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 a b s t r a c t

In this work, we propose and analyze a new local time-decoupled squared Wasserstein-2 method for reconstruct-
ing the distribution of unknown parameters in dynamical systems from a finite number of observed temporal 
trajectories. Specifically, we show that a stochastic neural network model, which can be effectively trained by 
minimizing our proposed local time-decoupled squared Wasserstein-2 loss function, is an effective model for 
approximating the distribution of uncertain model parameters in dynamical systems. Through several numerical 
examples, we showcase the effectiveness of our proposed method in reconstructing the distribution of parameters 
in different dynamical systems.

1.  Introduction

The inverse problem of reconstructing a noisy dynamical system 
from time-series data finds wide applications across different disciplines. 
Efficient algorithms to solve such inverse-type problems advance differ-
ent fields including inferring neural circuit dynamics from spiking data 
(Pillow et al., 2008) in neuroscience, modeling and predicting complex 
weather patterns from historical data (Carrassi et al., 2018) in climate 
science, uncovering disease transmission dynamics from infection case 
counts over time (Roda et al., 2020) in epidemiology, and deducing re-
action rates from experimental concentration-time profiles in reaction 
kinetics in biochemistry (Loskot et al., 2019). However, such inverse-
type problems pose substantial mathematical and computational chal-
lenges, particularly when data are limited and noisy, motivating ongoing 
research into novel algorithms and theoretical frameworks to improve 
model reconstruction accuracy and efficiency.

In this paper, we study the inverse problem of inferring the dis-
tribution of model parameters for several dynamical systems includ-
ing ordinary differential equations (ODEs), partial differential equa-
tions (PDEs), and stochastic differential equations (SDEs) from time-
series data or spatiotemporal data. Existing methods for such problems 
can be broadly categorized into traditional statistical approaches and 
modern data-driven techniques. Traditional statistical methods often in-
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volve parameter estimation frameworks. For example, linear and non-
linear regression methods play a role in simpler systems where the func-
tional form of the model is partially known (Chib & Greenberg, 2002). 
Furthermore, maximum likelihood estimation and Bayesian inference 
methods (Cresswell, 2015; Marin et al., 2021) are often adopted. Maxi-
mum likelihood estimation optimizes the likelihood of model parameter 
values in a proposed model from observed data, while Bayesian meth-
ods incorporate prior information and compute posterior distributions. 
These approaches are widely used in applications such as reaction net-
work reconstruction and epidemiological modeling. On the other hand, 
data-driven methods, leveraging advances in machine learning, offer a 
complementary toolkit for inverse problems. For example, neural net-
works and reservoir computing frameworks have been successful in re-
constructing chaotic systems and inferring governing equations directly 
from data (Brunton et al., 2016; Pathak et al., 2018). Sparse identifica-
tion of nonlinear dynamics (SINDy) has emerged as a powerful tool for 
discovering interpretable dynamical systems by identifying a parsimo-
nious set of governing equations from time-series data (Brunton et al., 
2016). Gaussian process regression has proven effective for nonpara-
metric inference, especially in uncertainty quantification (Raissi et al., 
2017). Hybrid approaches, which integrate data-driven and traditional 
statistical methods such as the physics-informed neural network method 
(Raissi et al., 2019), are also gathering increasing attention as they take 
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\begin {equation}\bm {X}=(X_1, {\ldots }, X_d),\,\, \hat {\bm {X}}=(\hat {X}_1,{\ldots },\hat {X}_d)\in \mathbb {R}^d \label {Xeqn3-2.1}\end {equation}
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\begin {equation}W_2(\nu , \hat {\nu }) := \inf _{\pi (\nu , \hat \nu )} \E _{(\bm {X}, \hat {\bm {X}})\sim \pi (\nu , \hat \nu )}{\big [\|{\bm {X}} - \hat {{\bm {X}}}\|^{2}\big ]}^{\frac {1}{2}}. \label {pidef}\end {equation}
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\begin {equation}W_{2, \delta }^{2, \text {e}}\left (\bm {X}(t), \hat {\bm {X}}(t)\right ):= \int _{\mathbb {R}^d}W_2^2\left (\nu ^{\text {e}}_{\bm {X}_0, \delta }(t), \hat {\nu }^{\text {e}}_{\bm {X}_0, \delta }(t)\right ) \nu _0^{\text {e}}({\mathrm {d}}\bm {X}_0). \label {local:squared}\end {equation}
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$W_{2, \delta }^{2, \text {e}}(\bm {X}(t), \hat {\bm {X}}(t))$


$W_2$


\begin {equation}\tilde {W}_{2, \delta }^{2, \text {e}}(\bm {X}, \hat {\bm {X}})\approx \sum _{i=0}^{n-1}W_{2, \delta }^{2, \text {e}}(\bm {X}(t_i), \hat {\bm {X}}(t_i))(t_{i+1} - t_i), \label {local:define}\end {equation}


$W_2$


$W_2$


$O(\max _{i=1}^{n-1} (t_{i+1}-t_i))$


$O\big (\sqrt {\max _{i=0}^{n-1} (t_{i+1}-t_i)}\big )$


$W_2$


$W_2$


$W_2$


$\{\bm {X}\}_{t\in [0, T]}$


$\{\hat {\bm {X}}\}_{t\in [0, T]}$


$\theta $


$\bm {X}(0)$


$\hat {\theta }$


$\hat {\bm {X}}(0)$
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\begin {equation}\begin {aligned} {\mathrm {d}} \bm {X}(t) &= \bm {f}(\bm {X}(t), t; \theta ){\mathrm {d}} t + \bm {\sigma }(\bm {X}(t), t; \theta ){\mathrm {d}} \bm {B}_t \\ & \quad + \int _U\bm {\beta }(\bm {X}(t), \xi , t; \theta )\tilde {N}( {\mathrm {d}} t, \gamma ({\mathrm {d}}\xi )),\,\,\bm {X}(0)\sim \nu _0 \end {aligned} \label {model:equation}\end {equation}
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\begin {equation}\tilde {N}({\mathrm {d}} t, \gamma ({\mathrm {d}}\xi )) := N({\mathrm {d}} t, \gamma ({\mathrm {d}}\xi )) - \gamma ({\mathrm {d}}\xi ) {\mathrm {d}} t, \label {compensated:poisson}\end {equation}
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\begin {align}W_2^2(f, \hat {f})&\leq \E _{(\bm {y}, \hat {\bm {y}}) \sim \pi (f, \hat {f})} \Big [\|\bm {y}-\hat {\bm {y}}\|^2\Big ] \nonumber \\ &\leq \int _{\mathbb {R}^{2d'}}\frac {1}{p}\Big [\sum _{i=1}^s(p_i-\hat {p}_i)\mathcal {N}\left (\bm {y}-\bm {b}_i, A_i^TA_i\right )\Big ]\cdot p(\bm {\hat {y}})\|\bm {y}-\hat {\bm {y}}\|^2{\mathrm {d}}\bm {y}{\mathrm {d}}\hat {\bm {y}} \nonumber \\ &\leq \int _{\mathbb {R}^{2d'}}\frac {1}{p}\Big [\sum _{i=1}^s(p_i-\hat {p}_i)\mathcal {N}\left (\bm {y}-\bm {b}_i, A_i^TA_i\right )\Big ]\cdot p(\bm {\hat {y}}) \nonumber \\&\quad \cdot 2\left (\|\bm {y}\|^2+\|\hat {\bm {y}}\|^2\right ){\mathrm {d}}\bm {y}{\mathrm {d}}\hat {\bm {y}} \nonumber \\ &\leq 2\sum _{i=1}^s(p_i-\hat {p}_i)\left (\|\bm {b}_i\|^2 + \|A_i^TA_i\|_F^2\right ) + 2\int _{\mathbb {R}^{d'}} \|\hat {\bm {y}}\|^2 p(\hat {\bm {y}}){\mathrm {d}}\hat {\bm {y}},\end {align}


$W_2$


$\bm {y}\in \mathbb {R}^{d'}$


$f_{\bm {x}}$


$\bm {x}\in D\subseteq \mathbb {R}^d$


$\gamma (\cdot )$


$\bm {x}$


$f_{\bm {x}}$


\begin {equation}f_{\bm {x}}(\bm {y}) = \sum _{r=1}^s p_r(\bm {x})\mathcal {N}(\bm {y} - \bm {b}_r(\bm {x}), A_r^T(\bm {x})A_r(\bm {x})), \,\, \sum _{r=1}^s p_r(\bm {x})=1,\,\, p_r(\bm {x})>0.\end {equation}


$\{D_i\}_{i=1}^{\infty }$


$D_i\rightarrow D$


$i\rightarrow \infty $


$\lim _{i\rightarrow \infty }\gamma (D_i)=\gamma (D)=1$


$D$


$\mathbb {R}^d$


$\Delta x>0$


$\{\bm {x}_i\}_{i=1}^{K}\subseteq D$


$D\subseteq \cup _{i=1}^K\otimes _{j=1}^d[x_i^j, x_i^j+\Delta \bm {x})$


$\otimes _{j=1}^d[x_{i_1}^j, x_{i_1}^j+\Delta \bm {x})\cap \otimes _{j=1}^d[x_{i_2}^j, x_{i_2}^j+\Delta \bm {x})=\emptyset $


$i_1\neq i_2$


$f_{\bm {x}}(\bm {y})$


$\bm {x}$


$\epsilon >0$


$\delta >0$


\begin {equation}W_2^2\big (f_{\bm {x}}(\bm {y}), f_{\tilde {\bm {x}}}(\bm {y})\big )<\epsilon , \,\,\forall \|\bm {x} - \tilde {\bm {x}}\|\leq \delta , \,\,\forall \bm {x}, \tilde {\bm {x}}\in D.\end {equation}


\begin {equation}\max _{1\leq r\leq s}\left \|A_r^T(\bm {x})A_r^T(\bm {x})\right \|_F^2 + \|\bm {b}_r(\bm {x})\|^2 \label {bounded:condition}\end {equation}


$\bm {x}\in D$


$c_0>0$


\begin {equation}\int _D W_2^2(f_{\bm {x}}, \hat {f}_{\bm {x}})\gamma ({\mathrm {d}}\bm {x})\leq c_0. \label {mixed:result}\end {equation}


$\hat {f}_{\bm {x}}$


$\bm {x}$


$\bm {y}\in \mathbb {R}^{d'}$


$f(\bm {y})$


$\hat {\bm {y}}\in \mathbb {R}^{d'}$


$\hat {f}$


$\hat {f}$


$f$


$W_2$


$\bm {y}=(y_1,{\ldots },y_{d'})\in \mathbb {R}^{d'}$


$f(\bm {y})\in L^2(\mathbb {R}^{d'})\cap L^{\infty }(\mathbb {R}^{d'})$


$f(\bm {y})$


$\mathbb {R}^n$


\begin {equation}|f|_{\text {mix}}:= \sum _{|\bm {n}|_0\leq d'}\left \|\partial _{\bm {n}}^{|\bm {n}|_0}f\right \|_{L^2}<\infty ,\,\,\,\left |\sqrt {f}\right |_{\text {mix}}<\infty \end {equation}


$|\bm {n}|_0$


$\bm {n}$


$\bm {n}=(n_1,{\ldots },n_j)$


$1\leq n_1<{\ldots }<n_j\leq d'$


$\partial _{\bm {n}}f:= \partial _{y_{n_1}}{\ldots }\partial _{y_{n_j}}f$


$|fy_i^2|_{\text {mix}}<\infty $


$|fy_i^2y_j^2|_{\text {mix}}<\infty $


$\sigma >0, n_0(\sigma )>0$


\begin {equation}\tilde {f}_{\sigma ^2, n_0(\sigma )}(\bm {y}) := \sum _{i=1}^{(n_0(\sigma )+1)^{d'}} p_i\mathcal {N}(\bm {y}- \bm {y}_i;\sigma ^2I_{d'\times d'}),\,\,\bm {y}_i\in \mathbb {R}^{d'} \label {pndef}\end {equation}


$\sigma \rightarrow 0^+$


$n(\sigma )\rightarrow \infty $


\begin {equation}\tilde {f}_{\sigma ^2, n_0(\sigma )}(\bm {y})\rightarrow f(\bm {y}) \label {Xeqn36-3.15}\end {equation}


$\mathbb {R}^{d'}$


$\forall \epsilon >0$


$\sigma >0, n_0(\sigma )$


$\tilde {f}_{\sigma ^2, n_0(\sigma )}(\bm {y})$


\begin {equation}W_2^2(f, \tilde {f}_{\sigma ^2, n_0(\sigma )})\leq 24\epsilon . \label {thm3:result}\end {equation}


$I_{d'\times d'}$


$d'\times d'$


$\bm {y}\in \mathbb {R}^{d'}$


$f$


$\hat {\bm {y}}$


$\tilde {f}_{\sigma ^2, n_0}$


$W_2^2(f, \tilde {f}_{\sigma ^2, n_0})\leq \epsilon $


$n_i^3=x\equiv 1$


$W_2^2(\tilde {f}_{\sigma ^2, n_0}, \hat {f}_{\bm {x}\equiv 1})\leq \epsilon $


$\hat {f}_{\bm {x}\equiv 1}$


$W_2^2(f, \hat {f}_{\bm {x}\equiv 1})\leq 4\epsilon $


$W_2$


$W_2$


$W_2^2(\mu , \hat {\mu })$


$\theta $


$\hat {\theta }$


$W_2$


$\bm {y}=f(\bm {x}, \theta ), \bm {x}\in \mathbb {R}^d, \bm {y}\in \mathbb {R}^{d'}$


$\theta $


$\bm {y}$


$\bm {x}\in D\subseteq \mathbb {R}^d$


$D$


$\mathbb {R}^d$


$\{D_i\}_{i=1}^{\infty }$


$D_i\rightarrow D$


$i\rightarrow \infty $


$\lim _{i\rightarrow \infty }\gamma (D_i)=\gamma (D)=1$


$\Delta x>0$


$\{\bm {x}_i\}_{i=1}^{K}\subseteq D$


$D\subseteq \cup _{i=1}^K\otimes _{j=1}^d[x_i^j, x_i^j+\Delta \bm {x})$


$\otimes _{j=1}^d[x_{i_1}^j, x_{i_1}^j+\Delta \bm {x})\cap \otimes _{j=1}^d[x_{i_2}^j, x_{i_2}^j+\Delta \bm {x})=\emptyset $


$i_1\neq i_2$


$\omega $


$\bm {y}$


$\bm {x}$


$f_{\bm {x}}$


$\epsilon >0$


\begin {equation}\int _D W_2^2(f_{\bm {x}}, \hat {f}_{\bm {x}})\gamma ({\mathrm {d}}\bm {x})\leq \epsilon . \label {Xeqn38-3.17}\end {equation}


$\hat {f}_{\bm {x}}$


$\bm {x}$


$\bm {y}=f(\bm {x}, \theta )$


$\bm {x}\in D\subseteq \mathbb {R}^d$


$f(\bm {x}, \theta ), \bm {x}\in D$


$f(\theta )$


$\theta $


$\bm {y}=f(\bm {x}, \theta )$


$\bm {x}\in D$


$W_2$


\begin {equation}\frac {1}{N_T}\sum _{i=1}^{N_T} W_{2, \delta }^{2, \text {e}}({\bm X}(t_i), \hat {{\bm X}}(t_i))=\frac {1}{N_TN}\sum _{i=1}^{N_T}\sum _{j=1}^NW_2^2\big (\nu _{{\bm X}_{0, j}, \delta }^{\text {e}}(t_i),\hat {\nu }_{{\bm X}_{0, j}, \delta }^{\text {e}}(t_i)\big ), \label {loss:define:empirical}\end {equation}


$W_2$


$W_{2, \delta }^{2, \text {e}}({\bm X}(t_i), \hat {{\bm X}}(t_i))$


$W_2$


$\nu ^{\text {e}}_{{\bm X}_{0, j}, \delta }(t)$


$\hat {\nu }^{\text {e}}_{{\bm X}_{0, j}, \delta }(t)$


$\bm X$


$\hat {{\bm X}}$


$t$


$|{\bm X}(0)-{\bm X}_j(0)|\leq \delta $


$|\hat {{\bm X}}(0)-{\bm X}_j(0)|\leq \delta $


${\bm X}_j(0)$


$j{\text {th}}$


$W_2^2(\nu _{{\bm X}_{0, j}, \delta }^{\text {e}},\hat {\nu }_{{\bm X}_{0, j}, \delta }^{\text {e}})$


\begin {equation}W_2^2\left (\nu _{{\bm X}_{0, j}, \delta }^{\text {e}},\hat {\nu }_{{\bm X}_{0, j}, \delta }^{\text {e}}\right )\approx \texttt {ot.emd2}\Big (\frac {1}{N_j}\vec {\bm I}_{N_j}, \frac {1}{N_j}\vec {\bm I}_{N_j}, {\bm C}_j(t_i)\Big ), \label {time:coupling0}\end {equation}


$\texttt {ot.emd2}$


$\texttt {PoT}$


$N_j$


$X_j:= \Big \{\{{\bm X}_{i}\}_{t=0}^{T}\big |\|{\bm X}_i(0) - {\bm X}_j(0)\|\leq \delta , i=1,{\ldots },N\Big \}$


$\vec {\bm I}_{N_j}$


$N_j$


${\bm C}_j(t_i)\in \mathbb {R}^{N_j\times N_j}$


$({\bm C}_j(t_i))_{sr} = \|{\bm X}_s(t_i)-\hat {{\bm X}}_r(t_i)\|^2$


${\bm X}_s(t_i)$


$\hat {{\bm X}}_r(t_i)$


$s{\text {th}}$


$t_i$


$X_j$


$r{\text {th}}$


$t_i$


$\hat {X}_j:= \Big \{\{\hat {{\bm X}}_{i}\}_{t=0}^{T}\big |\|\hat {{\bm X}}_i(0) - {\bm X}_j(0)\|\leq \delta , i=1,{\ldots },N\Big \}$


$W_2$


\begin {equation*}\tilde {W}_2^2({\bm X}, \hat {{\bm X}})\approx \frac {1}{N_T}\sum _{i=1}^{N_T} W_2^2(\nu ^{\text {e}}(t_i), \hat {\nu }^{\text {e}}(t_i)),\end {equation*}


$\nu ^{\text {e}}(t_i)$


$\hat {\nu }^{\text {e}}(t_i)$


${\bm X}(t_i)$


$\hat {{\bm X}}(t_i)$


\begin {equation}W_2^2(\nu _N^{\text {e}}(t_i), \hat {\nu }_N^{\text {e}}(t_i))\approx \texttt {ot.emd2}\Big (\frac {1}{N}\vec {\bm I}_{N}, \frac {1}{N}\vec {\bm I}_{N}, {\bm C}(t_i)\Big ), \label {time:coupling}\end {equation}


$\texttt {ot.emd2}$


$\texttt {ot}$


$N$


$\vec {\bm I}_{N}$


$N$


${\bm C}(t_i)\in \mathbb {R}^{N\times N}$


$({\bm C}(t_i))_{sj} = \|{\bm X}_s(t_i)-\hat {{\bm X}}_j(t_i)\|^2$


${\bm X}_s(t_i)$


$\hat {{\bm X}}_j(t_i)$


$s{\text {th}}$


$t_i$


$j{\text {th}}$


$t_i$


\begin {equation}\begin {aligned} & \text {MMD}(\{{\bm X}\}, \{\hat {{\bm X}}\}) = \frac {1}{N_T}\sum _{i=1}^{N_T}\E [K(\{{\bm X}(t_i)\}, \{{\bm X}(t_i)\})]\\ &\quad \quad - 2\E [K(\{{\bm X}(t_i)\}, \{\hat {{\bm X}}(t_i)\})] + \E [K(\{\hat {{\bm X}}(t_i)\}, \{\hat {{\bm X}}(t_i)\})], \end {aligned} \label {MMD:def}\end {equation}


$K$


$2$


$5$


$\{{\bm X}(t_i)\}$


$\{\hat {{\bm X}}(t_i)\}$


$t_i$


\begin {equation}\operatorname {MSE}({\bm X}, \hat {{\bm X}}) = \frac {1}{N_TN}\sum _{i=1}^{N_T}\sum _{s=1}^N \|{\bm X}_s(t_i)-\hat {{\bm X}}_s(t_i)\|^2. \label {Xeqn175-J.5}\end {equation}


${\bm X}_s(t_i)$


$\hat {{\bm X}}_s(t_i)$


$s{\text {th}}$


$t_i$


$s{\text {th}}$


$t_i$


$^2$


\begin {equation}\begin {aligned} (\operatorname {Mean}^2+\operatorname {Var})({\bm X}, \hat { {\bm X}}) =& \frac {1}{N_T}\sum _{i=1}^{N_T} \Bigg (\frac {1}{N}\sum _{s=1}^N \|{\bm X}_s(t_i)-\hat {{\bm X}}_s(t_i)\|^2 \\&\quad + |\text {Var}({\bm X}(t_i)) - \text {Var}(\hat {{\bm X}}(t_i))|\Bigg ) \end {aligned} \label {Xeqn176-J.6}\end {equation}


\begin {equation}\text {Var}({\bm X}(t_i)) = \sum _{s=1}^N \big \|{\bm X}_s(t_i) - \sum _{i=1}^N \frac {1}{N}{\bm X}_i(t_i)\big \|^2. \label {Xeqn177-J.7}\end {equation}


${\bm X}_s(t_i)$


$\hat {{\bm X}}_s(t_i)$


$s{\text {th}}$


$t_i$


$s{\text {th}}$


$t_i$


$W_2$


$W_2$


$\texttt {PoT}$


$W_2$


$W_2$


$1$


$W_2$


\begin {equation}\text {error}:= \frac {W_2^2(\mu _{\theta }, \hat {\mu }_{\hat {\theta }})}{\|\theta \|^2}, \label {relative:error}\end {equation}


$\theta $


$\hat {\theta }$


$\textit {e.g.}$


$\mu _{\theta }$


$\hat {\mu }_{\theta }$


$\theta $


$\hat {\theta }$


$c$


$\xi _1, \xi _2$


$\delta =0.4$


$c$


$\hat {c}$


$\hat {c}$


$c$


$c\sim \mathcal {U}(2, 4)$


$\hat {c}$


$|\E [\hat {c}] - \E [c]|$


$|\text {Var}[\hat {c}] - \text {Var}[c]|$


$W_2$


$W_2$


$W_2$


$W_2$


$\hat {c}$


$\hat {c}$


$c$


$W_2$


$^2$


$\hat {c}$


$10^{-5}$


$\hat {c}$


$\hat {c}$


$\hat {c}$


$W_2$


$\hat {c}$


$W_2$


$W_2$


$W_2$


\begin {align}&\partial _t u(x, t;c_1, c_2) = \frac {c_1}{c_2^2}\partial _{xx}u(x, t;c_1, c_2) +\frac {c_1}{c_1t+1}u(x, t;c_1, c_2),\,\,(x, t)\in \mathbb {R}\times [0, 2],\nonumber \\ & u(x, 0) = (1+\xi )\tfrac {x}{\sqrt {4}} \cdot \exp \big (-\tfrac {x^2}{ 2 }), c_1\sim \mathcal {N}(0.5, \sigma _1^2),\nonumber \\& c_2=\tilde {\xi } + \beta (0.5-c_1), \,\,\xi \sim \mathcal {N}(0, \sigma _3^2),\,\, \tilde {\xi }\sim \mathcal {N}(1.5, \sigma _2^2).\label {example2:model}\end {align}


\begin {align}&\partial _t \hat {u}(x, t;\hat {c}_1, \hat {c}_2) = \frac {\hat {c}_1}{\hat {c}_2^2}\partial _{xx}\hat {u}(x, t;\hat {c}_1, \hat {c}_2) +\frac {\hat {c}_1}{\hat {c}_1t+1}\hat {u}(x, t;\hat {c}_1, \hat {c}_2),\,\,(x, t)\in \mathbb {R}\times [0, 2],\nonumber \\ & \hat {u}(x, 0) = u(x, 0). \label {example2:model:approximate}\end {align}


$(c_1, c_2)$


$(\hat {c}_1, \hat {c}_2)$


\begin {equation}\begin {aligned} u(x, t;\theta )\approx u_{n-1}(x,t;\theta )= \sum _{i=0}^{n-1} u_i(t;\theta ){\hat {\mathcal {H}}}_i(x),\,\,\theta := (c_1, c_2)\\ {\hat {u}}(x, t;{\hat {\theta }})\approx {\hat {u}}_{n-1}(x,t;{\hat {\theta }})= \sum _{i=0}^{n-1} {\hat {u}}_i(t;{\hat {\theta }}){\hat {\mathcal {H}}}_i(x),\,\,{\hat {\theta }} := ({\hat {c}}_1, {\hat {c}}_{2}), \end {aligned} \label {spectral:approx}\end {equation}


$\hat {\mathcal {H}}_i$


$(\sigma _1, \sigma _2)$


$(c_1, c_2)$


$(c_1, c_2)$


$\beta =1, \sigma _3=0.2, n=12$


$\delta =0.1$


$\sigma _3$


$\delta $


$\delta $


$(c_1, c_2)$


$\beta =1, \sigma _1=0.1,\sigma _2=0.2, n=12$


$\beta $


$c_1$


$c_2$


$N$


$c_1$


$c_2$


$(c_1, c_2)$


$\sigma _1=0.1,\sigma _2=0.2, \sigma _3 = 0.2, \delta =0.1$


$\hat {u}_{n-1}(x,t; \hat {\theta })$


$u_{n-1}(x, t;\theta )$


$u_{n-1}(x, 2;\theta )$


$\hat {u}_{n-1}(x, 2;\hat {\theta })$


$u_{n-1}(x,2;\theta )$


$\hat {u}_{n-1}(x,2;\hat {\theta })$


$u_{N-1}(x, 2)$


$\hat {u}_{n-1}(x, 2)$


$(c_1, c_2)$


$(\hat {c}_1, \hat {c}_2)$


$\beta =1, \sigma _1=0.15, \sigma _2=0.1, n=12$


$n=12$


$\beta =1, \sigma _1=0.15, \sigma _2=0.1, \sigma _3=0.2, N=12$


$\delta =0.1$


$(\hat {c}_1, \hat {c}_2)$


$\sigma _1, \sigma _2$


$(c_1, c_2)$


$(\hat {c}_1, \hat {c}_2)$


$\sigma _3$


$\epsilon $


$\delta $


$\delta =\text {inf}$


$\delta =\infty $


$W_2$


$(\hat {c}_1, \hat {c}_2)$


$N$


$c_0$


$(\hat {c}_1, \hat {c}_2)$


$c_1$


$(\hat {c}_1, \hat {c}_2)$


$c_1$


$c_1$


$(c_1, c_2)$


$\sigma _3^2$


$\delta $


$(c_1, c_2)$


$\delta $


$(\hat {c}_1, \hat {c}_2)$


$n$


$(\hat {c}_1, \hat {c}_2)$


$(c_1, c_2)$


$W_2$


$(c_1, c_2)$


$r_{\text {vit}}$


$v_{\text {vit}}$


$c_{\text {vit}}$


$h_{\text {vit}}$


$k$


$\text {aq}$


$r_{\text {aq}}, v_{\text {aq}}, c_{\text {aq}}, h_{\text {aq}}$


$CL$


$V_{\text {in}}$


\begin {equation}\begin {aligned} &\frac {{\mathrm {d}} v_{\text {vit}}}{{\mathrm {d}} t} = (k_{\text {off}} c_{\text {vit}} - 2k_{\text {on}} v_{\text {vit}} r_{\text {vit}}) - k_v^{\text {el}} v_{\text {vit}} + \frac {V_{\text {in}}}{V_{\text {vit}}},\\ &\frac {{\mathrm {d}} r_{\text {vit}}}{{\mathrm {d}} t} = (k_{\text {off}} c_{\text {vit}} - 2k_{\text {on}} v_{\text {vit}} r_{\text {vit}}) + (2k_{\text {off}} h_{\text {vit}} - k_{\text {on}} r_{\text {vit}} c_{\text {vit}}) - k_r^{\text {el}} r_{\text {vit}},\\ &\frac {{\mathrm {d}} c_{\text {vit}}}{{\mathrm {d}} t} = -(k_{\text {off}} c_{\text {vit}} - 2k_{\text {on}} v_{\text {vit}} r_{\text {vit}}) + (2k_{\text {off}} h_{\text {vit}} - k_{\text {on}} r_{\text {vit}} c_{\text {vit}}) - k_c^{\text {el}} c_{\text {vit}},\\ &\frac {{\mathrm {d}} h_{\text {vit}}}{{\mathrm {d}} t} = -(2k_{\text {off}} h_{\text {vit}} - k_{\text {on}} r_{\text {vit}} c_{\text {vit}}) - k_h^{\text {el}} h_{\text {vit}}. \end {aligned} \label {vitreous}\end {equation}


\begin {equation}\begin {aligned} &\frac {{\mathrm {d}} v_{\text {aq}}}{{\mathrm {d}} t} = (k_{\text {off}} c_{\text {aq}} - 2k_{\text {on}} v_{\text {aq}} r_{\text {aq}}) + \frac {V_{\text {vit}}}{V_{\text {aq}}} k_v^{\text {el}} v_{\text {vit}} - \frac {CL}{V_{\text {aq}}} v_{\text {aq}},\\ &\frac {{\mathrm {d}} r_{\text {aq}}}{{\mathrm {d}} t} = (k_{\text {off}} c_{\text {aq}} - 2k_{\text {on}} v_{\text {aq}} r_{\text {aq}}) + (2k_{\text {off}} h_{\text {aq}} - k_{\text {on}} r_{\text {aq}} c_{\text {aq}}) + \frac {V_{\text {vit}}}{V_{\text {aq}}} k_r^{\text {el}} r_{\text {vit}}\\&\qquad \quad \,\,- \frac {CL}{V_{\text {aq}}} r_{\text {aq}},\\ &\frac {{\mathrm {d}} c_{\text {aq}}}{{\mathrm {d}} t} = -(k_{\text {off}} c_{\text {aq}} - 2k_{\text {on}} v_{\text {aq}} r_{\text {aq}}) + (2k_{\text {off}} h_{\text {aq}} - k_{\text {on}} r_{\text {aq}} c_{\text {aq}}) + \frac {V_{\text {vit}}}{V_{\text {aq}}} k_c^{\text {el}} c_{\text {vit}}\\&\qquad \quad \,\,- \frac {CL}{V_{\text {aq}}} c_{\text {aq}},\\ &\frac {{\mathrm {d}} h_{\text {aq}}}{{\mathrm {d}} t} \,{=}\, -(2k_{\text {off}} h_{\text {aq}} - k_{\text {on}} r_{\text {aq}} c_{\text {aq}}) \,{+}\, \frac {V_{\text {vit}}}{V_{\text {aq}}} k_h^{\text {el}} h_{\text {vit}} \,{-}\, \frac {CL}{V_{\text {aq}}} h_{\text {aq}}, \, t\in [0, 2]~(\text {unit: day}). \end {aligned} \label {aqueous}\end {equation}


$V_{\text {vit}}=2.05\text {mL}$


$V_{\text {aq}}=0.105\text {mL}$


$V_{\text {in}}=5.408\text {pmol}\cdot \text {day}^{-1}$


$k_{\text {off}}, k_{\text {on}}, k_v^{\text {el}}, k_r^{\text {el}}, k_c^{\text {el}}$


