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S.1 Mechanisms of activation and deactivation dynamics for CAFs

We consider alternative hypotheses to the activation and deactivation mechanisms

assumed in the model.
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Stromal activation hypotheses:

A1) Contact-mediated activation: cross-talk is limited to the tumour-stroma

interface, as in the main model.

A2) Non-contact mediated activation: cross-talk acts on a larger range i.e. not

limited to interactions in the Moore Neighbourhood.

Stromal deactivation hypotheses:

D1) Active stroma cells deactivate upon loss of condition for activation, i.e. drug

concentration falling below hr, as in the main model.

D2) Active stroma undergoes stochastic death with probability pT , i.e. active

stroma is subject to turnover. Here the reactive stroma acts in a wound

healing, immune response, fashion intervening to rescue the cancer under

drug treatment, and dying after fulfilling this role.

We investigate combinations of the above hypotheses, for a total of four models.

In Figure S1 we compare the current model M1 (A1, D1) with the three additional

models emerging from other combinations of activations and deactivation hypotheses:

M2 (A1,D2), M3 (A2,D2), and M4 (A2,D1).
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Figure S 1: Comparison of different types of activation and deactivation
mechanisms for CAFs. Models M1 (A1,D1), M2 (A1,D2), M3 (A2,D2), and M4
(A2,D1) are considered over 150 days with treatment regime τT = 100 days and τH = 50
days. a: Spatial distributions for a single simulation of each model at day 99, just prior to
the end of treatment. b: Tumour burden for t ∈ [0, 150] days. Individual realisations are
shown, with 30 stochastic simulations conducted for each model. c: Spatial distributions
for a single simulation of each model at day 130, after the treatment has stopped.

We first compare the effects of different activation mechanisms on tumour

dynamics under treatment. Over 100 days of treatment, non-contact-mediated

activation (A2) results in greater tumour burden (Fig. S1b). This is due to stromal

activation across the whole domain, and cancer cells proliferating into activated

regions having a greater chance of survival from the paracrine assistance.

Conversely, contact-mediated activation (A1) limits paracrine assistance, hence

survival, to the tumour periphery, resulting in reduced and less densely packed

growth (Fig. S1a). While different deactivation mechanisms do not have a

significant effect on the treatment period, a clear separation of dynamics occurs

when treatment is stopped (Fig. S1b). Stochastic death (D2) operates

independently of the dynamics of drug leaving the tissue. Deactivation takes

longer, and residual active stroma continues to provide paracrine assistance well

into the drug holiday period (Fig. S1c), enhancing tumour regrowth.

Non-contact-mediated activation (A2) further augments regrowth, compared to
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contact-mediated activation (A1), as cancer cells proliferate into ’primed’ regions of

activated stroma outside of the tumour boundary, and receive additional paracrine

assistance.

S.2 Intermittent Treatment

We investigate intermittent treatment regimes τH = 10 days, τH = 20 days and

τH = 30 days with τT = {0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100} days. Cumulative

days of drug delivery decrease as τH increases for each choice of τT and relative

tumour burden increases as τH increases for each choice of τT (Fig. S2a). For

τT < 50 days there is significant residual disease present at the end of the first drug

delivery period, almost always signifying treatment failure. Tumour regrowth in

holiday periods does not happen for intermittent treatment regimes with τH = 10

days (Fig. S2b), whereas for intermittent treatment regimes where τH > 10 days

there is tumour regrowth in the holiday period that is consistent with experimental

results1. As τH increases the regrowth during drug holiday periods also increases,

