by modulating drug delivery through
intermittent treatment. Namely, introducing treatment holidays, where
deliveryof the inhibitordrug is paused, allowsus to control thepromoting and
rescuing action of reactive stroma. However, reducing overall stroma activa-
tion with pauses in drug delivery comes at the expense of tumour burden
control. During treatment holidays no additional drug enters the domain
while the drug already in the domain diffuses out through the vessels. Even-
tually, reduced drug concentration leads to deactivation of reactive stroma
cells, and hence removal of the local paracrine assistance provided to rescue
cancer cells. As a result, those cancer cells that are relying on this paracrine
assistance can become quiescent and die. However, cancer cells that survive
while local drug concentration decreases sufficiently can re-enter a pro-
liferative state. This can lead to a surge in proliferation over a treatment
holiday, albeit hindered by spatial competition from stroma cells that had
infiltrated the space freed up by bulk cancer death over the previous treatment
delivery. Crucially, the overall outcome of an intermittent regime depends on
the prevalence and time scales of all of the processes described above. To
investigate this further, we consider intermittent treatment schedules with
regularalternatingperiodsofdrugdeliveryanddrugholiday.WedefineτTand
τH to be the length of the drug delivery and drug holiday periods, respectively.

An example of the resulting tumour burden for varying lengths of drug
deliveryperiod τT, with τH=20days, is shown inFig. 2.Weobserve thatwith
short treatment periods (τT=10days) the drug concentration in thedomain
is not sufficient to cause significant death in the cancer population (Fig. 2e).
For τT=30days tumour growth is reduced, however the drug concentration
in the domain is not sufficient to control the tumour burden (Fig. 2f). Note
that, after approximately 150 days, the outcome is comparable to that of the
continuous treatment regime. For treatment period lengths greater than
30 days, we observe significant reduction in tumour burden within the first
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Fig. 2 | Exploration of treatment scheduling. aTumour burden for t∈ [0, 240] days
under no treatment, continuous treatment, and five intermitted treatment schedules
(τT = {10, 30, 50} days and τH = 20 days). Individual realisations are shown, with
30 stochastic simulations conducted for each treatment regime. Reduction in
tumour burden is observed as the length of the treatment period τT of intermittent
treatment increases. Continuous treatment initially displays a very good response to
treatment, followed by EMDR-driven relapse. b–h show spatial distribution and
drug concentration at representative time points for a single simulation of the regime

of interest. bDay 0, the initial condition for all simulations. cDay 51 of no treatment.
d Day 181 of continuous treatment regime. e Day 150 of intermittent treatment
(τT=10 days, τH=20 days) regime. fDay 100 of intermittent treatment (τT=30 days,
τH=20 days) regime. gDay 150 of intermittent treatment (τT=50 days, τH=20days)
regime. h Day 181 of intermittent treatment (τT = 50 days, τH = 20 days) regime.
Animations of the proliferation signal, spatial distribution and drug concentration
for each treatment regime are available in Supplementary Information S.5.
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two treatment periods (Supplementary Fig. S2c) and long-term control of
tumour burden at low levels (Fig. 2g, h).

To compare the outcomes for different choices of τT we extend our
investigation of these regimes to a longer window of time. We consider the
tumour burden and the cumulative days of drug delivery, relative to the
continuous treatment case, over 590 days of therapy. These measures allow
us to quantitatively consider the trade-off between reduction of tumour
burden and duration of pharmaceutical intervention. Under the parameter
regime adopted here, intermittent treatment with τT ≥ 30 days results in
lower tumour burden compared to continuous treatment (Fig. 3a).
Exploring the 40 ≤ τT ≤ 100 days range further, and considering outcomes
over multiple replicates, we observe a non-linear correspondence between
τT and relative tumour burden (Fig. 3b).

Despite the reduced toxicity of most inhibitor drugs, the cumulative
drug delivery time would be a crucial factor in the context of clinical
decision-making over treatment scheduling for a patient. We must
therefore consider the trade-off between minimizing relative tumour
burden and limiting cumulative treatment days. These considerations
suggest treatment regimes with 40 ≤ τT ≤ 60 provide improved tumour
burden while also reducing total number of drug delivery days. A more
extensive investigation of treatment regimes (τH, τT) can be found in
Supplementary Information S.2.

It is important to note that these quantitative results rely on the specific
parameter regime adopted (see Table 1 and Supplementary Information S.3
for details of experimentally-informed parameter calibration). In a clinically
relevant scenario, someof themodel parameterswould have to be calibrated
against patient-specific measurements.

Henceforth, we will adopt the τT = 50 days and τH = 20 days as the
intermittent treatment schedule of choice to investigate how fluctuating

environmental conditions modulate transient stroma activation, crosstalk
with cancer, and, ultimately, the resulting residual disease.

Tumour-stroma colocation shapes the emergence of EMDR
With the treatment regime τT=50and τH=20weobserve control of tumour
burden but not eradication (Fig. 2). Figure 4a shows the cell counts of cancer
and activated stroma cell types along with the mean field drug concentra-
tion. Once the dynamics settle around an approximately cyclic pattern we
observe that surviving cancer (i.e. residual disease) is located in similar
regions over consecutive treatment cycles. An example of spatial config-
urations of residual disease at corresponding times of the three consecutive
treatment cycles is shown in Fig. 4b. It can be seen that the regions in the
domain where the cancer persists are the same for each of the three time
points considered.

Afterdiscarding the transientwindow t∈ [0, 150] days,wequantify the
longitudinal occupancy of cancer cells over the remainder of the treatment.
Thismeasure allows us to determine regions in the domain where surviving
cancer is located once the dynamics become approximately cyclic (Fig. 4c).
Comparing these regions to those with high longitudinal occupancy of
activated stroma (Fig. 4d),wenote that they largely overlap. This co-location
points to the fact that activated stroma is driving resistance, that is, in these
regions we observe tissue-scale EMDR at play. There is, however, a smaller
region with remarkably high longitudinal occupancy of cancer which does
not correspond to a region of high stroma activation. We will later analyse
and compare these distinct regions.

