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Abstract
Adaptive therapy (AT) protocols have been introduced to combat drug resistance in
cancer, and are characterized by breaks from maximum tolerated dose treatment (the
current standard of care in most clinical settings). These breaks are scheduled to
maintain tolerably high levels of tumor burden, employing competitive suppression
of treatment-resistant sub-populations by treatment-sensitive sub-populations. AT has
been integrated into several ongoing or planned clinical trials, including treatment
of metastatic castrate-resistant prostate cancer, ovarian cancer, and BRAF-mutant
melanoma,with initial clinical results suggesting that it can offer significant extensions
in the time to progression over the standard of care. Prior AT protocols apply drug
treatment when the tumor is within a specific size window, typically determined by the
initial tumor size. However, this approach may be sub-optimal as it does not account
for variation in tumor dynamics between patients, resulting in significant heterogeneity
in patient outcomes. Mathematical modeling and analysis have been proposed to opti-
mize adaptive protocols, but they do not account for clinical restrictions, most notably
the discrete time intervals between the clinical appointments where a patient’s tumor
burden is measured and their treatment schedule is re-evaluated. We present a gen-
eral framework for deriving optimal treatment protocols that account for these discrete
time intervals, and derive optimal schedules for several models to avoidmodel-specific
personalization. We identify a trade-off between the frequency of patient monitoring
and the time to progression attainable, and propose an AT protocol that determines
drug dosing based on a patient-specific threshold for tumor size. Finally, we identify
a subset of patients with qualitatively different dynamics that instead require a novel
AT protocol based on a threshold that changes over the course of treatment.
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1 Introduction

Adaptive therapy (AT) is a new paradigm in cancer treatment that uses principles
from evolution to delay disease progression for late-stage cancer patients. Cancerous
tumors are highly genetically heterogeneous (Allison and Sledge 2014), comprised
of many different clones with potentially differing resistance to any given therapeutic
agent (Turner and Reis-Filho 2012). This heterogeneity enables tumors to be consid-
ered through the lens of Darwinian evolution, wherein multiple species with different
(environment-dependent) fitness compete with each other (Gerlinger and Swanton
2010). In particular, competition (be it for resources, space to grow, or access to vas-
culature) between clones of variable drug resistance can reduce growth rates and result
in ‘competitive suppression’ of all clones, including drug-resistant clones that are oth-
erwise unencumbered by the application of treatment. Suppression may be further
enhanced by naturally lower base proliferation rates of drug-resistant cells relative to
sensitive cells (a ‘cost of resistance’), as observed in vivo across several tumor cell
lines (Enriquez-Navas et al. 2016; Bacevic et al. 2017).

Treatment breaks/holidays may leverage this competitive suppression to gain indi-
rect control over drug-resistant cells. While drug-sensitive clones can be controlled
directly by the application of treatment, the growth of resistant clones can only be
limited indirectly, via competitive suppression from the drug-sensitive cells. These
treatment breaks allow regrowth of the drug-sensitive population, renewing the com-
petitive suppression of resistant cells and re-sensitizing the tumor to treatment. In
contrast to previous clinical implementations of intermittent therapy (Hussain et al.
2013; Crook et al. 2012), wherein routine drug holidays of a fixed length were sched-
uled uniformly across the whole patient cohort, AT tailors drug scheduling to an
individual patient’s tumor dynamics (Gatenby et al. 2009). These adaptive strategies
exploit both spatial and resource competition between drug-sensitive and -resistant
cells (Gallaher et al. 2018; Bacevic et al. 2017; Strobl et al. 2022).

The advantage of AT over continuous treatment (CT) is exemplified in Figure 1a.
We consider a conventional AT protocol, termed AT50, which applies treatment until
the tumor is 50% of the original size, before withdrawing treatment until the tumor
regains its initial size. We will refer to this formulation of AT as ‘window-based’ AT,
as the tumor size is maintained within a set window based on the initial tumor size, and
a formal definition of this protocol is given in Section 2.2. The ‘window-based’ AT
protocol has been applied clinically to metastatic, castrate-resistant prostate cancer,
where a two-fold increase in themean time to progression (TTP)was observed, broadly
in agreement with the simulated benefit here (Zhang et al. 2022).