resulting in overall higher amounts of residual disease. Figure S2c shows tumour

regrowth during the drug holiday period for τH = 20 days and Figure S2d shows

greater tumour regrowth for τH = 30 days. We choose intermittent regime τT = 50

days and τH = 20 days for spatial analysis.
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Figure S2: Investigation of treatment regimes. a Cumulative days of drug delivery
(measured as the sum of drug delivery days over 590 days of therapy) against relative tumour
burden (measured as the sum of total cancer cell count over the t ∈ [0, 590] day window
normalised to the continuous treatment case) for τT = {10, 20, 30, 40, 50, 60, 70, 80, 90, 100}
days for τH = 10 days (blue), τH = 10 days (green), and τH = 30 days (orange). Results
show the average of 30 simulations of each schedule and includes 95% confidence intervals.
The star indicates measures for continuous treatment. As τH increases the relative tumour
burdens for each τT also increases and while the cumulative days of treatment decreases.
Relative tumour burden initially decreases as cumulative days of drug delivery increases, but
from; τT = 40 days for the τH = 10 days regime; and τT = 50 days for the τH = {20, 30}
days regimes; the relative tumour burden increases. b - d show tumour burden over 30
simulations for treatment regimes τT = [40, 50, 60] days from day 0 to day 240. b: τH = 10
days. c: τH = 20 days. d: τH = 30 days. These intermittent treatment schedules show,
overall, a long-term improved outcome compared to continuous treatment (Figure 2).

S.3 Parameter Calibration

We use in-vivo xenograft model data provided by the Marusyk Lab to calibrate the

growth of cancer cells in the absence of treatment and the initial rate of decay when

undergoing molecularly targeted therapy. The data provided are for a xenograft

model of ALK+ non-small cell lung cancer (NSCLC), the H3122 cells subcutaneously

injected into flanks of five NSG mice (n = 10), for the vehicle control and treatment
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(ALK inhibitor - alectinib) groups. Tumour growth was monitored based on caliper-

based measurements.

Human NSCLC cells subcutaneously injected into mouse xenograft models have

very different growth dynamics to that of the same cells in human tissue. In order

to replicate the experimental setup we remove stroma cells from our model and

increase the division radius as we expect no infiltration of non-cancerous cells and

reduced spatial constraints in the xenograft model during the experiment time

frame. As an initial condition for the calibration we place a single cancer cell in the

centre of the domain which is allowed to proliferate in ideal conditions (p0 = hp

and β = 1) until a tumour consisting of 104 cells is formed. We then use this

configuration to first calibrate the growth dynamics of the tumour against the

control data (untreated xenografts). Specifically, we use Approximate Bayesian

Computation (ABC) to refine a uniform joint distribution for the initial local

proliferation signal value assigned to cancer cells at division, p0, and the rate of

autocrine production, β, identifying a posterior distribution that matches the

experimental data. Once these parameters are calibrated we then perform ABC to

calibrate the rate of drug inhibition, δ, using the ALK treatment data. Details of

the implementation of ABC have been described previously2.

S.3.1 Initial local proliferation signal p0 and the rate of autocrine

production β

We assume that the initial local proliferation signal p0 does not exceed the threshold

for proliferation hp as a cell with a p0 ≥ hp does not require the additional autocrine

signalling in order to divide. Hence we impose the upper bound p0 < hp.

Increasing β has a saturating effect on growth dynamics: once β is sufficiently high,

p quickly reaches hp and tumour growth depends on spatial constraints only. We
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choose a maximum value of β that is greater than this saturation point determined

by experimentation.
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Figure S3: Experimental calibration of p0, β, and δ. a: Joint and marginal posterior
distributions for p0 and β obtained by Approximate Bayesian Computation (ABC) with
N = 104 and ϵ = 0.018, showing inverse correlation between p0 and β accepted values. The
star marks the chosen point estimates: p0 = 0.256, β = 1.25. b: Diameter fold change for
in-vivo experimental data (n = 10 vehicle control replicates, black boxplots and purple
data points.) and in-silico tumours (green time-series for parameter regimes corresponding
to the (p0, β) posterior distribution). c: Diameter fold change for in-vivo experimental
data (n = 10 drug-treated replicates, black boxplots and purple data points) and in-
silico tumours (green time-series for parameter regimes corresponding to the δ posterior
distribution). For the boxplots in b and c centre line is the median; box limits are the
upper and lower quartiles; whiskers are ±1.5× IQR; and outliers are represented by a cross.
d: Marginal posterior distributions for p0 and β (corresponding to the posterior in a), and
posterior distribution for δ obtained by ABC with N = 104 and ϵ = 0.0005. Horizontal lines
mark the chosen point estimates.