$k_h^{\text {el}}$


$CL$


$\bm {k}:= (k_{\text {off}}, k_{\text {on}}, k_v^{\text {el}}, k_r^{\text {el}}, k_c^{\text {el}}, k_h^{\text {el}}, CL)$


\begin {equation}\bm {k} = \bm {k}_0 + c\bm {k}_0 * A\tilde {\bm {k}}, \label {kinetic:model}\end {equation}


\begin {equation}\begin {aligned} & \bm {k}_0 = (1.669\text {day}^{-1}, 0.00114\text {pM}^{-1}\cdot \text {day}^{-1}, 0.575\text {day}^{-1}, 0.293\text {day}^{-1},\\ & 0.259\text {day}^{-1}, 0.176\text {day}^{-1}, 2.505 \text {mL}\cdot \text {day}^{-1}) \end {aligned} \label {Xeqn47-4.9}\end {equation}


$*$


$A\in \mathbb {R}^{7\times 7}$


$\mathcal {U}(-\frac {1}{2}, \frac {1}{2})$


$\tilde {\bm {k}}:= (k_1,k_2, {\ldots }, k_7)$


$k_1, k_2\sim \mathcal {U}(0, 1)$


$k_3, k_4\sim \mathcal {N}(0, 0.5^2)$


$k_5\sim \text {Exp}(2)$


$k_6 \sim \text {B}(2, 5)$


$\alpha =2, \beta =5$


$k_7\sim \Gamma (2, 2)$


$\alpha =2$


$\lambda =2$


$\mathcal {N}(\bm {I}_7, 0.05^2 I_{7\times 7})$


$\bm {I}_7\in \mathbb {R}^7$


$v_{\text {vit}}(t), r_{\text {vit}}(t), c_{\text {vit}}(t)$


$h_{\text {vit}}(t)$


$\bm {k}$


$\bm {k}$


$v_{\text {vit}}(t), r_{\text {vit}}(t), c_{\text {vit}}(t), h_{\text {vit}}(t)$


$\bm {k}$


$\bm {k}$


$\mathcal {N}(0, 0.03^2)$


$\bm {k}$


$\bm {k}$


$k_{\text {on}}$


$k_{\text {on}}$


$O(10^{-3})$


$O(1)$


$k_{\text {on}}$


$W_2$


$^2$


$\bm {k}$


$\bm {k}$


$W_2$


$^2$


$W_2$


\begin {equation}\begin {aligned} &{\mathrm {d}} X_t = 0.05 {\mathrm {d}} t + s\sqrt {|X_t|} {\mathrm {d}} B_t + \int _{U} \xi X_t{\mathrm {d}} \tilde {N}(\gamma ({\mathrm {d}}\xi ){\mathrm {d}}{t}),\,\,\, t\in [0, 2],\\ & s\sim \sigma _0\mathcal {N}(1, 1),\,\, \xi \sim \mathcal {N}(\beta _0, \sigma _1^2),\,\, X_0\sim \mathcal {N}(2, \sigma _2^2). \end {aligned} \label {example4:model}\end {equation}


$\tilde {N}$


$s$


$\xi $


$\hat {s}_0$


$\hat {\xi }$


\begin {align}{\mathrm {d}} \hat {X}_t &= 0.05 {\mathrm {d}} t + \hat {s}\sqrt {|\hat {X}_t|} {\mathrm {d}} B_t + \int _{U} \hat {\xi } \hat {X}_t{\mathrm {d}} \hat {N}(\gamma ({\mathrm {d}}\xi ){\mathrm {d}}{t}),\,\,\notag \\ \hat {X}_0&=X_0, \,\, t\in [0, 2].\label {example4:model:approximate}\end {align}


$\hat {N}$


$\tilde {N}$


$\xi \equiv 1$


$s$


$\beta _0$


$\beta _0$


$\sigma _1$


$|s|$


$\xi $


$|s|$


$\hat {s}\sqrt {|\hat {X}_t|} {\mathrm {d}} B_t$


$|\hat {s}|\sqrt {|\hat {X}_t|} {\mathrm {d}} B_t$


$\sigma _0=0.3, \sigma _2=0.1$


$\delta =0.1$


$\sigma _0$


$\sigma _1$


$|s|$


$\xi $


$\beta _0=0.3, \sigma _2=0.1$


$\delta =0.1$


$\sigma _1$


$\sigma _2$


$|s|$


$\xi $


$\sigma _0=0.3, \beta _0=0.3, \sigma _2=0.1$


$\delta =0.1$


$|s|$


$|\hat {s}|$


$\xi $


$|\hat {\xi }|$


$\sigma _0=0.3, \beta _0 = 0.35, \sigma _1=0.15, \sigma _2=0.1$


$\delta =0.1$


$\hat {\sigma }$


$\xi $


$\hat {\sigma }$


$\xi $


$\hat {\sigma }$


$\xi $


$t$


$|s|$


$\xi $


$|\hat {s}|$


$\hat {\xi }$


$\xi $


$s$


$\xi $


$\beta _0$


$\sigma _1$


$\sigma _0$


$s$


$\xi $


$\delta =0.1$


$\sigma _2\in [0.05, 0.2]$


$|\hat {s}|$


$\hat {\xi }$


$\xi $


$\xi $


$W_2$


$W_2$


$W_2$


$W_2$


$O(N_T N \textbf {E}[(N^{\#}(\bm {X}_0;\delta ))^3\log \big (N^{\#}(\bm {X}_0;\delta )\big ) ])$


$N^{\#}(\bm {X}_0; \delta )$


$\|\bm {X}(0)-\bm {X}_0\|\leq \delta $


$N_T$


$O(N_T N \textbf {E}[(N^{\#}(\bm {X}_0;\delta ))^2])$


$W_2$


\begin {equation}W_{2, \delta }^{2, \text {e}}(\bm {X}(t_i), \hat {\bm {X}}(t_i)) = \frac {1}{N} \sum _{j=1}^N W_{2}^{2}\left (\nu _{\bm {X}_{0, j}, \delta }^{\text {e}}(t_i), \hat {\nu }_{\bm {X}_{0, j}, \delta }^{\text {e}}(t_i)\right ), \label {definition:j}\end {equation}


$N$


$\bm {X}_{0, j}$


$j{\text {th}}$


$0=t_0^1<t_1^1<{\ldots }<t_{n_1}^1=T$


$0=t_0^2<t_1^2<{\ldots }<t_{n_2}^2=T$


$[0, T]$


$0=t_0^3<{\ldots }<t_{n_3}^3=T$


$\{t_0^1,{\ldots },t_{n_1}^1\}\cup \{t_0^2,{\ldots },t_{n_2}^2\} = \{t_0^3,{\ldots },t_{n_3}^3\}$


$\Delta t:= \max \{\max _i(t_{i+1}^1-t_i^1), \max _j(t_{j+1}^2-t_j^2), \max _k(t_{k+1}^3-t_k^3)\}$


$\nu ^{\text {e}}_{\bm {X}_{0, j}, \delta }(t)$


$\hat {\nu }^{\text {e}}_{\bm {X}_{0, j}, \delta }(t)$


$\bm {X}(t)$


$\hat {\bm {X}}(t)$


$t$


$|\bm {X}(0)-\bm {X}_{0, j}|\leq \delta $


$|\hat {\bm {X}}(0)-\bm {X}_{0, j}|\leq \delta $


\begin {align}&\bigg |\sum _{i=0}^{n_1-1}W_{2, \delta }^{2, \text {e}}\big (\bm {X}\left (t_i^1\right ), \hat {\bm {X}}\left (t_i^1\right )\big )\left (t_{i+1}^1-t_i^1\right )\bigg .\nonumber \\&\quad \,\,\bigg . -\sum _{i=0}^{n_3-1}W_{2, \delta }^{2, \text {e}}\big (\bm {X}\left (t_i^3\right ), \hat {\bm {X}}\left (t_i^3\right )\big )\left (t_{i+1}^3-t_i^3\right )\bigg | \rightarrow 0, \label {limit:exist}\end {align}


$\Delta t\rightarrow 0$


$(t_i^1, t_{i+1}^1)$


$t_i^1=t_{\ell }^3<t_{\ell +1}^3<{\ldots }<t_{\ell +s}^3=t_{i+1}^1, s\geq 1$


$s>1$


$t_{i+1}^1-t_i^1=\sum _{k=\ell }^{\ell +s-1}(t_{k+1}^3-t_k^3)$


\begin {equation}\begin {aligned} &\bigg |W_{2, \delta }^{2, \text {e}}\big (\bm {X}\left (t_i^1\right ), \hat {\bm {X}}\left (t_i^1\right )\big ) \left (t_{i+1}^1-t_i^1\right ) -\sum _{k=\ell }^{\ell +s-1} W_{2, \delta }^{2, \text {e}}\big (\bm {X}\left (t_k^3\right ), \hat {\bm {X}}\left (t_k^3\right )\big )\left (t_{k+1}^3-t_k^3\right )\bigg | \\ \: & \leq \frac {1}{N}\sum _{j=1}^N\sum _{k=\ell +1}^{\ell +s-1}\Big (W_{2}\big (\nu ^{\text {e}}_{\bm {X}_{0, j}, \delta }(t_i^1), \hat {\nu }^{\text {e}}_{\bm {X}_{0, j}, \delta }\left (t_i^1\right )\big ) + W_{2}\big (\nu ^{\text {e}}_{\bm {X}_{0, j}, \delta }\left (t_i^3\right ), \hat {\nu }^{\text {e}}_{\bm {X}_{0, j}, \delta }\left (t_k^3\right )\big |\Big ) \\ \: &\quad \times \Big |W_{2}\big (\nu ^{\text {e}}_{\bm {X}_{0, j}, \delta }(t_i^1), \hat {\nu }^{\text {e}}_{\bm {X}_{0, j}, \delta }(t_i^1)\big )- W_{2}\big (\nu ^{\text {e}}_{\bm {X}_{0, j}, \delta }\left (t_k^3\right ), \hat {\nu }^{\text {e}}_{\bm {X}_{0, j}, \delta }\left (t_k^3\right )\big )\Big | \left (t_{k+1}^3 - t_k^3\right ). \end {aligned} \label {triang}\end {equation}


$\|\bm {X}\|$


$\|\hat {\bm {X}}\|$


\begin {equation}W_{2}\big (\nu ^{\text {e}}_{\bm {X}_{0, j}, \delta }\left (t_i^1\right ), \hat {\nu }^{\text {e}}_{\bm {X}_{0, j}, \delta }\left (t_i^1\right )\big )\leq \sup _{\bm {X}_0} \E {[\|\bm {X}(t)\|^2]}^{\frac {1}{2}} + \E {[\|\hat {\bm {X}}(t)\|^2]}^{\frac {1}{2}} \leq X + \hat {X} \label {Mcondition}\end {equation}


\begin {equation}W_{2}\big (\nu ^{\text {e}}_{\bm {X}_{0, j}, \delta }\left (t_k^3\right ), \hat {\nu }^{\text {e}}_{\bm {X}_{0, j}, \delta }\left (t_k^3\right )\big )\leq X + \hat {X}, \label {Xeqn54-A.5}\end {equation}


$X, \hat {X}$


$\pi ^*_{\delta , \bm {X}_{0, j}}\big (\bm {X}(t_i^1), \bm {X}(t_k^3)\big )$


\begin {equation}\left (\bm {X}\left (t_i^1\right ), \bm {X}\left (t_k^3\right )\right ):\mathbb {R}^{2d}\rightarrow \mathbb {R}^{2d} \label {Xeqn55-A.6}\end {equation}


$(\bm {X}_0, \tilde {\bm {X}}_0)\in \mathbb {R}^{2d}$


$(\bm {X}(t_i^1), \tilde {\bm {X}}(t_k^3))\in \mathbb {R}^{2d}$


$(t_i^1, t_k^3)$


$\bm {X}(t_i^1)=\bm {X}_0, \tilde {\bm {X}}(t_k^3)=\tilde {\bm {X}}_0$


$\pi ^*_{\delta , \bm {X}_{0, j}}$


$\nu ^{\text {e}}_{\bm {X}_{0, j}, \delta }\cdot \delta _{\tilde {\bm {X}}_0 = \bm {X}_0}$


$(\bm {X}(t_i^1), \bm {X}(t_i^3))$


$\nu ^{\text {e}}_{\bm {X}_{0, j}, \delta }$


$\bm {X}_0$


$|\bm {X}_{0, j}-\bm {X}_0|\leq \delta $


$\bm {X}_{0, j}$


\begin {equation}\begin {aligned} W_{2}^{2}(\nu _{\bm {X}_{0, j}}^{\text {e}}(t_i^1), \nu _{\bm {X}_{0, j}}^{\text {e}}(t_k^3)) \leq & \sup _{\bm {X}_{0, j}}\E _{\big (\bm {X}(t_i^1), \bm {X}(t_k^3)\big )\sim \pi ^*_{\delta , \bm {X}_{0, j}}}\big [\|\bm {X}(t_k^3) - \bm {X}(t_i^1)\|_2^2\big ] \\ \leq & \sup _{\bm {X}_{0, j}}\E \bigg [\int _{t_i^1}^{t_{i+1}^1}\! \sum _{i=1}^d f_i^2(\bm {X}(t),t;\theta ) {\mathrm {d}} t \bigg ] \left (t_{i+1}^1-t_i^1\right ). \end {aligned} \label {bound1}\end {equation}


\begin {equation}\begin {aligned} W_{2}^{2}\big (\hat {\nu }_{\bm {X}_{0, j}}^{\text {e}}(t_i^1), \hat {\nu }_{\bm {X}_{0, j}}^{\text {e}}(t_k^3)\big ) \leq & \,\sup _{\bm {X}_{0, j}}\E \bigg [ \int _{t_i}^{t_{i+1}} \sum _{\ell =1}^d f_{\ell }^2(\bm {X}(t),t; \hat {\theta }) {\mathrm {d}} t \bigg ]\left (t_{i+1}^1-t_i^1\right ). \end {aligned} \label {bound2}\end {equation}


\begin {equation}\begin {aligned} & \Big |W_{2}^{}\big (\nu ^{\text {e}}_{\bm {X}_{0, j}, \delta }(t_i^1), \hat {\nu }^{\text {e}}_{\bm {X}_{0, j}, \delta }(t_i^1)\big ) - W_{2}\big (\nu ^{\text {e}}_{\bm {X}_{0, j}, \delta }(t_k^3), \hat {\nu }^{\text {e}}_{\bm {X}_{0, j}, \delta }(t_k^3)\big )\Big | \\&\quad \quad \leq \Big |W_2\big (\nu ^{\text {e}}_{\bm {X}_{0, j}, \delta }(t_i^1), \hat {\nu }^{\text {e}}_{\bm {X}_{0, j}, \delta }(t_i^1)\big )- W_2\big (\nu ^{\text {e}}_{\bm {X}_{0, j}, \delta }(t_k^3), \hat {\nu }^{\text {e}}_{\bm {X}_{0, j}, \delta }(t_k^1)\big )\Big | \\ &\quad \quad \quad \quad + \Big |W_2\big (\nu ^{\text {e}}_{\bm {X}_{0, j}, \delta }(t_i^3), \hat {\nu }^{\text {e}}_{\bm {X}_{0, j}, \delta }(t_i^1)\big )- W_2\big (\nu ^{\text {e}}_{\bm {X}_{0, j}, \delta }(t_k^3), \hat {\nu }^{\text {e}}_{\bm {X}_{0, j}, \delta }(t_k^3)\big )\Big |\\ &\quad \quad \leq W_2\big (\nu ^{\text {e}}_{\bm {X}_{0, j}, \delta }(t_i^1), \nu ^{\text {e}}_{\bm {X}_{0, j}, \delta }(t_k^3)\big ) + W_2\big (\hat {\nu }^{\text {e}}_{\bm {X}_{0, j}, \delta }(t_i^1), \hat {\nu }^{\text {e}}_{\bm {X}_{0, j}, \delta }(t_k^3)\big ). \end {aligned} \label {traing:property}\end {equation}


\begin {equation}\begin {aligned} &\bigg |W_2^2\big (\nu _{\bm {X}_{0, j}, \delta }^{\text {e}}(t_i^1), \hat {\nu }_{\bm {X}_{0, j}, \delta }^{\text {e}}(t_i^1)\big ) \left (t_{i+1}^1-t_i^1\right ) \\&\quad - \sum _{k=\ell }^{\ell +s-1} W_2^2\big ((\nu _{\bm {X}_{0, j}, \delta }^{\text {e}}(t_k^3), \hat {\nu }_{\bm {X}_{0, j}, \delta }^{\text {e}}(t_k^3)\big )\left (t_{k+1}^3-t_k^3\right )\bigg | \\ & \leq 2(X+\hat {X})(t_{i+1}^1-t_i^1)\big (\sqrt {F_i\Delta t}+ \sqrt {\hat {F}_i \Delta t}\big ), \end {aligned} \label {intermediate}\end {equation}


\begin {align}&F_i:= \sup _{\bm {X}_{0, j}}\E \bigg [\int _{t_i^1}^{t_{i+1}^1} \sum _{\ell =1}^d f_{\ell }^2(\bm {X}(t),t; \theta ) {\mathrm {d}} t \bigg ],\nonumber \\& \hat {F}_i:= \sup _{\bm {X}_{0, j}}\E \bigg [\int _{t_i^1}^{t_{i+1}^1} \sum _{\ell =1}^d f_{\ell }^2(\bm {X}(t),t; \hat {\theta }) {\mathrm {d}} t \bigg ]. \label {Xeqn60-A.11}\end {align}


$i$


$j$


\begin {equation}\begin {aligned} &\bigg |\sum _{i=0}^{n_1-1}W_{2, \delta }^{2, \text {e}}\big (\bm {X}(t_i^1), \hat {\bm {X}}(t_i^1)\big ) \left (t_{i+1}^1-t_i^1\right ) -\sum _{i=0}^{n_3-1} W_{2, \delta }^{2, \text {e}}\big (\bm {X}(t_k^3), \hat {\bm {X}}(t_k^3)\big )\left (t_{k+1}^3-t_k^3\right )\bigg |\\ &\quad \quad \leq 2(X + \hat {X}) T\max _i\big (\sqrt {F_i\Delta t} + \sqrt {\hat {F}_i\Delta t}\big ). \end {aligned} \label {Xeqn61-A.12}\end {equation}


\begin {equation}\begin {aligned} &\bigg |\sum _{i=0}^{n_2-1}W_{2, \delta }^{2, \text {e}}\big (\bm {X}(t_i^2), \hat {\bm {X}}(t_i^2)\big ) \left (t_{i+1}^2-t_i^2\right ) -\sum _{i=0}^{n_2-1} W_{2, \delta }^{2, \text {e}}\big (\bm {X}(t_k^3), \hat {\bm {X}}(t_k^3)\big )\left (t_{k+1}^3-t_k^3\right )\bigg | \\ &\quad \quad \leq 2(X+ \hat {X}) T\max _i\Big (\sqrt {F'_i\Delta t} +\!\sqrt {\hat {F}'_i\Delta t}\,\Big ), \end {aligned} \label {Xeqn62-A.13}\end {equation}


\begin {align}&F_i':= \sup _{\bm {X}_{0, j}}\E \bigg [\int _{t_i^2}^{t_{i+1}^2} \sum _{\ell =1}^d f_{\ell }^2(\bm {X}(t),t; \hat {\theta }) {\mathrm {d}} t \bigg ],\nonumber \\ &\hat {F}_i':= \sup _{\bm {X}_{0, j}}\E \bigg [\int _{t_i^2}^{t_{i+1}^2} \sum _{\ell =1}^d f_{\ell }^2(\bm {X}(t),t; \hat {\theta }) {\mathrm {d}} t \bigg ]. \label {Xeqn63-A.14}\end {align}


$\Delta t\rightarrow 0$


\begin {equation}\bigg |\sum _{i=0}^{n_1-1}W_{2, \delta }^{2, \text {e}}\big (\nu (t_i^1), \hat {\nu }(t_i^1)\big )\left (t_{i+1}^1-t_i^1\right ) - \sum _{i=0}^{n_2-1}W_{2, \delta }^{2, \text {e}}\big (\nu (t_i^2), \hat {\nu }(t_i^2)\big )\left (t_{i+1}^2-t_i^2\right )\bigg |\rightarrow 0, \label {convergence}\end {equation}


\begin {equation}\lim \limits _{\max (t_{i+1}^1-t_{i}^1)\rightarrow 0}\sum _{i=0}^{N-1}W_{2, \delta }^{2, \text {e}}\big (\nu (t_i^1), \hat {\nu }(t_i^1)\big )\left (t_i^1-t_{i-1}^1\right ) \label {limit:exists}\end {equation}


$W_2$


\begin {equation}\tilde {W}_{2, \delta }^{2, \text {e}}(\bm {X}, \hat {\bm {X}}):= \int _0^T {W}_{2, \delta }^{2, \text {e}}(\bm {X}(t), \hat {\bm {X}}(t)){\mathrm {d}} t \label {Xeqn66-A.17}\end {equation}


$0=t_0^1<t_1^1<{\ldots }<t_{n_1}^1=T$


$0=t_0^2<t_1^2<{\ldots }<t_{n_2}^2=T$


$[0, T]$


$0=t_0^3<{\ldots }<t_{n_3}^3=T$


$\{t_0^1,{\ldots },t_{n_1}^1\}\cup \{t_0^2,{\ldots },t_{N_2}^2\} = \{t_0^3,{\ldots },t_{n_3}^3\}$


$\Delta t:= \max \{\max _i(t_{i+1}^1-t_i^1), \max _j(t_{j+1}^2-t_j^2), \max _k(t_{k+1}^3-t_k^3)\}$


$\nu ^{\text {e}}_{\bm {X}_{0, j}, \delta }(t)$


$\hat {\nu }^{\text {e}}_{\bm {X}_{0, j}, \delta }(t)$


$\bm {X}(t)$


$\hat {\bm {X}}(t)$


$t$


$|\bm {X}(0)-\bm {X}_{0, j}|\leq \delta $


$|\hat {\bm {X}}(0)-\bm {X}_{0, j}|\leq \delta $


\begin {align}&\bigg |\sum _{i=0}^{n_1-1}W_{2, \delta }^{2, \text {e}}\big (\bm {X}(t_i^1), \hat {\bm {X}}(t_i^1)\big )\left (t_{i+1}^1-t_i^1\right ) -\nonumber \\ &\quad \sum _{i=0}^{n_3-1}W_{2, \delta }^{2, \text {e}}\big (\bm {X}(t_i^3), \hat {\bm {X}}(t_i^3)\big )(t_{i+1}^3-t_i^3)\bigg | \rightarrow 0. \label {Xeqn67-B.1}\end {align}


$j=1, 2$


\begin {equation}\begin {aligned} &F_i^j:= \sup _{\bm {X}_0, \theta }\E \bigg [\int _{t_i^j}^{t_{i+1}^j} \sum _{\ell =1}^d f_{\ell }^2(\bm {X}(t^-),t^-; \theta ){\mathrm {d}} t\bigg ], \\& \hat {F}_i^j:= \sup _{\bm {X}_0, \hat {\theta }}\E \bigg [\int _{t_i^j}^{t_{i+1}^j} \sum _{\ell =1}^d f_{\ell }^2(\hat {\bm {X}}(t^-),t^-; \hat {\theta }){\mathrm {d}} t\bigg ], \\ &\Sigma _i^j:= \sup _{\bm {X}_0, \theta }\E \bigg [\int _{t_i^j}^{t_{i+1}^j} \sum _{\ell =1}^d \sum _{j=1}^m\sigma _{\ell , j}^2(\bm {X}(t^-),t^-){\mathrm {d}} t\bigg ], \\& \hat {\Sigma }_i^j:= \sup _{\bm {X}_0, \hat {\theta }}\E \bigg [\int _{t_i^j}^{t_{i+1}^j} \sum _{\ell =1}^d\sum _{j=1}^m\hat {\sigma }_{\ell , j}^2(\hat {\bm {X}}(t^-),t^-; \theta ){\mathrm {d}} t\bigg ],\\ &B_i^j:= \sup _{\bm {X}_0, \theta }\E \bigg [\int _{t_i^j}^{t_{i+1}^j} \sum _{\ell =1}^d \int _U \beta _{\ell }^2(\bm {X}(t^-),\xi , t^-;\theta )\nu ({\mathrm {d}}\xi ){\mathrm {d}} t\bigg ], \\& \hat {B}_i^j:= \sup _{\bm {X}_0, \hat {\theta }}\E \bigg [\int _{t_i^j}^{t_{i+1}^j} \sum _{\ell =1}^d\int _U \hat {\beta }_{\ell }^2(\hat {\bm {X}}(t^-),\xi , t^-;\hat {\theta }) \nu ({\mathrm {d}}\xi ){\mathrm {d}} t\bigg ]. \end {aligned} \label {Xeqn68-B.2}\end {equation}


\begin {equation}\begin {aligned} &\bigg |W_2^2\big (\nu _{\bm {X}_{0, j}, \delta }^{\text {e}}(t_i^1), \hat {\nu }_{\bm {X}_{0, j}, \delta }^{\text {e}}(t_i^1)\big ) (t_{i+1}^1-t_i^1) \\ &\qquad - \sum _{k=\ell }^{\ell +s-1} W_2^2\big (\nu _{\bm {X}_{0, j}, \delta }^{\text {e}}(t_k^3), \hat {\nu }_{\bm {X}_{0, j}, \delta }^{\text {e}}(t_k^3)\big )(t_{k+1}^3-t_k^3)\bigg | \\ \: &\quad \leq 2(X+\hat {X})(t_{i+1}^1-t_i^1)\Big (\sqrt {F_i^1\Delta t + \Sigma _i^1 + B_i^1} + \sqrt {\hat {F}_i^1 \Delta t + \hat {\Sigma }_i^1 +\hat {B}_i^1}\Big ). \end {aligned} \label {intermediate:1}\end {equation}


$i=0,{\ldots },n_1-1$


$j=1,{\ldots },N$


\begin {equation}\begin {aligned} \bigg |\sum _{i=0}^{n_1-1}W_{2, \delta }^{2, \text {e}}\big (\bm {X}(t_i^1), \hat {\bm {X}}(t_i^1)\big ) & (t_{i+1}^1-t_i^1) - \sum _{k=0}^{n_3-1}W_{2, \delta }^{2, \text {e}}\big (\bm {X}(t_k^3), \hat {\bm {X}}(t_k^3)\big )(t_{k+1}^3-t_k^3)\bigg | \\ &\hspace {-2cm}\leq 2(X+\hat {X}) T\max _i\Big (\sqrt {F_i^1\Delta t+ \Sigma _i^1 +B_i^1} + \sqrt {\hat {F}_i^1\Delta t+ \hat {\Sigma }_i^1 +\hat {B}_i^1}\Big ). \end {aligned} \label {Xeqn70-B.4}\end {equation}


\begin {equation}\begin {aligned} \bigg |\sum _{i=0}^{n_2-1}W_{2, \delta }^{2, \text {e}}\big (\bm {X}(t_i^2), \hat {\bm {X}}(t_i^2)\big ) & (t_{i+1}^2-t_i^2) - \sum _{k=0}^{n_3-1}W_{2, \delta }^{2, \text {e}}\big (\bm {X}(t_k^3), \hat {\bm {X}}(t_k^3)\big )(t_{k+1}^3-t_k^3)\bigg | \\ &\hspace {-2cm}\leq 2(X+\hat {X}) T\max _i\Big (\sqrt {F_i^2\Delta t+ \Sigma ^2_i +B_i^2} + \sqrt {\hat {F}^2_i\Delta t+ \hat {\Sigma }^2_i +\hat {B}^2_i}\Big ). \end {aligned} \label {intermediate:2}\end {equation}


\begin {equation}\begin {aligned} \bigg |\sum _{i=0}^{n_1-1}W_{2, \delta }^{2, \text {e}}\big (\bm {X}(t_i^1), \hat {\bm {X}}(t_i^1)\big ) & (t_{i+1}^1-t_i^1) - \sum _{i=0}^{n_2-1}W_{2, \delta }^{2, \text {e}}\big (\bm {X}(t_i^3), \hat {\bm {X}}(t_i^2)\big )(t_{i+1}^3-t_i^3)\bigg | \\ &\hspace {-2cm}\leq 2(X+\hat {X}) T\max _i\Big (\sqrt {F_i^1\Delta t+ \Sigma _i^1 +B_i^1} + \sqrt {\hat {F}_i^1\Delta t+ \hat {\Sigma }_i^1 +\hat {B}_i^1}\Big )\\ &\hspace {-2cm}\quad +2(X+\hat {X}) T\max _i\Big (\sqrt {F_i^2\Delta t+ \Sigma ^2_i +B_i^2} + \sqrt {\hat {F}^2_i\Delta t+ \hat {\Sigma }^2_i +\hat {B}^2_i}\Big ). \end {aligned} \label {Xeqn72-B.6}\end {equation}


$\bm {f}, \bm {\sigma }, \bm {\beta }$


$F_i^j, \Sigma _i^j, B_i^j, \hat {F}_i^j, \hat {\Sigma }_i^j, \hat {B}_i^j\rightarrow 0$


$\Delta t\rightarrow 0$


$j=1, 2$


\begin {equation}\tilde {W}_{2, \delta }^{2, \text {e}}(\bm {X}, \hat {\bm {X}}):= \int _0^T W_{2, \delta }^{2, \text {e}}(\bm {X}(t), \hat {\bm {X}}(t)){\mathrm {d}} t \label {Xeqn73-B.7}\end {equation}


$\tilde {\bm {X}}$


\begin {equation}\begin {aligned} &{\mathrm {d}} \tilde {\bm {X}}(t) = \bm {f}(\tilde {\bm {X}}(t), t; \hat {\theta }){\mathrm {d}} t + \bm {\sigma }(\tilde {\bm {X}}(t), t; \hat {\theta }){\mathrm {d}} \bm {B}_t + \int _U\bm {\beta }(\tilde {\bm {X}}(t), \xi , t; \hat {\theta })\tilde {N}( {\mathrm {d}} t, \nu ({\mathrm {d}}\xi )), \\ & \tilde {\bm {X}}(0) = \bm {X}(0). \end {aligned} \label {tilde:X}\end {equation}


\begin {align}&\E \Big [\big \|\bm {X}(t) - \tilde {\bm {X}}(t)\big \|^{2}\Big ]\notag \\ &\quad \leq \E \big [H(t)|\bm {X}(0)\big ] \exp \Big (\big (2C+1+(2C +1)m +(2C+1)\gamma (U)\big )td\Big ), \label {pleq2}\end {align}


$\bm {X}(0)$


$H(t)$


\begin {equation}\begin {aligned} H(t) &:= \E \bigg [\sum _{i=1}^d\int _0^t{\big (f_{i}(\bm {X}(s^-), s^-; \theta ) - f_{i}(\bm {X}(s^-), s^-;\hat {\theta })\big )}^2{\mathrm {d}} s\bigg ]\\ & \quad + \E \bigg [\sum _{i=1}^d\int _0^t\sum _{j=1}^m {\big (\sigma _{i, j}(\bm {X}(s^-), s^-;\theta ) - \sigma _{i, j}(\bm {X}(s^-), s^-;\hat {\theta })\big )}^2{\mathrm {d}} s\bigg ]\\ & \quad + \E \bigg [\sum _{i=1}^d\int _0^t\int _U{\big (\beta _{i}(\bm {X}(s^-), \xi , s^-;\theta ) - \beta _{i}(\bm {X}(s^-), \xi , s^-;\hat {\theta })\big )}^2\gamma ({\mathrm {d}}\xi ){\mathrm {d}} s\bigg ]\\ &\leq Ct(1 + m + \gamma (U)) \|\theta - \hat {\theta }\|^2. \end {aligned} \label {h:define}\end {equation}