These benefits are achieved bymaintaining a larger sensitive cell population to con-
tinually suppress the growth of resistant cells. This suppression has been discussed by
previous analytic work, which shows that the TTP may be maximized by maintaining
as large a sensitive sub-population as possible (Hansen et al. 2017; Viossat and Noble
2021), below some upper bound on the tumor size (given by the progression limit).
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Fig. 1 (a)Comparison of different treatment protocols, simulated using the Lotka–Volterramodel as defined
in Section 2.1.1. In each case, tumor progression is defined as 20%growth from the initial size, and the tumor
size is normalized relative to the initial tumor size. Continuous treatment is the clinical standard of care;
however, progression can be delayed by introducing breaks in treatment. In conventional (‘window-based’)
AT, a treatment holiday is initiated when the tumor has halved in size, and resumed when the tumor returns
to the initial size. We propose a modified AT protocol (AT-N*) based on a single threshold N∗ - treatment is
only deliveredwhen the tumor is larger than this threshold.Overshooting of the threshold occurs as treatment
may only be modified every 30 days (denoted by vertical gray lines). (b) Higher treatment thresholds in
AT-N* correspond to greatly delayed progression, with significant improvement over the standard of care.
(c) We illustrate the clinical application of AT, showing the outcomes on two exemplar patients from a
clinical trial on metastatic prostate cancer based on the AT50 protocol (Zhang et al. 2022)

Hansen and Read have even proposed setting the upper limit of ‘window-based’ AT
above the initial size (Hansen and Read 2020), based on the proposal that patients
may tolerate slight increases in the tumor burden above the initial size, and this has
since been implemented as ‘Range-Bounded’ Adaptive Therapy (Brady-Nicholls and
Enderling 2022).

However, these studies assume continuous monitoring of the tumor size, allowing
the drug to be withdrawn/reapplied as soon as the tumor size crosses a pre-defined
threshold. With the development of wearable devices, this may be a realistic assump-
tion in the future; however, it is not currently possible in the clinic.We show in Section
2.3 that these optimal frameworks break down in clinically realistic settings, where
updates to the treatment schedule can only be made at discrete time points, and the
tumor size is not tracked between these time points. These limitations motivate revi-
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sion of previous optimal AT protocols, which relied upon continuous monitoring and
decision-making capability to maintain a maximal sensitive subpopulation.

We propose an alternate strategy to maintain a higher average tumor size
than ‘window-based’ AT approaches: a ‘threshold-based’ strategy (AT-N*). In this
approach, treatment is given only when the tumor exceeds a pre-specified threshold
size (N∗). As shown in Figure 1a, using N∗ as the initial tumor size, AT-N* can
significantly increase TTP compared to both CT and AT50. The benefit of AT-N*
depends on the threshold size N∗ used; higher thresholds achieve greater TTP values
by maintaining a larger sensitive cell population (Figure 1b).

The AT-N* protocol may be updated at discrete intervals (e.g., every τ = 30
days, as shown in Figure 1a), reflecting limitations in the clinical implementation of
mathematically-derived treatment protocols. The threshold N∗ can also be tailored to
each patient, accounting for variation in tumor dynamics that has been observed in
clinical AT trials (Zhang et al. 2022) and visualized in Figure 1c.

In this paper, we present a framework to derive an optimal treatment threshold
based on the discrete time interval between treatment updates, before applying this
framework to a range ofmathematical tumormodelswith different underlying assump-
tions. In each model we consider, the cancer is incurable since there is a drug-resistant
species that cannot be entirely eliminated, and the null state (S = R = 0) is unstable.
This incurability is a common phenomenon in metastatic cancers with existing treat-
ment resistance; instead of seeking to cure the cancer, we therefore aim to control its
growth to increase the TTP. We focus on binary dosing schedules, where treatment
is either given at the (clinically-approved) maximum tolerated dose or a treatment
holiday is given. While approaches that modulate the prescribed dose are the subject
of several ongoing clinical trials (Mukherjee et al. 2024; Gallaher et al. 2015), clini-
cal data remain limited. Given the sensitivity of the optimal formulation to the dose
response curve (West et al. 2020), which is not well-characterized in many cases, we
only consider the well-established binary dosing schedules that have been validated
in prior clinical trials (Bruchovsky et al. 2006; Zhang et al. 2017).

We apply our framework to the clinical context of metastatic prostate cancer. We
chose this context in part because of a clear clinical need for strategies that extend
TTP, given low survival rates; the 5-year survival rate of metastatic castration-resistant
prostate cancer is approximately 30% (Huo et al. 2025). Furthermore, the availability
of prostate-specific antigen (PSA) levels provides an accessible and widely accepted
marker of tumor burden in this context (Adhyam and Gupta 2012; de Bono et al. 2011)
and allows regular and non-invasive tracking of tumor size to inform the AT protocol.
The mathematical tumor models we discuss below were all previously proposed to
describe the application of adaptive therapy to metastatic prostate cancer, based on
data from a Phase II trial of intermittent androgen suppression for locally-advanced
prostate cancer (Bruchovsky et al. 2006). This treatment consists of twice-daily tablets
of cyproterone acetate, which may be administered at home, allowing treatment to be
maintained between clinical appointments. Nevertheless, to preserve clinical realism,
we only allow a patient’s treatment to be changed (e.g., switched from treatment to
holiday) at discrete intervals, tied to the clinical appointments where the tumor burden
is measured from the PSA.
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Wefind that accounting for discrete intervals between appointments requires highly
patient-specific optimal thresholds, motivating the need for personalized approaches
to adaptive therapy. This paper provides an analytic approach to evaluating patient-
specific optimal treatment protocols based on the parameters of the tumor dynamics.
We also show that the optimal treatment protocols depend on the underlying model
assumptions – for example, a model that captures systematic changes in the patient’s
tumor dynamics over time requires a time-varying optimal treatment threshold. Over-
all, we develop an approach to incorporate clinical realities into mathematical analysis
of optimal treatment schedules, and present optimal treatment approaches for a range
of competition-based tumor models.