We use uniform priors: (p0, β) ∈ (U [0, hp]× U [0, 4]) , discard pairs that result in an

intermitotic time greater than 2 days, and perform ABC with N = 104 and ϵ = 0.018.

The ABC identifies a range of inversely correlated p0 and β values (Fig. S3a). This is

consistent with what we expect: high initial local pro-growth signalling requires lower

autocrine production to sustain survival and proliferation, whereas a higher amount

of autocrine signalling is required for the cancer cell to survive and proliferate if the
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initial local pro-growth signalling is low. In the posterior distribution we identify a

peak corresponding to a p0 value just above hd and a β value over 1. We take these

as point estimates (p0 = 0.256, β = 1.25 day−1) ensuring a good fit of the in-silico

tumour growth dynamics to the vehicle control experimental cohort (Fig. S3b).

S.3.2 Rate of drug inhibition δ

To recapitulate the subcutaneous in-vivo experimental set up for the drug treated

cohort we impose maximal drug at the periphery of the tumour and allow it to

diffuse into the tumour. Initial scanning of the tumour decay dynamics for a range

of δ values enables us to identify a suitable uniform prior: δ ∈ U [6, 7] . ABC is

then performed with N = 104 and ϵ = 0.0005, to calibrate the drug-induced tumour

reduction against the in-vivo experimental data (Fig. S3c). Within the resulting

posterior distribution, we chose point estimate for parameter δ which corresponds

to the peak (δ = 6.68 day−1).

Violin plots of the posterior distributions for the tumour growth parameters p0 and

β, and the tumour decay parameter δ are shown in Figure S3d, indicating the chosen

point estimates for each parameter.

S.3.3 Rate of paracrine production γ

To calibrate the rescue effect of CAFs, we estimate the rate of paracrine production

γ using the in-vitro experimental data3. These results show that

melanoma-associated fibroblasts (the experimental counterpart to our reactive

stroma cells) confer tolerance to the inhibitor drug, restoring ERK signalling within

12 hours. We define this time to recovery as tR, which in our modelling framework

corresponds to the average time it takes cancer cells in stromal co-cultures targeted

with the drug to replenish their proliferation signal. Matching this average time to
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the experimental measure, we can calibrate parameter γ as follows.

Consider a cancer cell hit by treatment when experiencing the proliferation signal

at the threshold hd at time t0. Eq. (2) can be simplified to consider the worst case

scenario of the inhibitor drug concentration at maximum concentration (d = 1) and

minimum paracrine help (one out of eight neighbouring activated reactive stroma

cells), to obtain:

∂p

∂t
= β + γ − δp,

which has solution:

p(t) =
β + γ

δ
+

(
hd −

β + γ

δ

)
e−δ(t−t0) := θ(hd, γ, t− t0) for t > t0.

For the single activated stroma cell to be effective in rescuing a cancer cell from its

death fate, it must push the local proliferation signal above hp. Hence, we obtain a

lower bound on the paracrine production rate, γ, imposing:

θ(hd, γ, tR) ≥ hp,

Note that this condition cannot be solved explicitly for γ, so the lower bound, γ, on

the paracrine production rate is determined numerically. Additionally, note that γ

depends on the choice of β and δ. With our choice of β = 1.25 and δ = 6.68, the

numerical lower bound γ = 4.2412, so we choose γ = 4.242 day−1 cell−1.
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S.3.4 Validation of the calibrated model