To investigate local cell-to-cell interactionsbetweencancer and stroma,
we consider the activation window: the period of the treatment cycle when
activated stroma is present. In the treatment regime considered, this cor-
responds to the end of each drug delivery period, when the inhibitor drug

Fig. 3 | Quantification of treatment regime outcomes. a Cumulative days of
drug delivery (measured as the sum of drug delivery days over 590 days of therapy)
against relative tumour burden (measured as the sum of total cancer cell count over
the t ∈ [0, 590] day window normalised to the continuous treatment case) for
τT ¼ 10; 20; 30; 40; 50; 60; 70; 80; 90; 100f g days and τH = 20 days. For each sche-
dule, averages over 30 simulations and 95% confidence intervals are shown. The star

indicates reference measures for continuous treatment. As τT is increased, relative
tumour burden initially decreases and cumulative days of drug delivery increases,
but from τT = 50 days, the relative tumour burden increases. bThe inset zooms in on
measures for schedules with τT ≥ 40 days. The treatment regime τT = 50 days,
τH = 20 days is chosen for further analysis.
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Table 1 | Model parameters

Param. Description Value Reference

hd proliferation signal threshold for death 0.2 Model specific

hp proliferation signal threshold for proliferation 0.8 Model specific

p0 proliferation signal at birth 0.256 Experimentally calibrated (see S.1)

hr inhibitor drug threshold for stroma activation 0.93 Model specific

Dd inhibitor drug diffusion coefficient 10−5 cm2day−1 Extrapolated from78, based on radius79, for average molecular weight of inhibitor drugs80

β proliferation signal autocrine production 1.25 day−1 Experimentally calibrated (see S.1)

γ proliferation signal paracrine production 4.242 day−1cell−1 Experimentally calibrated (see S.1)

δ proliferation signal degradation by inhibitor drug 6.68 day−1 Experimentally calibrated (see S.1)

μ rate of inhibitor drug removal at vessel site 500 day−1 Model specific

π proportion of reactive to passive stroma 0.5 Model specific

τT treatment period length varies Model specific

τH holiday period length varies Model specific

∣Ω∣ domain size 0.3 cm × 0.3 cm Model specific

Δx lattice spacing 10 μm Eukaryote cell size81

Δt length of timestep 0.044 hours Model specific

σmean average distance between vessel sites 0.016 cm 47

σmin minimum distance between vessel sites 0.008 cm 47

I cell inter mitotic time U[0.9, 1.1] days 82

pT stroma cell turnover probability 0.0042 day−1 47

pA stroma cell activation probability 0.042 day−1 Model specific

nCI contact inhibition 2 cells Model specific

21 3 Day 2451

2

3

Day 315

Day 385

e

d

cba

Fig. 4 | Exploration of spatial attributes of EMDR. a Timecourse of a single
representative simulation of treatment schedule τT = 50 and τH = 20 over 590 days. Drug
concentration mean field value; cancer cell populations; and activated stroma cell
populations. b Spatial distribution of cells at 245, 315 and 385 days, corresponding to
lowest total cancer cell population in treatment cycles away from the initial transient
(corresponding time points are indicated in a). c, d Longitudinal occupancy of cancer
and stroma, respectively, in the domain for t ∈ [150, 590] days (discarding transient)

over 30 simulations. Occupancy is measured as fraction of time a lattice location in the
domain is occupied by the cell type of interest. e Distributions of average number of
cancer cell neighbours of cancer cells and activated stroma in the activation window over
the same 30 simulations in (c, d) (discarding transient) with standard error shown. Here
the activation window is the last 60% of the 50 days treatment window. Animations of
the spatial distribution, proliferation signal and drug concentrations for treatment
regime τT = 50 days, τH = 20 days are available in Supplementary Information S.5.
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concentration has reached a level sufficient for stroma activation. Moving
our analysis from tissue- to cell-scale dynamics, we characterise themakeup
of the neighbourhood of cancer cells surviving during the activation win-
dow. The distribution of other cancer cells neighbouring a surviving cancer
cell is approximately symmetric, with an average of four cancer neighbours
in their Moore neighbourhood (Fig. 4e). This represents a shift to the left
when compared to the initial distribution of cancer neighbours of cancer
cells grown in the homeostatic, drug-free environment (Supplementary
Fig. S5). With fewer cancer neighbours providing autocrine signalling,
cancer survival depends on paracrine signalling from the TME. Analysing
the distribution of activated stroma neighbours around surviving cancer
cells during the activation window, we can see that a small number of
activated stromal neighbours is sufficient to provide paracrine protection
from the effects of the inhibitor drug (Fig. 4e).

Eradication, survival, and persistence niches
Having observed two different patterns of survival, one driven by co-
location of reactive stroma, and the other in the absence of it, we move to
fully characterise the TME conditions that allow emergence of resistance.
The spatial distribution of residual disease reveals three distinct niches in
the domain. Examples of an eradication niche, an EMDR-driven survival
niche, and a persistence (non EMDR-driven) niche are shown in Fig. 5a.
As the inhibitor drug enters the domain, and concentration builds up, a
wave of cancer cell death follows (links to animations are provided in
Supplementary Information S.5). Both the survival and eradication
niches experience these dynamics of bulk death, whereas the persistence
niche does not and cancer cells survive throughout the treatment in a
quiescent state. However, in the survival niche small clusters of cancer
cells escape the effect of treatment for the duration of the drug delivery
window. As the wave of cancer death occurs there is the opportunity for
stromal cells to infiltrate this newly accessible space (yet within the
constraints of contact inhibition).