2 Methods

In this section, we introduce three distinct ordinary differential equation models for
the response of a heterogeneous tumor to therapy. In each case, the heterogeneity in
drug response is captured by two separate populations, which are subject to some
form of inter-species competition. Each model was previously developed to capture
the drug response dynamics of patients undergoing intermittent/adaptive scheduling
of hormone therapy for metastatic prostate cancer.

2.1 Tumor Models

2.1.1 Lotka–Volterra Model

Strobl et al. (2021) model heterogeneity in drug response within a partially drug-
resistant tumor by two competing cell types: drug-sensitive cells S(t), and fully
resistant cells R(t), via the following two population Lotka–Volterra model (Lotka
1910; Volterra 1928):

dS

dt
= rS S

(
1 − S + R

K

)
× (1 − dDD) − dS,

dR

dt
= rR R

(
1 − S + R

K

)
− dR. (1)

Competition is represented by a logistic growthmodelwith a shared carrying capac-
ity K , while each species has a separate growth rate (rS and rR respectively). Cells are
assumed to die naturally at the same rate d, while the Norton–Simon model (Norton
and Simon 1977) is adopted tomodel the drug-induced killing of sensitive cells, occur-
ring at a rate proportional to the population’s growth rate and the drug concentration,
D(t) (with proportionality factor dD).

This model only considers pre-existing resistance, and there is no mechanism for
the acquisition of drug resistance during treatment. However, the inclusion of genetic
mutations in simple models has been shown to have no significant bearing on the
overall response to therapy (Viossat and Noble 2021). Parameter values were adopted
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from Strobl et al. (2021) and are given in Table S1. Note that throughout this paper,
we will use N to denote the total tumor size - i.e., N = S + R.

2.1.2 Waning Competition Model

In comparison, we also consider a modified Lotka–Volterra model proposed by Lu et
al. (2024). This time-varied generalized Lotka–Volterra model (with growth scaling
exponent α) also describes separate drug-sensitive and drug-resistant cell populations
competing for shared resources in the tumor microenvironment. However, this model
considers a modified logistic growth term with exponentially decreasing resource
overlap, described by the resistance index γ > 0 (henceforth this model will be
referred to as the ‘Waning Competition’ model). Lu et al. (2024) attribute this trend to
competition-induced mutations and epigenetic modifications within the cancer pop-
ulation, such that competition intensity weakens over time as there are fewer shared
resources. Explicitly, this model may be written (in non-dimensional form) as:

dS

dt
= rS S

[
1 −

(
S + R

1+eγ t

KS

)α

− dSD

]
,

dR

dt
= rR R

[
1 −

(
R + S

1+eγ t

KR

)α

− dRD

]
,

(2)

where S and R are the sensitive and resistant cell sub-populations respectively, and
D is the drug concentration. Each cell species i has a distinct growth rate ri , carrying
capacity Ki , and drug-induced death rate di . It is worth noting that this model also
reduces to the generalized logistic model in the case where γ = 0 (eliminating the
explicitly time-dependent competition), and in the absence of treatment.

Lu et al. (2024) defined progression for this model as the growth of the resistant
population to R(t) ≥ 0.1KR . While we retain this definition, it is also necessary to set
an upper limit N (t) < 1.2N0 on the allowable total tumor size, as it would otherwise
be optimal to allow arbitrarily large drug-sensitive populations to suppress the growth
of the resistant population. The model was parameterized using values from Lu et al.
(2024) (specified in Table S2).

2.1.3 Stem Cell Model

In contrast to the previous models, which categorize cells by their drug response, we
also considered an alternate model proposed by Brady-Nicholls and Enderling (2022),
which distinguishes between prostate cancer stem-like (S) and differentiated (D) cells
to model the tumor response to treatment.