$\hat {\bm {X}}(t)\in \mathbb {R}^d$


$\tilde {\bm {X}}(t)$


$t\in [0, T]$


\begin {equation}W_2^2(\nu _{\bm {X}_0}(t), \hat {\nu }_{\bm {X}_0}(t)) = W_2^2(\nu _{\bm {X}_0}(t), \tilde {\nu }_{\bm {X}_0}(t)), \label {Xeqn77-C.4}\end {equation}


$\nu _{\bm {X}_0}(t), \hat {\nu }_{\bm {X}_0}(t)$


$\tilde {\nu }_{\bm {X}_0}(t)$


$\bm {X}(t), \hat {\bm {X}}(t),$


$\tilde {\bm {X}}(t)$


$\bm {X}_0$


$\theta , \hat {\theta }$


$\pi (\mu , \hat {\mu })$


$\theta $


$\hat {\theta }$


$\pi ^*(\bm {X}(t), \bm {\tilde {X}}(t))$


$(\bm {X}(t), \tilde {\bm {X}}(t))\in \mathbb {R}^{2d}$


$\pi ^*$


$\nu _{\bm {X}_0}(t)$


$\tilde {\nu }_{\bm {X}_0}(t)$


\begin {align}\E _{(\bm {X}(t), \tilde {\bm {X}}(t))\sim \pi ^*}\Big [\big \|\bm {X}(t) - \tilde {\bm {X}}(t)\big \|^{2}\Big ]&\leq Ct(1+m + \gamma (U))\E _{(\theta , \hat {\theta })\sim \pi (\mu , \hat {\mu })}\big [\|\theta - \hat {\theta }\|^2\big ]\notag \\ &\hspace {-2cm}\times \exp \Big (\big (2C+1+(2C +1)m +(2C+1)\gamma (U)\big )td\Big ).\label {Xeqn78-C.5}\end {align}


$\pi $


$(\theta , \hat {\theta })$


$\mu $


$\hat {\mu }$


\begin {equation}W_2^2(\nu _{\bm {X}_0}(t), \hat {\nu }_{\bm {X}_0}(t))\
\leq C_1t\exp (C_0t)W_2^2(\mu , \hat {\mu }), \label {upper:bound}\end {equation}


\begin {equation}C_0:= \Big (2C+1+(2C +1)m +(2C+1)\gamma (U)\Big )d,\,\, C_1 := C(1 + m + \gamma (U)) \label {Xeqn80-C.7}\end {equation}


$W_2$


\begin {equation}\begin {aligned} W_2(\nu ^{\text {e}}_{\bm {X}_0, \delta }(t), \hat {\nu }^{\text {e}}_{\bm {X}_0, \delta }(t)) &\leq W_2(\nu _{\bm {X}_0}^{\text {e}}(t), \hat {\nu }^{\text {e}}_{\bm {X}_0}(t)) + W_2(\nu _{\bm {X}_0}^{\text {e}}(t), \nu _{\bm {X}_0, \delta }^{\text {e}}(t)) \\ &\quad \quad + W_2( \hat {\nu }^{\text {e}}_{\bm {X}_0}(t), \hat {\nu }^{\text {e}}_{\bm {X}_0, \delta }(t))\\ &\leq W_2(\nu _{\bm {X}_0}(t), \hat {\nu }_{\bm {X}_0}(t)) +W_2(\hat {\nu }_{\bm {X}_0}(t), \nu ^{\text {e}}_{\bm {X}_0}(t)) \\ &\quad + W_2(\nu _{\bm {X}_0}(t), \hat {\nu }^{\text {e}}_{\bm {X}_0}(t))\\ &\quad + W_2(\nu _{\bm {X}_0}^{\text {e}}(t), \nu _{\bm {X}_0, \delta }^{\text {e}}(t)) + W_2( \hat {\nu }^{\text {e}}_{\bm {X}_0}(t), \hat {\nu }^{\text {e}}_{\bm {X}_0, \delta }(t)), \end {aligned} \label {triang1}\end {equation}


$\nu ^{\text {e}}_{\bm {X}_{0}, \delta }(t)$


$\hat {\nu }^{\text {e}}_{\bm {X}_{0}, \delta }(t)$


$\bm {X}(t)$


$\hat {\bm {X}}(t)$


$t$


$|\bm {X}(0)-\bm {X}_{0}|\leq \delta $


$|\hat {\bm {X}}(0)-\bm {X}_{0}|\leq \delta $


$\theta \in \mathbb {R}^{\ell }$


\begin {equation}\begin {aligned} {\mathrm {d}} \bm {X}(t; \bm {X}_0) &= \bm {f}({\bm {X}}(t; \bm {X}_0), t; \theta ){\mathrm {d}} t + \bm {\sigma }(\bm {X}(t; \bm {X}_0; \theta ), t; \hat {\theta }){\mathrm {d}} \bm {B}_t \\ & \quad + \int _U\bm {\beta }(\bm {X}(t; \bm {X}_0), \xi , t; \theta )\tilde {N}( {\mathrm {d}} t, \gamma ({\mathrm {d}}\xi )),\\ {\mathrm {d}} \bm {X}(t; \bm {X}_0') &= \bm {f}({\bm {X}}(t; \bm {X}_0'), t; \theta ){\mathrm {d}} t + \bm {\sigma }(\bm {X}(t; \bm {X}_0'; \theta ), t; \hat {\theta }){\mathrm {d}} \bm {B}_t \\ & \quad + \int _U\bm {\beta }(\bm {X}(t; \bm {X}_0'), \xi , t; \theta )\tilde {N}( {\mathrm {d}} t, \gamma ({\mathrm {d}}\xi )),\\ \bm {X}(0; \bm {X}_0) &= \bm {X}_0,\,\,\bm {X}(0; \bm {X}_0') = \bm {X}_0', \,\, \|\bm {X}_0-\bm {X}_0'\|\leq \delta . \end {aligned} \label {couple:ic}\end {equation}


\begin {align}&\E \Big [\big \|\bm {X}(t; \bm {X}_0) - \bm {X}(t; \bm {X}_0')\big \|_2^{2}\Big ] \notag \\ &\quad \leq \exp \Big (\big (2dC + dCm + dC\gamma (U)+1)t\Big )\E [\|\bm {X}_0-\bm {X}_0'\|^2]. \label {Xeqn83-C.10}\end {align}


\begin {equation}W_2(\nu _{\bm {X}_0}^{\text {e}}(t), \nu _{\bm {X}_0, \delta }^{\text {e}}(t))\leq \delta \exp (\tfrac {C_0t}{2}). \label {w21}\end {equation}


\begin {equation}W_2(\hat {\nu }_{\bm {X}_0}^{\text {e}}(t), \hat {\nu }_{\bm {X}_0, \delta }^{\text {e}}(t))\leq \delta \exp (\tfrac {C_0t}{2}). \label {w22}\end {equation}


$\hat {\nu }_{\bm {X}_0}(t)$


$\nu ^{\text {e}}_{\bm {X}_0}(t)$


$\hat {\mu }$


$\mu _{\bm {X}_0}^{\text {e}}$


\begin {equation}W_2(\nu _{\bm {X}_0}(t), \nu _{\bm {X}_0}^{\text {e}}(t))\leq \sqrt {C_1t}\exp (\tfrac {C_0t}{2})W_2(\mu , \mu _{\bm {X}_0}^{\text {e}}). \label {empirical1}\end {equation}


\begin {equation}W_2^2(\hat {\nu }_{\bm {X}_0}(t), \hat {\nu }_{\bm {X}_0}^{\text {e}}(t))\leq \sqrt {C_1t}\exp (\tfrac {C_0t}{2})W_2(\hat {\mu }, \hat {\mu }_{\bm {X}_0}^{\text {e}}). \label {empirical2}\end {equation}


$\mu _{\bm {X}_0}^{\text {e}}$


$\hat {\mu }_{\bm {X}_0}^{\text {e}}$


$\theta $


$\hat {\theta }$


\begin {equation}\begin {aligned} &W_2(\nu _{\bm {X}_0, \delta }^{\text {e}}(t), \hat {\nu }^{\text {e}}_{\bm {X}_0, \delta }(t))\leq 2\delta \exp (\tfrac {C_0t}{2}) \\ &\quad \quad + \sqrt {C_1t\exp (C_0t)}\big (W_2(\mu , \mu _{\bm {X}_0}^{\text {e}}) + W_2(\hat {\mu }, \hat {\mu }_{\bm {X}_0}^{\text {e}})+W_2(\mu , \hat {\mu })\big ). \end {aligned} \label {w2:bound1}\end {equation}


$\bm {X}_0$


\begin {align}&\E [\tilde {W}_{2, \delta }^{2, \text {e}}(\bm {X}, \hat {\bm {X}})]\leq 8T\delta ^2 \exp (C_0T)\notag \\ &\quad +\sum _{j=1}^N\frac {1}{N} \frac {6C_1}{C_0}T\exp (C_0T)\big (W_2^2(\mu , \hat {\mu }) \notag \\&\quad + \E \big [W_2^2(\mu _{\bm {X}_{0, j}}^{\text {e}}, \mu )\big ]+ \E \big [W_2^2(\hat {\mu }_{\bm {X}_{0, j}}^{\text {e}}, \hat {\mu })\big ] \big ).\label {thm2:result0}\end {align}


$C_0$


$d$


$W_2$


\begin {equation}\begin {aligned} &\sum _{j=1}^N\frac {1}{N}\E \big [W_2^2(\mu _{\bm {X}_{0, j}}^{\text {e}}, \mu )\big ]\leq C_2\E [h(N^{\#}(\bm {X}_0;\delta ), \ell )]\Theta _6^{\frac {1}{3}},\\ & \,\,\sum _{j=1}^N\frac {1}{N}\E \big [W_2^2(\hat {\mu }_{\bm {X}_{0, j}}^{\text {e}}, \hat {\mu })\big ]\leq C_2\E [h(N^{\#}(\bm {X}_0;\delta ), \ell )]\hat {\Theta }_6^{\frac {1}{3}}, \end {aligned} \label {theorem2:result}\end {equation}


$C_2$


$h$


\begin {equation}\begin {aligned} {\mathrm {d}} U(\bm {x}, t; \theta ) &= A(\theta ) U(\bm {x}, t; \theta ) + f(U(\bm {x}, t; \theta ); \theta ){\mathrm {d}} t + g(U(\bm {x}, t; \theta ); \theta ){\mathrm {d}} B_t,\\ &\quad \,\,\bm {x}\in D, t\in [0, T],\\ &\hspace {-1cm}U(\bm {x}, 0; \theta ) = U(\bm {x}, 0) \in H^{1,2}_0(\Omega ), U(\bm {x}, 0)\sim \nu _0, \,\,U(\bm {x}, t;\theta ) = 0, x\in \partial D. \end {aligned} \label {spde}\end {equation}


$B_t$


$D$


$\mathbb {R}^d$


$\partial D$


$H_0^{1,2}(\Omega )$


$U: \Omega \to \mathbb {R}$


$\partial \Omega $


$U$


$L^2(\Omega )$


$\|U\|_{L^2}:= \int _D U^2(\bm {x}, t){\mathrm {d}}\bm {x}$


$\nu _0$


$\mathcal {B}(H^{1,2}_0(\Omega ))$


$A$


$L^2(\Omega )$


$U \in H^{1,2}(\Omega )$


$AU\in L^2(\Omega )$


$A$


$\alpha >0$


\begin {equation}(-AU, U) \geq \alpha \|U\|^2_{H^{1, 2}}, \quad \forall U \in H_0^{1,2}(\Omega ), \label {spde:coer}\end {equation}


$(\cdot , \cdot )$


$f$


$g$


$L^2(\Omega )$


$H_0^{1, 2}(\Omega )$


$\theta $


\begin {equation}\begin {aligned} &{\mathrm {d}} \hat {U}(\bm {x}, t; \hat {\theta }) = A(\hat {\theta }) \hat {U}(\bm {x}, t; \hat {\theta }) + f(\hat {U}(\bm {x}, t; \hat {\theta }); \hat {\theta }){\mathrm {d}} t + g(\hat {U}(\bm {x}, t; \hat {\theta }); \hat {\theta }){\mathrm {d}} \hat {B}_t,\\&\quad \quad \quad \bm {x}\in D, t\in [0, T],\\ &\quad \quad \hat {U}(\bm {x}, 0) = U(\bm {x}, 0;\theta )=U(\bm {x}, 0), \,\,U(\bm {x}, t;\hat {\theta }) = 0, x\in \partial D. \end {aligned} \label {approx:sde}\end {equation}


$\hat {B}_t$


$B_t$


\begin {equation}\begin {aligned} &{\mathrm {d}} U_n(t;\theta ) = \big (A_n(U_n(t;\theta ); \theta ) + f_n(U_n(t;\theta );\theta )\big ) {\mathrm {d}} t + g_n(U_n(t;\theta );\theta ) {\mathrm {d}} B_t,\\ &{\mathrm {d}} \hat {U}_n(t;\hat {\theta }) = \big (A_n(\hat {U}_n(t;\hat {\theta }); \hat {\theta }) + f_n(\hat {U}_n(t;\hat {\theta }); \hat {\theta })\big ) {\mathrm {d}} t + g_n(\hat {U}_n(t;\hat {\theta });\hat {\theta }) {\mathrm {d}} \hat {B}_t. \end {aligned} \label {SPDE:discretize}\end {equation}


\begin {equation}U_n(\bm {x},t;\theta ) := \sum _{j=1}^n u_j(t;\theta ) \varphi _j(\bm {x}) \in X_n,\,\, \hat {U}_n(\bm {x},t;\hat {\theta }) := \sum _{j=1}^n \hat {u}_j(t;\hat {\theta }) \varphi _j(\bm {x})\in X_n \label {Undef}\end {equation}


$U(\bm {x}, t;\theta )$


$\hat {U}(\bm {x},t;\hat {\theta })$


$X_n$


$n$


$H_0^{1}(\Omega )$


$\{\varphi _1, \ldots , \varphi _n\}$


\begin {equation*}A_n(U; \theta ) := P_n \big (A(\theta )U\big ) , \quad f_n(U; \theta ) := P_n \big (f(\theta )U\big ) , \quad g_n(U; \theta ) := P_n \big (g(\theta )U\big ),\end {equation*}


$P_n$


$L^2(\Omega )$


$H_0^{1, 2}(\Omega )$


$X_n$


$\theta $


$-A$


\begin {equation*}-A(\theta ) \varphi _j = \lambda _j(\theta ) \varphi _j, \quad j = 1, 2, \ldots , n,\,\, \lambda _j\leq \lambda _{j+1}.\end {equation*}


$\varphi _i\in H_0^{1, 2}(D), i=1,2,{\ldots }$


$L^2(D)$


$\|\varphi _j\|_{L^2}=1$


$\lambda _j(\theta ) \rightarrow \infty $


$\theta $


$j \rightarrow \infty $


$A(\theta )$


$H_0^{1}(\Omega )$


$L^2(\Omega )$


$f(\theta )$


$g(\theta )$


$H_0^{1}(\Omega )$


\begin {equation}\begin {aligned} &\|A(\theta )(U, \theta ) - A(\hat {\theta })(\hat {U}, \hat {\theta })\|_{L^2}\leq L(\|U-\hat {U}\|_{H^{1,2}} + \|\theta - \hat {\theta }\|),\\ &\|f(U; \theta ) - f(\hat {U}; \hat {\theta })\|_{{H^{1,2}}}\leq L(\|U-\hat {U}\|_{H^{1,2}} + \|\theta - \hat {\theta }\|),\\ &\|g(U; \theta ) - g(\hat {U}; \hat {\theta })\|_{H^{1,2}}\leq L(\|U-\hat {U}_{H^{1,2}}\|_{{H^{1,2}}} + \|\theta - \hat {\theta }\|), L\leq \infty .\\ \end {aligned} \label {Xeqn96-D.6}\end {equation}


\begin {equation}\E [\|\theta \|^6]\leq \Theta _6,\,\,\E [\|\hat {\theta }\|^6]\leq \hat {\Theta }_6. \label {Xeqn97-D.7}\end {equation}


$U$


$\hat {U}$


\begin {equation}\begin {aligned} \tilde {W}_{2, \delta }^{2, \text {e}}(U, \hat {U}) &\leq 3\cdot \Big (8C_0(\beta _n; n)\delta ^2T \exp (C_0(\beta _n;n )T)\\&\quad +\frac {6C_1(\beta _n)T}{C_0(\beta _n;n)}\exp (C_0(\beta _n; n)T)\\ &\quad \times (W_2^2(\mu , \hat {\mu }) + (\Theta _6^{\frac {1}{3}} + \hat {\Theta }_6^{\frac {1}{3}})2T \E [h(N^{\#}(\bm {U}_n(0;\theta ); \delta ); \ell )])\Big ) \\ &\quad + 3T\sup _{\theta , U(\bm {x}, 0;\theta )} K_{T, U(\cdot , 0), \theta }\lambda _{N+1}^{-1}(\theta ) \\ &\quad + 3T\sup _{\hat {\theta }, U(\bm {x}, 0;\hat {\theta })} K_{T, U(\cdot , 0), \hat {\theta }}\lambda _{N+1}^{-1}(\hat {\theta }). \end {aligned} \label {spde:ineq:result}\end {equation}


$K_{T, U(\cdot , 0), \theta }$


$T, U(\bm {x}, 0)$


$\theta $


$C_i(\beta _n)$


$n$


$\beta _n$


$\{\lambda _i\}_{i=1}^n$


$\bm {U}_n(0;\theta ):= (u_1(0;\theta ),{\ldots },u_n(0;\theta ))$


$\tilde {W}_{2, \delta }^{2, \text {e}}(U, \hat {U})$


$U$


$\hat {U}$


\begin {equation}\tilde {W}_{2, \delta }^{2, \text {e}}(U, \hat {U}):= \int _0^T W_{2, \delta }^{2, \text {e}}\big (U(\bm {x}, t;\theta ), \hat {U}(\bm {x}, t;\hat {\theta })\big ){\mathrm {d}} t, \label {Xeqn99-D.9}\end {equation}


\begin {equation}W_{2, \delta }^{2, \text {e}}\big (U(\bm {x}, t;\theta ), \hat {U}(\bm {x}, t;\hat {\theta })\big ) := \int W_2^2(\nu ^{\text {e}}_{U_0, \delta }(t), \hat {\nu }^{\text {e}}_{U_0, \delta }(t))\nu _0^{\text {e}}({\mathrm {d}} U_0), \label {spde:w2}\end {equation}


$\nu _0^{\text {e}}({\mathrm {d}} U_0)$


$U(\cdot , 0)$


$\nu ^{\text {e}}_{U_0, \delta }(t)$


$\hat {\nu }^{\text {e}}_{U_0, \delta }(t)$


$U(\bm {x},t;\theta )$


$\hat {\nu }^{\text {e}}_{U_0,\delta }(t)$


$t$


$\|U(\bm {x},0) - U_0\|_{L^2}\leq \delta $


$\|\hat {U}(\bm {x},0) - U_0\|_{L^2}\leq {\delta }$


$W_2$


$\nu ^{\text {e}}_{U_0, \delta }(t)$


$\hat {\nu }^{\text {e}}_{U_0, \delta }(t)$


\begin {equation}W_2(\nu ^{\text {e}}_{U_0, \delta }(t), \hat {\nu }^{\text {e}}_{U_0, \delta }(t)) := \inf _{\pi (\nu , \hat \nu )} \E _{(U, \hat {U})\sim \pi (\nu ^{\text {e}}_{U_0, \delta }(t), \hat {\nu }^{\text {e}}_{U_0, \delta }(t))}{\big [\|{U} - \hat {U}\|_{L^2}^{2}\big ]}^{\frac {1}{2}}. \label {Xeqn101-D.11}\end {equation}


$A_n$


\begin {equation}\begin {aligned} \|A_n(U_n;\theta ) - A_n(\hat {U}_n;\hat {\theta })\|_{L^2} &= \|P_n(A(U_n;\theta ) - A(\hat {U}_n;\hat {\theta }))\|_{L^2}\\ &\leq \|A(U_n;\theta ) - A(\hat {U}_n;\hat {\theta })\|_{L^2}\\&\leq L(\|U_n - \hat {U}_n\|_{H^{1, 2}} + \|\theta - \hat {\theta }\|). \end {aligned} \label {Xeqn102-D.12}\end {equation}


$X_n$


$\beta _n$


$\varphi _1,{\ldots },\varphi _n$


$\forall U_n\in X_n$


$\|U\|_{H^{1,2}}\leq \beta _n\|U\|_{L^2}$


\begin {equation}\begin {aligned} \|A_n(U_n; \theta ) - A_n(\hat {U}_n; \hat {\theta })\|_{H^{1,2}}&\leq \beta _n\|A_n(U_n; \hat {\theta }) - A_n(\hat {U}_n;\hat {\theta })\|_{L^{2}}\\ &\leq \beta _n L (\|U_n - \hat {U}_n\|_{L^{2}} + \|\theta - \hat {\theta }\|). \end {aligned} \label {L:condition:a}\end {equation}


$f_n$


$g_n$


$U_n$


$\theta $


\begin {equation}\begin {aligned} \|f_n(U_n; \theta ) - f_n(\hat {U}_n; \hat {\theta })\|_{L^{2}}&\leq \|f_n(U_n; \theta ) - f_n(\hat {U}_n; \hat {\theta })\|_{H^{1,2}}\\ &\leq \beta _n L (\|U_n - \hat {U}_n\|_{L^{2}} + \|\theta - \hat {\theta }\|),\\ \|g_n(U_n; \theta ) - g_n(\hat {U}_n; \hat {\theta })\|_{L^{2}}&\leq \|g_n(U_n; \theta ) - g_n(\hat {\theta }; \hat {U}_n)\|_{H^{1,2}}\\&\leq \beta _n L (\|U_n - \hat {U}_n\|_{L^{2}} + \|\theta - \hat {\theta }\|). \end {aligned} \label {L:condition:f}\end {equation}


$\theta $


\begin {equation}\E [\|U(\bm {x}, k\Delta t; \theta ) - U_n(\bm {x}, k\Delta t;\theta ) \|^2]\leq K_{k\Delta t, U(\cdot , 0), \theta }\lambda _{N+1}^{-1}(\theta ), \label {discretize:bound}\end {equation}


$K_{k\Delta t, U(\cdot , 0), \theta }$


$k\Delta t$


$U(\cdot , 0)$


$\theta $


$K_{k\Delta t, U(\cdot , 0), \theta }$


$k$


$K_{k\Delta t, U(\cdot , 0), \theta }$


$\tilde {K}_{k\Delta t, U(\cdot , 0), \theta }:= \max _{1\leq i\leq k}K_{i\Delta t, U(\cdot , 0), \theta }$


$U(\bm {x}, 0)$


$P_n U(\bm {x}, 0)$


$U(\bm {x}, k\Delta t; \theta )$


$U_n(\bm {x}, T;\theta )$


$\nu _{U(\cdot , 0)}(k\Delta t)$


$\nu _{n, U_n(\cdot , 0)}(k\Delta t)$


$\big (U(\bm {x}, k\Delta t; \theta ), U_n(\bm {x}, k\Delta t;\theta )\big )$


$\nu _{U(\cdot , 0)}(k\Delta t)$


$\nu _{n, U_n(\cdot , 0)}(k\Delta t)$


\begin {equation}\begin {aligned} W_2^2( \nu _{U(\cdot , 0)}(k\Delta t), \nu _{n, U_n(\cdot , 0)}(k\Delta t)) &\leq \E [\|U(\bm {x}, k\Delta t; \theta ) - U_n(\bm {x}, k\Delta t;\theta ) \|^2] \\ &\leq \sup _{\theta , U(\bm {x}, 0)} K_{T, U(\cdot , 0), \theta }\lambda _{N+1}^{-1}(\theta ). \end {aligned} \label {Xeqn106-D.16}\end {equation}


$W_2$


\begin {equation}\begin {aligned} W_{2, \delta }^{2, \text {e}}\big (U(\cdot , k\Delta t;\theta ), U_n(\cdot , k\Delta t;\theta )\big ) &\leq \sup _{\theta , U(\bm {x}, 0)}\E [\|U(\bm {x}, k\Delta t; \theta ) - U_n(\bm {x}, k\Delta t;\theta ) \|^2] \\ &\leq \sup _{\theta , U(\bm {x}, 0)} K_{T, U(\cdot , 0), \theta }\lambda _{N+1}^{-1}(\theta ). \end {aligned} \label {Xeqn107-D.17}\end {equation}


\begin {equation}\begin {aligned} W_{2, \delta }^{2, \text {e}}\big (\hat {U}(\cdot , k\Delta t;\hat {\theta }), \hat {U}_n(\cdot , k\Delta t;\hat {\theta } )\big ) &\leq \sup _{\hat {\theta }, U(\bm {x}, 0)} K_{T, U(\cdot , 0), \theta }\lambda _{N+1}^{-1}(\hat {\theta }). \end {aligned} \label {Xeqn108-D.18}\end {equation}


$U(\bm {x}, 0)=\hat {U}(\bm {x}, 0)$


\begin {equation}\begin {aligned} &W_{2, \delta }^{2, \text {e}}(U(\bm {x}, t;\theta ), \hat {U}(\bm {x}, t;\hat {\theta }))\leq 3W_{2, \delta }^{2, \text {e}}\big (U(\cdot , k\Delta t;\theta ), U_n(\cdot , k\Delta t;\theta )\big ) \\ &\qquad + 3W_{2, \delta }^{2, \text {e}}\big (\hat {U}(\cdot , k\Delta t;\hat {\theta }), \hat {U}_n(\cdot , k\Delta t;\hat {\theta })\big ) + 3W_{2, \delta }^{2, \text {e}}(U_n(\bm {x}, t;{\theta }), \hat {U}_n(\bm {x}, t;\hat {\theta }))\big )\\ &\quad \leq 3W_{2, \delta }^{2, \text {e}}(U_n(\bm {x}, t;\theta ), \hat {U}_n(\bm {x}, t;\hat {\theta })) + 3\sup _{\theta , U(\bm {x}, 0)} K_{T, U(\cdot , 0), \theta }\lambda _{N+1}^{-1}(\theta ) \\ &\qquad + 3\sup _{\hat {\theta }, U(\bm {x}, 0)} K_{T, U(\cdot , 0), \hat {\theta }}\lambda _{N+1}^{-1}(\hat {\theta }). \end {aligned} \label {theorem:spde:ineq0}\end {equation}


\begin {equation}\begin {aligned} \tilde {W}_{2, \delta }^{2, \text {e}}\big (U, \hat {U}\big )&\leq 3 \tilde {W}_{2, \delta }^{2, \text {e}}(U_n, \hat {U}_n) + 3T\sup _{\theta , U(\bm {x}, 0)} K_{T, U(\cdot , 0), \theta }\lambda _{N+1}^{-1}(\theta ) \\ &\quad \quad + 3T\sup _{\hat {\theta }, U(\bm {x}, 0)} K_{T, U(\cdot , 0), \hat {\theta }}\lambda _{N+1}^{-1}(\hat {\theta }). \end {aligned} \label {theorem:spde:ineq}\end {equation}


\begin {equation}\begin {aligned} \bm {U}_n(t;\theta ):= (u_1(t;\theta ),{\ldots },u_n(t;\theta )),\,\,\hat {\bm {U}}_n(t,\hat {\theta }):= (\hat {u}_1(t,\hat {\theta }),{\ldots },\hat {u}_n(t,\hat {\theta })) \end {aligned} \label {Xeqn111-D.21}\end {equation}


$U_n(\bm {x},t;\theta )$


$\hat {U}_n(\bm {x},t;\hat {\theta })$


$\|U_n(\bm {x}, t;\theta )\|_{L^2}=\|\bm {U}_n(t)\|$


$\|\hat {U}_n(\bm {x}, t)\|_{L^2}=\|\hat {\bm {U}}_n(t)\|$


$\|\varphi _i\|_{L^2}=1, i=1,{\ldots },n$


$\bm {U}_n$


$\hat {\bm {U}}_n$


\begin {equation}\begin {aligned} {\mathrm {d}} \bm {U}_n = \big (\bm {A}_n(\bm {U}_n,t;\theta ) +\bm {F}_n(\bm {U}_n,t;\theta )\big ){\mathrm {d}} t + \bm {G}_n(\bm {U}_n,t;\theta ){\mathrm {d}} B_t,\\ {\mathrm {d}} \hat {\bm {U}}_n = \big (\bm {A}_n(\hat {\bm {U}}_n,t;\hat {\theta }) +\bm {F}_n(\hat {\bm {U}}_n,t;\hat {\theta })\big ){\mathrm {d}} t + \bm {G}_n(\hat {\bm {U}}_n,t;\hat {\theta }){\mathrm {d}} B_t \end {aligned} \label {Xeqn112-D.22}\end {equation}


$\bm {A}_n(\bm {U}_n,t;\theta ), \bm {F}_n(\bm {U}_n,t;\theta )$


$\bm {F}_n(\bm {G}_n,t;\theta )$


$n$


$A_n(U_n; \theta ), f_n(U_n; \theta )$


$g_n(U_n; \theta )$


$\bm {A}_n, \bm {F}_N$


$\bm {G}_n$


$U_n$


$\theta $


\begin {equation}\begin {aligned} &\E [\tilde {W}_{2, \delta }^{2, \text {e}}(U_n, {\hat {U}}_n)] = \E [\tilde {W}_{2, \delta }^{2, \text {e}}(\bm {U}_n, {\hat {\bm {U}}}_n)]\leq 8C_0(\beta _n, n)T\delta ^2 \exp (C_0(\beta _n;n)T) \\ &\quad + \frac {6C_1(\beta _n)}{C_0(\beta _n;n)}T\exp (C_0(\beta _n; n)T)\big (W_2^2(\mu , {\hat {\mu }}) + 2C_2 \E [h(N^{\#}(\bm {U}_n(\bm {x}, 0);\delta ), \ell )]\\&\quad \cdot (\Theta _6^{\frac {1}{3}}+{\hat {\Theta }}_6^{\frac {1}{3}})\big ) \end {aligned} \label {identity:ineq}\end {equation}


$C_i, i=0,{\ldots },2$


$\E [\tilde {W}_{2, \delta }^{2, \text {e}}(U_n, \hat {U}_n)]$


$f_{\bm {x}}$


$\hat {f}_{\bm {x}}$


$f_{\bm {x}}$


$W_2$


$0<c<\epsilon _0$


$\Delta x>0$


\begin {equation}W_2^2(f_{\bm {x}}, f_{\tilde {\bm {x}}})<c, \,\,\forall \bm {x}, \tilde {\bm {x}}\in D,\,\, \|\bm {x} - \tilde {\bm {x}}\|< \sqrt {d}\Delta x. \label {Xeqn114-E.1}\end {equation}