To investigate the dual (promoting and competing) nature of cancer-
stroma interactionswe compare TME conditions in these niches. Firstly, we
characterise cancer cell neighbourhoods and find that over the entire
treatment window, cancer cells in the survival niche have fewer cancer
neighbours and more passive stroma neighbours, when compared to those
in the eradication niche (Fig. 5c). These observations point to reduced
autocrine assistance and more spatial competition from passive stroma
neighbours, respectively. A similar result is observed when considering
spatial competition from reactive stroma (irrespective of activation status,
Supplementary Fig. S6). Reduced autocrine signalling and increased spatial
competition are features thatwewould intuitively attribute to an eradication
niche, rather than a survival niche. However, when analysing the activated
stroma neighbours of cancer cells in both niches, we can clearly see that
cancer cells in the survival niche experience higher paracrine promotion
over the course of treatment. Therefore, we find that it is the paracrine
stimulus to proliferation in the survival niche that can shift the modulation
of proliferative signal and enable survival and growth, making up for loss of
autocrine promotion and enhanced spatial competition.Wenote that in the
persistenceniche the distribution of cancer neighbours (hence the autocrine
signalling to the average cancer cell) is approximately similar to the one in
the survival niche.However, given the complete absence of activated stroma
in the neighbourhood of cancer cells, paracrine promotion does not explain
survival in the persistence niche.We will next identify othermechanisms at
play that can explain survival in the persistence niche.

Since all niches emerge from homogeneous conditions (i.e. the same
initialmass of cancer cells immersed in comparably reactive stromal tissue),
we look at the inhibitor drug intermittent delivery to identify the source of
homogeneity-breaking. Local build up of the drug concentration can induce
both cancer cell death, and activation of reactive stroma proximal to cancer.
This suggests that the different outcomes depend on the inhibitor drug
concentration which, in turn, is determined by vessel distribution and dif-
fusion dynamics. Where the density of vessels is higher, the local
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Fig. 5 | Niche characterisation: cell neighbourhoods and local vessel density.
a Cell distributions at day 526 from a single representative simulation. Zoomed-in
insets are examples of a survival niche (S), an eradication niche (E) and a persistence
niche (P). b Vessel density measure, ρ(x), over the domain, for the static vessel
distributionV . Here α̂ ¼ 0:1. Boxes tracing the same regions considered in (a), show

higher ρ in the survival niche compared to the eradication niche, and lowest ρ in the
persistence niche. cDistributions of different cell types of neighbours to cancer cells,
over the t∈ [0, 590] dayswindow, for the same 30 simulations as Fig. 4. Distributions
of average cancer, passive stroma and activated stroma neighbours of cancer cells
with standard errors in each niche are shown.
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concentration of the inhibitor drugwill build upquicker compared towhere
vessel density is lower.

We hypothesise that cancer cells in regions of high vessel density
experiencemore intense effects of the inhibitor drug but are alsomore likely
to be rescued by activated stroma. Figure 5b shows the vessel density
measure, ρ, for the given vessel distribution, showing that higher density
correlates with survival, when compared to the density in the region iden-
tified as the eradication niche. This is consistent with our hypothesis that
cancer survival depends on vessel density. For low vessel density the local
targeteddrug concentrationwill not reacha level sufficient tokill cancer cells
within the drug delivery period. As the vessel density increases the local
targeted drug concentration will become sufficient to cause bulk death of
cancer cells until, for even higher vessel densities, the local targeted drug
concentration will reach the threshold hr, giving more time for stroma
activation and assistance over each cycle of drug delivery. This protective
action will unfold over the long timescale of consecutive treatment cycles.
However, we expect this to be a non-linear effect. Excessively high vessel
density will facilitate higher drug concentrations during drug delivery and
lead tomore cancer cell deaths on amuch shorter timescale.On the flip side,
extremely low vessel density will result in insufficient build up of drug
concentration, and reduced cell death. Notably, vessel density in the per-
sistence niche is smaller than that in the eradication niche. Therefore, while
stroma activationwas identified as a keymechanismbehind residual disease
in the survival niche (Fig. 5c), low vessel density can explain residual disease
in the persistence niche.

Vessel density driven trade-off in treatment outcome
To further investigate how vessel density affects the two antithetic processes
of stroma activation and cancer death during treatment, we consider an
experiment where intermittent treatment is applied to domains of varying
vessel densities. These domains are obtained by systematically decreasing

the spacing of vessels placed on a regular grid; all details of this setup are
discussed in Supplementary Information S.6.At corresponding times across
simulationsweobservedifferent responses to intermittent treatment.At low
vessel densities, the targeted drug enters the domain at fewer locations and
hence is not able to sufficiently diffuse and build up throughout the domain,
resulting in cancer cell survival. We call this type of treatment failure, poor
perfusion failure (PPF). Figure 6 shows instances of PPF for low vessel
densities (lower mean field ρ insets colour-coded red and Supplementary
Fig. S7 for additional time resolution).

As vessel density increases, the inhibitor drug enters the domain at
more locations and is able to diffuse and build up sufficiently to cause bulk
death of cancer cells without causing significant activation of stroma. This
results in eradication of cancer cells, indicative of treatment success (centre
insets colour-coded purple of Fig. 6 and Supplementary Fig. S7 for addi-
tional time resolution).

At greater vessel densities, the inhibitor drug enters the domain at
more locations and is able to diffuse and build up quickly in the tissue.
Reactive stroma is then much more likely to activate and provide the
additional paracrine promotion of the proliferation signal required to
rescue cancer cells. This results in EMDR (higher mean field ρ insets
colour-coded yellow of Fig. 6 and Supplementary Fig. S7 for additional
time resolution).

Remarkably, the persistence and survival niches identified in previous
simulations with a realistic irregular vessel distribution, display outcomes
suggestive of PPF and EMDR, respectively.

Drug dynamics shape distinct niches
Having observed a transition from PPF to EMDR as the vessel density and/
or drug delivery period increases, we further investigate conditions of vessel
density and treatment scheduling that canmodulate resistance. During one
cycle of treatment (one drug delivery period followed by one drug holiday

Treatment 
failure

Eradication

RDMEFPP

ρ

Fig. 6 | Investigation of vessel density and treatment outcomes. Distribution of
cells at day 139 from single representative simulations with increasing vessel density.
Vessel sites are determined to reflect a target density across the domain (see Sup-
plementary Information S.6 for details). Increasing mean field ρ values are

0.54 × 10−3, 1.63 × 10−3, 2.18 × 10−3, 2.73 × 10−3, 3.28 × 10−3, 3.82 × 10−3, 4.38 × 10−3

and 4.94 × 10−3. Treatment failure due to poor perfusion of the drug (PPF) is evident
for low vessel density, while EMDR drives treatment failure for higher vessel
densities.
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period) the drug concentration builds up in the domainwith regions of high
local vessel density surpassing the thresholdhrquicker than regionswith low
local vessel density. Figure 7a shows a snapshot of the drug concentration
field just after halfway through the drug delivery period. At this point, a
significant fraction of the survival niche experiences drug concentrations
sufficient for stroma activation (d(x, t) ≥ hr), while only a very small portion
of the eradication niche and none of the persistence niche experience this
condition. Later in the drug delivery period everywhere in the survival niche
is now above the threshold, while a significant fraction of the eradication
niche and a very small portion of the persistence niche are now at drug
concentrations sufficiently high for stroma to become activated (Fig. 7b).
We argue that low overall drug concentrations result in residual disease as
they are not sufficient to cause cancer cell death and long exposure to above-
threshold concentrationsover eachdelivery cycle results in increased stroma
activation, tipping the balance between the death-inducing and activation-
promoting action of the drug, in favour of the latter.