This model treats tumor growth as driven by a distinct stem cell population, rather
than a drug-resistant sub-clone within the tumor bulk. These stem cells are immune to
the drug and directly drive the growth of the drug-sensitive, differentiated population.
As stem cells accumulate over the simulation, the growth rate of differentiated cells
(that make up the bulk of the tumor) increases accordingly. Ultimately, the growth
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rate of differentiated cells (stimulated by stem cells) exceeds their drug-induced death
rate, causing the cancer to progress during treatment. Importantly, the principles of
AT still apply: progression is fundamentally driven, albeit indirectly, by expansion
of the drug-resistant (stem cell) population, which can still be suppressed by a larger
population of drug-sensitive (differentiated) cells.

Stem-like cells divide at a rateλ, to produce either two stem-like cells (with probabil-
ity pS , where pS < 1, and subject to negative feedback S

S+D from differentiated cells),
or a stem-like and a non-stem cell. While stem-like cells are androgen-independent
and hence do not respond to treatment, differentiated cells die in response to drug
application at a rate dD . A binary dosing schedule is implemented through Tx , where
Tx = 1 corresponds to treatment being given, and Tx = 0 for treatment holidays.

dS

dt
=

(
S

S + D

)
pSλS,

dD

dt
=

(
1 − S

S + D
pS

)
λS − dDTx D.

(3)

The model was parameterized using values from Brady-Nicholls and Enderling
(2022) (specified in Table S2).

2.2 Adaptive Therapy

We consider three distinct treatment protocols for the drug concentration D(t) (or
Tx (t) for the Stem Cell model) within this work. All drug doses are normalized such
that D(t) = 1 corresponds to the maximum tolerated dose.

1. Continuous Therapy (CT) – The standard of care:

D(t) = 1 ∀ t . (4)

2. Window-Based AT (AT50) – Treatment is given until a decrease to 50% of the
initial size (N0) is achieved, then withdrawn until the tumor returns to its initial
size. AT50 was used in the pilot AT clinical trial by Zhang et al. (2017, 2022):

D(t) =
{
1, until N (t) < 0.5N0;
0, until N (t) ≥ N0.

(5)

3. Threshold-based AT (AT-N*) – Treatment is given only when the tumor is larger
than a set threshold size N∗:

D(t) =
{
1, N (t) ≥ N∗;
0, N (t) < N∗. (6)

Treatment outcomes from these schedules are compared according to their TTP,
where progression is defined as a 20% growth from the initial size (i.e. 1.2N0), as in
prior studies in this area (e.g., Gallaher et al. (2018); Strobl et al. (2021); Viossat and
Noble (2021)).
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Fig. 2 (a) Premature progression occurs when treatment decisions are made insufficiently frequently, such
that the sensitive fraction of the tumor can grow from below the treatment threshold (N (t) < 0.5N0) to
above the progression threshold (N (t) > 1.2N0 ) within a single treatment cycle. This places an upper limit
on the maximum treatment threshold, given that patients are monitored at discrete intervals (denoted here
by vertical lines). In this case, a small increase in the appointment interval (from 26 to 29 days) resulted in
premature progression, shown in detail in the red inset (where the light blue, dashed simulation trajectory
reaches progression just before the next appointment time, significantly decreasing the TTP). This figure
uses a set of modified parameter values for visualization purposes, with N0 = 0.3, dS = 0.3rS . (b) We
can derive the optimal appointment interval τ∗ for a particular treatment threshold N∗ by ensuring that the
time taken for the tumor to grow from the threshold to the progression limit is more than the time interval
between appointments. (c) The required interval decreases monotonically as the treatment threshold is
increased. The upper limit threshold of N0 from conventional (‘window-based’) AT50 is indicated by the
dashed line – this corresponds to an analytic limit on the AT appointment interval of 26.1 days, supporting
the observation in (a)

2.3 Optimal Threshold

Wenow consider the case of clinically realistic treatment protocols, limited by discrete
timemonitoring, and introduce the notion of an optimal threshold. The optimal thresh-
oldmay be derived by considering a phenomenonwedefine as ‘premature progression’
- where insufficient treatment (or an overly long treatment holiday due to discrete time
monitoring) results in progression due to growth in the sensitive cell population. The
progression is deemed ‘premature’ as the tumor is still (partially) sensitive to treat-
ment, and so progression could have been delayed by more frequent re-evaluation of
treatment. Figure 2a demonstrates that even small increases in the interval between
appointments may transform a successful strategy into one that undergoes progression
in the first treatment cycle, with the tumor size N (t) jumping from N (t) < 0.5N0
(the threshold for treatment in conventional AT50) to N (t) > 1.2N0 (the threshold
for progression) in a single treatment cycle.