$X:= \{\bm {x}_i\}_{i=1}^K, \bm {x}_i=(x_i^1,{\ldots },x_i^d)$


$\Delta x$


$D\subseteq \cup _{i=1}^K\otimes _{j=1}^d[x_i^j, x_i^j+\Delta \bm {x})$


$\otimes _{j=1}^d[x_{i_1}^j, x_{i_1}^j+\Delta \bm {x})\cap \otimes _{j=1}^d[x_{i_2}^j, x_{i_2}^j+\Delta \bm {x})=\emptyset $


$i_1\neq i_2$


$\forall \bm {x}=(x^1,{\ldots },x^d)\in D$


$\bm {x}_i\in X$


$|\bm {x}-\bm {x}_i|<\sqrt {d}\Delta x$


$0<\epsilon <\tfrac {1}{2}$


$4dK$


$dK$


$\bm {x}$


$(i, j), i=1,\ldots , K, j=1,{\ldots },d$


\begin {equation}\begin {aligned} &n_{i, j, 1}^1 =\text {ReLU}\left (\epsilon ^{-1}(x^j - x_i^j-\Delta x)\right ),\,\, n_{i, j, 2}^1 =\text {ReLU}\left (\epsilon ^{-1}(x^j - x_i^j-\Delta x+\epsilon )\right ), \\ &n_{i, j, 3}^1 =\text {ReLU}\left (\epsilon ^{-1}\left (x^j - x_i^j-\epsilon \right )\right ),\,\, n_{i, j, 4}^1 = \text {ReLU}\left (\epsilon ^{-1}\left (x^j - x_i^j\right )\right ). \end {aligned} \label {Xeqn115-E.2}\end {equation}


$dK$


$(i, j), i=1,\ldots ,K, j=1,{\ldots },d$


$(i, j)$


\begin {equation}\begin {aligned} n_{i, j}^{2, \text {in}}:= n_{i, j, 2}^1-n_{i, j, 1}^1 - \left (n_{i, j, 4}^1 - n_{i, j, 3}^1\right ). \end {aligned} \label {Xeqn116-E.3}\end {equation}


$n_{i, j}^{2, \text {in}}\in [0, 1]$


$x^j \in [x_{i}^j+\epsilon , x_{i}^j+\Delta x]$


$n_{i, j}^{2, \text {in}}=1, j=1,{\ldots },d$


$x^j\leq x^j_{i}$


$x^j\geq x_{i}^j+\Delta x$


$n_{i, j}^{2, \text {in}}=0$


$(i, j)$


\begin {equation}n^2_{i, j} = \text {ReLU}\left ( \epsilon ^{-1}\left (n^{2, \text {in}}_{i, j} - 1+\epsilon \right )\right ),\,\, i=1,{\ldots },K,\,\, j=1,{\ldots }d. \label {Xeqn117-E.4}\end {equation}


$K$


\begin {equation}n_i^3 = \text {ReLU}\left ( \sum _{j=1}^d\epsilon ^{-1}\left (n^2_{i, j} - 1+\tfrac {\epsilon }{d}\right )\right ), i=1,{\ldots },K. \label {Xeqn118-E.5}\end {equation}


$n_i^3\in [0, 1]$


$n_i^3 = 1$


$\bm {x}\in \otimes _j [x_{j, i}+\epsilon , x_{j, i}+\Delta x-\epsilon ]$


$j=1, {\ldots }, d$


$x^j< x_{i}^{j}$


$x^j> x_{i}^{j}+\Delta x$


$n_i^3=0$


$\bm {x}\in D$


$i$


$n_i^3\neq 0$


$D(\epsilon ) = \{x\in D: \exists ! i, n_i^3=1\}$


$\epsilon \rightarrow 0$


$D(\epsilon )\rightarrow D$


$d' K$


$(i, j), i=1,\ldots ,K, k=1,{\ldots },d'$


$(i, j)$


\begin {equation}n_i^3 (\omega _{i, k}^4 + (A_i^{-1}\bm {b}_i)_k), \,\,i=1,\ldots ,K, \,\, k=1,{\ldots },d'. \label {Xeqn119-E.6}\end {equation}


$\omega _{i, k}\sim \mathcal {N}(0, 1)$


$\bm {b}_i$


$A_i$


$f_{\bm {x}_i}(\bm {y})=\mathcal {N}(\bm {b}_i, A_i)$


$(A_i^{-1}\bm {b}_i)_k$


$k{\text {th}}$


$A_i^{-1}\bm {b}_i$


$d'$


\begin {equation}\sum _{i=1}^K n_i^3(A_i \bm {\omega }_i^4 + \bm {b}_i), \label {Xeqn120-E.7}\end {equation}


$\bm {\omega }_i := (\omega _{i,1},{\ldots }, \omega _{i, d'})$


$\bm {x}\in D$


$i$


$n_{i}^3\neq 0$


$\bm {x}\in D$


\begin {equation}\begin {aligned} \sup _{\hat {\bm {y}}\sim f_{\bm {x}}}\E [\|\bm {y}\|^2]&\leq \sup _i\E \big [\|A_i\bm {\omega }_i^4 + \bm {b}_i\|^2\big ]\\ &\leq \sup _i(\|A^T_iA_i\|_F^2 + \|\bm {b}_i\|_2^2. \end {aligned} \label {Xeqn121-E.8}\end {equation}


$\bm {x}\in D(\epsilon )$


$n_i^3=1$


$\|\bm {x}-\bm {x}_i\|<\Delta x$


$\hat {f}_{\bm {x}}$


$\hat {f}_{\bm {x}}$


$f_{\bm {x}_i}$


\begin {equation}\begin {aligned} &\int _D W_2^2(f_{\bm {x}}, \hat {f}_{\bm {x}})\gamma (\text {d}\bm {x})< \int _{D(\epsilon )} W_2^2(f_{\bm {x}}, \hat {f}_{\bm {x}})\gamma (\text {d}\bm {x}) \\ &\qquad + 2 \gamma (D-D(\epsilon ))\cdot \Big (\sup _{\bm {y}\sim f_{\bm {x}}}\E [\|\bm {y}\|^2] + \sup _{\hat {\bm {y}}\sim f_{\bm {x}}}\E [\|\hat {\bm {y}}\|^2]\Big )\\ & \quad \leq c\gamma (D) + \gamma (D-D(\epsilon ))2\left (\sup _{\hat {\bm {y}}\sim f_{\bm {x}}}\E [\|\bm {y}\|^2] + \sup _i\left (\|A^T_iA_i\|_F^2 + \|\bm {b}_i\|_2^2\right )\right )\\ & \quad \leq c + 4\gamma (D-D(\epsilon ))Y. \end {aligned} \label {snn:approx}\end {equation}


$c<\epsilon _0$


$\epsilon $


$\gamma (D - D(\epsilon ))\leq \frac {\epsilon _0-c}{4Y}$


$c>0$


$\Delta x>0$


\begin {equation}W_2^2(f_{\bm {x}}, f_{\tilde {\bm {x}}})<c,\,\, \forall \|\bm {x} - \tilde {\bm {x}}\|<\sqrt {d}\Delta x,\,\, \bm {x}, \tilde {\bm {x}}\in D. \label {Xeqn123-F.1}\end {equation}


$X:= \{\bm {x}_i\}_{i=1}^K$


$D$


$\Delta x$


$D\subseteq \cup _{i=1}^K\otimes _{j=1}^d[x_i^j, x_i^j+\Delta \bm {x})$


$\otimes _{j=1}^d[x_{i_1}^j, x_{i_1}^j+\Delta \bm {x})\cap \otimes _{j=1}^d[x_{i_2}^j, x_{i_2}^j+\Delta \bm {x})=\emptyset $


$i_1\neq i_2$


$\forall \bm {x}\in D$


$\bm {x}_i\in X$


$|\bm {x}-\bm {x}_i|\leq \sqrt {d}\Delta x$


$\Phi (x)$


$-M=h_{i, 0}<h_{i, 1}<{\ldots }<h_{i, s}=M$


\begin {align}&\Phi (\added {h}_{i, r+1}) - \Phi (\added {h}_{i, r})=p_{i, r+1}, r=\added {1},{\ldots },s-2,\,\, \Phi (h_{i, 1}) = p_{i, 1},\,\nonumber \\&\Phi (h_{i, s-1}) = 1 - p_{i, s}, \label {Xeqn124-F.2}\end {align}


$p_{i, r}:= p_r(\bm {x}_i)$


$n_i^3, i=1,{\ldots }, K$


$\bm {x}_i\in X$


$\bm {x}_i = (x_{i}^1,{\ldots },x_{i}^d)$


$n_i^3\in [0, 1]$


$n_i^3 = 1$


$\bm {x}=(x^1,{\ldots },x^d)\in \otimes _{j=1}^d [x_{i}^j+\epsilon , x_{i}^j+\Delta x-\epsilon ]$


$n_i^3 = 0$


$\bm {x}\in D- \otimes _{j=1}^d [x_{i}^j, x_{i}^j+\Delta x]$


$\epsilon >0$


$j=1, {\ldots }, d$


$x^j< x_{i}^j$


$x^j> x_{i}^j+\Delta x$


$n_i^3=0$


$\bm {x}\in D$


$i$


$n_i^3=1$


$K(s+1)$


$(i, r), i=1,{\ldots },K, r=0,{\ldots },s$


\begin {equation}n_{i, r}^4 = \text {ReLU}(\tilde {w}_i^3n_i^3 - h_{i, r}-M_0), \tilde {n}_{i, r}^4 = \text {ReLU}(\tilde {w}_i^3n_i^3 - h_{i, r} - \epsilon _0-M_0). \label {Xeqn125-F.3}\end {equation}


$\tilde {w}_i^3\sim \mathcal {N}(M_0, 1)$


$M_0>|h_{i, r}|, \forall i, r$


$\epsilon _0>0$


$\epsilon _0<\min _{i, r}\frac {h_{i, r+1}-h_{i, r}}{2}$


$M_0$


$\epsilon _0$


$sK$


$(i, r)$


\begin {equation}n_{i, r+1}^5 = \text {ReLU}\left (\epsilon _0^{-1}\left (n_{i, r}^4 - \tilde {n}_{i, r}^4 - \left (n_{i, r+1}^4 - \tilde {n}_{i, r+1}^4\right )\right )\right ),\,\, r=0,{\ldots },s-1. \label {Xeqn126-F.4}\end {equation}


$n_i^3=1$


$r=0,{\ldots },s-1$


\begin {equation}\begin {aligned} &n_{i, r+1}^5=1, \omega _i^3\in [M_0+h_{i, r}+\epsilon _0, M_0+h_{i, r+1}],\\ &n_{i, r+1}^5=0, \omega _i^3<M_0+h_{i, r}~ \text {or}~ \omega _i^3>M_0+h_{i, r+1}+\epsilon _0,\\ &n_{i, r+1}^5\in (0, 1), \text {otherwise}; \end {aligned} \label {Xeqn127-F.5}\end {equation}


$n_{i}^3\in [0, 1]$


\begin {equation}0\leq \sum _{r=1}^s n_{i, r}^5\leq 1, \label {Xeqn128-F.6}\end {equation}


$n_{i, s}^5, n_{i+1, s}^5>0$


$(n_{i, 1}^5,{\ldots },n_{i, s}^5)$


$\epsilon _1>0$


$\epsilon _0> 0$


$M_0>0$


$n_i^3=1$


\begin {equation}0\leq p_{i, r} - \hat {p}_{i, r} \leq \frac {\epsilon _1}{s},\,\, \hat {p}_{i, r}:= p(n_{i, r}^5=1),\,\, i=1,{\ldots },K. \label {Xeqn129-F.7}\end {equation}


$sKd'$


\begin {equation}n_{i, r, k}^6 = n_{i, r}^5(w_{i, r, k} + (A_{i, r}^{-1}\bm {b}_{i, r})_k), i=1,{\ldots },K, r=1,{\ldots },s, k=1,{\ldots },d'. \label {Xeqn130-F.8}\end {equation}


$w_{i, r, k}\sim \mathcal {N}(0, 1)$


$\bm {b}_{i, s}$


$A_{i, s}$


\begin {equation}f_{\bm {x}_i}(\bm {y}) = \sum _{r=1}^sp_r(\bm {x}_i)\mathcal {N}\left (\bm {b}_{i, r}, A_{i, r}^TA_{i, r}\right ). \label {Xeqn131-F.9}\end {equation}


$d'$


\begin {equation}\sum _{i=1}^K\sum _{r=1}^s n_{i, r}^5(A_{i, r}\bm {w}_{i, r} + \bm {b}_{i, r}), \label {Xeqn132-F.10}\end {equation}


$\bm {w}_{i, r}:= (w_{i, r, 1},{\ldots },w_{i, r, d'})$


$\bm {x}\in D(\epsilon ):= \{x\in D: \exists ! i, n_i^3=1\}$


$n_i^3=1$


\begin {equation}\sum _{r=1}^s \hat {p}_{i, r}\mathcal {N}\left (\bm {b}_{i, r}, A_{i, r}^TA_{i, r}\right ) + p_i(\bm {y}), \,\, \int _{\mathbb {R}^{d'}} p_i(\bm {y}){\mathrm {d}}\bm {y}:= 1-\sum _{r=1}^s \hat {p}_{i, r}\leq \epsilon _1, \,\, p_i(\bm {y})\geq 0. \label {Xeqn133-F.11}\end {equation}


$n_{i, s}^5, n_{i+1, s}^5>0$


\begin {equation}\begin {aligned} \int _{\mathbb {R}^{d'}} \|\bm {y}\|^2p_i(\bm {y}){\mathrm {d}}\bm {y}&\leq \int _{\mathbb {R}^{d'}}p_i(\bm {y}){\mathrm {d}}\bm {y}\cdot \Big (2\max _{i, r}\E _{\bm {y}\sim \mathcal {N}(\bm {b}_{i, r}, A_{i, r}^TA_{i, r}) }[\|\bm {y}\|^2] \\ &\quad + 2\max _{i, r}\E _{\bm {y}\sim \mathcal {N}(\bm {b}_{i, r}, A_{i, r}^TA_{i, r}) }[\|\bm {y}\|^2]\Big )\\ &=(1 - \sum _{r=1}^s\hat {p}_{i, r})4\max _{r}\left (\|\bm {b}_{i, r}\|^2+\|A_{i, r}^TA_{i, r}\|_F^2\right )\\ &\leq 4\epsilon _1 \max _{r}\left (\|\bm {b}_{i, r}\|^2+\|A_{i, r}^TA_{i, r}\|_F^2\right ). \end {aligned} \label {Xeqn134-F.12}\end {equation}


\begin {align}W_2^2(\hat {f}_{\bm {x}}, f_{\bm {x}_i})&\leq 2 \max _r\frac {\epsilon _1}{s}\cdot s\left (\|A_{i, r}^TA_{i, r}\|_F^2 +\|\bm {b}_{i, r}\|^2\right )\nonumber \\&\quad + 4\epsilon _1\max _r\left (\|\bm {b}_{i, r}\|^2+\|A_{i, r}^TA_{i, r}\|_F^2\right ), \label {6epsilon}\end {align}


$\bm {x}\in D^i(\epsilon ):= \{\bm {x}\in D(\epsilon )|\|\bm {x}_i-\bm {x}\|\leq \|\bm {x}_j-\bm {x}\|, \forall j\neq i\}$


\begin {equation}\begin {aligned} &\quad \int _D W_2^2(f_{\bm {x}}, \hat {f}_{\bm {x}})\gamma ({\mathrm {d}}\bm {x}) \\&\leq \int _{D(\epsilon )}W_2^2(f_{\bm {x}}, \hat {f}_{\bm {x}})\gamma ({\mathrm {d}}\bm {x})\\ &\qquad +2(1 - \gamma (D(\epsilon ))\Big (\E [\|\bm {y}\|^2] + 4\sup _{i, r}\big (\|A_{i, r}^TA_{i, r}\|_F^2 + \|\bm {b}_{i, r}\|^2]\big )\Big )\\ &\quad \leq 2\sum _i\int _{ D^i(\epsilon )}W_2^2(\hat {f}_{\bm {x}}, f_{\bm {x}_i})\gamma ({\mathrm {d}}\bm {x}) +2\sum _i\int _{D^i(\epsilon )}c\gamma ({\mathrm {d}}\bm {x}) \\ &\qquad + 2(1-\gamma (D(\epsilon ))\Big (\E [\|\bm {y}\|^2] + 4\sup _{i, r}(\|A_{i, r}^TA_{i, r}\|_F^2 + \|\bm {b}_{i, r}\|^2])\Big )\\ &\quad \leq 2\sup _{i, r}\Big (6\epsilon _1\big (\|A_{i, r}^TA_{i, r}\|_F^2 + \|\bm {b}_{i, r}\|^2\big )\Big ) + 2c \\ & \qquad + 2(1-\gamma (D(\epsilon ))\Big (\E [\|\bm {y}\|^2] + 4\sup _{i, r}(\|A_{i, r}^TA_{i, r}\|_F^2 + \|\bm {b}_{i, r}\|^2])\Big ). \end {aligned} \label {col3:result}\end {equation}


$\sup _{i, r}(\|A_{i, r}^TA_{i, r}\|_F^2+ \|\bm {b}_{i, r}\|^2)$


$c, \epsilon , \epsilon _1\rightarrow 0^+$


$\sigma $


\begin {equation}f_{\sigma ^2}(\bm {y}):= \int _{\mathbb {R}^{d'}}f(\bm {y}')\mathcal {N}(\bm {y}-\bm {y}';\sigma ^2 I_{d'\times d'}){\mathrm {d}}\bm {y}'. \label {Xeqn137-G.1}\end {equation}


$f$


$\forall \epsilon _0>0$


$\delta >0$


$\sigma _0>0$


$\sigma <\sigma _0$


$|f(\bm {y})-f(\tilde {\bm {y}})|<\epsilon _0, \forall \|\tilde {\bm {y}}-\bm {y}\|<\delta $


\begin {equation}\int _{B(0, \delta )} \mathcal {N}(\bm {y}; \sigma ^2I_{d'\times d'}){\mathrm {d}}\bm {y}>1-\epsilon _0. \label {Xeqn138-G.2}\end {equation}


$\lim _{\sigma \rightarrow 0}f_{\sigma ^2}(\deleted {\bm {x}}\added {\bm {y}})=f(\deleted {\bm {x}}\added {\bm {y}})$


$\mathbb {R}^{d'}$


$\{\bm {y}_j\}_{j=1}^{(n_0+1)^{d'}}$


$\{w_j\}_{j=1}^{(n_0+1)^{d'}}$


$\mathbb {R}^{d'}$


\begin {align}&\int _{\mathbb {R}^{d'}} \mathcal {I}_{n_0}f(\bm {y}')\cdot \mathcal {I}_{n_0}\mathcal {N}(\bm {y}-\bm {y}';\sigma ^2I_{d'\times d'}){\mathrm {d}}\bm {y}'\nonumber \\ &\quad = \sum _{i=1}^{(n_0+1)^{d'}}f(\bm {y}_i)\mathcal {N}(\bm {y}-\bm {y}_i;\sigma ^2I_{d'\times d'})w_i. \label {inter:polate}\end {align}


$\mathcal {I}_{n_0}$


\begin {equation}f(\bm {y}_j) = \mathcal {I}_{n_0}f(\bm {y_j})\in P_{n_0},\,\, j=1,{\ldots },(n_0+1)^{d'}, \label {Xeqn140-G.4}\end {equation}


$P_{n_0}$


$\hat {\mathcal {H}}_{\bm {n}}(\bm {y})$


$|\bm {n}|_{\infty }\leq n_0$


\begin {equation}\hat {\mathcal {H}}_{\bm {n}}(\bm {y}):= \prod _{i=1}^{d'}\hat {\mathcal {H}}_{n_i}(y_i),\,\, \bm {n}=(n_1,{\ldots },n_{d'}),\,\, \bm {y}=(y_1,{\ldots },y_{d'}) \label {Xeqn141-G.5}\end {equation}


$\hat {\mathcal {H}}_{n_i}$


$n_i$


\begin {equation}\begin {aligned} f_{\sigma ^2, n_0}(\bm {y})&:= \sum _{i=1}^{(n_0+1)^{d'}}f(\bm {y}_i)\cdot \mathcal {N}(\bm {y}-\bm {y}_i;\sigma ^2I_{d'\times d'})w_i\\ &\quad =\int _{\mathbb {R}^{d'}} \mathcal {I}_{n_0}f(\bm {y}')\cdot \mathcal {I}_{n_0}\mathcal {N}(\bm {y}-\bm {y}';\sigma ^2I_{d'\times d'})\text {d}\bm {y}', \end {aligned} \label {Xeqn142-G.6}\end {equation}


$f_{\sigma ^2, n_0}$


$w_j>0$


\begin {align}&\Big |\int _{\mathbb {R}^{d'}} f(\bm {y}')\mathcal {N}(\bm {y}-\bm {y}';\sigma ^2I_{d'\times d'}) - \mathcal {I}_{n_0}f(\bm {y}')\mathcal {I}_{n_0}\mathcal {N}(\bm {y}-\bm {y}';\sigma ^2I_{d'\times d'})\text {d}\bm {y}'\Big |\notag \\ &\quad \leq \|f-\mathcal {I}_{n_0}f\|_{L^2}\cdot \|\mathcal {N}(\bm {y}-\bm {y}';\sigma ^2I_{d'\times d'})\|_{L^2} \notag \\ &\qquad + \|\mathcal {I}_{n_0}f\|_{L^2}\cdot \|\mathcal {N}(\bm {y}-\bm {y}';\sigma ^2I_{d'\times d'})-\mathcal {I}_{n_0}\mathcal {N}(\bm {y}-\bm {y}';\sigma ^2I_{d'\times d'})\|_{L^2}. \label {error:inter}\end {align}


\begin {equation}\begin {aligned} \|f - \mathcal {I}_{n_0}f\|&\leq \| f - \mathcal {I}_{n_0}^1f \|_{L^2} + \|\mathcal {I}_{n_0}^2\circ {\ldots }\circ \mathcal {I}_{n_0}^{d'}f - f\|_{L^2} \\ &\quad \quad + \|(\mathcal {I}_{n_0}^1-\mathbb {I}) \circ ( \mathcal {I}_{n_0}^2\circ {\ldots }\circ \mathcal {I}_{n_0}^{d'}f - f)\|_{L^2},\\ &\leq Cn_0^{-\frac {1}{3}}\|\partial _{y_1}f\|_{L^2} + \|\mathcal {I}_{n_0}^2\circ {\ldots }\circ \mathcal {I}_{n_0}^{d'}f - f\|_{L^2} \\ &\quad \quad + \| \mathcal {I}_{n_0}^2\circ {\ldots }\circ (\mathcal {I}_{n_0}^1-\mathbb {I})(\mathcal {I}_{n_0}^{d'}f - f)\|_{L^2},\\ & \leq Cn_0^{-\frac {1}{3}}\|\partial _{y_1}f\|_{L^2} + \|\mathcal {I}_{n_0}^2\circ {\ldots }\circ \mathcal {I}_{n_0}^{d'}f - f\|_{L^2} \\ &\quad \quad + Cn_0^{-\frac {1}{3}}\| (\mathcal {I}_{n_0}^2\circ {\ldots }\circ \mathcal {I}_{n_0}^{d'}\partial _{y_1}{f} -\partial _{y_1}{f}\|_{L^2}\\ &\leq {\ldots }\\ &\leq C{n_0}^{-\frac {1}{3}}| {f}|_{\text {mix}} \end {aligned} \label {mixf}\end {equation}


$C$


$n_0$


$C{n_0}^{-\frac {1}{3}}<1$


$\mathbb {I}$


$\mathcal {I}_{n_0}^i, i=1,\ldots ,d'$


$i{\text {th}}$


$X_{n_0}:= \{y_i\}_{i=0}^{n_0}$


\begin {equation}\mathcal {I}_{n_0}^if(\bm {y}) = f(\bm {y}), \,\,\forall \bm {y}=(y_1,{\ldots },y_{d'})~\text {if}~ y_i \in X_{n_0}. \label {Xeqn145-G.9}\end {equation}


$\bm {y}\in \mathbb {R}^{d'}$


\begin {align}& \|\mathcal {N}(\bm {y}-\bm {y}';\sigma ^2I_{d'\times d' }) - \mathcal {I}_{n_0}\mathcal {N}(\bm {y}-\bm {y}';\sigma ^2I_{d'\times d' })\|_{L^2}\nonumber \\ &\quad \leq \sum _{|\bm {n}|_0\leq n_0}Cn_0^{-\frac {1}{3}}\|\partial _{\bm {n}} \mathcal {N}\|_{L^2}. \label {mixn}\end {align}


$\bm {y}$


$\sigma >0$


$n_0\rightarrow \infty $


\begin {equation}\begin {aligned} &\Big |\sum _{i=1}^{(n_0+1)^{d'}} f(\bm {y}_j)\mathcal {N}(\bm {y}-\bm {y}_j;\sigma ^2I_{d'\times d'})w_j- \int _{\mathbb {R}^{d'}} f(\bm {y}')\mathcal {N}(\bm {y}-\bm {y}';\sigma ^2I_{d'\times d'}){\mathrm {d}}\bm {y}'\Big |\\ &\hspace {0.2cm}\leq Cn_0^{-\frac {1}{3}}\Big (|f|_{\text {mix}}\|\mathcal {N}(\bm {y}, \sigma ^2I_{d'\times d'})\|_{L^2} + \big (\|f\|_{L^2} + Cn_0^{-\frac {1}{3}}|f|_{\text {mix}})|\big )\\&\hspace {0.2cm}\cdot |\mathcal {N}(\bm {y}, \sigma ^2I_{d' \times d'})|_{\text {mix}}\Big ), \end {aligned} \label {Xeqn147-G.11}\end {equation}


$\sigma >0$


\begin {align}f_{\sigma ^2, n_0}(\bm {y}) &= \sum _{i=1}^{(n_0+1)^{d'}} f(\bm {y}_i)\mathcal {N}(\bm {y}-\bm {y}_i;\sigma ^2I_{d'\times d'})w_i\nonumber \\&\rightarrow \int _{\mathbb {R}^{d'}} f(\bm {y}')\mathcal {N}(\bm {y}-\bm {y}';\sigma ^2I_{d'\times d'}){\mathrm {d}}\bm {y}' \label {convergence:n}\end {align}


$\bm {y}\in \mathbb {R}^{d'}$


$n_0\rightarrow \infty $


\begin {align}&\int _{\mathbb {R}^{d'}}\|\bm {y}\|^2 \sum _{i=1}^{(n_0+1)^{d'}}f(\bm {y}_i)w_i\mathcal {N}(\bm {y}-\bm {y}_i; \sigma ^2I_{d'\times d'}){\mathrm {d}}\bm {y}\notag \\ &\quad = \sum _{i=1}^{(n_0+1)^{d'}} f(\bm {y}_i)(|\bm {y}_i|^2+d'\sigma ^2)w_i\notag \\ &\quad = \sum _{i=1}^{(n_0+1)^{d'}} f(\bm {y}_j){(|\bm {y}_i|^2+d'\sigma ^2)}^2\frac {1}{|\bm {y}_i|^2+d'\sigma ^2}w_i\notag \\ &\quad =\int _{\mathbb {R}^{d'}} \mathcal {I}_{n_0}\big (f(\bm {y}){(\|\bm {y}\|^2+d'\sigma ^2)}^{2}\big )\cdot \mathcal {I}_{n_0}\left (\frac {1}{(\|\bm {y}\|^2+d'\sigma ^2)}\right ){\mathrm {d}}\bm {y}\notag \\ &\quad \leq \int _{\mathbb {R}^{d'}} f(\bm {y}){(\|\bm {y}\|^2+d'\sigma ^2)}^{2}\cdot \frac {1}{(\|\bm {y}\|^2+d'\sigma ^2)}{\mathrm {d}}\bm {y} \notag \\ &\quad \quad + \big \|(\mathcal {I}_{n_0}-\mathbb {I})\big (f(\bm {y}){(\|\bm {y}\|^2+d'\sigma ^2)}^2\big )\big \|_{L^2}\cdot \big \|\frac {1}{\|\bm {y}\|^2+d'\sigma ^2}\big \|_{L^2} \notag \\ & \quad \quad + \|\mathcal {I}_{n_0}\big (f(\bm {y}){(\|\bm {y}\|^2+d'\sigma ^2)}^2\big )\|_{L^2}\cdot \|(\mathbb {I}-\mathcal {I}_{n_0})\big (\frac {1}{\|\bm {y}\|^2+d'\sigma ^2}\big )\|_{L^2}\notag \\ &\quad \leq (\sum _{i, j=1}^{d'} 2C n_0^{-\frac {1}{3}}|f(\bm {y})y_i^2y_j^2|_{\text {mix}}+2C n_0^{-\frac {1}{3}}d'\sigma ^2\sum _{i=1}^{d'}|f(\bm {y})y_i^2|_{\text {mix}} \notag \\ &\quad \quad + C n_0^{-\frac {1}{3}}{(d')}^2\sigma ^4 |f|_{\text {mix}})\cdot \sigma ^{-\frac {1}{2}}C_1(d') \notag \\ &\quad \quad + \|\mathcal {I}_{n_0}\big (f(\bm {y}){(\bm {y}+d'\sigma ^2)}^{2}\big )\|_{L^2} \cdot Cn_0^{-\frac {1}{3}}\big |\frac {1}{\|\bm {y}\|^2+d'\sigma ^2}\big |_{\text {mix}} + \E [\|y\|^2] + d'\sigma ^2,\label {expectation:bound}\end {align}


$C_1(d')$


$d'$


\begin {equation}\begin {aligned} &\|\mathcal {I}_{n_0}\big (f(\bm {y}){(\|\bm {y}\|^2+d'\sigma ^2)}^2\big ) - f(\bm {y}){({\|\bm {y}\|}^{2}+d'\sigma ^2)}^2\|_{L^2} \\ &\quad \leq \sum _{i, j=1}^{d'} 2C n_0^{-\frac {1}{3}}|f(\bm {y})y_i^2y_j^2|_{\text {mix}}+2C n_0^{-\frac {1}{3}}d'\sigma ^2\sum _{i=1}^{d'}|f(\bm {y})y_i^2|_{\text {mix}} \\ &\qquad \, + C n_0^{-\frac {1}{3}}{(d')}^2\sigma ^4 |f|_{\text {mix}}\leq \infty , \end {aligned} \label {bounded}\end {equation}


\begin {equation}\int _{\mathbb {R}^{d'}}\|\bm {y}\|^2 \sum _{i=1}^{(n_0+1)^{d'}}f(\bm {y}_i)w_i\mathcal {N}(\bm {y}-\bm {y}_i; \sigma ^2){\mathrm {d}}\bm {y}<\infty . \label {Xeqn151-G.15}\end {equation}


$\|\mathcal {I}_{n_0}\big (f(\bm {y}){(\|\bm {y}\|^2+d'\sigma ^2)}^2\big )\|_{L^2}\rightarrow \|f(\bm {y}){(\|\bm {y}\|^2+d'\sigma ^2)}^2\|_{L^2}$