We validate the chosen parameter regime by comparing the output of our calibrated

model to the regrowth dynamics of additional in-vivo experimental data. Tumour

diameters of the NSCLC mouse xenografts (n = 10) treated with ALK inhibitor

(experimental setup described in S.3) are measured for four weeks after stopping

treatment. We match this experiment in-silico by simulating a drug delivery period

followed by a period where drug delivery is ceased and the drug is allowed to diffuse

out of the boundary and the vasculature. The time-series profiles of the tumour

diameter fold change for 30 simulations match well the in-vivo experimental data for

the regrowth period, thus validating the parameter calibration (Fig. S4).
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Figure S4: Validation of calibrated parameters to in-vivo data. Tumour diameter
fold change for in-silico tumours (green time-series for 30 simulations of the model with
p0 = 0.256, β = 1.25 and δ = 6.68) compared to the in-vivo experimental data (n = 10
drug-treated replicates post treatment, black boxplots and purple data points). For the
boxplots centre line is the median; box limits are the upper and lower quartiles; whiskers
are ±1.5× IQR; and outliers are represented by a cross.

S.4 Cancer Neighbourhoods

We analyse the distribution of cancer cell neighbours of cancer cells in the

configuration of cells in Ω taken as the initial condition for in-silico experiments

(Figure 2b, the details of how this is constructed is described in the Initial

homeostatic tissue, tumour initiation and growth section). There is a slight

negative skew with an average of 5 cancer neighbours in their Moore

neighbourhood (Fig. S5).
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Figure S 5: Distribution of cancer neighbours of cancer cells in the initial
condition. The distribution of cancer neighbours of cancer cells in the initial condition
has a slight negative skew with an average of five cancer neighbours.

The distribution of reactive stroma neighbours of cancer cells for each of the identified

niches (survival, eradication and persistance) is shown in Figure S6. Here the survival

niche has more reactive stroma neighbours of surviving cancer cells than both the

eradication and persistence niches.
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Figure S6: Distribution of average reactive stroma neighbours of cancer cells.
Distribution of average reactive stroma neighbours of cancer cells in the survival niche
(yellow), the eradication niche (purple) and the persistence niche (red) from day 0 to day
590 for the same 30 simulations as Figure 4 with standard errors shown. The survival,
eradication and persistence niches are the same as those in Figure 5.

S.5 Animations

The following animations can be viewed at this link:

• No treatment.

• Continuous treatment.

• Intermittent treatment regime with τT = 10 days, τH = 20 days.

• Intermittent treatment regime with τT = 20 days, τH = 20 days.

• Intermittent treatment regime with τT = 30 days, τH = 20 days.

• Intermittent treatment regime with τT = 40 days, τH = 20 days.

• Intermittent treatment regime with τT = 50 days, τH = 20 days.
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• Intermittent treatment regime with τT = 60 days, τH = 20 days.

• Intermittent treatment regime with τT = 70 days, τH = 20 days.

• Intermittent treatment regime with τT = 80 days, τH = 20 days.

• Intermittent treatment regime with τT = 90 days, τH = 20 days.

• Intermittent treatment regime with regime τT = 100 days, τH = 20 days.

• proliferation signal and drug concentrations for survival and eradication niches

for intermittent treatment regime with τT = 50 days, τH = 20 days.

S.6 Vessel Density Test

Nine distinct domains are created with 50, 150, 200, 250, 300, 350, 400 and 450

vessel sites respectively. The corresponding mean field ρ values are 0.54 × 10−3,

1.63 × 10−3, 2.18 × 10−3, 2.73 × 10−3, 3.28 × 10−3, 3.82 × 10−3, 4.38 × 10−3 and

4.94 × 10−3 respectively. There is a scaling applied to the σmin for each domain

to ensure adequate dispersal of vessels and no clustering. Each domain then has

a homogeneous bed of stroma created on which a cancer cell can be placed and a

tumour grown as the initial condition. A treatment regime of 50 days treatment and

20 days holiday is simulated for 200 days. Figure S7a shows the tumour burden for

varying mean field ρ. We observe a non-linear relationship between tumour burden

and mean field ρ. For low mean field ρ tumour burden is high (poor perfusion failure)

and as mean field ρ increases we have a diminishing tumour burden until mean field