We define the optimal appointment interval (τ ∗ in Figure 2b) as the maximal pos-
sible time interval between treatment appointments, to avoid premature progression
at a given treatment threshold. This interval may be obtained as the time for the tumor
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to grow from the threshold size for treatment to the progression limit. In practice, the
interval between appointments is often determined by clinical availability and prac-
tical restrictions, so it is more practical to personalize the threshold tumor size N∗
within the AT protocol to each patient, based on a fixed time interval τ .

We will apply this approach to each of the three tumor models introduced above,
illustrating its applicability to different modeling frameworks. While the details of
evaluating N∗ differ between models, and often require simplifying assumptions such
as a negligible resistant population, the overarching approach is common between all
models.

2.3.1 Lotka–Volterra Model

We assume R = 0 such that the total tumor size N is equal to the sensitive population S
(this assumption is justified in Supplementary Section S3.1). Rewriting (1), we obtain:

dN

dt
= rSN

(
1 − N

K

)
− dSN . (7)

Integrating over the optimal appointment interval τ ∗, wherein the tumor grows from
the threshold size N∗ to the progression limit 1.2N0:

∫ 1.2N0

N∗
1

rSN
(
1 − N

K

) − dSN
dN =

∫ τ∗

0
dt = τ ∗,

which may be evaluated to obtain:

τ ∗ = 1

rS − dS
ln

[
1.2N0

N∗
K (rS − dS) − rSN∗

K (rS − dS) − 1.2rSN0

]
. (8)

This relationship is plotted inFigure 2c - the appointment interval requireddecreases
monotonically for larger treatment thresholds. Rearranging (8) to obtain an expression
for the optimal treatment threshold N∗ based on a given appointment interval τ , we
obtain:

N∗ = K (rS − dS)(
K (rS−dS)
1.2N0

− rS

)
e(rS−dS)τ + rS

. (9)

2.3.2 Waning Competition Model

Given that rS > rR , we again consider the growth rate of a wholly sensitive tumor
(with negligible resistant fraction) and minimal inter-species competition (γ = 0), for
the limiting case of fastest tumor recovery. In this case, the growth dynamics reduce
to:

dS

dt
= rS S

[
1 −

(
S

KS

)α]
,
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which gives the integral (for the non-dimensionalized size Ŝ = S
KS

):

τ = 1

rS

∫ 1.2N0
KS

N∗
KS

1

Ŝ
(
1 − Ŝα

)d Ŝ.

Integrating, we obtain:

N∗ = KS

[((
KS

1.2N0

)α

− 1

)
eαrSτ + 1

]− 1
α

. (10)

Note that this expression also holds for the widely-used generalized logistic model,
as we assumed γ = 0 to consider the fastest possible growth for a tumor of given size
but unknown composition.

2.3.3 Stem Cell Model

While in previous computations we have assumed that the drug-resistant population
(i.e., the stem cell population S(t)) is negligible, that is not possible for this model,
as the growth rate of the differentiated cells is directly proportional to the stem cell
population.

We instead rewrite (3) during periods without treatment solely in terms of N , S:

dN

dt
= dS

dt
+ dD

dt
= λS,

dS

dt
=

(
S2

N

)
pSλ.

Hence, we have the separable equation:

dN

dS
= N

pSS
, (11)

from which we derive an exact solution for the drug-free growth of the whole tumor.
Considering the time interval τ taken for the tumor to grow from size N∗ to the
progression limit 1.2N (0), we obtain the time-dependent expression for N∗:

N∗(t) =
[
(1.2N (0))(1−pS) − λ (1 − pS) S(t)

N∗(t)pS
τ

] 1
1−pS

, (12)

which we may solve numerically for N∗(t). While N∗ depends on S(t), this can either
be taken from ongoing measurements of the tumor, or evaluated by integrating (11)
over the treatment history of the patient.
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2.4 Variable Offset Approach

If a treatment threshold N∗ larger than the optimal value for that tumor model is
used, there is a risk of premature progression. However, this is not guaranteed, as our
derivation for the optimal threshold considers a tumor that happens to have N (t) = N∗
at the start of the holiday period. If the tumor size is significantly smaller than the
treatment threshold at the start of the holiday period, having overshot N∗ during the
previous treatment period, then the tumor may not progress even when the threshold
N∗ exceeds the optimal value. Our derivation, therefore, represents a ‘worst-case’
scenario to ensure that premature progression cannot occur.

To enable a direct comparison of the analytic derivation for the optimal N∗ with
simulations of AT, we introduce an offset to the treatment schedule through an initial
treatment period of duration t < τ . This offset changes the time points at which
treatment is subsequently re-evaluated, but does not change the interval τ between
these time points, and so does not affect the optimal threshold. We then plot the
minimum TTP from 20 simulations with different time offsets, replicating this ’worst-
case’ scenario for that treatment protocol (N∗, τ ). This approach reduces sensitivity
to the timing of the first treatment, thereby avoiding the presentation of clinically
unrealistic results. Further explanation of this approach is given in Supplementary
Section S4.