Since a significant fraction of locations in the survival niche
experience drug concentrations above hr for a longer time than the
eradication niche, the probability of stroma activation is higher in the
survival niche than in the eradication niche. This agrees with the results
of longitudinal analysis of activated stroma neighbourhood (Fig. 5c) and
activated stroma occupancy (Fig. 4d). On the other hand, the much
slower build up of drug concentration in the persistence niche results in
local drug concentrations that are not sufficient to kill cancer cells within
the drug delivery window. This agrees with results of longitudinal cancer
occupancy analysis (Fig. 4c). Insufficient drug concentrations in the
persistence niche result in less decay of the proliferation signal and cancer
cells do not die within the drug delivery window. Without the
added paracrine promotion of the proliferation signal from activated
stroma cells, cancer cells in the eradication niche are not able to survive.
Conversely, the additional promotion of the proliferation signal
provided by the paracrine signalling from the activated stroma in the
survival niche enables survival of cancer cells, and ultimately the emer-
gence of EMDR.

Dormancy and sustained proliferation as distinct mechanisms
for survival
Lastly, we consider the cumulative effects of consecutive rounds of drug
delivery periods in shaping the proliferation signal, and ultimately the TME
landscapewhich determines cell fate (survival or death) locally, and residual
disease at the larger tissue scale. To do so we analyse the third treatment
cycle of the intermittent treatment schedule (Fig. 8).

At the beginning of this drug delivery period residual disease is present
in eachof the three niches. In the eradicationniche there are small clusters of
locations where the proliferation signal is above threshold for cancer cell
death hd. This is quite different to the proliferation signal landscape in the
survival and persistence niches where the locations where the proliferation
signal is above hd form a bulk mass.

When treatment commences the drug concentration quickly builds
up in the survival niche depleting the proliferation signal. This results
both in death at locations away from vessels, and stroma activation
followed by a rebound in proliferation signal levels in regions closer to
the vessels. This rebound is sufficient to sustain high proliferation signal
levels well into the holiday period, despite stroma deactivation. Local
paracrine promotion of the proliferation signal is hence the driver for
residual disease in the survival niche.

In the eradication niche the drug concentration builds up slowly over
the drug delivery window. This translates into a slower depletion of pro-
liferation signals to levels that can trigger cell death, aswell as delayed stroma
activation. The results of this slower timescale of stroma activation results in
sparse cancer cell survival. Residual disease at the beginning of the holiday
window is limited and decreases over the following treatment cycles,
eventually wiping out the cancer cell population. Lack of paracrine
support to proliferation signal is therefore the cause for successful eradi-
cation in this region.

In the persistence niche the drug diffusion dynamics are even slower,
resulting in drug concentrations that are not sufficient to effectively deplete
the proliferation signal. Here, proliferation signal is solely reliant on auto-
crine signalling produced by clusters of cancer cells. Signal levels remain low
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Fig. 7 | Targeted drug spatio-temporal dynamics over a treatment cycle. Drug
concentration, d, for the third treatment cycle (drug delivery+ holiday period) with
yellow highlight for locations where d ≥ hr. Representative eradication (E), survival
(S) and persistence (P) niches are the same as in Fig. 5. a Drug concentration in the
middle of the treatment period. The survival niche has a larger fraction of above-
threshold locations. The eradication niche has a very low fraction of above-threshold

locations and the persistence niche has no locations above the threshold. b Drug
concentration near the end of the delivery period. Above-threshold locations now
cover the entirety of the survival niche, and a large fraction of the eradication niche.
There is a very small fraction of locations above the threshold in the persis-
tence niche.
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but above hd throughout the treatment cycle, allowing cancer cells to survive
the treatment in a quiescent state, and build up some reservoir of pro-
liferation signal over the holidaywindow. Treatment escape by dormancy is
therefore the driver for residual disease in the persistence niche.

Discussion
The discovery and development of molecularly targeted therapies provide
alternative treatment options for cancer patients with the benefit of lower
toxicity than cyctoxic therapies. Unfortunately, the success of these thera-
pies has not been as positive as anticipated due to residual disease and the
emergence of resistance13,54–56. This resistance is not only driven by the
evolution of cancer cell intrinsic mechanisms but also due to interactions
between the tumour and the TumourMicroenvironment (TME), known as
Environmental Mediated Drug Resistance (EMDR). A characteristic of
EMDR is reversibility8, which can be exploited as a treatment strategy34,41,51.
However, response to treatment varies between and within individuals,
mirroring the heterogeneity of tissue observed in-vivo41,51. Therefore,
understanding the spatio-temporal dynamics resulting in the emergence of
resistance and, specifically, TME conditions that favour residual disease, has
the potential to inform future treatment protocols.