$n_0\rightarrow \infty $


\begin {equation}\tilde {f}_{\sigma ^2, n_0}(\bm {y}) := \frac {1}{\sum _{j=1}^{(n_0+1)^{d'}}f(\bm {y}_j)w_j}f_{\sigma ^2, n_0}(\bm {y}). \label {f:tilde:def}\end {equation}


$\int _{\mathbb {R}^{d'}}\tilde {f}_{\sigma ^2, n_0}(\bm {y}){\mathrm {d}}\bm {y} =1$


\begin {equation}\begin {aligned} &\big |\int _{\mathbb {R}^{d'}}f(\bm {y}){\mathrm {d}}\bm {y} - \sum _{i=1}^{(n_0+1)^{d'}}f(\bm {y}_i)w_i\big |= \int _{\mathbb {R}^{d'}} f - \mathcal {I}_{n_0}\sqrt {f}\cdot \mathcal {I}_{n_0}\sqrt {f}{\mathrm {d}}\bm {y}\\ &\quad \leq \|\sqrt {f}\|_{L^2}Cn_0^{-\frac {1}{3}}|\sqrt {f}|_{\text {mix}} + \|\mathcal {I}_{n_0}\sqrt {f}\|_{L^2}Cn_0^{-\frac {1}{3}}|\sqrt {f}|_{\text {mix}},\\ &\quad \leq Cn_0^{-\frac {1}{3}}|\sqrt {f}|_{\text {mix}}(2\|\sqrt {f}\|_{L^2} + Cn_0^{-\frac {1}{3}}|\sqrt {f}|_{\text {mix}}). \end {aligned} \label {Xeqn153-G.17}\end {equation}


\begin {equation}\sum _{i=1}^{n_0^{d'}}f(\bm {y}_i)w_i := 1 + n_0^{-\frac {1}{3}}c(\sqrt {f})\leq \infty , \label {Xeqn154-G.18}\end {equation}


$c(\sqrt {f})$


$|\sqrt {f}|_{\text {mix}}$


$\|\sqrt {f}\|_{L^2}=1$


$n_0$


$n_0^{-\frac {1}{3}}c(\sqrt {f})<\frac {1}{2}$


$\tilde {f}_{\sigma ^2, n_0}$


$\E _{\bm {y}\sim \tilde {f}_{\sigma ^2, n_0}}[\|\bm {y}\|^2]$


\begin {equation}\begin {aligned} \E _{\bm {y}\sim \tilde {f}_{\sigma ^2, n_0}}[\|\bm {y}\|^2]&\leq \frac {1}{1 - |c(f)|n_0^{-\frac {1}{3}}}\Big [ \E _{\bm {y}\sim f}[\|\bm {y}\|^2]+ d'\sigma ^2 \\ &\quad + n_0^{-\frac {1}{3}}(C_2(\sigma ; f)+\E _{\bm {y}\sim f}[\|\bm {y}\|^2]+1) \Big ]\\ & \leq \Big [ \E _{\bm {y}\sim f}[\|\bm {y}\|^2] + n_0^{-\frac {1}{3}}(C_2(\sigma ; f)+\E _{\bm {y}\sim f}[\|y\|^2]+1) + d'\sigma ^2\Big ] \\ &\quad + 2|c(\sqrt {f})|n_0^{-\frac {1}{3}}\Big [ \E _{\bm {y}\sim f}[\|\bm {y}\|^2] + n_0^{-\frac {1}{3}}(C_2(\sigma ; f)\\&\quad +\E _{\bm {y}\sim f}[\|\bm {y}\|^2]+1) + d'\sigma ^2\Big ]\\ & = \E [\|\bm {y}\|^2] +d'\sigma ^2+n_0^{-\frac {1}{3}}C_3(\sigma ; f), \end {aligned} \label {n:0:bound}\end {equation}


$C_2(\sigma ; f)$


$f$


$\sigma $


$C_3(\sigma ; f)$


$f, \sqrt {f}$


$\sigma $


\begin {equation}\begin {aligned} &\pi (f, \tilde {f}_{\sigma ^2, n_0})({\bm y}, {\hat {{\bm y}}}) := \min \big (f({\bm y}), \tilde {f}_{\sigma ^2, n_0}({\bm y})\big ) {\delta }({\bm y} - {\hat {{\bm y}}}) \\ &\quad + \frac {1}{A}\big (f({\bm y}) - \min (f, \tilde {f}_{\sigma ^2, n_0})({\bm y})\big )\cdot \big (\tilde {f}_{\sigma ^2, n_0}(\hat {{\bm y}}) - \min (f, \tilde {f}_{\sigma ^2, n_0})(\hat {{\bm y}})\big ),\\ &\text {if} \int _{\mathbb {R}^{d'}} \min (f({\bm y}), \tilde {f}_{\sigma ^2, n_0}({\bm y})){\mathrm {d}}{\bm y}<1,\\ &\pi (f, \tilde {f}_{\sigma ^2, n_0})({\bm y}, \hat {{\bm y}}) := f({\bm y})\delta ({{\bm y} - \hat {{\bm y}}}), \,\, \text {if} \int _{\mathbb {R}^{d'}} \min (f({\bm y}), \tilde {f}_{\sigma ^2, n_0}({\bm y})){\mathrm {d}}{\bm y}=1, \end {aligned} \label {Xeqn156-G.20}\end {equation}


$A := \int _{\mathbb {R}^{d'}} \min \big (f({\bm y}), \tilde {f}_{\sigma ^2, n_0}({\bm y})\big ){\mathrm {d}}{\bm y}$


$\delta $


$\pi (f, \tilde {f}_{\sigma ^2, n_0})$


$f({\bm y})$


$\tilde {f}_{\sigma ^2, n_0}({\bm y})$


\begin {equation}\begin {aligned} &\E _{({\bm y}, \hat {{\bm y}})\sim \pi (f, \tilde {f}_{\sigma ^2, n_0})}\big [\|{\bm y} - \hat {{\bm y}}\|^2\big ] \\ &\quad \leq 2 \int _{\mathbb {R}^{d'}} \|{\bm y}\|^2 (f({\bm y}) - \min (f({\bm y}), \tilde {f}_{\sigma ^2, n_0}({\bm y}))){\mathrm {d}}{\bm y} \\ &\qquad + 2 \int _{\mathbb {R}^{d'}} \|\hat {{\bm y}}\|^2 (\tilde {f}_{\sigma ^2, n_0}({\bm y}) - \min (f({\bm y}), \tilde {f}_{\sigma ^2, n_0}({\bm y}))){\mathrm {d}}{\bm y}\\ &\quad \leq 4\int _{\mathbb {R}^{d'}}\|{\bm y}\|^2|f({\bm y}) - \tilde {f}_{\sigma ^2, n_0}({\bm y})|{\mathrm {d}}{\bm y}. \end {aligned} \label {Xeqn157-G.21}\end {equation}


$\sigma >0$


$f_{\sigma ^2, n_0}\rightarrow f_{\sigma ^2}$


$n_0\rightarrow \infty $


$\tilde {f}_{\sigma ^2, n_0}$


$\tilde {f}_{\sigma ^2, n_0}\rightarrow f_{\sigma ^2, n_0}$


$n_0\rightarrow \infty $


$\lim _{\sigma \rightarrow 0}f_{\sigma ^2}({\bm y})=f({\bm y})$


$\sigma \rightarrow 0$


${\bm y}\in \mathbb {R}^{d'}$


\begin {equation}\tilde {f}_{\sigma ^2, n_0(\sigma )}\rightarrow f \label {Xeqn158-G.22}\end {equation}


$\sigma \rightarrow 0$


$n_0(\sigma )\rightarrow \infty $


$\mathbb {R}^{d'}$


$\E _{{\bm y}\sim f}\|{\bm y}\|^2]<\infty $


$\E _{{\bm y}\sim \tilde {f}_{\sigma ^2, n_0(\sigma )}}[\|{\bm y}\|^2]\rightarrow \E _{{\bm y}\sim f}[\|{\bm y}\|^2] + d'\sigma ^2$


$n_0(\sigma )\rightarrow \infty $


$\epsilon >0$


$A\subseteq \mathbb {R}^{d'}$


$|\int _{A}\|{\bm y}\|^2f({\bm y}){\mathrm {d}}{\bm y} - \E _{{\bm y}\sim f}[\|{\bm y}\|^2]|<\epsilon $


$\sigma $


$n_0(\sigma )$


$d'\sigma ^2<\epsilon $


\begin {equation}\int _A \|{\bm y}\|^2\cdot |f({\bm y}) - \tilde {f}_{\sigma ^2, n_0(\sigma )}({\bm y})|{\mathrm {d}}{\bm y}\leq \epsilon . \label {Xeqn159-G.23}\end {equation}


\begin {equation}\begin {aligned} &\E _{({\bm y}, \hat {{\bm y}})\sim \pi (f, \tilde {f}_{\sigma ^2, n_0(\sigma )})}[\|{\bm y} - \hat {{\bm y}}\|^2] \leq 4\int _A \|{\bm y}\|^2|f({\bm y}) - \tilde {f}_{\sigma ^2, n_0(\sigma )}({\bm y})|{\mathrm {d}}{\bm y} \\ &\quad \quad + 4\int _{\mathbb {R}^{d'}-A}\|{\bm y}\|^2f({\bm y}){\mathrm {d}}{\bm y} + 4\int _{\mathbb {R}^{d'}-A}\|{\bm y}\|^2\tilde {f}_{\sigma ^2, n_0(\sigma )}({\bm y}){\mathrm {d}}{\bm y}\\ &\quad \leq 4\epsilon + 4\epsilon + 4 \Bigg (\E _{{\bm y}\sim f}[\|{\bm y}\|^2] + d'\sigma ^2 + n_0(\sigma )^{-\frac {1}{3}}C_3(\sigma ; f)\\&\quad \quad \quad -\left (\int _A\|{\bm y}\|^2f({\bm y}){\mathrm {d}}{\bm y}-\epsilon \right )\Bigg )\\ &\quad \quad \leq 16\epsilon + 4d'\sigma ^2 + 4n_0(\sigma )^{-\frac {1}{3}}C_3(\sigma ; f)\leq 24\epsilon , \end {aligned} \label {Xeqn160-G.24}\end {equation}


$n_0(\sigma )$


$n_0(\sigma )^{-\frac {1}{3}}C_3(\sigma ; f)\leq \epsilon $


\begin {equation}\tilde {f}_{\sigma ^2, n_0(\sigma )}({\bm y}) = \sum _{i=1}^{(n_0(\sigma )+1)^{d'}}\frac {f({\bm y}_i)w_i}{\sum _{j=1}^{(n_0(\sigma )+1)^{d'}}f({\bm y}_j)w_j}\cdot \mathcal {N}({\bm y}-{\bm y}_i;\sigma ^2I_{d'\times d'}), \label {Xeqn161-G.25}\end {equation}


${\bm y}_{{\bm x}}\sim f_{{\bm x}}, {\bm y}\in \mathbb {R}^{d'}$


${\bm x}\in D\subseteq \mathbb {R}^d, {\bm x}\sim \gamma (\cdot )$


$f_{{\bm x}}$


$\epsilon $


$\Delta x$


$W_2^2(f_{{\bm x}}, f_{\tilde {{\bm x}}})\leq \epsilon , \,\,\forall {\bm x}, \tilde {{\bm x}}\in D, \|{\bm x}-\tilde {{\bm x}}\|\leq \Delta x$


$\bm x$


$f_{{\bm x}}$


$\epsilon >0$


$\Delta x>0$


$W_2^2(f_{{\bm x}}, f_{\tilde {{\bm x}}})<\frac {\epsilon }{4}$


$\|{\bm x}-\tilde {{\bm x}}\|\leq \sqrt {d}\Delta x, \forall {\bm x}\, \tilde {{\bm x}}\in D$


$X:= \{{\bm x}_i\}_{i=1}^K$


$\Delta {\bm x}$


$D\subseteq \cup _{i=1}^K\otimes _{j=1}^d[x_i^j, x_i^j+\Delta {\bm x})$


$\otimes _{j=1}^d[x_{i_1}^j, x_{i_1}^j+\Delta {\bm x})\cap \otimes _{j=1}^d[x_{i_2}^j, x_{i_2}^j+\Delta {\bm x})=\emptyset $


$i_1\neq i_2$


${\bm x}\in D$


${\bm x}_i\in X$


$W_2^2(f_{{\bm x}}, f_{{\bm x}_i})<\frac {\epsilon }{4}$


${\bm x}_i=(x_i^1,{\ldots },x_i^d)\in X$


\begin {equation}\tilde {f}_{n_{0, i}, \sigma _i^2}({\bm y}_{{\bm x}_i}) = \sum _{r=1}^{n_{0, i}}p_{i, r}\mathcal {N}\left ({\bm y}_{\bm {x}_i}-{\bm b}_{i, r}, A_{i, r}^TA_{i, r}\right ), \,\,\sum _{r=1}^{n_{0, i}}p_{i, r}=1, \label {Xeqn162-H.1}\end {equation}


$W_2^2(f_{{\bm x}_i}, \tilde {f}_{n_{0, i}, \sigma _i^2})< \frac {\epsilon }{4}, i=1,{\ldots },K$


$n_0:= \max _{1\leq i\leq K}n_{0, i}$


\begin {equation}\begin {aligned} f_{n_{0}, \sigma _i^2}({\bm y}_{{\bm x}_i}) &= \sum _{r=1}^{n_{0, i}-1}p_{i, r}\mathcal {N}\left ({\bm y}_{\bm {x}_i} - {\bm b}_{i, r}, A_{i, r}^TA_{i, r}\right ) \\ &\quad + \sum _{r=n_{0, i}}^{n_0}\tfrac {p_{i, n_{0, i}}}{n_0-n_{0, i}+1}\mathcal {N}\left ({\bm y}_{\bm {x}_i} - {\bm b}_{i, n_{0, i}}, A_{i, n_{0, i}}^TA_{i, n_{0, i}}\right ). \end {aligned} \label {f:def1}\end {equation}


$W_2^2(f_{{\bm x}_i}, f_{n_{0, i}, \sigma _i^2})< \frac {\epsilon }{4}, i=1,{\ldots },K$


$f_{n_{0, i}, \sigma _i^2}$


$W_2^2(f_{{\bm x}_i}, f_{n_{0, i}, \sigma _i^2}) = W_2^2(\tilde {f}_{{\bm x}_i}, f_{n_{0, i}, \sigma _i^2})$


$\tilde {{\bm y}}_{{\bm x}}$


$\tilde {f}_{{\bm x}}, {\bm x}\in D$


\begin {equation}\tilde {f}_{{\bm x}} = f_{n_{0}, \sigma ^2_i}, \,\, \text {if}\,\,{\bm x}\in D\cap \otimes _{j=1}^d[x_i^j, x_i^j+\Delta {\bm x}). \label {Xeqn164-H.3}\end {equation}


\begin {align}\int _D W_2^2(\tilde {f}_{{\bm x}}, f_{{\bm x}})\gamma ({\mathrm {d}}{\bm x})&< \sum _{i=1}^K\int _{D\cap \otimes [x_i^j, x_i^j+\Delta x]} 2 \big (W_2^2(\tilde {f}_{{\bm x}}, f_{{\bm x}_i})\nonumber \\ &\quad + W_2^2(f_{{\bm x}}, f_{{\bm x}_i})\big )\gamma ({\mathrm {d}}{\bm x})=\epsilon . \label {Xeqn165-H.4}\end {align}


\begin {equation}Y(\epsilon , X):= \sup _{i=1,{\ldots },K , s=1,{\ldots },n_{0}} \left (\|{\bm b}_{i, s}\|^2 + \|A^T_{i, s}A_{i, s}\|_F^2\right ), \label {Y:epsilon}\end {equation}


${\bm b}_{i, s}$


$A^T_{i, s}A_{i, s}$


$\epsilon _1>0$


\begin {equation}D(\epsilon _1) := D\cap \big (\cup _{i=1}^K\otimes _{j=1}^d [x_{i}^{j}, x_{i}^{j}+\Delta x-\epsilon _1]\big ) \label {Xeqn167-H.6}\end {equation}


$\gamma (D - D(\epsilon _1)):= \int _{D - D(\epsilon _1)}1\gamma ({\mathrm {d}}{\bm x}) \leq \epsilon $


$\hat {f}_{{\bm x}}$


\begin {equation}\begin {aligned} &W_2^2(\hat {f}_{{\bm x}}, \tilde {f}_{{\bm x}_i})\leq 6\epsilon Y(\epsilon , X),\,\, {\bm x}\in D^i(\epsilon _1):= \{{\bm x}\in D(\epsilon _1)|\|{\bm x}_i-{\bm x}\|\leq \|{\bm x}_j-{\bm x}\|\}\\ &W_2^2(\hat {f}_{{\bm x}}, f_{{\bm x}_i}) \leq 2\max _i\E _{{\bm y}_{{\bm x}}\sim f_{n_{0}, \sigma _i^2}}[\|{\bm y}_{{\bm x}}\|^2] + 2 \E _{{\bm y}_{{\bm x}}\sim \hat {f}_{{\bm x}}}[\|{\bm y}_{{\bm x}}\|^2]\\ &\qquad \qquad \quad \leq 10\max _i\E _{{\bm y}_{{\bm x}}\sim f_{n_{0}, \sigma _i^2}}[\|{\bm y}_{{\bm x}}\|^2]\leq 10Y(\epsilon , X),\,\, x\notin D(\epsilon _1). \end {aligned} \label {Xeqn168-H.7}\end {equation}


\begin {equation}\begin {aligned} \int _D W_2^2(\hat {f}_{{\bm x}}, \tilde {f}_{{\bm x}})\gamma ({\mathrm {d}}{\bm x})&\leq \int _{D(\epsilon _1)}W_2^2(\hat {f}_{{\bm x}}, \tilde {f}_{{\bm x}})\gamma ({\mathrm {d}}{\bm x}) + \int _{D-D(\epsilon _1)}W_2^2(\hat {f}_{{\bm x}}, \tilde {f}_{{\bm x}}) \gamma ({\mathrm {d}}{\bm x})\\ &=6\epsilon Y(\epsilon , X) + 10\epsilon Y(\epsilon , X)=16\epsilon Y(\epsilon , X), \end {aligned} \label {Xeqn169-H.8}\end {equation}


\begin {align}\int _D W_2^2(\hat {f}_{{\bm x}}, f_{{\bm x}})\gamma ({\mathrm {d}}{\bm x})&\leq 2\int _D \big (W_2^2(\hat {f}_{{\bm x}}, \tilde {f}_{{\bm x}})+ W_2^2(\tilde {f}_{{\bm x}}, f_{{\bm x}})\big )\gamma ({\mathrm {d}}{\bm x})\nonumber \\ &\leq 32Y(\epsilon , X)\epsilon +2\epsilon . \label {Y:epsilon1}\end {align}
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$t_i=i\frac {T}{N_T}, i=0,{\ldots }, N_T$


$[0, T]$


\begin {align}&{\mathrm {d}} X_t = 0.05 {\mathrm {d}} t + \sigma _0\sqrt {|X_t|} {\mathrm {d}} B_t + \int _{U} \xi X_t{\mathrm {d}} \tilde {N}(\nu ({\mathrm {d}}\xi ){\mathrm {d}}{t}),\,\,\, t\in [0, 2],\nonumber \\ &\xi \sim \mathcal {N}(\beta _0, \sigma _1^2),\,\, X_0\sim \mathcal {N}(2, \sigma _2^2). \label {example4:model:appendix}\end {align}
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$\tilde {N}_t$


\begin {align}{\mathrm {d}} \hat {X}_t = 0.05 {\mathrm {d}} t + \hat {\sigma }(\hat {X}_t) {\mathrm {d}} \hat {B}_t + \int _{U} \hat {\xi } \hat {X}_t{\mathrm {d}} \hat {N}(\nu ({\mathrm {d}}\xi ){\mathrm {d}}{t}),\,\,\, t\in [0, 2], \,\, \hat {X}_0=X_0.\label {example4:model:appendix:approx}\end {align}
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advantage of both statistical methods and data-driven methods and pro-
vide more interpretable machine-learning tools.

The Wasserstein distance, which can effectively measure the discrep-
ancy between two probability distributions (Balasubramanian et al., 
2024; Panaretos & Zemel, 2019; Villani , 2009), was utilized for var-
ious uncertainty quantification (UQ) tasks. In (Bernton et al., 2019), 
the Wasserstein distance was proposed to estimate model parameters 
that govern a probabilistic model. Compared to empirical maximum 
likelihood estimates, using the Wasserstein distance to estimate model 
parameters in uncertainty models can be more efficient and accurate 
(Blanchet & Kang, 2021). However, previous methods mainly focused 
on point estimates of model parameters (inferring the exact values of the 
parameters) and could not quantify the uncertainty in the model param-
eters, i.e., they cannot reconstruct a distribution of the model parame-
ters from data. Recently, a time-decoupled Wasserstein-2 (𝑊2) distance 
method, which compares the distributions of two stochastic processes 
across different time points, has been revealed to be an efficient loss 
function for reconstructing intrinsically noisy stochastic processes such 
as pure-diffusion processes and jump-diffusion processes using parame-
terized neural networks (Xia et al., 2024a,b). Furthermore, in Xia and 
Shen (2024), a local squared 𝑊2 method, which adopts a “neighborhood 
technique” to enlarge the amount of available data, was proposed to in-
fer the distribution of 𝑦 given observed data 𝑥 in the uncertainty model 
𝑦 = 𝑓 (𝑥, 𝜔) where 𝜔 are uncertain latent unobserved variables. However, 
for the specific problem of inferring unknown parameters in determinis-
tic or stochastic dynamical models, these two methods are not suitable: 
the time-decoupled 𝑊2 distance method assumes that there is no uncer-
tainty in the underlying model (i.e., the ODE or SDE to be reconstructed 
is fixed), and the local squared 𝑊2 method is not directly applicable to 
parameter inference problems. Two major difficulties arise: first, an effi-
cient model is required to approximate the distribution of parameters in 
a dynamical system; second, it is necessary to distinguish uncertainty in 
model parameters from uncertainty in the initial state of the dynamical 
systems and intrinsic stochasticity in the dynamical system, such as the 
Wiener process in SDEs.

In this work, we propose and analyze a local time-decoupled squared 
𝑊2 method, which builds upon the time-decoupled squared 𝑊2 method 
(Xia et al., 2024b) for efficiently reconstructing the underlying dynamics 
from noisy time-series data and the local squared 𝑊2 method (Xia & 
Shen, 2024) for handling the uncertainty in the initial state. This in 
turn is implemented to infer the distribution of model parameters in 
deterministic or stochastic dynamical systems given a finite number of 
observations. As an illustration, consider the following ODE:
d𝑿(𝑡; 𝜃) = 𝒇 (𝑿(𝑡; 𝜃), 𝑡; 𝜃)d𝑡, 𝑿 ∈ ℝ𝑑 , ∈ [0, 𝑇 ], 𝑿(0) ∼ 𝜈0, 𝜃 ∼ 𝜇, (1.1)

where 𝜃 ∈ ℝ𝓁 is a continuous random variable representing uncertain 
parameters in the ODE and 𝒇 ∶ ℝ𝑑+1+𝓁 → ℝ𝑑 . 𝜈0 is a probability mea-
sure defined on the Borel 𝜎-algebra (ℝ𝑑 ). For each realization of the 
ODE (1.1), 𝜃 is sampled independently. Thus, we obtain different tra-
jectories by solving the ODE (1.1) multiple times due to uncertainty in 
model parameters. We use another ODE model as an approximation to
Eq.  (1.1): 
d𝑿̂(𝑡; 𝜃̂) = 𝒇 (𝑿̂(𝑡; 𝜃̂), 𝑡; 𝜃̂)d𝑡, 𝑿̂ ∈ ℝ𝑑 , 𝑡 ∈ [0, 𝑇 ], 𝑿̂(0) = 𝑿0, 𝜃̂ ∼ 𝜇̂. (1.2)

Here, 𝜃̂ ∈ ℝ𝓁 is another continuous random variable and denotes un-
certain parameters in the approximate ODE. We aim to construct the 
probability density function 𝜇̂, i.e. the distribution of 𝜃̂ ∈ ℝ𝓁 , such that 
𝜇̂ can match 𝜇 well in Eq.  (1.1). Specifically, we show that minimizing 
our proposed loss function can lead to efficient training of a stochastic 
neural network (SNN) model with weight uncertainty.

SNNs are effective in uncertainty quantification, generative model-
ing, and time-series analysis (Gal & Ghahramani, 2016; Rezende et al., 
2014; Senan et al., 2017; Vadivel et al., 2020). Instead of deterministic 
outputs, SNNs introduce randomness in the weights and/or biases (Blun-
dell et al., 2015; Yu et al., 2021) or utilize stochastic neurons whose out-
puts are binary (Tang & Salakhutdinov, 2013). Theoretical results exist 

for the approximation errors for certain types of SNNs, such as the ap-
proximation error of a single-layer SNN (Gonon et al., 2023) as well as 
the universal approximation ability of dropout neural networks (Manita 
et al., 2022). In this work, we prove that the SNN model we use can 
serve as an effective model to approximate a general random field model 
in the 𝑊2 metric under moderate assumptions. Our result generalizes 
the universal approximation ability property of deterministic multilayer 
feedforward neural networks for approximating deterministic functions 
(Hornik et al., 1989; Leshno et al., 1993) to SNNs for approximating 
random fields. As a special case, when the input of the SNN is fixed, 
we show that the output of the SNN can approximate any continuous 
random variable under moderate assumptions, making it an ideal surro-
gate model for reconstructing the distribution of unknown parameters 
in dynamical systems. Compared with traditional Bayesian methods, our 
proposed approach has the advantage of not requiring any knowledge 
or prior distributions of model parameters and directly reconstructing 
model parameter distributions from time-series data. Compared to other 
data-driven methods, such as Bayesian neural networks (Neal, 2012), 
generative modeling methods (Böhm et al., 2019), and Wasserstein gen-
erative adversarial networks (WGANs) that train a generator and a dis-
criminator (Arjovsky et al., 2017; Boukraichi et al., 2022), our method is 
more physics-informed and provides more insights and interpretability 
of the dynamical system. Our method directly outputs the distribution 
of unknown parameters governing the dynamical system. Furthermore, 
our method does not require deep neural networks and we shall show 
that shallow SNNs with hundreds of neurons are capable of reconstruct-
ing the joint distribution of several model parameters when inputting 
only a few hundred trajectories as training data.

The main contributions of our work are as follows:
• We propose and analyze a local time-decoupled squared 𝑊2 method 
for the direct reconstruction of model parameters in specific dynami-
cal systems including ODEs, SDEs, and PDEs from time-series or spa-
tiotemporal data. Our method takes into account both uncertainties 
in the initial state as well as intrinsic fluctuations, e.g. Wiener pro-
cesses, of the dynamical system when reconstructing model param-
eters.

• We analyze an SNN model whose weights are sampled from inde-
pendent normal distributions. We prove that this SNN model can ap-
proximate any multidimensional continuous random variable under 
moderate assumptions. Furthermore, this SNN model can be trained 
by direct minimization of our local time-decoupled squared 𝑊2 loss 
function.

• Through numerical experiments, we showcase the effectiveness of 
our proposed method for reconstructing the distribution of model pa-
rameters in several deterministic and stochastic dynamical systems.
The structure of this paper is as follows. In Section 2, we analyze a 

local time-decoupled squared 𝑊2 loss function for reconstructing model 
parameters in dynamical systems. In Section 3, we prove that an SNN 
model can approximate a continuous random variable in the squared 
𝑊2 sense, which makes this SNN model an ideal approximate model 
for reconstructing the distribution of uncertain parameters in dynamical 
systems. In Section 4, we carry out numerical experiments and showcase 
the effectiveness of training the SNN model by minimizing our proposed 
local function on the reconstruction of uncertain model parameters in 
different dynamical systems. In Section 5, we summarize our results and 
propose potential future research directions.

2.  A local time-decoupled squared 𝑾𝟐 loss function

In this section, we propose and analyze a local time-decoupled 
squared 𝑊2 method for reconstructing the distribution of uncertain 
parameters in specific dynamical systems. Our local time-decoupled 
squared 𝑊2 method integrates the time-decoupled squared 𝑊2-distance 
method proposed in Xia et al. (2024a,b) and the local squared 𝑊2-
distance method in Xia and Shen (2024). Therefore, both intrinsic
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fluctuations in the dynamical systems and uncertainties in the initial 
condition can be taken into account. First, we introduce the 𝑊2 dis-
tance between distributions associated with two multidimensional ran-
dom variables.

Definition 2.1. For two 𝑑-dimensional random variables
𝑿 = (𝑋1,…, 𝑋𝑑 ), 𝑿̂ = (𝑋̂1,…, 𝑋̂𝑑 ) ∈ ℝ𝑑 (2.1)

with associated probability measures 𝜈, 𝜈̂, respectively, the 𝑊2-distance 
𝑊2(𝜈, 𝜈̂) between their probability measures is defined as

𝑊2(𝜈, 𝜈̂) ∶= inf
𝜋(𝜈,𝜈̂)

𝔼(𝑿,𝑿̂)∼𝜋(𝜈,𝜈̂)
[

‖𝑿 − 𝑿̂‖

2]
1
2 . (2.2)

In Eq.  (2.2) and throughout this paper, the norm ‖ ⋅ ‖ denotes the 𝑙2 norm 
of a vector: ‖𝑿‖ ∶=

(

∑𝑑
𝑖=1(𝑋𝑖)2

)
1
2 . 𝜋(𝜈, 𝜈̂) is a coupling probability mea-

sure which iterates over all coupled distributions of 𝑿(𝑡), 𝑿̂(𝑡), defined by the 
condition:
{

𝑷𝜋(𝜈,𝜈̂)
(

𝐴 ×ℝ𝑑) = 𝑷𝜈 (𝐴),
𝑷𝜋(𝜈,𝜈̂)

(

ℝ𝑑 × 𝐴
)

= 𝑷𝜈̂(𝐴),
∀𝐴 ∈ (ℝ𝑑 ), (2.3)

where (ℝ𝑑 ) denotes the Borel 𝜎-algebra associated with the space of 𝑑-
dimensional functions in ℝ𝑑 .

Next, we define the local squared 𝑊2 distance for the probability 
measures associated with the trajectories of two dynamical systems, 
which builds upon the local squared 𝑊2 distance introduced in Xia and 
Shen (2024).

Definition 2.2. The local squared 𝑾𝟐 distance between the probability 
measures associated with two dynamical systems {𝑿(𝑡)}𝑡∈[0,𝑇 ], {𝑿̂(𝑡)}𝑡∈[0,𝑇 ]
at a specific time 𝑡 is defined by:

𝑊 2,e
2,𝛿

(

𝑿(𝑡), 𝑿̂(𝑡)
)

∶= ∫ℝ𝑑
𝑊 2

2

(

𝜈e𝑿0 ,𝛿
(𝑡), 𝜈̂e𝑿0 ,𝛿

(𝑡)
)

𝜈e0(d𝑿0). (2.4)

Here, 𝜈e0(⋅) is the empirical distribution of the initial condition for 𝑿(𝑡) and 
𝑿̂(𝑡). 𝜈e𝑿0 ,𝛿

(𝑡) and 𝜈̂e𝑿0 ,𝛿
(𝑡) are the empirical conditional probability distri-

butions of 𝑿(𝑡) and 𝑿̂(𝑡) at time 𝑡 conditioned on ‖𝑿(0) −𝑿0‖ ≤ 𝛿 and 
‖𝑿̂(0) −𝑿0‖ ≤ 𝛿 for a given initial state 𝑿0, respectively.