3 Results

3.1 Lotka–Volterra Model

This paper aims to develop tools to improve patient outcomes by personalizing their
treatment schedules. Before detailing how we propose to optimize scheduling, it is
important to discuss the optimality criterion by which we seek to improve outcomes.
Given the presence of a fully drug-resistant population in this model, it is not possible
to eliminate the tumor entirely, which would cure the cancer. Furthermore, we show in
Supplementary Section S2 that all the non-zero stationary states of the tumor are on the
order of the carrying capacity K . We treat this size as an intolerable burden, where the
tumor has taken over a host completely, and nomore resources are available for growth.
For this reason, in Section 2.2 we restrict the total tumor size S(t) + R(t) = N (t) <

1.2N0, where N (t) = 1.2N0 corresponds to clinical progression. Inevitably, the tumor
will ultimately reach this progression limit, and hence, we also cannot contain the
tumor at a tolerable size indefinitely. An optimal treatment strategy should therefore
aim to delay tumor growth, thereby maximizing the time to reach the progression
limit.

The net tumor growth rate is minimized when N is large, and so we adopt a
threshold-based AT protocol, as further motivated in Supplementary Section S2.3.
This protocol is based on the threshold N∗, which we derived in Section 2.3.1.

Contrasting the optimal schedules for monthly and bimonthly appointments in
Figure 3a-b, we can see that the higher treatment thresholds necessitate more frequent
appointments. Plotting N∗ over τ in Figure 3c, we can see that this trend extends to
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Fig. 3 (a-b) Examples of AT-N* for τ = 30 and τ = 60 days, where the average tumor size is smaller
under the 60 day interval, hastening tumor progression. For τ = 30 days, the threshold N∗ > N0, and
so the optimal strategy initially withholds treatment until the tumor exceeds the optimal threshold. (c) The
analytically derived optimal threshold N∗ varies strongly with the appointment interval τ , meaning that
AT50 (where the upper threshold size is N0) is only optimal for a specific appointment interval (∼ 40
days). Intervals shorter than this benefit from a higher threshold tumor size, while those longer require a
smaller tumor size. (d) The curve N∗(τ ) can be plotted over the space of simulated TTP outcomes, where
each pixel corresponds to the TTP attained by an AT-N* protocol applied at an appointment interval τ . The
TTP is maximized at higher treatment thresholds; however, this is only possible with sufficiently frequent
appointments. Treatment according to threshold values below N∗ (for a given appointment spacing) will
be sub-optimal, while thresholds above N∗ have a risk of premature progression

the limit of continuous monitoring (τ = 0), where the optimal threshold converges to
1.2N0 - the clinical threshold for progression. In contrast, an AT50 approach would
only be possible if treatment is re-evaluated at least every 40 days, and longer intervals
would risk premature progression. In the inset panels,we contrast the optimal treatment
schedules for monthly (30 day) and bimonthly (60 day) appointment intervals. The
shorter interval allows for better control over the tumor size, maintaining a more
consistent and higher average size than the longer interval. The increased average
tumor size results in greater suppression of the resistant cells, and hence greater overall
TTP, but requires more frequent appointments to maintain. In other words, there is a
trade-off between the cost and inconvenience of more frequent appointments against
the higher TTP that a shorter appointment interval can attain.

We systematically evaluate the TTP for different combinations of threshold size and
appointment interval in Figure 3b, reinforcing the argument that a higher threshold
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Fig. 4 (a) Example treatment protocol (with N∗ = 0.7, τ = 60 days) for the Waning Competition model
under two different values of the critical exponent α – note that progression is defined by the growth of
the resistant population to R(t) ≥ 0.1KR for this model. (b) Treatment outcomes for differing α values,
where the derived optimal threshold again accurately differentiates between premature progression above
the optimal N∗ curve (red solid line), and the sub-optimal TTP outcomes below the curve

tumor size results in a greater TTP. However, this only applies when the treatment
plan is re-evaluated sufficiently frequently (i.e., when the time interval between
appointments is below the optimal treatment curve defined by (9) and plotted in red).
Insufficiently frequent clinical appointments for a given threshold tumor size are inher-
ently risky, resulting in poorer treatment outcomes (driven by premature progression)
observed in the region above the optimal treatment curve.

3.2 Waning Competition Model

For the more complex Waning Competition model introduced in Section 2.1.2, we
see that the exponent of the competition term α affects the dynamics significantly. We
illustrate this through simulation of AT-N* treatment protocols (with N∗ = 0.7, τ =
60 days) for two different values of α in Figure 4a.