Our model is rigorously calibrated and validated against experimental
data from mouse xenograft models. It captures the dynamics of EMDR,
including the initial response to treatment followed by the resurgence of
disease8,39,54,57. This resistance is in part driven by paracrine signalling from
proximal stroma activated by the tumour in response to drug treatment.
When the treatment is withdrawn the stromal response is reversed and in
the absence of the inhibitor drug the tumour can resume growth from the
few remaining cells in the survival niches. When treatment recommences
there is adiminished response,which indicates resistancemechanismsare at
play. During intermittent treatment the activated stroma population is
transient and depends on drug concentration and cancerproximity.Our in-
silico results show that removal of paracrine signalling from the activated
stroma during the holiday period can be used to modulate tumour growth,
reminiscent of adaptive therapy strategies that exploit intracellular com-
petition to delay the onset of disease progression41,55,58,59. Given that cancer

cell proliferation and stroma deactivation is governed by dynamics of dif-
fusible signalling molecules and drug delivery and clearance, paracrine
signalling does not abruptly vanish at the introduction of a holiday period
(Fig. 2a). Therefore, the long-term benefits of the introduction of drug
holidays can be appreciated over an intermittent treatment schedule com-
posed of several treatment cycles. We used an intermittent drug delivery
regime that can maintain tumour burden in the long-term, as a test-case to
investigate the spatial attributes of emergent niches of residual disease.
Specifically, we investigated how fluctuating environmental conditions
modulate drug perfusion, transient stroma activation, crosstalk with cancer,
and, ultimately, the resulting residual disease.

The dual nature of the relationship between the tumour and the TME
includes both competition for space (cancer - stroma) and unidirectional
cooperation through cues essential for survival (cancer - activated stroma).
Additionally, the behaviour of individual cells and cell-cell interactions are
dictated by diffusible signallingmolecules and the inhibitor drug. The latter
can directly result in cell death, as well as stroma activation, thus indirectly
offering a route for cancer survival. Non-trivial, complex local dynamics
emerge as a result of cellular and molecular processes occurring across
different temporal and spatial scales: the timescale of cell birth, death, and
state changes; the timescale of intermittent treatment scheduling; the spatial
scale of drug diffusion; and the spatial scale of short-range cell-to-cell
crosstalk. Our model demonstrates that the interplay between these pro-
cesses ultimately shapes the heterogeneity of the response to treatment and,
ultimately, residual disease.

We have shown how heterogeneity of local tissue conditions can drive
different responses to treatment and shape residual disease. Our extensive
investigation of longitudinal occupancy and neighbourhood distribution, as
well as vessel density analysis, allow for characterisation of niches where
cancer cells survive the course of intermittent treatment with targeted
inhibitors (Figs. 4 and 5).We have found a non-linear relationship between
vessel density and treatment outcome (Fig. 6). Poor treatment outcome can
be observed both in regions of low vessel density and regions of high vessel
density. Resistance is of a different nature, and can be attributed to poor
perfusion of the drug (PPF), and high stroma activation (EMDR),
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Fig. 8 | Proliferation signal modulation over a treatment cycle. Proliferation
signal, p, during the third treatment cycle with yellow highlight for locations where
p ≥ hp (proliferation window) and black highlight for locations where p < hd (death
window). Representative eradication (E), survival (S) and persistence (P) niches are
the same as in Figs. 5 and 7. aAt the start of the drug delivery period all three niches
contain locations where the proliferation signal is above hd, forming a bulk region in
the survival and persistence niches, and small sparse clusters in the eradication niche.
Regions in the proliferative window are only present in the survival niche. b In the
middle of the drug delivery period a small number of locations in the survival niche
remain in the proliferative window. The proliferation signal in the eradication and

persistence niches is significantly depleted, with no locations in the proliferative
window. c By the end of the drug delivery period in the survival niche the region in
the proliferative window has increased through cancer proliferation and further
stroma activation. The eradication niche is almost entirely in the death window,
although limited regions in the proliferation window indicate late activation of
stroma. There are no such locations in the persistence niche, which is largely in the
quiescent window. d Towards the end of the drug holiday period, in the eradication
and persistence niches no locations are in the proliferative window. In the survival
niche the region in the proliferative window which appeared during drug delivery
expands further, while other locationsmove from the death to the quiescent window.
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respectively. A heterogeneous TME can result in occurrences of both types
of resistance. In our in-silico tissue with an irregular, experimentally cali-
brated, vessel distribution we have identified persistance niches. Here, drug
perfusion is insufficient to cause bulk death, due to low vessel density;
residual disease is characterised by clusters of largely dormant cancer cells
relying solely on autocrine signalling for survival (Figs.5 and 8). In the same
tissue we have also observed survival niches emerge. These are regions
characterised by high vessel density. Here, the drug can diffuse and build up
sufficiently to kill cancer cells exposed to the highest concentrations.
However, exposure to moderate drug concentrations triggers signalling
fromcancer cells experiencing stress to cue rescue from the stroma.Wehave
found that, ultimately, long-term exposure to drug over repeated treatment
cycles results in residual disease characterised by active stroma infiltration,
and reliance on paracrine signalling for survival (Figs. 7 and 8). Finally, we
have observed eradication niches. These regions are characterised by
intermediate vessel density, whereby the timescale of drug diffusion being
smaller than that of stroma activation results in a complete eradication of
cancer (Figs. 5 and 8). These findings show that awareness of TME archi-
tecture in terms of both the vascular and stromal structure is central to our
ability to improve targeted therapy outcomes. We have highlighted the
range of emerging behaviour from the complex interplay between various
spatial and temporal scales. While some of those scales cannot be easily
controlled (e.g. vessel distribution) without introducing additional treat-
ment (e.g. therapy targeted at vasculature remodelling), others such as the
scheduling of intermittent treatment are natural candidates for clinically
actionable future directions of this work. Namely, our experimentally cali-
brated in-silico model has shown that modulating drug concentration
through intermittent treatment can reduce the occurrence of EMDR and
successfullymaintain control of tumour burdenwhenever eradication is not
possible (Figs. 3 and 5).

Adaptive therapy scheduling could be considered, where real-time
patient response can inform drug administration protocols58. Often the
treatmentplan for apatientwithmolecularly targetedcancers includesmore
than one therapeutic drug, including cytotoxic agents, immunotherapy
drugs, and multiple molecularly targeted therapies that target both cancer
and stroma6,31,60,61. Combinations of therapies could be incorporated into
ourmodel to address recent in-vivo observations of stromal proximity being
associated with increased proliferation of tumour cells in chemotherapy
treatment holidays44. The in-silico spatial dynamics of cancer undergoing
multiple treatments could inform us as to why such treatment protocols
might work or fail.