Now, we define the local time-decoupled squared 𝑾2 distance be-
tween the probability measures associated with trajectories of two dy-
namical systems.

Definition 2.3. Let 0 = 𝑡0 < 𝑡1 < … < 𝑡𝑛 = 𝑇  be a time discretization mesh 
in [0, 𝑇 ]. The local time-decoupled squared 𝑾𝟐 distance between the dis-
tributions associated with two dynamical systems {𝑿}𝑡∈[0,𝑇 ], {𝑿̂}𝑡∈[0,𝑇 ] at 
time 𝑡 is defined by:

𝑊̃ 2,e
2,𝛿 (𝑿, 𝑿̂) ∶= ∫

𝑇

0
𝑊 2,e

2,𝛿 (𝑿(𝑡), 𝑿̂(𝑡))d𝑡

= lim
𝑛→∞,max(𝑡𝑖+1−𝑡𝑖)→0

𝑛−1
∑

𝑖=0
𝑊 2,e

2,𝛿 (𝑿(𝑡𝑖), 𝑿̂(𝑡𝑖))(𝑡𝑖+1 − 𝑡𝑖), (2.5)

where 𝑊 2,e
2,𝛿 (𝑿(𝑡), 𝑿̂(𝑡)) is the local squared 𝑊2 distance in Definition 2.2. 

Empirically, we use

𝑊̃ 2,e
2,𝛿 (𝑿, 𝑿̂) ≈

𝑛−1
∑

𝑖=0
𝑊 2,e

2,𝛿 (𝑿(𝑡𝑖), 𝑿̂(𝑡𝑖))(𝑡𝑖+1 − 𝑡𝑖), (2.6)

as an approximation to Eq.  (2.5) for numerically calculating the local time-
decoupled squared 𝑊2 distance loss function. Under some technical condi-
tions, the approximation error of using the time-discretized RHS of Eq.  (2.6) 
to approximate the local time-decoupled squared 𝑊2 distance loss function in 
Eq.  (2.5) is 𝑂(max𝑛−1𝑖=1 (𝑡𝑖+1 − 𝑡𝑖)) for ODEs and 𝑂

(

√

max𝑛−1𝑖=0 (𝑡𝑖+1 − 𝑡𝑖)
) for 

jump-diffusion processes, which will be analyzed in the proof of Theorem 2.1 
for ODEs and in the proof of Corollary 2.1 for jump-diffusion processes, re-
spectively.

The loss function Eq.  (2.6) was also used to reconstruct the dy-
namics of an ODE using a parameterized neural network in Xia and 
Shen (2024). Yet, there is no understanding of why minimizing the loss 
function Eq.  (2.6) leads to the successful reconstruction of the distribu-
tion of parameters underlying a dynamical system. Additionally, intrinsic 
stochasticity, such as Wiener processes in stochastic dynamical systems, 
was not considered in Xia and Shen (2024). In this section, we shall 
show that: i) the local time-decoupled squared 𝑊2 distance in Eq.  (2.5) 
is well-defined in several deterministic or stochastic dynamical systems 
and ii) minimizing the loss function in Eq.  (2.6) is a necessary condi-
tion for the reconstruction of the distribution of parameters in dynamical 
systems.

First, we prove that the local time-decoupled squared 𝑊2 distance is 
well-defined in some typical dynamical systems including ODEs and cer-
tain SDEs. We can prove that the local squared 𝑊2 distance between the 
probability measures associated with {𝑿}𝑡∈[0,𝑇 ] and {𝑿̂}𝑡∈[0,𝑇 ], which 
are trajectories generated by solving the two ODEs (1.1) and (1.2), is 
well-defined. In Eqs.  (1.1), (1.2), and the models we study below, we 
assume that the model parameters are independent of the initial condi-
tion, e.g., in Eqs.  (1.1), (1.2) 𝜃 is independent of 𝑿(0) and 𝜃̂ is indepen-
dent of 𝑿̂(0).

Theorem 2.1. Suppose
sup

𝑿(0),𝜃,𝑡
‖𝑿(𝑡)‖2 ≤ 𝑋, sup

𝑿(0),𝜃̂,𝑡
‖𝑿̂(𝑡)‖2 ≤ 𝑋̂ (2.7)

are uniformly bounded, where 𝑿(𝑡) and 𝑿̂(𝑡) are solutions to the ODEs (1.1) 
and (1.2), respectively. Furthermore, we assume that 𝒇 is continuous and 
uniformly bounded. Then, the limit

lim
max(𝑡𝑖+1−𝑡𝑖)→0

𝑛−1
∑

𝑖=0
𝑊 2,e

2,𝛿 (𝑿(𝑡𝑖), 𝑿̂(𝑡𝑖))(𝑡𝑖+1 − 𝑡𝑖) (2.8)

on the RHS of Eq.  (2.5) exists.
We provide a proof of Theorem 2.1 in Appendix  A, which is similar 
to the proof of Theorem 3.1 in Xia et al. (2024a). Theorem 2.1 can be 
extended to reveal that the local time-decoupled squared 𝑊2 distance 
between probability measures associated with two noisy jump-diffusion 
processes is also well-defined. We can prove the following corollary.
Corollary 2.1. Consider the following two 𝑑-dimensional jump-diffusion 
processes:

d𝑿(𝑡) = 𝒇 (𝑿(𝑡), 𝑡; 𝜃)d𝑡 + 𝝈(𝑿(𝑡), 𝑡; 𝜃)d𝑩𝑡

+ ∫𝑈
𝜷(𝑿(𝑡), 𝜉, 𝑡; 𝜃)𝑁̃(d𝑡, 𝛾(d𝜉)), 𝑿(0) ∼ 𝜈0

(2.9)

and

d𝑿̂(𝑡) = 𝒇 (𝑿̂(𝑡), 𝑡; 𝜃̂)d𝑡 + 𝝈(𝑿̂(𝑡), 𝑡; 𝜃̂)d𝑩̂𝑡

+ ∫𝑈
𝜷(𝑿̂(𝑡), 𝜉, 𝑡; 𝜃̂)𝑁̂

(

d𝑡, 𝛾(d𝜉)
)

, 𝑿̂(0) = 𝑿(0).
(2.10)

In Eq.  (2.9), 𝒇 ∶ ℝ𝑑+𝓁+1 → ℝ𝑑 and 𝝈 ∶ ℝ𝑑+𝓁+1 → ℝ𝑑×𝑚 denote the drift 
and diffusion functions of the SDE, respectively; 𝜈0 is a probability mea-
sure defined on the Borel 𝜎-algebra (ℝ𝑑 ); 𝑩(𝑡) represents an 𝑚-dimensional 
standard Brownian motion; 𝑁̃(d𝑡, 𝛾(d𝜉)) is a compensated Poisson process 
independent of 𝑩𝑡 defined as follows:
𝑁̃(d𝑡, 𝛾(d𝜉)) ∶= 𝑁(d𝑡, 𝛾(d𝜉)) − 𝛾(d𝜉)d𝑡, (2.11)

where 𝑁(d𝑡, 𝛾(d𝜉)) is a Poisson process with intensity 𝛾(d𝜉)d𝑡, and 𝛾(d𝜉)
is a measure defined on 𝑈 ⊆ ℝ, the measure space of the Poisson process. 
𝑁̂(d𝑡, 𝛾(d𝜉)) is another compensated Poisson process of intensity 𝛾(d𝜉)d𝑡 and 
independent of 𝑩𝑡, 𝑁̃𝑡 in Eq.  (2.9) and 𝑩̂𝑡 in Eq.  (2.10). 𝜃, 𝜃̂ ∈ ℝ𝓁 are uncer-
tain model parameters. We assume that 𝒇 ,𝝈, 𝜷 are continuous and uniformly 
bounded. Then

𝑊̃ 2,e
2,𝛿 (𝑿, 𝑿̂) ∶= lim

max(𝑡𝑖+1−𝑡𝑖)→0

𝑛−1
∑

𝑖=0
𝑊 2,e

2,𝛿 (𝑿(𝑡𝑖), 𝑿̂(𝑡𝑖))(𝑡𝑖+1 − 𝑡𝑖) (2.12)
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exists. Furthermore,

|

|

|

𝑛−1
∑

𝑖=0
𝑊 2,e

2,𝛿 (𝑿(𝑡𝑖), 𝑿̂(𝑡𝑖))(𝑡𝑖+1 − 𝑡𝑖) − 𝑊̃ 2,e
2,𝛿 (𝑿, 𝑿̂)||

|

≤ 2(𝑋 + 𝑋̂)𝑇 max
𝑖

(

√

𝐹𝑖Δ𝑡 + Σ𝑖 + 𝐵𝑖 +
√

𝐹𝑖Δ𝑡 + Σ̂𝑖 + 𝐵̂𝑖

)

,

(2.13)

where Δ𝑡 ∶= max𝑛−1𝑖=0 (𝑡𝑖+1 − 𝑡𝑖), and 𝜈(𝑡𝑖) and 𝜈̂(𝑡𝑖) are the probability mea-
sures of 𝑿(𝑡𝑖) and 𝑿̂(𝑡𝑖), respectively. In Eq.  (2.13),

𝐹𝑖 ∶= sup
𝑿0 ,𝜃

𝔼
[

∫

𝑡𝑖+1

𝑡𝑖

𝑑
∑

𝓁=1
𝑓 2
𝓁 (𝑿(𝑡−), 𝑡−; 𝜃)d𝑡

]

,

𝐹𝑖 ∶= sup
𝑿0 ,𝜃̂

𝔼
[

∫

𝑡𝑖+1

𝑡𝑖

𝑑
∑

𝓁=1
𝑓 2
𝓁 (𝑿̂(𝑡−), 𝑡−; 𝜃̂)d𝑡

]

,

Σ𝑖 ∶= sup
𝑿0 ,𝜃

𝔼
[

∫

𝑡𝑖+1

𝑡𝑖

𝑑
∑

𝓁=1

𝑚
∑

𝑗=1
𝜎2𝓁,𝑗 (𝑿(𝑡−), 𝑡−; 𝜃)d𝑡

]

,

Σ̂𝑖 ∶= sup
𝑿0 ,𝜃̂

𝔼
[

∫

𝑡𝑖+1

𝑡𝑖

𝑑
∑

𝓁=1

𝑚
∑

𝑗=1
𝜎̂2𝓁,𝑗 (𝑿̂(𝑡−), 𝑡−; 𝜃)d𝑡

]

,

𝐵𝑖 ∶= sup
𝑿0 ,𝜃

𝔼
[

∫

𝑡𝑖+1

𝑡𝑖

𝑑
∑

𝓁=1
∫𝑈

𝛽2𝓁(𝑿(𝑡−), 𝜉, 𝑡−; 𝜃)𝛾(d𝜉)d𝑡
]

,

𝐵̂𝑖 ∶= sup
𝑿0 ,𝜃̂

𝔼
[

∫

𝑡𝑖+1

𝑡𝑖

𝑑
∑

𝓁=1
∫𝑈

𝛽2𝓁(𝑿̂(𝑡−), 𝜉, 𝑡−; 𝜃̂)𝛾(d𝜉)d𝑡
]

,

𝑋 ∶= sup
𝑋0 ,𝜃,𝑡

𝔼[‖𝑿(𝑡)‖2]
1
2 , 𝑋̂ ∶= sup

𝑋0 ,𝜃,𝑡
𝔼[‖𝑿̂(𝑡)‖2]

1
2 ,

(2.14)

where 𝑓𝓁(𝑿(𝑡−), 𝑡−; 𝜃), 𝜎𝓁,𝑗 (𝑿(𝑡−), 𝑡−; 𝜃), and 𝛽𝓁(𝑿(𝑡−), 𝜉, 𝑡−; 𝜃) refer to the 
left-hand limits:

𝑓𝓁(𝑿(𝑡−), 𝑡−; 𝜃) = lim
𝑠→𝑡,𝑠<𝑡

𝑓𝓁(𝑿(𝑠), 𝑠; 𝜃),

𝜎𝓁,𝑗 (𝑿(𝑡−), 𝑡−; 𝜃) = lim
𝑠→𝑡,𝑠<𝑡

𝜎𝓁,𝑗 (𝑿(𝑠), 𝑠; 𝜃),

𝛽𝓁(𝑿(𝑡−), 𝑡−, 𝜉; 𝜃) = lim
𝑠→𝑡,𝑠<𝑡

𝛽𝓁(𝑿(𝑠), 𝑠, 𝜉; 𝜃).

(2.15)

The proof of Corollary 2.1 is in Appendix B. Next, we show that the 
local time-decoupled squared 𝑊2 distance 𝑊̃ 2,e

2,𝛿 (𝑿, 𝑿̂) in Definition 2.3 
can be bounded by the squared 𝑊2 distance between the two proba-
bility measures associated with the two sets of parameters 𝜃 and 𝜃̂ in 
Eqs.  (1.1) and (1.2), which implies the necessity of minimizing the lo-
cal time-decoupled squared 𝑊2 distance 𝑊̃ 2,e

2,𝛿 (𝑿, 𝑿̂) if we wish to match 
the distribution of 𝜃 using the distribution of the reconstructed 𝜃̂.

Theorem 2.2. Suppose the drift, diffusion, and jump functions in the two 
jump-diffusion processes Eqs.  (2.9) and  (2.10) satisfy the following Lipschitz 
condition: 
𝑑
∑

𝑖=1
|𝑓𝑖(𝑿, 𝑡; 𝜃) − 𝑓𝑖(𝑿̂, 𝑡; 𝜃̂)| ≤ 𝐶(‖𝑿 − 𝑿̂‖ + ‖𝜃 − 𝜃̂‖),

𝑑
∑

𝑖=1
|𝜎𝑖,𝑗 (𝑿, 𝑡; 𝜃) − 𝜎𝑖,𝑗 (𝑿̂, 𝑡; 𝜃̂)| ≤ 𝐶(‖𝑿 − 𝑿̂‖ + ‖𝜃 − 𝜃̂‖), 𝑗 = 1,…, 𝑚,

𝑑
∑

𝑖=1
|𝛽𝑖(𝑿, 𝜉, 𝑡; 𝜃) − 𝛽𝑖(𝑿̂, 𝜉, 𝑡; 𝜃̂)| ≤ 𝐶(‖𝑿 − 𝑿̂‖ + ‖𝜃 − 𝜃̂‖),

∀𝑿, 𝑿̂ ∈ ℝ𝑑 , ∀𝜃, 𝜃̂ ∈ ℝ𝓁 , 𝐶 < ∞.

(2.16)

In Eq.  (2.16), 𝑓𝑖 and 𝛽𝑖 denote the 𝑖th component of 𝒇 and 𝜷, respectively, 
and 𝜎𝑖,𝑗 denotes the (𝑖, 𝑗) element of the matrix 𝝈 in Eq.  (2.9). Furthermore, 
we assume that the assumptions in Corollary 2.1 hold and the sixth-order 
moments 

𝔼[‖𝜃‖6] ≤ Θ6, 𝔼[‖𝜃̂‖6] ≤ Θ̂6 (2.17)

are uniformly bounded. Then, 𝑊̃ 2,e
2,𝛿 (𝑿, 𝑿̂) can be bounded by the squared 

𝑊2 distance 𝑊 2
2 (𝜇, 𝜇̂):

𝔼
[

𝑊̃ 2,e
2,𝛿 (𝑿, 𝑿̂)

]

≤ 8𝐶0𝑇 𝛿
2 exp(𝐶0𝑇 ) +

6𝐶1
𝐶0

𝑇 exp(𝐶0𝑇 )

×

(

𝑊 2
2 (𝜇, 𝜇̂) + 2𝐶3𝔼

[

ℎ(𝑁#(𝑿0; 𝛿),𝓁) ⋅
(

Θ
1
3
6 + Θ̂

1
3
6

)]

)

,
(2.18)

where 𝜇 and 𝜇̂ are the probability measures associated with 𝜃 and 𝜃̂, respec-
tively. In Eq.  (2.18), 𝐶0, 𝐶1, 𝐶2 are three constants, and

ℎ(𝑁,𝓁) ∶=

⎧

⎪

⎨

⎪

⎩

2𝑁− 1
2 (log(1 +𝑁) + 1),𝓁 ≤ 4,

2𝑁− 2
𝓁 ,𝓁 > 4.

(2.19)

In Eq.  (2.18), 𝑁#(𝑿0; 𝛿) refers to the number of trajectories in the data set 
such that their initial conditions satisfy ‖𝑿(0) −𝑿0‖ ≤ 𝛿.

We prove Theorem 2.2 in Appendix C. Theorem 2.2 implies that min-
imizing the local time-decoupled squared 𝑊2 distance 𝑊̃ 2,e

2,𝛿  is a neces-
sary condition if we wish to match the distribution of 𝜃 with the dis-
tribution of 𝜃̂. In Eq.  (2.18), there is a trade-off between the first term 
and the third term on the RHS: if we increase 𝛿, then the first term on 
the RHS of Eq.  (2.18) will increase but the factor ℎ(𝑁#(𝑿0; 𝛿);𝓁) in the 
last term will decrease. In (Xia & Shen, 2024), it is found that a 𝛿 that 
is too large may lead to systematic errors, while a 𝛿 that is too small 
is insufficient to quantify the uncertainty. The optimal choice of 𝛿 is 
problem-specific and also depends on the amount of available training 
data, which may require some fine-tuning. When an appropriate 𝛿 is cho-
sen, both the first and last terms on the RHS of Eq.  (2.18) can be kept 
small so that the expected local time-decoupled squared 𝑊2 distance 
𝔼[𝑊̃ 2,e

2,𝛿 (𝑿, 𝑿̂)] can be well controlled by 𝑊 2
2 (𝜇, 𝜇̂). In this case, minimiz-

ing 𝔼[𝑊̃ 2,e
2,𝛿 (𝑿, 𝑿̂)] is necessary to minimize 𝑊 2

2 (𝜇, 𝜇̂), i.e., match the dis-
tribution of 𝜃 with the distribution of 𝜃̂. On the other hand, in Eq.  (2.19), 
the rate of convergence when using the empirical probability measure 
is 2𝑁− 1

2 (log(1 +𝑁) + 1),𝓁 ≤ 4 or 𝑁− 2
𝓁 ,𝓁 > 4 as the number of observed 

trajectories increases, which depends only on the dimensionality of the 
parameter 𝜃 instead of on the dimensionality of 𝑿(𝑡). Therefore, it is 
harder to reconstruct the joint distribution of higher-dimensional un-
certain parameters due to a slower convergence rate when only finite 
training trajectories are available.

ODEs can be regarded as special jump-diffusion processes whose 
diffusion function and jump function are both 0. Thus, Theorem 2.2 
can be applied to bound the time-decoupled local squared 𝑊2 distance 
between the distributions of trajectories of the two ODEs Eqs.  (1.1) 
and  (1.2) using the squared 𝑊2 distance between the probability dis-
tributions of 𝜃 and 𝜃̂. Finally, Theorem 2.2 can also be generalized to 
the cases of reconstructing parameters in spatiotemporal stochastic par-
tial differential equations (SPDEs). We provide an example of bounding 
the local time-decoupled squared 𝑊2 distance between solutions to a 
parabolic SPDE associated with two different sets of model parameters in
Appendix D.

Finally, one can also take into account time discretization errors 
using a time discretization scheme such as the Runge-Kutta scheme 
for solving ODEs and the strong Itô-Taylor approximation (Kloeden & 
Platen, 1992) for numerically solving SDEs. Specifically, for stiff prob-
lems, a detailed analysis of the numerical implementation is worth car-
rying out. Additionally, it is also possible to extend Theorem 2.2 to 
more complicated spatiotemporal dynamics by replacing 𝐵𝑡 with more 
complicated spatiotemporal cylindrical Brownian noise (Liu & Röckner, 
2015) or considering spatiotemporal integrodifferential equations (Deng 
et al., 2025). Such discussions require a more detailed analysis of SPDEs 
and are thus beyond the scope of this paper.
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3.  An SNN model for approximating the distribution of 
continuous random variables

In this section, we analyze an SNN model used in Xia and Shen 
(2024). We apply this SNN model to reconstruct the distribution of un-
known parameters for general dynamical systems. Specifically, we will 
prove that this SNN model can approximate the probability distribu-
tion of any continuous multidimensional random variable under certain 
technical assumptions in the 𝑊2 distance sense, and the training of this 
SNN can be done by direct minimization of the local time-decoupled 
squared 𝑊2 loss function Eq.  (2.6) analyzed in Section 2. We sketch 
the structure of the SNN with weight uncertainty in Fig. 1. All weights 
in the neural networks {𝑤𝑖,𝑗,𝑘} are sampled from independent normal 
distributions with 𝑤𝑖,𝑗,𝑘 ∼  (𝑎𝑖,𝑗,𝑘, 𝜎2𝑖,𝑗,𝑘). The biases {𝑏𝑖,𝑘} for all 𝑖, 𝑘 are 
deterministic. The means and variances of the weights {𝑎𝑖,𝑗,𝑘}, {𝜎2𝑖,𝑗,𝑘}
and the biases {𝑏𝑖,𝑘} are optimized through training.

First, we prove that the SNN model in Fig. 1 can approximate any 
continuous random variable whose probability distribution follows a pa-
rameterized multivariate normal distribution in the squared 𝑊2 distance 
sense. In the following,  (𝒚 − 𝒃,Σ) denotes the probability density func-
tion of a 𝑑′-dimensional multivariate normal distribution with mean 𝒃
and the covariance matrix Σ and takes the form:
 (𝒚 − 𝒃,Σ) ∶= 1

√

2𝜋
𝑑′

⋅
1

|Σ|
1
2

⋅ exp
(

− 1
2 (𝒚 − 𝒃)𝑇Σ(𝒚 − 𝒃)

)

. (3.1)

Theorem 3.1. Let 𝒚 ∈ ℝ𝑑′  be a continuous random vari-
able whose probability density is 𝑓𝒙(𝒚),𝒙 ∈ 𝐷 ⊆ ℝ𝑑 such that 
𝑓𝒙(𝒚) =  (𝒚 − 𝒃(𝒙), 𝐴(𝒙)𝑇𝐴(𝒙)). 𝐷 is a bounded set and 𝒙 has a 
probability measure 𝛾(⋅) on 𝐷. We make the following assumptions:
1. For any sequence of sets {𝐷𝑖}∞𝑖=1, if 𝐷𝑖 → 𝐷 as 𝑖 → ∞, then 

lim𝑖→∞ 𝛾(𝐷𝑖) = 𝛾(𝐷) = 1. Furthermore, for any Δ𝑥 > 0, we can find a 
set of equidistance grids {𝒙𝑖}𝐾𝑖=1 ⊆ 𝐷 such that the distance between two 
adjacent grids is Δ𝑥, 𝐷 ⊆ ∪𝐾

𝑖=1 ⊗
𝑑
𝑗=1 [𝑥

𝑗
𝑖 , 𝑥

𝑗
𝑖 + Δ𝒙), and ⊗𝑑

𝑗=1[𝑥
𝑗
𝑖1
, 𝑥𝑗𝑖1 +

Δ𝒙) ∩⊗𝑑
𝑗=1[𝑥

𝑗
𝑖2
, 𝑥𝑗𝑖2 + Δ𝒙) = ∅ if 𝑖1 ≠ 𝑖2.

2. 𝑓𝒙(𝒚) is uniformly continuous in 𝒙 such that for any 𝜖 > 0, there exists 
Δ𝑥 > 0 satisfying:
𝑊 2

2 (𝑓𝒙, 𝑓𝒙̃) < 𝜖, ∀‖𝒙 − 𝒙̃‖ ≤ Δ𝑥, 𝒙, 𝒙̃ ∈ 𝐷. (3.2)

3. 𝑌 ∶= sup𝒙∈𝐷 ‖𝒃(𝒙)‖2 + ‖𝐴(𝒙)𝑇𝐴(𝒙)‖2𝐹 < ∞, where ‖ ⋅ ‖𝐹  is the Frobe-
nius norm of a matrix.
Then, for any 𝜖0 > 0, there exists an SNN model as described in Fig. 1 

which uses the ReLU activation and the linear forward propagation such 
that if we denote the probability density function of the output by 𝑓𝒙 given 
the input 𝒙, the following inequality holds:

∫𝐷
𝑊 2

2 (𝑓𝒙, 𝑓𝒙)𝛾(d𝒙) ≤ 𝜖0. (3.3)

We prove Theorem 3.1 in Appendix E. Theorem 3.1 can be further 
generalized and we can prove that the probability density distribution 
of the output of the SNN model in Fig. 1 can approximate a multivariate 
Gaussian mixture model (defined in Corollary 3.1 below) in the squared 
𝑊2 distance sense. First, we prove the following lemma.

Lemma 3.1. Let 𝒚 ∈ ℝ𝑑′  be a continuous random variable that has the 
following probability density function of a Gaussian mixture model:

𝑓 (𝒚) =
𝑠
∑

𝑖=1
𝑝𝑖

(

𝒚 − 𝒃𝑖, 𝐴𝑇
𝑖 𝐴𝑖

)

, 𝑝𝑖 > 0,
𝑠
∑

𝑖=1
𝑝𝑖 = 1. (3.4)

Suppose another continuous random variable 𝒚̂ ∈ ℝ𝑑′  has the following prob-
ability density function:

𝑓 (𝒚̂) =
𝑠
∑

𝑖=1
𝑝̂𝑖

(

𝒚̂ − 𝒃𝑖, 𝐴𝑇
𝑖 𝐴𝑖

)

+ 𝑝(𝒚̂), 𝑝̂𝑖 > 0 (3.5)

where 𝑝̂𝑖 ≤ 𝑝𝑖, 𝑝(⋅) ∶ ℝ𝑑′ → ℝ+ ∪ {0} is non-negative, and 
∫ℝ𝑑′ ‖𝒚̂‖2𝑝(𝒚̂)d𝒚̂ ≤ ∞. Then, the following bound of the squared 𝑊2
distance between the probability measures of 𝒚 and 𝒚̂ holds:

𝑊 2
2 (𝑓, 𝑓 ) ≤ 2

(

𝑠
∑

𝑖=1

(

𝑝𝑖 − 𝑝̂𝑖
)(

‖𝒃𝑖‖2 + ‖𝐴𝑇
𝑖 𝐴𝑖‖

2
𝐹
)

+ ∫ℝ𝑑′
‖𝒚‖2𝑝(𝒚)d𝒚

)

.

(3.6)

Proof.  First, if 𝑝𝑖 = 𝑝̂𝑖, 𝑖 = 1,…, 𝑠, then 𝑓 (𝒚) = 𝑓 (𝒚) and 𝑊 2
2 (𝑓, 𝑓 ) = 0, in-

dicating that Eq.  (3.6) holds. Next, we assume that ∑𝑠
𝑖=1 𝑝̂𝑖 < 1. Without 

loss of generality, we assume that 𝒚 and 𝒚̂ are independent of each other. 
We define a special coupling probability measure of the random variable 
(𝒚, 𝒚̂) ∈ ℝ2𝑑′ :

𝜋(𝑓, 𝑓 )(𝒚, 𝒚̂) =
[

𝑠
∑

𝑖=1
𝑝̂𝑖

(

𝒚 − 𝒃𝑖, 𝐴𝑇
𝑖 𝐴𝑖

)

]

𝛿(𝒚 − 𝒚̂)

+ 1
𝑝

[

𝑠
∑

𝑖=1
(𝑝𝑖 − 𝑝̂𝑖)

(

𝒚 − 𝒃𝑖, 𝐴𝑇
𝑖 𝐴𝑖

)

]

⋅ 𝑝(𝒚̂),

(3.7)

where 𝑝 ∶=
∑𝑠

𝑖=1(𝑝𝑖 − 𝑝̂𝑖) = ∫ℝ𝑑′ 𝑝(𝒚̂)d𝒚̂, and 𝛿 is the Dirac delta measure. 
We can check that the marginal distributions of 𝜋(𝑓, 𝑓 ) coincide with 
𝑓 (𝒚) and 𝑓 (𝒚̂), respectively. Furthermore, we have

𝑊 2
2 (𝑓, 𝑓 ) ≤ 𝔼(𝒚,𝒚̂)∼𝜋(𝑓,𝑓 )

[

‖𝒚 − 𝒚̂‖2
]

≤ ∫ℝ2𝑑′

1
𝑝

[

𝑠
∑

𝑖=1
(𝑝𝑖 − 𝑝̂𝑖)

(

𝒚 − 𝒃𝑖, 𝐴𝑇
𝑖 𝐴𝑖

)

]

⋅ 𝑝(𝒚̂)‖𝒚 − 𝒚̂‖2d𝒚d𝒚̂

≤ ∫ℝ2𝑑′

1
𝑝

[

𝑠
∑

𝑖=1
(𝑝𝑖 − 𝑝̂𝑖)

(

𝒚 − 𝒃𝑖, 𝐴𝑇
𝑖 𝐴𝑖

)

]

⋅ 𝑝(𝒚̂)

⋅ 2
(

‖𝒚‖2 + ‖𝒚̂‖2
)

d𝒚d𝒚̂

Fig. 1. A sketch of the structure of the neural network model with weight uncertainty used in Xia and Shen (2024) and in this paper. The weights 𝑤𝑖,𝑗,𝑘 ∼  (𝑎𝑖,𝑗,𝑘, 𝜎2
𝑖,𝑗,𝑘)

are independently sampled, i.e., 𝑤𝑖1 ,𝑗1 ,𝑘1  is independent of 𝑤𝑖2 ,𝑗2 ,𝑘2  when (𝑖1, 𝑗1, 𝑘1) ≠ (𝑖2, 𝑗2, 𝑘2). When using this neural network model to make predictions, for each 
input 𝒙 = (𝑥1,… , 𝑥𝑑 ) ∈ 𝐷 ⊆ ℝ𝑑 , we resample all weights {𝑤𝑖,𝑗,𝑘} again. For each neuron in the hidden layer, one of the following four forward propagation methods 
is considered: the linear operation, the ReLU activation, the ELU activation, and the ResNet technique.
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≤ 2
𝑠
∑

𝑖=1
(𝑝𝑖 − 𝑝̂𝑖)

(

‖𝒃𝑖‖2 + ‖𝐴𝑇
𝑖 𝐴𝑖‖

2
𝐹
)

+ 2∫ℝ𝑑′
‖𝒚̂‖2𝑝(𝒚̂)d𝒚̂, (3.8)

which proves the inequality (3.6). ∎
Next, we show that the SNN model in Fig. 1 can approximate a mul-

tivariate Gaussian mixture model in the squared 𝑊2 distance sense.
Corollary 3.1. Let 𝒚 ∈ ℝ𝑑′  be a continuous random variable with a proba-
bility density function 𝑓𝒙, where 𝒙 ∈ 𝐷 ⊆ ℝ𝑑 is continuous and has a prob-
ability density 𝛾(⋅). At each 𝒙, 𝑓𝒙 is the probability density function of a 
Gaussian mixture model:

𝑓𝒙(𝒚) =
𝑠
∑

𝑟=1
𝑝𝑟(𝒙) (𝒚 − 𝒃𝑟(𝒙), 𝐴𝑇

𝑟 (𝒙)𝐴𝑟(𝒙)),
𝑠
∑

𝑟=1
𝑝𝑟(𝒙) = 1, 𝑝𝑟(𝒙) > 0.