The optimal threshold N∗, given in (10), is overlaid on the treatment outcome
space for multiple values of α in Figure 4b, and separates the regions with and without
the possibility of premature progression. While this more complex tumor model can
account for a broader range of dynamics than the Lotka–Volterra model considered
in Section 3.1, the TTP space depicts the same trends in the N∗ shown in the figure,
and the optimal threshold framework outlined in Section 2.3 is equally applicable
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to this model. These results illustrate the translatability of the optimal threshold N∗
and the framework we propose for deriving this threshold across different modeling
assumptions and frameworks.

3.3 Stem Cell Model

The mathematical models examined so far assume that the treatment dynamics are
primarily driven by expansion and contraction of two tumor subpopulations with
differential, but constant, fitness in the presence and absence of drug. One implication
of this assumption is that, in the absence of logistic suppression, the single-species,
per-capita growth rate ( 1S

dS
dt ) remains constant over treatment. However, a subset of

patients in the AT clinical trial by Zhang et al. (2022) (from which the data in Figure
1b were also taken) display qualitatively different tumor dynamics that cannot be
replicated mathematically by the previous tumor models, most notably an increasing
regrowth rate off-treatment after multiple treatment cycles.

Exemplified for two patients in Figure 5a, we see that subsequent holiday peri-
ods are shorter, as the tumor size recovers at an increasing rate on successive cycles
of AT, in contrast to the approximately-constant holiday lengths for the patients in
Figure 1b. One plausible explanation for such behavior is provided by the Stem Cell
model proposed by Brady-Nicholls and Enderling (2022) (detailed in Section 2.1.2).
Progression in this model is driven by an increasing population of stem cells, which
eventually produce differentiated cells at a rate faster than they can be killed by the
drug’s action.

Because the rate at which the tumor rebounds after treatment increases over time
(as stem cells accumulate), a fixed threshold approach is no longer appropriate for
this model. In Figure 5b, we see that the threshold N∗ = 0.5 is suboptimal for
a treatment interval of τ = 40 days at the start of the simulation (maintaining a
total tumor size significantly below the progression limit and hence weakening the
competitive suppression of the drug-resistant stem cell population), while still failing
to prevent premature progression occurring after approximately 1077 days. Applying
our framework to derive N∗, we instead obtain a time-varying optimal threshold, as
defined by (12).

While we cannot plot the TTP outcome over (τ, N∗) space for time-varying N∗(t),
an exemplar treatment schedule for τ = 40 days is given in Figure 5c, which extends
the TTP compared to the fixed threshold approach by 762 days. The threshold N∗
decreases over time to account for the faster tumor regrowth ratewhile the appointment
interval is held constant, again exemplifying the trade-off between N∗ and τ .

The concept of a time-varying treatment threshold is novel in AT and was not
required in optimal treatment protocols for previous models, as they predict a con-
stant rate of tumor regrowth over time. However, we have systematically shown that a
time-varying threshold is optimal in specificmodeling scenarios, such as the stem cell-
driven tumor growth in this model, and is necessary to account for particular patient
dynamics observed in previous clinical trials of AT. These dynamics are not unique to
prostate cancer, and have also been observed in melanoma, where mathematical mod-
els with phenotypic plasticity (switching between drug-sensitive and -resistant states)
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Fig. 5 (a) Exemplar patient records from Zhang et al. (2022) demonstrate increasing rates of tumor rebound
off-drug as treatment progresses. (b) This trend may be captured by the Stem Cell model of Brady-Nicholls
and Enderling (2022); however, this behavior causes fixed threshold approaches to fail prematurely. In this
plot, a fixed threshold of N∗ = 0.6 for an interval τ = 40 days is initially suboptimal, with the total tumor
size less than half of the progression limit. Despite this, the fixed threshold protocol still allows premature
progression (i.e., tumor progression off-treatment) by the end of the simulation. (c) For this model, a
time-varying treatment threshold is required to ensure maximal suppression of the resistant population
without resulting in premature progression - this approach significantly increases TTP over fixed threshold
approaches with the same fixed appointment interval (τ = 40 days).

have been proposed to account for this behavior (Kim et al. 2021). This heterogeneity
in patient dynamics also raises wider questions regarding model selection for a given
disease context, and whether multiple models should be used to capture qualitative
heterogeneity in patient dynamics within a single study. Fundamentally, these results
reflect the importance of tailoring mathematical models to the observed experimen-
tal/clinical behavior of the target system, enabling the translation of analytic results,
such as optimal treatment protocols.