While the residual disease in persistent niches is maintained in a
quiescent state, survival niches provide safe havens for proliferating cancer
cells while undergoing treatment. The survival of these cells, despite hostile
conditions, can provide opportunities for permanent acquired resistance to
develop.Ourmodel could be extended to include evolutionary dynamics for
cancer cells, where their response to selective pressures can lead to the
development of acquired resistance.

Similarly, while we consider a particular phenotype of CAF, it is
important to note that our model can be generalised or extended to inves-
tigate interactions between the tumour and other cells in the TME. The
passive stroma compartment consists of all cells in the microenvironment
other than those considered in this paper, some of which can engage in
crosstalk with cancer cells. For example, immune cells can exhibit the same
dual role of promoting cancer survival while also competing for space and
resources43. The CAFs we consider in the model have a specific location, in
relation to the tumour, and function. Given the plasticity of the CAF
phenotype21–23,25, a less trivial extension of our model could include alter-
native CAF phenotypes and the transition between them24. For example, in
pancreatic ductal adenocarcinoma, two CAF phenotypes are identified that
occupy distinct locations in relation to the tumour and vary in function28.
Additionally, in neuroblastoma, cancer-stroma crosstalk leading to EMDR
has been shown to rely on non-contact-mediated mechanisms33,62. While
preliminary exploration of alternative hypotheses of activation and

deactivation mechanisms has not shown a qualitative change in the
dynamics (Supplementary Information S.1), quantitative effects must be
accounted for in tumour-type-specific adaptations of this model. Specifi-
cally, we have found non-contact-mediated crosstalk results in primed
regions of active stromawhich significantly enhance tumour growth during
treatment holidays (Supplementary Fig. S1).

A limitation of our model is that we assume a simplified TME. The
vasculature is 2D perpendicular to the tissue, and we do not consider the
upregulation of extracellular matrix secretion upon stroma activation63,
both of which affect drug diffusion dynamics. Potential extensions to our
model could incorporate more complex vasculature (non-perpendicular or
3D)or stroma-drivendrug protectionmechanisms. Similarly, extending the
model to include angiogenesis would allow for the investigation of these
complex dynamics in tumours characterised by a dynamic vasculature, and
vascular treatments such as anti-angiogenesis, like bevacizumab or
sunitinib64.

Our study has primarily been concernedwith the spatial attributes that
promote the emergence of survival niches when undergoing intermittent
treatment with molecularly targeted therapies. We established that the
creationof these niches depends on the interplay of local drug concentration
and cell-cell crosstalk. Local drug concentration depends on the drug supply
(duration of administration) and the physical configuration of drug delivery
(vessel distribution). In regions that receive high concentrations of the
inhibitor drug, the tumour is under a greater degree of stress. This triggers
cues for stromal assistance to aidwith survival that are not evident in regions
where the tumour is experiencing less stress. Our analysis highlights the
importance of considering how the spatial features of tumours and their
immediate microenvironment can synergise to drive drug resistance.

Methods
Model definition
We consider a rectangular two-dimensional cross-section of tissue that we
model with a square lattice, Ω. The domain, Ω, contains discrete agents
representing the cells in a cross-section of tissue. In themodel we have three
sets of agents: blood vessels, stroma and cancer cells.

Let p(x, t) be the proliferation signal and d(x, t) the inhibitor drug
concentration, where both p and d are continuous functions of space, x, and
time, t. Both p and d are governed by partial differential equations (PDEs),
whose formulation depends on the agents inΩ. The concentrations of p and
d are updated by numerically solving the PDEs using a forward difference
scheme in time and a second order central difference scheme in space.
Cancer and stroma cells then advance through the cell cycle, divide, die and
update their state (according to the rules described below) dependent on
local concentrations of p and d. Finally, based on the current configuration
of the agents in Ω, the concentrations of p and d are updated. We
impose zero-fluxNeumann boundary conditions on the boundary ofΩ. To
comply with stability requirements of the numerical scheme we solve the
equation for d on a finer time grid (see Supplementary Information S.7 for
details).

Model implementation and simulations are carried out using the
Hybrid Automata Library (HAL), a Java Library designed for hybrid
modelling of cancer65. HAL has been used to simulate models developed to
investigate cellular systems in oncological applications44,66–69, and other
biological contexts70–72.

In order to investigate the dynamics of resistance that can be
attributed to immediate crosstalk between cancer and stroma cells, we
assume that cells do not actively move within the domain but do spread
through proliferation. Cancer and stroma cells have an intermitotic time,
I > 0, and each cell is equipped with an internal clock to track its progress
through the cell cycle. Once a cell’s internal clock has reached I, cell
division occurs only if there is sufficient space (i.e. at least one empty
position in the Moore neighbourhood of the dividing cell). Additional
conditions for cell division are cell type specific and context dependent
(i.e. TME-dependent), as described later. At cell division two daughter
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cells are produced. One daughter cell occupies the mother’s position and
the other daughter cell is placed, at random, in one of the empty locations
in the neighbourhood of the mother cell.

All model parameters are described in Table 1. Parameter values were
obtained by rigorous calibration based on experimental observations and
quantifications, as described in Supplementary Information S.3.

Blood vessels and drug concentration
Blood vessels are assumed to cut the plane of Ω perpendicularly and to
occupy a single lattice position. These are simplifying assumptions, as in
reality we would expect a cross-section of tissue to cut through a more
intricate vasculature network, with resulting blood vessel positions on Ω
comprised of more than one endothelial cell73. However, as described later,
this simplification still allowsus todescribe realistic drugdiffusiondynamics
in the tissue. Our model describes tumour growth prior to angiogenesis, so
vascular remodelling and degradation are neglected and blood vessels are
static and constant. Vascular cells act as point sources and sinks for the
inhibitor drug.

We define V to be the set of vessel locations, that is x 2 V if there is a
vessel at position x. The circle packing algorithm47, is used to determine V.
This algorithmuses in-vivomeasurements for the average distance between
vessels, σmean, to calculate the number of vessels in the domain, denoted by
Nv, where

Nv ¼
jΩj

σmean
2
;

and ∣Ω∣ is the area of the domain. The algorithm then places the blood
vessels in the domain, respecting the experimentally measured minimum
distance between vessels, σmin

74.
The inhibitor drug enters the domain through the vessel sites and

diffuses into the domain, but is also removed at vessel sites along with
“wastage” clearance. The following PDEdescribes the behaviour of the drug
concentration, d(x, t), in Ω.