ρ = 3.82 × 10−3 where the tumour burden then increases again as mean field ρ

continues to increase (environmentally mediated drug resistance). The emergence

of different patterns of treatment failure dependant on mean field ρ is shown in

Figure S7b. Low mean field ρ exhibits features of treatment failure due to poor

perfusion of the inhibitor drug in the domain. Here the tumour mass is maintained
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throughout and we observe the increased fitness of cancer over stroma. For high

mean field ρ we observe waves of cell death with small resistant populations. Here

there is less competition between cancer and stroma cells as stroma cells are able to

proliferate into regions vacated by the cancer death wave. These dynamics suggest

that constraints on local drug delivery could affect treatment efficacy.

ba
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Figure S7: Vessel Density Measure Investigation. a: Tumour burden for each mean
field ρ equal to 0.54× 10−3, 1.63× 10−3, 2.18× 10−3, 2.73× 10−3, 3.28× 10−3, 3.82× 10−3,
4.38 × 10−3 and 4.94 × 10−3 for 200 days. b: The first five columns show visualisation of
cells for single representative simulations for mean field ρ equal to 0.54× 10−3, 1.63× 10−3,
2.73× 10−3, 4.38× 10−3 and 4.94× 10−3 on day 0, 49, 69, 119 and 139. Vessel sites are the
same as those in Figure 6. The last column shows visualisation of the vessel density measure
ρ for each vessel field considered. Here α̂ = 0.1. As ρ increases the spatial attributes of the
treatment failure change. At lower ρ treatment failure is driven by poor perfusion where the
inhibitor drug is not able to reach sufficient concentration levels to reduce the proliferation
signal below hd. For higher ρ, where the inhibitor drug is able to perfuse and build up in
the domain, environmentally mediated drug resistance is evident where cancer survivors are
clustered around activated stroma.
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S.7 Numerical Implementation

From Eq. (1) we write the forward difference scheme in time and second order central

difference scheme is space as:

di,j
q+1 = di,j

q

[
1−∆t

(
µvi,j

q +
4Dd

(∆x)2

)]
+∆t

[
Dd

(∆x)2
(di−1,j

q + di,j−1
q + di+1,j

q + di,j+1
q)

]
.

To ensure the stability of this explicit numerical scheme we need to impose a

constraint on ∆t. We consider the vessel sites in the worst case scenario of no

diffusion from neighbouring positions. Since we are to avoid the case where d < 0,

we have:

1−∆t

(
µ+

4Dd

(∆x)2

)
≥ 0.

This results in an upper bound on ∆t:

∆t ≤ 1

µ+ 4Dd
(∆x)2

.

The upper bound on ∆t only applies to the drug concentration dynamics and it is

not necessary for other compartments of the model to operate on such a fine grain.

Hence, we update cell and proliferation signal dynamics every ten ∆t to improve

model efficiency.
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S.8 Regeneration of tissue

We test the homeostatic bed of stroma cells in response to excessive density and bulk

tissue removal. We create two insets in the homeostatic tissue where the stroma cells

are replaced: one with densely packed stroma cells and the other empty of stroma

cells (Fig. S8a). The system is evolved through time using the model and we observe

the densely packed inset becoming less dense and stroma cells infiltrating the empty

inset mimicking the phenomena of contact inhibition-driven tissue homeostasis and

the process of wound healing (Fig. S8b). After sufficient time both insets exhibit

the same homeostatic state within a fully homogeneous tissue (Fig. S8c,d).
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Figure S8: Tissue regeneration and homeostasis occur as a result of stroma
turnover and contact inhibition. a-c: Progression towards homeostasis of stroma
tissue at day 0 (a), day 96 (b) and day 720 (c) of a single representative simulation of
the model in the absence of cancer and inhibitor drug. There are two insets at day 0, one
packed with stroma where there are no empty lattice positions and the other with all stroma
removed. By day 96 the packed inset is visibly less dense as the phenomenon of contact
inhibition prohibits further stroma proliferation. In the empty inset, we observe stroma cells
infiltrating, mimicking the closure of a wound. At day 720 there is no trace of the original
insets, rather a homeostatic bed of stroma. d: Stroma cell density for each inset and the
whole domain from day 0 to day 720.
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