(3.9)

We make the following three additional assumptions:
1. For any sequence of sets {𝐷𝑖}∞𝑖=1, if 𝐷𝑖 → 𝐷 as 𝑖 → ∞, then 

lim𝑖→∞ 𝛾(𝐷𝑖) = 𝛾(𝐷) = 1. Additionally, 𝐷 is a bounded set in ℝ𝑑 and for 
any Δ𝑥 > 0, we can find a set of equidistance grids {𝒙𝑖}𝐾𝑖=1 ⊆ 𝐷 such that 
𝐷 ⊆ ∪𝐾

𝑖=1 ⊗
𝑑
𝑗=1 [𝑥

𝑗
𝑖 , 𝑥

𝑗
𝑖 + Δ𝒙) and ⊗𝑑

𝑗=1[𝑥
𝑗
𝑖1
, 𝑥𝑗𝑖1 + Δ𝒙) ∩⊗𝑑

𝑗=1[𝑥
𝑗
𝑖2
, 𝑥𝑗𝑖2 +

Δ𝒙) = ∅ if 𝑖1 ≠ 𝑖2.
2. 𝑓𝒙(𝒚) is uniformly continuous in 𝒙 such that for any 𝜖 > 0, there exists a 

𝛿 > 0:

𝑊 2
2
(

𝑓𝒙(𝒚), 𝑓𝒙̃(𝒚)
)

< 𝜖, ∀‖𝒙 − 𝒙̃‖ ≤ 𝛿, ∀𝒙, 𝒙̃ ∈ 𝐷. (3.10)

3. The quantity

max
1≤𝑟≤𝑠

‖

‖

‖

𝐴𝑇
𝑟 (𝒙)𝐴

𝑇
𝑟 (𝒙)

‖

‖

‖

2

𝐹
+ ‖𝒃𝑟(𝒙)‖2 (3.11)

is uniformly bounded for all 𝒙 ∈ 𝐷.

Then, for any positive number 𝑐0 > 0, there exists an SNN with weight un-
certainty described in Fig. 1 such that:

∫𝐷
𝑊 2

2 (𝑓𝒙, 𝑓𝒙)𝛾(d𝒙) ≤ 𝑐0. (3.12)

Here, 𝑓𝒙 is the distribution of the output of the SNN when the input is 𝒙.
We prove Corollary 3.1 in Appendix F. Finally, we prove that for 

each continuous random variable 𝒚 ∈ ℝ𝑑′  with a probability distribu-
tion function 𝑓 (𝒚), under certain conditions, we can find a random vari-
able 𝒚̂ ∈ ℝ𝑑′  obeying a Gaussian mixture distribution whose probability 
distribution function is denoted by 𝑓 such that 𝑓 can approximate 𝑓 in 
the 𝑊2 sense. We have the following result.
Theorem 3.2. Suppose 𝒚 = (𝑦1,…, 𝑦𝑑′ ) ∈ ℝ𝑑′  is a continuous random vari-
able with a smooth probability density function 𝑓 (𝒚) ∈ 𝐿2(ℝ𝑑′ ) ∩ 𝐿∞(ℝ𝑑′ ). 
Furthermore, we assume the following conditions hold: 1. 𝑓 (𝒚) is uniformly 
continuous in ℝ𝑛 2.
|𝑓 |mix ∶=

∑

|𝒏|0≤𝑑′

‖

‖

‖

𝜕|𝒏|0𝒏 𝑓‖‖
‖𝐿2 < ∞, |

|

|

√

𝑓 ||
|mix

< ∞ (3.13)

where |𝒏|0 is the number of non-zero components in 𝒏, 𝒏 = (𝑛1,…, 𝑛𝑗 ) satis-
fying 1 ≤ 𝑛1 < … < 𝑛𝑗 ≤ 𝑑′, and 𝜕𝒏𝑓 ∶= 𝜕𝑦𝑛1…𝜕𝑦𝑛𝑗 𝑓 .

3. |𝑓𝑦2𝑖 |mix < ∞ and |𝑓𝑦2𝑖 𝑦2𝑗 |mix < ∞.
Then, for every 𝜎 > 0, 𝑛0(𝜎) > 0, there exists a probability density func-

tion of a Gaussian mixture model:

𝑓𝜎2 ,𝑛0(𝜎)(𝒚) ∶=
(𝑛0(𝜎)+1)𝑑

′
∑

𝑖=1
𝑝𝑖 (𝒚 − 𝒚𝑖; 𝜎2𝐼𝑑′×𝑑′ ), 𝒚𝑖 ∈ ℝ𝑑′ (3.14)

such that as 𝜎 → 0+ and 𝑛(𝜎) → ∞:

𝑓𝜎2 ,𝑛0(𝜎)(𝒚) → 𝑓 (𝒚) (3.15)

uniformly in ℝ𝑑′ . Furthermore, ∀𝜖 > 0, there exist 𝜎 > 0, 𝑛0(𝜎) and 
𝑓𝜎2 ,𝑛0(𝜎)(𝒚) in Eq.  (3.14) such that
𝑊 2

2 (𝑓, 𝑓𝜎2 ,𝑛0(𝜎)) ≤ 24𝜖. (3.16)

In Eq.  (3.14), 𝐼𝑑′×𝑑′  is a 𝑑′ × 𝑑′ identity matrix.

We prove Theorem 3.2 in Appendix G. For any continuous random 
variable 𝒚 ∈ ℝ𝑑′  with a probability density function 𝑓 satisfying the as-
sumptions in Theorem 3.2, there exists a random variable 𝒚̂ whose prob-
ability density function is the probability density function of a multivari-
ate Gaussian mixture model denoted by 𝑓𝜎2 ,𝑛0  such that 𝑊 2

2 (𝑓, 𝑓𝜎2 ,𝑛0 ) ≤
𝜖. As a special case of the proof of Corollary 3.1 in Appendix F, there 
exists an SNN (Fig. 1) which takes the input 𝑛3𝑖 = 𝑥 ≡ 1, i.e. this SNN 
consists of the fourth, fifth, sixth, and seventh layers of the SNN model 
we constructed in Appendix F, such that 𝑊 2

2 (𝑓𝜎2 ,𝑛0 , 𝑓𝒙≡1) ≤ 𝜖, where 
𝑓𝒙≡1 is the probability density function of the output of the SNN. Thus, 
we have 𝑊 2

2 (𝑓, 𝑓𝒙≡1) ≤ 4𝜖, i.e., the SNN model in Fig. 1 can approxi-
mate the distribution of any continuous random variable in the squared 
𝑊2 sense under the assumptions specified in Theorem 3.2. From Theo-
rem 2.2, minimizing the local time-decoupled squared 𝑊2 loss function 
Eq.  (2.6) is necessary to minimize 𝑊 2

2 (𝜇, 𝜇̂), i.e., to match the distribu-
tion of model parameters 𝜃 by the distribution of 𝜃̂ in dynamical systems 
like Eqs.  (2.9) and (2.10). Thus, we can train the SNN model in Fig. 1 by 
direct minimization of the local time-decoupled squared 𝑊2 loss func-
tion Eq.  (2.6).

Remark: Consider the more general model 𝒚 = 𝑓 (𝒙, 𝜃),𝒙 ∈ ℝ𝑑 , 𝒚 ∈
ℝ𝑑′  as in Xia and Shen (2024), where 𝜃 is the latent random model pa-
rameters (e.g. measurement noise). 𝒚 is a continuous random variable 
whose distribution is determined by the observed continuous variable 
𝒙 ∈ 𝐷 ⊆ ℝ𝑑 . 𝐷 is a bounded set in ℝ𝑑 , and for any sequence of sets 
{𝐷𝑖}∞𝑖=1, if 𝐷𝑖 → 𝐷 as 𝑖 → ∞, then lim𝑖→∞ 𝛾(𝐷𝑖) = 𝛾(𝐷) = 1. Additionally, 
we assume that for any Δ𝑥 > 0, we can find a set of equidistance grids 
{𝒙𝑖}𝐾𝑖=1 ⊆ 𝐷 such that 𝐷 ⊆ ∪𝐾

𝑖=1 ⊗
𝑑
𝑗=1 [𝑥

𝑗
𝑖 , 𝑥

𝑗
𝑖 + Δ𝒙) and ⊗𝑑

𝑗=1[𝑥
𝑗
𝑖1
, 𝑥𝑗𝑖1 +

Δ𝒙) ∩⊗𝑑
𝑗=1[𝑥

𝑗
𝑖2
, 𝑥𝑗𝑖2 + Δ𝒙) = ∅ if 𝑖1 ≠ 𝑖2. 𝜔 are continuous latent param-

eters in the model sampled from an unknown distribution. We denote 
the distribution of 𝒚 given 𝒙 by 𝑓𝒙. Under certain assumptions, for any 
𝜖 > 0, there exists an SNN in Fig. 1 such that:

∫𝐷
𝑊 2

2 (𝑓𝒙, 𝑓𝒙)𝛾(d𝒙) ≤ 𝜖. (3.17)

where 𝑓𝒙 is the probability density function of the output of the SNN 
given the input 𝒙. We give a brief discussion on this “universal approx-
imation” property of the SNN model to approximate a family of contin-
uous random variables 𝒚 = 𝑓 (𝒙, 𝜃) for all 𝒙 ∈ 𝐷 ⊆ ℝ𝑑 in Appendix H. 
Our SNN can approximate a family of probability density functions 
𝑓 (𝒙, 𝜃),𝒙 ∈ 𝐷 simultaneously, while in Lu and Lu (2020) only a single 
probability density function 𝑓 (𝜃) dependeing on 𝜃 is to be approximated. 
Furthermore, our SNN utilizes only seven hidden layers and the number 
of neurons in each layer scales linearly with the dimensionality of either 
the input or the output variable. This implies that even with a shallow 
neural network, we might be able to reconstruct a family of uncertainty 
models 𝒚 = 𝑓 (𝒙, 𝜃) characterized by different 𝒙 ∈ 𝐷.

4.  Numerical results

In this section, we conduct numerical experiments to test our pro-
posed local squared 𝑊2 method, which involves training the SNN model 
in Fig. 1 by minimizing the loss function Eq.  (J.1), a scaled numeri-
cal approximation to the local time-decoupled squared 𝑊2 distance loss 
function Eq.  (2.6). The 𝑊2 distance between two empirical probability 
measures is then numerically evaluated using the PoT package of Python 
in Flamary et al. (2021). A pseudocode of our method is given in Algo-
rithm 1, and a schematic diagram on the training of the SNN using our 
proposed local time-decoupled squared 𝑊2 loss function Eq.  (2.4) in 
presented in Fig. 2.

Specifically, when applying the SNN model in Fig. 1 for the recon-
struction of the distribution for uncertain model parameters, we assume 
that uncertain model parameters are sampled from the same underly-
ing distribution across all samples and thus always input a scalar 1 as 
the input into the SNN. Default hyperparameters and training settings 
are given in Appendix I. We use the ELU activation function to replace 
the ReLU activation function in Examples 4.1–4.3 to tackle the issue 
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Algorithm 1 The pseudocode of our local time-decoupled squared 𝑊2
method for training the SNN (the local time-decoupled squared 𝑊2 loss 
Eq.  (2.4) can be replaced with other loss functions).
Given 𝑁 observed time-series data {𝑿𝑖(𝑡𝑗 ), 𝑡𝑗 = 𝑗Δ𝑡, 𝑗 = 1,…, 𝑁𝑇 }𝑁𝑖=1, 
the underlying dynamical system with unknown model parameters 
𝜃 (such as the jump-diffusion process Eq. (2.9)), and the maximal 
epochs 𝑖max. 
Initialize the SNN model in Fig. 1. 
Input a scalar 1 into the SNN and evaluate the SNN 𝑁 times inde-
pendently (each time, the weights in the SNN are resampled), which 
outputs 𝑁 sets of approximate parameters denoted by {𝜃̂}𝑁𝑖=1. 
Generate 𝑁 trajectories {𝑿̂}𝑁𝑖=1 from the approximate dynamical sys-
tem (such as Eq. (2.10)) with the approximate parameters {𝜃̂}𝑁𝑖=1. 
while 𝑖 < 𝑖max  do
Perform gradient descent to minimize the loss function 𝑊̃ 2,e

2,𝛿 (𝑿, 𝑿̂)
(Eq. (2.4)) and update the parameters (biases & means and vari-
ances of weights) in the SNN model. 
Input a scalar 1 into the updated SNN and evaluate the updated 
SNN 𝑁 times independently, which outputs 𝑁 sets of approximate 
parameters denoted by {𝜃̂}𝑁𝑖=1. 
Generate 𝑁 trajectories from the approximate dynamical system 
with the approximate parameters {𝜃̂}𝑁𝑖=1.

end while
return  the trained SNN model

Fig. 2. A schematic diagram on the training of the SNN using our proposed 
local time-decoupled squared 𝑊2 loss function.

of vanishing gradients and improve the representational power of the 
SNN. In the following, errors in the distribution of reconstructed model 
parameters denote the scaled squared 𝑊2 distance:

error ∶=
𝑊 2

2 (𝜇𝜃 , 𝜇̂𝜃̂)

‖𝜃‖2
, (4.1)

where 𝜃 and 𝜃̂ are unknown ground truth model parameters and recon-
structed model parameters, e.g. in Eqs.  (1.1) and (1.2), and 𝜇𝜃 and 𝜇̂𝜃
are the distributions of 𝜃 and 𝜃̂, respectively. For numerically solving 
ODEs in all examples, we use the odeint function with default settings 
in the torchdiffeq package (Chen et al., 2018). In Example 4.4, we use 
the package developed in Xia et al. (2024a) for numerically solving a 
jump-diffusion process using the Euler scheme (Platen & Bruti-Liberati, 
2010), which allows for back-propagation and gradient descent for hy-
perparameter optimization in the neural networks. The Itô integral is 
adopted for evaluating the stochastic integrals. The numerical experi-
ment in Example 4.1 is conducted using Python 3.11 on a desktop with 
a 32-core Intel® i9-13900KF CPU (when comparing runtimes and RAM 
usage, we train each model on just one core). Numerical experiments in 

Examples 4.2–4.4 are carried out using Python 3.11 on NYU HPC with 
a GPU (NYU HPC, 2025).

Example 4.1. First, we consider reconstructing the following 2D ODE char-
acterizing the Lokta–Volterra predator-prey dynamics with one uncertain pre-
dation rate parameter: 

d𝑥
d𝑡

= 2𝑥 − 𝑐𝑥𝑦,
d𝑦
d𝑡

= 1
4 𝑐𝑥𝑦 − 2𝑦,

(𝑥(0), 𝑦(0)) = (𝜉1, 𝜉2), 𝑐 ∼  (2, 4), 𝜉1, 𝜉2 ∼  (1, 2), 𝑡 ∈ [0, 8].
(4.2)

In Eq.  (4.2), 𝑐 is the uncertain predation rate parameter, and 𝜉1, 𝜉2 are 
two independent random variables. We train the SNN model in Fig. 1 by 
minimizing the loss function Eq.  (J.1) (the neighborhood size 𝛿 = 0.4) to 
reconstruct the distribution of the parameter 𝑐. For comparison, we  mini-
mize other loss functions (definitions given in Appendix J) commonly used in 
statistical inference tasks to train the SNN model in Fig. 1. We also compare 
our method with a Bayesian neural network (BNN) method used in Bayesian 
Neural Network Derivation (2020), Mullachery et al. (2018) which mini-
mizes the Kullback-Leibler divergence as well as a WGAN method presented 
in Arjovsky et al. (2017), Gulrajani et al. (2017). For implementing the 
WGAN method, the generator is the same as the SNN in Fig. 1 when uti-
lizing other loss functions, while the discriminator is a feedforward neural 
network with one hidden layer equipped with 32 neurons and the ReLU acti-
vation function. Within each epoch for training the generator, 256 randomly 
selected samples are provided to train the discriminator, repeated 4 times. 
After training, the generator (SNN) is used to generate the distribution of the 
reconstructed model parameter.

From Fig. 3(a), (b), the distribution of ground truth trajectories of the 
prey and predator population can be matched well by the distribution of tra-
jectories generated by numerically solving Eq.  (4.2) with 𝑐 sampled from the 
reconstructed distribution. Furthermore, the distribution of the reconstructed 
𝑐 generated by the SNN model trained using our loss function Eq.  (J.2) 
aligns well with the distribution of the ground truth predation rate 𝑐 (shown 
in Fig. 3(c)). Using the previous time-decoupled squared 𝑊2 loss function in 
Xia et al. (2024b), the MMD loss function, or the Mean2+Var loss function 
all lead to an inaccurate calculated value of the mean in the reconstructed 𝑐. 
The WGAN method and the BNN method both yield qualitatively incorrect 
results. We find that training the discriminator and generator in the WGAN 
approach requires fine-tuning of hyperparameters by setting the learning rate 
to be a relatively small value of 10−5, otherwise the training of the generator 
and discriminator will terminate prematurely due to blowup, as reported in 
the literature (Hoffer et al., 2017). Nonetheless, the WGAN could not yield 
a qualitatively correct mean of the reconstructed 𝑐. On the other hand, the 
BNN method also does not perform well, and one possible reason could be 
that randomly initialized means and variances of weights as well as the bi-
ases in the neural network do not provide a good prior distribution for the 
BNN. Using the MSE as the loss function to train the SNN yields an almost 
degenerate distribution of 𝑐 and the calculated value of the variance in 𝑐
is inaccurate, indicating that it is not suitable to train the SNN model for 
reconstructing the distribution of unknown parameters. Using our proposed 
local time-decoupled squared 𝑊2 loss function yields more accurate values 
of the mean and variance of the reconstructed 𝑐 compared to other methods 
(shown in Fig. 3(d)). Finally, from Table 1, the runtime and RAM usage 
when using our proposed local time-decoupled squared 𝑊2 loss function is 
generally comparable to those when using other benchmark loss functions, 
and the runtime and RAM usage of the WGAN method and BNN method 
are significantly larger than training the SNN in Fig. 1 by directly minimizing 
any one of the loss functions we use. Thus, using our proposed local time-
decoupled squared 𝑊2 method is more efficient than using other benchmark 
statistical loss functions for training the SNN in Fig. 1 to reconstruct the dis-
tribution of the unknown predation rate in Eq.  (4.2), and it also outperforms 
the WGAN method and the BNN method.

Next, we apply our local time-decoupled squared 𝑊2 method for the 
reconstruction of model parameters in a spatiotemporal PDE.
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Fig. 3. (a) Ground truth (red dashed lines) prey population dynamics versus predicted prey population dynamics (blue solid lines) obtained with reconstructed 
predation rate 𝑐. (b) Ground truth (red) predator population dynamics versus predicted predator population dynamics (blue) obtained with reconstructed predation 
rate 𝑐. In (a) and (b), for clarity, we plot the first 50 groups of prey and predatory trajectories. Since the predation rate 𝑐 in Eq.  (4.2) is sampled independently for 
each realization of the model Eq.  (4.2), the ground truth trajectories also form a distribution. (c) Ground truth 𝑐 ∼  (2, 4) versus the distribution of the approximate 
𝑐 when minimizing different loss functions or using the BNN or WGAN method. The black horizontal line and the box indicate the median and the interquartile range 
of the ground truth or predicted predation rate. (d) Errors in the predicted mean |𝔼[𝑐] − 𝔼[𝑐]| and predicted variance |Var[𝑐] − Var[𝑐]| when minimizing different loss 
functions. The errors are their averaged values over 5 independent experiments. In (c) and (d), “local 𝑊2” refers to our scaled local time-decoupled squared 𝑊2 loss 
function Eq.  (J.1) while “𝑊2” refers to previous time-decoupled squared 𝑊2 loss function in Xia et al. (2024b).

Table 1 
Computational time and memory usage when utilizing different loss functions. Mean and the standard deviation in the runtime 
(unit: hour) and RAM (unit: Mb) usage over five repeated experiments are recorded.

 Ours (Eq.  (J.1))  Time-decoupled 𝑊 2
2  MMD  MSE  Mean2+Var  WGAN  BNN

 Time 𝟏.𝟓𝟑 ± 𝟎.𝟑𝟓  1.57±0.36  1.91±0.47  1.37±0.46  1.73±0.57  7.88±1.17 21.31 ± 5.40
 RAM 𝟕𝟐𝟗.𝟖 ± 𝟓𝟔.𝟑  648.4±108.7  834.3±19.3  616.5±110.3  614.3±108.2  1341.4±293.5  3406.2±300.0

Example 4.2. We consider reconstructing the distributions of parameters 
in the following parabolic PDE:

𝜕𝑡𝑢(𝑥, 𝑡; 𝑐1, 𝑐2) =
𝑐1
𝑐22

𝜕𝑥𝑥𝑢(𝑥, 𝑡; 𝑐1, 𝑐2) +
𝑐1

𝑐1𝑡 + 1
𝑢(𝑥, 𝑡; 𝑐1, 𝑐2), (𝑥, 𝑡) ∈ ℝ × [0, 2],

𝑢(𝑥, 0) = (1 + 𝜉) 𝑥
√

4
⋅ exp

(

− 𝑥2

2 ), 𝑐1 ∼  (0.5, 𝜎21 ),

𝑐2 = 𝜉 + 𝛽(0.5 − 𝑐1), 𝜉 ∼  (0, 𝜎23 ), 𝜉 ∼  (1.5, 𝜎22 ). (4.3)

We use another parabolic PDE model to approximate Eq.  (4.3):

𝜕𝑡𝑢̂(𝑥, 𝑡; 𝑐1, 𝑐2) =
𝑐1
𝑐22

𝜕𝑥𝑥𝑢̂(𝑥, 𝑡; 𝑐1, 𝑐2) +
𝑐1

𝑐1𝑡 + 1
𝑢̂(𝑥, 𝑡; 𝑐1, 𝑐2), (𝑥, 𝑡) ∈ ℝ × [0, 2],

𝑢̂(𝑥, 0) = 𝑢(𝑥, 0). (4.4)

We wish to reconstruct the distribution of (𝑐1, 𝑐2) in Eq.  (4.3) using the 
distribution of (𝑐1, 𝑐2) in the approximate Eq.  (4.4). We use a pseudo-spectral 
method with a spectral expansion in space to solve Eqs.  (4.3) and (4.4) 

numerically:

𝑢(𝑥, 𝑡; 𝜃) ≈ 𝑢𝑛−1(𝑥, 𝑡; 𝜃) =
𝑛−1
∑

𝑖=0
𝑢𝑖(𝑡; 𝜃)̂𝑖(𝑥), 𝜃 ∶= (𝑐1, 𝑐2)

𝑢̂(𝑥, 𝑡; 𝜃̂) ≈ 𝑢̂𝑛−1(𝑥, 𝑡; 𝜃̂) =
𝑛−1
∑

𝑖=0
𝑢̂𝑖(𝑡; 𝜃̂)̂𝑖(𝑥), 𝜃̂ ∶= (𝑐1, 𝑐2),

(4.5)

where ̂𝑖 is the generalized Hermite function described in Shen and Wang 
(2010).

We carry out the following sensitivity tests:

1. Vary (𝜎1, 𝜎2) which determines the variance in (𝑐1, 𝑐2) to investigate how 
variances in model parameters would affect the reconstruction accuracy 
of the joint distribution of (𝑐1, 𝑐2). Other parameters are set as 𝛽 = 1, 𝜎3 =
0.2, 𝑛 = 12 and 𝛿 = 0.1.

2. Change the value of 𝜎3 characterizing the uncertainty in the initial condi-
tion and the size of the neighborhood 𝛿 in our loss function Eq.  (J.1) to 
investigate how uncertainty in the initial condition and the hyperparame-
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Fig. 4. (a) Ground truth 𝑢𝑛−1(𝑥, 2; 𝜃) (red dashed lines) versus reconstructed 𝑢̂𝑛−1(𝑥, 2; 𝜃̂) (blue solid lines). For clarity, we only plot 50 ground truth 𝑢𝑛−1(𝑥, 2; 𝜃)
numerical solutions versus 50 approximate numerical solutions 𝑢̂𝑛−1(𝑥, 2; 𝜃̂) in Eq.  (4.5). (b) Mean and standard deviations of the ground truth 𝑢𝑁−1(𝑥, 2) versus 
reconstructed 𝑢̂𝑛−1(𝑥, 2). (c) The ground truth (𝑐1, 𝑐2) versus reconstructed (𝑐1, 𝑐2) when 𝛽 = 1, 𝜎1 = 0.15, 𝜎2 = 0.1, 𝑛 = 12. In (a), (b) and (c), the parameters are 𝑛 = 12
and 𝛽 = 1, 𝜎1 = 0.15, 𝜎2 = 0.1, 𝜎3 = 0.2, 𝑁 = 12 and 𝛿 = 0.1 in the loss function Eq.  (J.1). (d) Errors in (𝑐1, 𝑐2) w.r.t. different variances 𝜎1, 𝜎2 for (𝑐1, 𝑐2) in Eq.  (4.3) 
(Case 1 on Page 23). (e) Errors in (𝑐1, 𝑐2) w.r.t. different values of the variance 𝜎3 in the initial condition 𝜖 and different 𝛿. 𝛿 = inf indicates that we set 𝛿 = ∞, which 
corresponds to the time-decoupled squared 𝑊2 loss function in Xia et al. (2024a) (Case 2 on Page 23). (f) Errors in (𝑐1, 𝑐2) w.r.t. different values 𝑁 and 𝑐0 (Case 3 on 
Page 23).

ter 𝛿 affect the reconstruction of the distribution (𝑐1, 𝑐2). Other parameters 
are 𝛽 = 1, 𝜎1 = 0.1, 𝜎2 = 0.2, 𝑛 = 12.

3. Vary 𝛽 which determines the correlation between 𝑐1 and 𝑐2 as well as 
the expansion order 𝑁 in the spectral approximation in Eq.  (4.5) to 
explore how the correlation between 𝑐1 and 𝑐2 and the dimensionality of 
the discretized ODE affect the reconstruction accuracy of (𝑐1, 𝑐2). Other 
parameters are 𝜎1 = 0.1, 𝜎2 = 0.2, 𝜎3 = 0.2, 𝛿 = 0.1.

We plot the reconstructed numerical solution 𝑢̂𝑛−1(𝑥, 𝑡; 𝜃̂) versus the 
ground truth numerical solution 𝑢𝑛−1(𝑥, 𝑡; 𝜃) in Eq.  (4.5) as the numeri-
cal solution to Eq.  (4.3) in Fig. 4(a), (b). The distribution of ground truth 
numerical solutions can be matched well by the distribution of the numerical 
solutions generated with the reconstructed (𝑐1, 𝑐2), shown in Fig. 4(c). From 
Fig. 4(d), the larger the variance in 𝑐1, the larger the errors in the predicted 
distribution of (𝑐1, 𝑐2). When the variance 𝑐1 is too large, we might have close-
to-zero or even negative 𝑐1 in Eq.  (4.3), which makes numerically solving 
Eq.  (4.3) ill-posed and yields a poor reconstruction of the joint distribution of 
(𝑐1, 𝑐2). Thus, it is reasonable to reconstruct the distribution of model parame-
ters for well-posed dynamical systems instead of ill-posed dynamical systems. 
From Fig. 4(e), when the variance 𝜎23 in the initial condition is small and the 
initial conditions are more densely distributed, a smaller 𝛿 leads to a more 
accurate reconstruction of (𝑐1, 𝑐2). Thus, it is necessary to consider uncertain-
ties in the initial condition of an ODE or PDE for the accurate reconstruction 
of unknown model parameters and find the size of the neighborhood 𝛿 that 
is compatible with uncertainty in the initial state. Finally, from Fig. 4(f), the 
error in the reconstructed distribution of (𝑐1, 𝑐2) is independent of the dimen-
sionality 𝑛 of the discretized ODE system. Furthermore, the accuracy of the 
reconstructed (𝑐1, 𝑐2) is insensitive to the correlation between the two uncer-
tain model parameters (𝑐1, 𝑐2), indicating the robustness of our proposed local 
temporally decoupled squared 𝑊2 method for reconstructing the distribution 
of (𝑐1, 𝑐2) in Eq.  (4.3).

As an application of our proposed method for parameter inference 
problems in biophysics, we reconstruct reaction rates in an 8D ODE sys-

tem characterizing drug dynamics in an ocular model studied in Craw-
shaw et al. (2025).

Example 4.3. We consider an ODE system that arises from modeling studies 
of monoclonal antibodies (MABs) injected into the vitreous gel of the eye in 
the treatment of wet age-related macular degeneration. The monoclonal anti-
bodies bind to the vascular endothelial growth factor (VEGF) with this bind-
ing inhibiting the latter’s stimulation of pathological capillary growth through 
the retina (Chappelow & Kaiser, 2008; Mitchell et al., 2018). However, in-
jected MABs are cleared from the eye, by passing into the aqueous compart-
ment at the front of the eye. This in turn necessitates multiple injections of 
MABs into the eye. Hence, analyzing how long MABs are retained within the 
eye and the prospect of reducing injection frequency has motivated numerous 
modeling studies (e.g. (Caruso et al., 2019; Crawshaw et al., 2025; Hutton-
Smith et al., 2018, 2016; Lamirande et al., 2024)). However, a common 
theme within these studies is the need to estimate the parameters (Crawshaw 
et al., 2025; Hutton-Smith et al., 2016; Mitchell et al., 2018).

Hence, we consider a simple well-mixed model in the literature for the 
MAB ranibizumab (Crawshaw et al., 2025; Hutton-Smith et al., 2016), 
with its concentration in the vitreous of the eye denoted by 𝑟vit, and the 
vitreous VEGF concentration denoted by 𝑣vit. A complex of one MAB 
bound to one VEGF in the vitreous has concentration 𝑐vit and, noting 
that VEGF has two binding sites, a complex of two MABs and a VEGF 
is also considered, with concentration ℎvit. The formation and disassoci-
ation of these species is represented by the law of mass action, with the 
reaction rates labeled by “𝑘”, and all species can pass into the aque-
ous at the front of the eye, with concentrations in this compartment 
then distinguished by the subscript “aq” (𝑟aq, 𝑣aq, 𝑐aq, ℎaq). Once in this 
latter compartment, all species are taken to pass into the bloodstream 
via Schlemm’s canal, with a clearance rate 𝐶𝐿. In addition, there is a 
flux, 𝑉in, of vitreal VEGF to reflect the rate of elevated levels of VEGF 
leaking into the vitreous in pathology. This generates the set of eight
ODEs:
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Vitreous
d𝑣vit
d𝑡

= (𝑘off𝑐vit − 2𝑘on𝑣vit𝑟vit) − 𝑘el𝑣 𝑣vit +
𝑉in
𝑉vit

,

d𝑟vit
d𝑡

= (𝑘off𝑐vit − 2𝑘on𝑣vit𝑟vit) + (2𝑘offℎvit − 𝑘on𝑟vit𝑐vit) − 𝑘el𝑟 𝑟vit,

d𝑐vit
d𝑡

= −(𝑘off𝑐vit − 2𝑘on𝑣vit𝑟vit) + (2𝑘offℎvit − 𝑘on𝑟vit𝑐vit) − 𝑘el𝑐 𝑐vit,

dℎvit
d𝑡

= −(2𝑘offℎvit − 𝑘on𝑟vit𝑐vit) − 𝑘elℎℎvit.