∂d
∂t

¼ Dd∇
2d

zfflfflffl}|fflfflffl{diffusion

� μvðx; tÞd
zfflfflfflffl}|fflfflfflffl{clearance

:
ð1Þ

Dd is the diffusion coefficient;μ is the rate of drug clearance; v(x, t) is the sum
of Dirac delta functions centred at vessel sites:

vðx; tÞ ¼ 1 if x 2 V;
0 otherwise:

�

We mimic drug delivery by imposing maximal drug concentration at
vessel sites (effectively acting as Dirichlet boundary conditions). Namely, if
the drug is being delivered at time t, then we impose d(x, t) = 1 for x 2 V.
Note that d ∈ [0, 1] for all x and t.

We introduce a local densitymeasure ρ(x) calculated onpositionx inΩ
as the sum of the reciprocal exponential Euclidean distance between the
position and each blood vessel site (denoted by d̂yðxÞ):

ρðxÞ ¼ 1
αðxÞ

X
y2V

e�α̂jjd̂yðxÞjj:

Here α̂ is a constant determining the range of each vessel contribution.
The normalisation term α(x) is the sum of the reciprocal exponential
Euclidean distance between the position and each location in Ω. We have,

αðxÞ ¼
X
y2Ω

e�α̂jjd̂y ðxÞjj:

Stroma cells
Stroma cells are classified as either reactive or passive. Reactive stroma cells
can engage in crosstalk with cancer cells. We define passive stroma as all
other cells that do not directly interact with cancer cells (Fig. 1 ). Stroma
cells are randomly initiated as either cell type according to afixedproportion
π∈ [0, 1], where π= 0 corresponds to all the stroma being passive and π= 1
corresponds to all the stroma being reactive. Reactive stroma cells exist in
one of two states: deactivated or activated (Fig. 1 and , respectively).
Reactive stroma can change state under specific environmental conditions.
Activation occurs with probability pA in response to recruitment cues from
cancer cells. The transition depends on two conditions: the local con-
centration of the inhibitor drug being above a threshold hr∈ [0, 1]; and the
reactive stroma cell being proximal (i.e. in the Moore neighbourhood) to a
cancer cell to receive the recruitment cues.Herewe assume a reactive stroma
cell will remain in an activated state as long as the local drug concentration is
above hr. We explore alternative hypotheses of reactive stroma deactivation
in Supplementary Information S.1.

To recapitulate homeostatic tissue growth, we allow natural turn-
over of stroma through birth and death processes. Stroma cell death
occurs with probability pT. We assume that activation of reactive stroma
following therapy-induced wounding/stress signal of cancer cells occurs
on a quicker timescale than stroma turnover, hence, pT is chosen to be
one order of magnitude smaller than pA (Table 1). Unlike cancer cells,
stroma cell division is subject to contact inhibition13. To model this effect
we introduce the parameter nCI 2 N; where cell division of a stroma cell
is aborted if there are more than nCI neighbours in its neighbourhood.
Daughter cells are assumed to be of the same cell type (passive or
reactive) and state (activated or deactivated) as the mother cell. As a
result of turnover and contact inhibition the stroma maintains a dyna-
mical equilibrium. Furthermore, in the absence of cancer, this model
can recapitulate tissue repair and homeostasis (Supplementary
Information S.8).

Cancer cells and proliferation signal
Tomodel the increased proliferative and invasive potential of tumours with
respect to stroma11,13, we do not impose contact inhibition constraints on
cancer cells (i.e. a cancer cell will be able to divide as long as there is one
empty neighbouring space). Additionally, each newborn cancer cell is
assignedan intermitotic time Idrawn fromauniformdistributioncalibrated
on experimental measures (Table 1). The proliferation signal, p(x, t),
determines locally the behaviour and viability of cancer cells (Fig. 1 and

, respectively).High local concentrations of the proliferation signal enable
growth, hence successful progression through the cell cycle and division.
Low values of the proliferation signal can induce quiescence or cell death.
We introduce two thresholds hd and hp, where hd, hp∈ [0, 1] and hd < hp. If
p(x, t) < hd, then the local accumulation of signal is not sufficient to ensure
viability and any cancer cell at position x at time twill die. If p(x, t)≥ hp, then
sufficient local pro-growth signalling keeps any cancer cell at position x at
time t in a proliferating state. With intermediate values of the proliferation
signal, i.e. hd ≤ p(x, t) < hp, any cancer cell at position x at time twill enter a
quiescent state, i.e. progression through the cell cyclewill be paused. It iswell
known that there is a lot of heterogeneity amongst cancer cell populations.
In this study, aswe are focussing specifically on the emergence of EMDR,we
do not allow variability in terms of intrinsic sensitivity of cancer cells to the
inhibitor drug, and their mutational profile does not evolve.

Cancer cells provide autocrine promotion of the proliferation signal at
a rate β> 0 (Fig. 1). Paracrine signalling from activated stroma increases p at
a constant rate γ > 0. The inhibitor drug reduces p at constant rate δ > 0.

The proliferation signalmimics the local accumulation of chemokines,
such as growth factors, that are consumed locally or anchored to the ECM75,
so we do not include any form of movement in space. The proliferation
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signal is determined by the following PDE:

∂p
∂t

¼ β
z}|{autocrine production

þ γ
X
y2Mx

aðy; tÞ
zfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{paracrine production0

B@
1
CAHð1� pÞsðx; tÞ � δdp

z}|{drug inhibition

;

ð2Þ

whereMx is the Moore neighbourhood of x.
Here s(x, t) and a(x, t) are Dirac delta functions centred at cancer sites,

and activated stroma sites, respectively:

sðx; tÞ ¼ 1 if x 2 Ct ;
0 otherwise;

�

and

aðx; tÞ ¼ 1 if x 2 At ;

0 otherwise;

�

whereCt andAt are, respectively, the sets of cancer and activated stroma cell
locations inΩ at time t. TheHeaviside function,H,models a local saturation
of total production once the concentration of p reaches 1.