4 Discussion

With multiple ongoing clinical trials of AT (in skin (NCT05651828 - BCC Trial),
prostate (NCT05393791 - ANZADPT Trial), and ovarian (NCT05080556 - ACTOv
Trial) cancers), it is of significant clinical interest to identify and characterize an
optimal scheduling protocol for AT. However, previous work (Hansen et al. 2017;
Viossat and Noble 2021) to identify optimal AT approaches does not account for
discrete appointment intervals, which we show drastically modifies the ideal drug
schedules.

We found that there is a trade-off between the appointment interval τ and the maxi-
mum attainable TTP, and introduced a threshold-basedAT protocol that maximizes the
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TTP for a given appointment interval. This threshold N∗ depends on patient-specific
tumor parameters, motivating the clinical need for personalized AT frameworks that
can adapt to the dynamics of each patient. We also show that different mathemati-
cal models may be needed to capture qualitatively different patient dynamics, which
can affect the optimal treatment strategy. To exemplify this, we identify patients with
qualitatively different tumor dynamics (increases in the rate of tumor regrowth over
time), and utilize a modeling framework that accounts for this behavior to propose
a modified AT protocol where the treatment threshold may also vary over time. Our
proposal that the best strategy may not just vary between patients, but also vary for a
single patient throughout their treatment, is novel to AT. However, we hope this may
inspire other innovative approaches to drug scheduling in different disease contexts.

While the cross-disease applicability of this framework extends beyond androgen
suppression in prostate cancer, our approach relies on treatments that can bemaintained
outside clinical appointments. While patients traditionally had to attend the clinic to
receive chemotherapy and other anti-cancer agents, it is increasingly common for
these to be delivered at home, either orally (Jacobs et al. 2019; Moreira et al. 2022) or
through drug infusion pumps (Sabbagh et al. 2021). This paper focuses on continuous
treatments (such as daily pills); however, our framework could also be directly applied
to protocols with discrete treatment cycles of a predetermined length, as is common
for chemotherapeutic agents. As our generalized framework to derive N∗ only relies
on the rate of tumor regrowth in the absence of treatment, this approach may be
equally applied to treatment protocols with different treatment durations. However,
our framework is only applicable when the elimination half-life of the relevant drug
is significantly shorter than the holiday duration. This ensures that a binary dosing
protocol with distinct max-dosage and drug-free periods may still be assumed. As
the treatment period is now decoupled from appointment frequency, our framework
would instead relate the treatment cycle length (the equivalent of N∗ for discrete
treatment cycles) to the holiday duration directly. In contexts such as chemotherapy,
where the treatment period is standardized, this would allow personalization of the
holiday duration to maximize TTP.

To implement personalized AT protocols clinically, we also need an approach to
estimate the individual’s tumor parameters before treatment. In previous work (Gal-
lagher et al. 2024), we proposed a probing cycle to resolve this – all patients first
undergo a standardized cycle of AT50, during which regular measurements of the
tumor burden are taken. We may then fit our given mathematical model to these data
to estimate the optimal N∗ threshold for that patient, and these fits may be iteratively
refined as more data are collected from subsequent treatment cycles. This fitting pro-
cess relies on our ability to derive a closed-form formula for N∗, and the parameter
spacemay be simplified based on a sensitivity analysis of the N∗ formula. This empha-
sizes the importance of our analytic approach over a numerical estimation of N∗ from
the original model equations.

Finally, we have discussed the role of modeling assumptions in this paper and
how that may affect conclusions on the optimal treatment schedule. Our finding that
different tumor dynamics necessitate different AT scheduling approaches motivates
the development of a systematic approach to identify the most suitable tumor model
for a specific patient’s dynamics, considering that these dynamics may vary qualita-
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tively between tumors in the same disease context undergoing the same treatment. One
approach to this could be an established suite of complementary mathematical models
that may be fit to the same dataset, allowing systematic comparison of predictions
between each model (Strobl et al. 2023) – such an approach may be implemented
through an ‘Evolutionary Tumor Board’ that directly interfaces between mathemati-
cians and clinicians to recommend optimal treatment protocols personalized to specific
patients under the clinicians’ care (Robertson-Tessi et al. 2023). While our framework
assumes perfectly periodic treatment intervals, we have separately proposed a frame-
work to consider the sensitivity of such treatment schedules to appointment delays
and predict the patient-specific risk of premature progression (Gallagher et al. 2015).

In summary, this paper illustrates the importance of accounting for clinical real-
ity in the mathematical derivation of optimal treatment protocols, such as discrete
patientmonitoring.We show the importance of considering different underlyingmodel
assumptions based on the clinical data available, and demonstrate how these can lead to
drastically different optimal treatment protocols, introducing a novel concept of an AT
threshold that varies throughout a patient’s treatment. We hope this paper highlights
the applicability of mathematical approaches to treatment scheduling in oncology and
inspires future work to translate these analytic approaches into clinically actionable
protocols across a range of disease settings.
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