During cell division at each new cancer cell location we assume an
initial local proliferation signal of at least p0, where hd < p0 ≤ 1.

Parameter calibration and validation using experimental data
We used Approximate Bayesian Computation to calibrate key model
parameters governing the dynamics of tumour growth and response to drug
treatment. Firstly, we used experimental data from NSCLC mouse xeno-
grafts in a vehicle control cohort (n = 10) to infer the joint distribution of
tumour growth parameters p0 and β (Supplementary Fig. S3a). Subse-
quently, we calibrated the rate of drug-induced proliferation signal degra-
dation δ with NSCLC mouse xenografts treated with an ALK inhibitor
(n= 10). The point estimates for p0, β and δ reported in Table 1were chosen
from the posterior distributions shown in Supplementary Fig. S3d. Cali-
bration of the rate of paracrine production γ was based on in-vitro mea-
surements of the ERK signalling rebound time following administration of a
BRAF inhibitor to a tumour/CAF co-culture. Finally, validation of the
calibratedmodel was carried out using additional in-vivo experimental data
of growth dynamics following interruption of drug treatment for the same
NSCLCmouse xenografts (n=10) treatedwith theALK inhibitor drug. Full
details of the model parameter calibration and validation can be found in
Supplementary Information S.3.

Notably, parameter calibration using in-vivo xenograft mouse models
required an adaptation of our in-silico setup to a stroma-free tissue with
boundary drug delivery, tomatch the experimental setup of a subcutaneous
tumour mass with extremely limited access to vasculature and stromal
tissue. In this in-vitro experimental setup, dynamics operate on a much
faster timescale than that of a clinical scenario (weeks versus months,
respectively). Remarkably, our fully calibrated model utilised in its original
form (i.e. cancer growing within an homeostatic stromal tissue, including a
realistic vessel distribution), is able to capture the complex interactions
withinhuman tissue, recapitulatingdynamics that operatewithin timescales
comparable to those observed in clinical patient data76.

Initial homeostatic tissue, tumour initiation and growth
To create an initial tissue that can be used to investigate tumour growth and
the emergence of EMDR upon drug treatment, we first construct a
homeostatic bed of stroma cells. Having determined a vessel distribution V
inΩ, all lattice locationsnot occupied by a vessel are occupied by stromaand
the model is run, in the absence of cancer and inhibitor drug, to reach
equilibrium. The resulting homeostatic tissue is in a dynamic equilibrium

that emerges due to suitably calibrated stromal cell turnover and contact
inhibition. The robustness of such a dynamic equilibrium can be tested in
response to excessive density and bulk tissue removal (Fig. S3). Our model
captures both contact inhibition and wound healing-like behaviour,
allowing us to investigate the complexity of cancer-stroma interactions
under therapy in a homeostatic tissue.

We initiate cancer by introducing a single cancer cell in the homeo-
static tissue, adjacent to a central vessel to mimic a metastatic event. The
cancer cell is allowed to proliferate, provided the proliferation signal con-
dition ismet, and a tumour is formed in the centre ofΩ. In the following we
use the configuration of the systemwhen the number of cancer cells reaches
104 (a realistic detection level), as the initial condition for experimentation
and analysis of EMDR (Fig. 2b).With this setup, we investigate the complex
dynamics that emerge as a result of the multiscale interactions between
cancer cells and the TME, shaped by signalling cues and delivery of an
inhibitor drug.

Cell line
EML4-ALK+H3122NSCLC cell line were obtained from the Lung Cancer
Center of Excellence Cell Line depository at the H. Lee Moffitt Cancer
Center. A STR repeats based test was used to authenticate cell lines. For each
experiment, a separate frozen vial from an early passage was expanded to
generate sufficientnumbers of cells for injections and tested formycoplasma
contamination.

Xenograft tumour model
Xenograft studieswereperformedby subcutaneousbilateral implantationof
5E6 tumour cells/injection suspended 100 μl of 1: 1 RPMI / BME type 3
(R&D Systems #36 − 320 − 1002P) into 4 to 6 week-old NOD-scid
IL2Rgnull (NSG) mice of both sexes. The animals were produced at the
institute with breeders purchased from Jackson Laboratory. Treatment was
initialized 3 weeks post implantation, at which point the tumour diameter
reached 3−4mm. Pharmacological grade Alectinib was dissolved in water
and administered via daily oral gavage (7 datsweek−1) at 25mgkg−1 in 100μl
volume. Tumour growth was monitored by weekly electronic caliper
measurements. Tumour volumeswere calculated assuming spherical shape.
All the xenograft studies were performed as per the approved procedures of
IACUCprotocol #IS00005557 of theH. LeeMoffitt CancerCenter. Animals
were maintained under AAALAC-accredited specific pathogen-free hous-
ing vivarium and veterinary supervision following standard guidelines for
temperature and humidity, with a 12-hour light /12-hour dark cycle.
Tumour diameter measurements were maintained under the maximal
tumour diametermeasurement (20mm) permitted by the IACUCof theH.
Lee Mofitt Cancer Center. We have complied with all relevant ethical reg-
ulations for animal use.

Statistics and reproducibility
In-silico results can be reproduced using the hybrid discrete-continuum
model code and initial conditions provided77 and implemented in Java.
The code implements the model with the parameter values given in
Table 1. The output data can be used to reproduce cell count (Figs. 2–4),
spatial distributions (Figs. 2, 4, 5, 7, 8) and neighbourhood (Figs. 4, 5)
graphics. The initial conditions for the domains of the varying vessel
densities in Fig. 6 are also provided77. Parameter calibration can be
reproduced using the ABC model code and data provided77 and imple-
mented in Python v3.9.13.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
The experimental data that support the findings of this study are available at
this link77. Model output data are available on request.
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Code availability
The code and the simulation results that support the findings of this study
are available at this link77. The hybrid discrete-continuummodel is written
in Java and requires the HAL library65. The Approximate Bayesian Com-
putation model is written in Python v3.9. 13.
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