(4.6)

Aqueous

d𝑣aq
d𝑡

= (𝑘off𝑐aq − 2𝑘on𝑣aq𝑟aq) +
𝑉vit
𝑉aq

𝑘el𝑣 𝑣vit −
𝐶𝐿
𝑉aq

𝑣aq,

d𝑟aq
d𝑡

= (𝑘off𝑐aq − 2𝑘on𝑣aq𝑟aq) + (2𝑘offℎaq − 𝑘on𝑟aq𝑐aq) +
𝑉vit
𝑉aq

𝑘el𝑟 𝑟vit

− 𝐶𝐿
𝑉aq

𝑟aq,

d𝑐aq
d𝑡

= −(𝑘off𝑐aq − 2𝑘on𝑣aq𝑟aq) + (2𝑘offℎaq − 𝑘on𝑟aq𝑐aq) +
𝑉vit
𝑉aq

𝑘el𝑐 𝑐vit

− 𝐶𝐿
𝑉aq

𝑐aq,

dℎaq
d𝑡

= − (2𝑘offℎaq − 𝑘on𝑟aq𝑐aq) +
𝑉vit
𝑉aq

𝑘elℎℎvit −
𝐶𝐿
𝑉aq

ℎaq, 𝑡 ∈ [0, 2] (unit: day).

(4.7)

From (Crawshaw et al., 2025), we set the vitreous and aqueous hu-
mor volumes 𝑉vit = 2.05mL and 𝑉aq = 0.105mL, respectively, and 𝑉in =
5.408pmol ⋅ day−1. We aim to reconstruct the distribution of the seven reac-
tion rate parameters: 𝑘off, 𝑘on, 𝑘el𝑣 , 𝑘el𝑟 , 𝑘el𝑐 , 𝑘elℎ  and 𝐶𝐿 in Eqs.  (4.6) and (4.7), 
which are subject to uncertainties in the drug properties (Crawshaw et al., 
2025; Hutton-Smith et al., 2016; Mitchell et al., 2018).

We generate a synthetic data set of model parameters by sampling the 
seven kinetic parameters: 𝒌 ∶= (𝑘off, 𝑘on, 𝑘el𝑣 , 𝑘

el
𝑟 , 𝑘

el
𝑐 , 𝑘

el
ℎ , 𝐶𝐿) from the follow-

ing model:
𝒌 = 𝒌0 + 𝑐𝒌0 ∗ 𝐴𝒌̃, (4.8)

where

𝒌0 = (1.669day−1, 0.00114pM−1 ⋅ day−1, 0.575day−1, 0.293day−1,

0.259day−1, 0.176day−1, 2.505mL ⋅ day−1)
(4.9)

is the vector of mean values of those kinetic parameters used in Crawshaw 
et al. (2025). In Eq.  (4.8), ∗ is the Hadamard componentwise product. 𝐴 ∈
ℝ7×7 is a randomly generated matrix whose components are sampled inde-
pendently from the distribution  (− 1

2 ,
1
2 ). In Eq.  (4.8), ̃𝒌 ∶= (𝑘1, 𝑘2,…, 𝑘7)

is independently generated for each trajectory in the training dataset. Omit-
ting the units for simplicity, we sample 𝑘1, 𝑘2 ∼  (0, 1), 𝑘3, 𝑘4 ∼  (0, 0.52), 
𝑘5 ∼ Exp(2), 𝑘6 ∼ B(2, 5) (the Beta distribution with shape parameters 𝛼 =
2, 𝛽 = 5), and 𝑘7 ∼ Γ(2, 2) (the Gamma distribution with a shape parameter 
𝛼 = 2 and scale parameter 𝜆 = 2). The initial condition of each trajectory 
is independently sampled from  (𝑰7, 0.052𝐼7×7), where 𝑰7 ∈ ℝ7 refers to a 
constant vector whose components are 1.

The distribution of trajectories of the four quantities 𝑣vit(𝑡), 𝑟vit(𝑡), 𝑐vit(𝑡)
and ℎvit(𝑡) obtained with the parameter vector 𝒌 sampled from the ground 
truth distribution Eq.  (4.8) can be matched well by the distribution of tra-
jectories obtained by using the parameter vector 𝒌 sampled from the recon-
structed distribution generated by the trained SNN in Fig. 5(a)–(d). Addi-
tionally, we plot the empirical joint distribution of any two parameters in 𝒌
versus the empirical joint reconstructed distribution of the corresponding two 
variables in Fig. 5(e), and most pairwise joint distributions of any two compo-
nents in 𝒌 can be matched well by their reconstructed counterparts. However, 
the reconstruction of 𝑘on is not accurate. A possible reason could be that the 
magnitude of 𝑘on (𝑂(10−3)) is much smaller than that of other parameters 
(𝑂(1)), making it harder to reconstruct the distribution of 𝑘on. Another pos-
sibility is a lack of practical identifiability for these parameters. Since only 

Table 2 
Errors in the reconstructed distribution of kinetic parameters in the ocular 
pharmacokinetic model. Here, ELU refers to using the ELU activation func-
tion for forward propagation and ResNet refers to using the ResNet technique 
(described in Fig. 1). When using the 𝑊2, MMD, MSE, and the Mean2+Var 
loss functions, the SNN has 3 hidden layers with 10 neurons in each layer.
 Width  # of layers Forward

propagation
Initialization for
weights & biases

 Error

 10  1 ELU  (0, 0.032) 7.79 × 10−3

 10  2 ELU  (0, 0.032) 1.39 × 10−3

 10  3 ELU  (0, 0.032) 1.10 × 10−3

 10  4 ELU  (0, 0.032) 8.93 × 10−4

 5  3 ELU  (0, 0.032) 8.85 × 10−4

 15  3 ELU  (0, 0.032) 9.20 × 10−4

 20  3 ELU  (0, 0.032) 0.156
 10  2 ResNet  (0, 0.032) 8.25 × 10−4

 10  3 ResNet  (0, 0.032) 8.67 × 10−4

 10  4 ResNet  (0, 0.032) 8.71 × 10−4

 10  3 ELU  (0, 0)  0.609
 10  3 ELU  (0, 0.012) 7.98 × 10−4

 10  3 ELU  (0, 0.022) 8.42 × 10−4

𝑊2  3 ELU  (0, 0.032) 1.24 × 10−3

 MMD  3 ELU  (0, 0.032) 1.21 × 10−3

 MSE  3 ELU  (0, 0.032) 1.23 × 10−3

 Mean2+Var  3 ELU  (0, 0.032) 1.19 × 10−3

observed trajectories are available, the reconstruction of the distribution of 
model parameters using our method signifies a “worst case scenario” with no 
prior information on the magnitudes of model parameters. 

We also investigate how the number of neurons in each layer, the number 
of hidden layers in the SNN model (Fig. 1), the initialization for the distri-
bution of weights in the SNN model, as well as whether adopting the ResNet 
technique (He et al., 2016) for forward propagation would affect the accu-
racy of the reconstructed distribution of the kinetic parameters. From Table 2, 
SNNs with more than one hidden layer and 10 neurons in each layer can all 
reconstruct the distribution of 𝒌 in Eq.  (4.8) well. Thus, we do not need a 
wide or deep SNN model in Fig. 1 to reconstruct the distribution of 𝒌. As an 
additional comparison with other loss functions, we train the SNN with 3 hid-
den layers and 10 neurons in each layer by minimizing the 𝑊2, MMD, MSE, 
and the Mean2+Var loss functions (defined in Appendix J) as was done in 
Example 4.1. Our results indicate that the SNN model, when equipped with 
appropriate numbers of hidden layers and neurons in each layer, has the 
ability to approximate the distribution of unknown model parameters well, 
and minimizing our local time-decoupled squared 𝑊2 loss function can most 
efficiently train the SNN and yield the most accurate reconstructed distribu-
tion of unknown model parameters. Also, applying the ResNet technique can 
moderately increase the reconstruction accuracy when the number of hidden 
layers increases. Finally, initializing the weights and biases to small non-zero 
values is important, as the reconstruction error is huge if we set all weights 
and biases to zero. It is worth further investigation on how to optimally design 
the structure of the SNN model in Fig. 1, which is beyond the scope of this 
paper.

Finally, we consider reconstructing the distribution of parameters 
of a jump-diffusion process, in which intrinsic stochasticity from the 
Wiener process and Poisson process as well as uncertainty in the initial 
condition of the jump-diffusion process are coupled with uncertainty in 
the parameters governing the jump-diffusion process.

Example 4.4. We reconstruct the distribution of uncertain parameters gov-
erning a jump-diffusion process that can be used to describe the posited stock 
returns (Merton, 1976; Xia et al., 2024a). Instead of considering a deter-
ministic jump magnitude function as in (Xia et al., 2024a, Example 2), we 
consider the following jump-diffusion process:

d𝑋𝑡 = 0.05d𝑡 + 𝑠
√

|𝑋𝑡|d𝐵𝑡 + ∫𝑈
𝜉𝑋𝑡d𝑁̃(𝛾(d𝜉)d𝑡), 𝑡 ∈ [0, 2],

𝑠 ∼ 𝜎0 (1, 1), 𝜉 ∼  (𝛽0, 𝜎21 ), 𝑋0 ∼  (2, 𝜎22 ).
(4.10)
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Fig. 5. (a)–(d) The first 50 out of 400 trajectories of the four quantities 𝑣vit(𝑡), 𝑟vit(𝑡), 𝑐vit(𝑡), ℎvit(𝑡) obtained with the parameter vector 𝒌 sampled from the ground 
truth distribution Eq.  (4.8) (red dashed lines) versus trajectories obtained by using the parameter vector 𝒌 sampled from the reconstructed distribution generated 
by the trained SNN (blue solid lines). The SNN has 3 hidden layers and 10 neurons in each layer. The nodes and weights are initialized by independently sampling 
from  (0, 0.032). (e) The reconstructed joint distribution of any two kinetic parameters in Eq.  (4.8). In all subplots, the red dots are sampled from the ground truth 
joint distribution while the blue dots are sampled from the reconstructed distribution. When using the ResNet technique for forward propagation, the scalar input of 
the SNN is 0.1 as inputting 1 leads to overflow during training.

In Eq.  (4.10), the drift term represents the risk-free interest rate, the diffusion 
term stands for the fluctuation in the stock price, and the jump term repre-
sents events of paying dividends. In Eq.  (4.10), 𝑁̃ is a compensated Poisson 
process defined in Eq.  (2.11). We aim at reconstructing the distributions of 
𝑠 as well as 𝜉 employing two separate SNNs using the distribution of 𝑠̂0 and 
𝜉 in the following approximate jump-diffusion process:

d𝑋̂𝑡 = 0.05d𝑡 + 𝑠̂
√

|𝑋̂𝑡|d𝐵𝑡 + ∫𝑈
𝜉𝑋̂𝑡d𝑁̂(𝛾(d𝜉)d𝑡),

𝑋̂0 = 𝑋0, 𝑡 ∈ [0, 2]. (4.11)

In Eq.  (4.11), 𝑁̂ is another compensated Poisson process that is indepen-
dent of 𝑁̃ . It has been showned in Xia et al. (2024a) that when 𝜉 ≡ 1, larger 
values of 𝑠 and 𝛽0 make it more difficult to reconstruct the jump-diffusion 
process i.e., relative errors in the learned diffusion and jump functions get 

larger because the trajectories are more sparsely distributed. Here, we carry 
out further experiments on the following cases:

1. Change the values of 𝛽0 as well as the value of 𝜎1 in Eq.  (4.10) to 
explore how the mean and variance of the jump magnitude function affect 
the reconstruction of distributions of |𝑠| and 𝜉 (here we reconstruct the 
distribution of |𝑠| because 𝑠̂

√

|𝑋̂𝑡|d𝐵𝑡 and |𝑠̂|
√

|𝑋̂𝑡|d𝐵𝑡 are identically 
distributed). Other parameters are 𝜎0 = 0.3, 𝜎2 = 0.1, and 𝛿 = 0.1 (the 
neighborhood size in the loss function Eq.  (J.1)).

2. Vary the value of 𝜎0 as well as the value of 𝜎1 to investigate how the un-
certainty in the diffusion function and uncertainty in the jump magnitude 
affect the reconstruction of distributions of |𝑠| and 𝜉. Other parameters 
are 𝛽0 = 0.3, 𝜎2 = 0.1, and 𝛿 = 0.1.
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Fig. 6. (a) Ground truth trajectories generated from Eq.  (4.10) versus the reconstructed trajectories generated from the approximate Eq.  (4.11). For clarity, we 
plot 50 ground truth trajectories and 50 reconstructed trajectories. (b) The empirical probability density function ground truth |𝑠| versus the empirical probability 
density function of the reconstructed |𝑠̂| in Eqs.  (4.10) and (4.11). (c) The empirical probability density function ground truth 𝜉 versus the empirical probability 
density function of the reconstructed |𝜉| in Eqs.  (4.10) and (4.11). In (a)–(c), 𝜎0 = 0.3, 𝛽0 = 0.35, 𝜎1 = 0.15, 𝜎2 = 0.1, and 𝛿 = 0.1 in the loss function Eq.  (J.1). (d) and 
(g) The errors in the reconstructed distribution of 𝜎̂ and 𝜉 for case 1 of Example  4.4 on Page 11, respectively. (e) and (h) The errors in the reconstructed distribution 
of 𝜎̂ and 𝜉 for case 2 of Example  4.4 on Page 12, respectively. (f) and (i) The errors in the reconstructed distribution of 𝜎̂ and 𝜉 for case 3 of Example  4.4 on Page 
12, respectively.

3. Vary the value of 𝜎1 and 𝜎2 to determine how uncertainty in the initial 
condition and jump magnitude affects the reconstruction of |𝑠| and 𝜉. 
Other parameters are 𝜎0 = 0.3, 𝛽0 = 0.3, 𝜎2 = 0.1, and 𝛿 = 0.1.

From Fig. 6(a), the distribution of reconstructed trajectories of the ap-
proximate jump-diffusion process Eq.  (4.11) match well with the distribu-
tion of ground truth jump-diffusion trajectories at each time 𝑡. Also, from 
Fig. 6(b), (c), the probability density functions of |𝑠| and 𝜉 can be matched 
well by the probability density functions of |𝑠̂| and 𝜉 in Eq.  (4.11), respec-
tively. From Fig. 6(d), (g), when the mean and variance of 𝜉 in the jump func-
tion of Eq.  (4.10) become large, the reconstruction of the distributions of 𝑠
and 𝜉 is also less accurate. The increase in the mean 𝛽0 of the jump magnitude 
impacts the reconstruction accuracy more than the increase in the variance 
𝜎1 does. From Fig. 6(e), (h), a larger 𝜎0 characterizing greater uncertainty 
in the diffusion function of the jump-diffusion process Eq.  (4.10) also leads 
to less accurate reconstructions of both 𝑠 and 𝜉. Finally, from Fig. 6(f), (i), 
choosing a neighborhood size 𝛿 = 0.1 works well for 𝜎2 ∈ [0.05, 0.2] charac-
terizing different levels of uncertainty in the initial condition and errors in 
both |𝑠̂| and 𝜉 are well controlled.

When the form of the diffusion function in the jump-diffusion pro-
cess in Eq.  (4.10) is unknown but the diffusion function itself is de-
terministic, we can use a deterministic parameterized neural network to 
reconstruct the diffusion function as was done in Xia et al. (2024a) 
while simultaneously using an SNN to reconstruct the distribution of 𝜉 in 
the jump function of Eq.  (4.10). When the diffusion function is deter-
ministic, the reconstruction accuracy of both the diffusion function and 
the distribution of 𝜉 in Eq.  (4.10) is good. The results are shown in
Appendix K. 

5.  Summary and conclusions

In this paper, we proposed and analyzed a local time-decoupled 
squared 𝑊2 distance method for reconstructing the distributions of pa-
rameters in specific dynamical systems from time-series data using an 
SNN model (Fig. 1). We also analyzed the SNN model and proved 
that it could approximate any continuous random variable as long as 
moderate assumptions are satisfied, making it a suitable model for
reconstructing the distribution of parameters in a dynamical system. 
Our method took advantage of a previous local squared 𝑊2 method 
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and a previous time-decoupled squared 𝑊2 method so that both uncer-
tainty in the initial state and intrinsic fluctuations such as the Wiener 
process in the dynamics could be considered. We showcased the effec-
tiveness of our approach for reconstructing the distribution of model 
parameters in several dynamical systems such as ODEs, PDEs and 
SDEs. Our method outperformed several other benchmark statistical
methods.

One limitation of our proposed method is that when the model pa-
rameters span across different magnitudes, the reconstruction of the 
distribution of model parameters whose magnitudes are smaller is less 
accurate. In practice, prior information on the distribution of model
parameters might be available either from biophysical estimates or ex-
perimental assays. Thus, how to incorporate prior information of the 
model parameter distribution, such as confining the range of model pa-
rameters, is a potential future research direction. Specifically, it is il-
luminating to make comparisons with Bayesian approaches or Monte–
Carlo simulation approaches, both of which can incorporate a prior
distribution of model parameters, in terms of both accuracy and compu-
tational complexity. Also, it is helpful to consider applying our method 
to quantify uncertainties in model selection from time-series data or 
spatiotemporal data (Nardini et al., 2020). Taking into account mea-
surement errors might also be necessary when such errors are not neg-
ligible (Nardini & Bortz, 2019). The computational complexity of eval-
uating our proposed local time-decoupled squared 𝑊2 loss function is 
𝑂(𝑁𝑇𝑁E[(𝑁#(𝑿0; 𝛿))3 log

(

𝑁#(𝑿0; 𝛿)
)

]), where 𝑁#(𝑿0; 𝛿) refers to the 
number of trajectories in the data set such that their initial conditions 
satisfy ‖𝑿(0) −𝑿0‖ ≤ 𝛿 and 𝑁𝑇  denotes the number of time steps. There-
fore, considering utilizing entropic regularized Wasserstein distances 
and applying the Sinkhorn algorithm (Cuturi, 2013) to solve the cor-
responding optimal transport problems could be helpful in further re-
ducing the computational complexity to 𝑂(𝑁𝑇𝑁E[(𝑁#(𝑿0; 𝛿))2]). Addi-
tionally, it will be promising to apply our proposed local time-decoupled 
squared 𝑊2 method for reconstructing the distribution of uncertain pa-
rameters in more complicated dynamical systems such as multidimen-
sional SPDEs. It will be useful to analyze other stochastic neural net-
works’ ability to approximate the distribution of uncertain model param-
eters, especially model parameters that take categorical values. On the 
other hand, more theoretical analysis on the Wasserstein-distance-based 
loss function, such as proving that minimizing a Wasserstein-distance-
type loss function is sufficient for reconstructing the distribution of pa-
rameters in a dynamical system, can also be interesting, which would 
require the analysis of identifiability of model parameters, i.e., whether 
two different sets of model parameters would lead to different trajecto-
ries. Finally, more theoretical and empirical studies on how to design 
the optimal architecture, e.g. the depth and width, of the SNN model in 
Fig. 1 would be informative.
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Appendix A.  The proof of Theorem 2.1

Here, we prove Theorem 2.1. Note that

𝑊 2,e
2,𝛿 (𝑿(𝑡𝑖), 𝑿̂(𝑡𝑖)) =

1
𝑁

𝑁
∑

𝑗=1
𝑊 2

2

(

𝜈e𝑿0,𝑗 ,𝛿
(𝑡𝑖), 𝜈̂e𝑿0,𝑗 ,𝛿

(𝑡𝑖)
)

, (A.1)

where 𝑁 is the number of observed trajectories and 𝑿0,𝑗 de-
notes the initial condition of the 𝑗th trajectory. Suppose 0 =
𝑡10 < 𝑡11 < … < 𝑡1𝑛1 = 𝑇 ; 0 = 𝑡20 < 𝑡21 < … < 𝑡2𝑛2 = 𝑇  are sets of grids on 
[0, 𝑇 ]. We define a third set of grids 0 = 𝑡30 < … < 𝑡3𝑛3 = 𝑇  such 
that {𝑡10,…, 𝑡1𝑛1} ∪ {𝑡20,…, 𝑡2𝑛2} = {𝑡30,…, 𝑡3𝑛3}. Let Δ𝑡 ∶= max{max𝑖(𝑡1𝑖+1 −
𝑡1𝑖 ),max𝑗 (𝑡2𝑗+1 − 𝑡2𝑗 ),max𝑘(𝑡3𝑘+1 − 𝑡3𝑘)}. We denote 𝜈e𝑿0,𝑗 ,𝛿

(𝑡) and 𝜈̂e𝑿0,𝑗 ,𝛿
(𝑡) to 

be the empirical conditional probability distributions of 𝑿(𝑡) and 𝑿̂(𝑡)
at time 𝑡 conditioned on |𝑿(0) −𝑿0,𝑗 | ≤ 𝛿 and |𝑿̂(0) −𝑿0,𝑗 | ≤ 𝛿, respec-
tively. We shall show that:

|

|

|

|

𝑛1−1
∑

𝑖=0
𝑊 2,e

2,𝛿
(

𝑿
(

𝑡1𝑖
)

, 𝑿̂
(

𝑡1𝑖
))(

𝑡1𝑖+1 − 𝑡1𝑖
)

−
𝑛3−1
∑

𝑖=0
𝑊 2,e

2,𝛿
(

𝑿
(

𝑡3𝑖
)

, 𝑿̂
(

𝑡3𝑖
))(

𝑡3𝑖+1 − 𝑡3𝑖
)|

|

|

|

→ 0, (A.2)

as Δ𝑡 → 0.
First, suppose in the interval (𝑡1𝑖 , 𝑡1𝑖+1), we have 𝑡1𝑖 = 𝑡3𝓁 < 𝑡3𝓁+1 < … <

𝑡3𝓁+𝑠 = 𝑡1𝑖+1, 𝑠 ≥ 1. For 𝑠 > 1, since 𝑡1𝑖+1 − 𝑡1𝑖 =
∑𝓁+𝑠−1

𝑘=𝓁 (𝑡3𝑘+1 − 𝑡3𝑘), we have:

|

|

|

|

𝑊 2,e
2,𝛿

(

𝑿
(

𝑡1𝑖
)

, 𝑿̂
(

𝑡1𝑖
))(

𝑡1𝑖+1 − 𝑡1𝑖
)

−
𝓁+𝑠−1
∑

𝑘=𝓁
𝑊 2,e

2,𝛿
(

𝑿
(

𝑡3𝑘
)

, 𝑿̂
(

𝑡3𝑘
))(

𝑡3𝑘+1 − 𝑡3𝑘
)|

|

|

|

≤ 1
𝑁

𝑁
∑

𝑗=1

𝓁+𝑠−1
∑

𝑘=𝓁+1

(

𝑊2
(

𝜈e𝑿0,𝑗 ,𝛿
(𝑡1𝑖 ), 𝜈̂

e
𝑿0,𝑗 ,𝛿

(

𝑡1𝑖
))

+𝑊2
(

𝜈e𝑿0,𝑗 ,𝛿
(

𝑡3𝑖
)

, 𝜈̂e𝑿0,𝑗 ,𝛿
(

𝑡3𝑘
)

|

|

|

)

× |

|

|

𝑊2
(

𝜈e𝑿0,𝑗 ,𝛿
(𝑡1𝑖 ), 𝜈̂

e
𝑿0,𝑗 ,𝛿

(𝑡1𝑖 )
)

−𝑊2
(

𝜈e𝑿0,𝑗 ,𝛿
(

𝑡3𝑘
)

, 𝜈̂e𝑿0,𝑗 ,𝛿
(

𝑡3𝑘
))

|

|

|

(

𝑡3𝑘+1 − 𝑡3𝑘
)

.

(A.3)

Since ‖𝑿‖ and ‖𝑿̂‖ are uniformly bounded, we have

𝑊2
(

𝜈e𝑿0,𝑗 ,𝛿
(

𝑡1𝑖
)

, 𝜈̂e𝑿0,𝑗 ,𝛿
(

𝑡1𝑖
))

≤ sup
𝑿0

𝔼[‖𝑿(𝑡)‖2]
1
2 + 𝔼[‖𝑿̂(𝑡)‖2]

1
2 ≤ 𝑋 + 𝑋̂

(A.4)

and

𝑊2
(

𝜈e𝑿0,𝑗 ,𝛿
(

𝑡3𝑘
)

, 𝜈̂e𝑿0,𝑗 ,𝛿
(

𝑡3𝑘
))

≤ 𝑋 + 𝑋̂, (A.5)

where 𝑋, 𝑋̂ are the upper bounds in Eq.  (2.7). We can take a specific 
coupling measure 𝜋∗

𝛿,𝑿0,𝑗

(

𝑿(𝑡1𝑖 ),𝑿(𝑡3𝑘)
) such that if we regard

(

𝑿
(

𝑡1𝑖
)

,𝑿
(

𝑡3𝑘
))

∶ ℝ2𝑑 → ℝ2𝑑 (A.6)

as a mapping from initial state space (𝑿0, 𝑿̃0) ∈ ℝ2𝑑 to the solutions 
(𝑿(𝑡1𝑖 ), 𝑿̃(𝑡3𝑘)) ∈ ℝ2𝑑 at times (𝑡1𝑖 , 𝑡3𝑘) satisfying 𝑿(𝑡1𝑖 ) = 𝑿0, 𝑿̃(𝑡3𝑘) = 𝑿̃0, 
then 𝜋∗

𝛿,𝑿0,𝑗
 is the pushforward measure of the probability measure of the 

initial condition 𝜈e𝑿0,𝑗 ,𝛿
⋅ 𝛿𝑿̃0=𝑿0

 under the mapping (𝑿(𝑡1𝑖 ),𝑿(𝑡3𝑖 )). Here, 

Neural Networks 193 (2026) 107893 

13 

https://github.com/mtxia99/noisy_dynamical_system


M. Xia et al.

𝜈e𝑿0,𝑗 ,𝛿
 is the empirical conditional distribution of the initial condition 

𝑿0 conditioned on |𝑿0,𝑗 −𝑿0| ≤ 𝛿. Then, for any 𝑿0,𝑗 , we have
𝑊 2

2 (𝜈
e
𝑿0,𝑗

(𝑡1𝑖 ), 𝜈
e
𝑿0,𝑗

(𝑡3𝑘)) ≤ sup
𝑿0,𝑗

𝔼(
𝑿(𝑡1𝑖 ),𝑿(𝑡3𝑘)

)

∼𝜋∗𝛿,𝑿0,𝑗

[

‖𝑿(𝑡3𝑘) −𝑿(𝑡1𝑖 )‖
2
2
]

≤ sup
𝑿0,𝑗

𝔼
[

∫

𝑡1𝑖+1

𝑡1𝑖

𝑑
∑

𝑖=1
𝑓 2
𝑖 (𝑿(𝑡), 𝑡; 𝜃)d𝑡

]

(

𝑡1𝑖+1 − 𝑡1𝑖
)

.
(A.7)

Similarly, we have

𝑊 2
2
(

𝜈̂e𝑿0,𝑗
(𝑡1𝑖 ), 𝜈̂

e
𝑿0,𝑗

(𝑡3𝑘)
)

≤ sup
𝑿0,𝑗

𝔼
[

∫

𝑡𝑖+1

𝑡𝑖

𝑑
∑

𝓁=1
𝑓 2
𝓁 (𝑿(𝑡), 𝑡; 𝜃̂)d𝑡

]

(

𝑡1𝑖+1 − 𝑡1𝑖
)

.

(A.8)

Using the triangular inequality of the Wasserstein distance (Clement 
& Desch, 2008), we have
|

|

|

𝑊2
(

𝜈e𝑿0,𝑗 ,𝛿
(𝑡1𝑖 ), 𝜈̂

e
𝑿0,𝑗 ,𝛿

(𝑡1𝑖 )
)

−𝑊2
(

𝜈e𝑿0,𝑗 ,𝛿
(𝑡3𝑘), 𝜈̂

e
𝑿0,𝑗 ,𝛿

(𝑡3𝑘)
)

|

|

|

≤ |

|

|

𝑊2
(

𝜈e𝑿0,𝑗 ,𝛿
(𝑡1𝑖 ), 𝜈̂

e
𝑿0,𝑗 ,𝛿

(𝑡1𝑖 )
)

−𝑊2
(

𝜈e𝑿0,𝑗 ,𝛿
(𝑡3𝑘), 𝜈̂

e
𝑿0,𝑗 ,𝛿

(𝑡1𝑘)
)

|

|

|

+ |

|

|

𝑊2
(

𝜈e𝑿0,𝑗 ,𝛿
(𝑡3𝑖 ), 𝜈̂

e
𝑿0,𝑗 ,𝛿

(𝑡1𝑖 )
)

−𝑊2
(

𝜈e𝑿0,𝑗 ,𝛿
(𝑡3𝑘), 𝜈̂

e
𝑿0,𝑗 ,𝛿

(𝑡3𝑘)
)

|

|

|

≤ 𝑊2
(

𝜈e𝑿0,𝑗 ,𝛿
(𝑡1𝑖 ), 𝜈

e
𝑿0,𝑗 ,𝛿

(𝑡3𝑘)
)

+𝑊2
(

𝜈̂e𝑿0,𝑗 ,𝛿
(𝑡1𝑖 ), 𝜈̂

e
𝑿0,𝑗 ,𝛿

(𝑡3𝑘)
)

.

(A.9)

Substituting Eqs.  (A.4), (A.7), (A.8), and (A.9) into Eq.  (A.3), we con-
clude that
|

|

|

|

𝑊 2
2
(

𝜈e𝑿0,𝑗 ,𝛿
(𝑡1𝑖 ), 𝜈̂

e
𝑿0,𝑗 ,𝛿

(𝑡1𝑖 )
)(

𝑡1𝑖+1 − 𝑡1𝑖
)

−
𝓁+𝑠−1
∑

𝑘=𝓁
𝑊 2

2
(

(𝜈e𝑿0,𝑗 ,𝛿
(𝑡3𝑘), 𝜈̂

e
𝑿0,𝑗 ,𝛿

(𝑡3𝑘)
)(

𝑡3𝑘+1 − 𝑡3𝑘
)|

|

|

|

≤ 2(𝑋 + 𝑋̂)(𝑡1𝑖+1 − 𝑡1𝑖 )
(
√

𝐹𝑖Δ𝑡 +
√

𝐹𝑖Δ𝑡
)

,

(A.10)

where

𝐹𝑖 ∶= sup
𝑿0,𝑗

𝔼
[

∫

𝑡1𝑖+1

𝑡1𝑖

𝑑
∑

𝓁=1
𝑓 2
𝓁 (𝑿(𝑡), 𝑡; 𝜃)d𝑡

]

,

𝐹𝑖 ∶= sup
𝑿0,𝑗

𝔼
[

∫

𝑡1𝑖+1

𝑡1𝑖

𝑑
∑

𝓁=1
𝑓 2
𝓁 (𝑿(𝑡), 𝑡; 𝜃̂)d𝑡

]

. (A.11)

Summing over 𝑖 and 𝑗 for the inequality (A.10), we have:

|

|

|

|

𝑛1−1
∑

𝑖=0
𝑊 2,e

2,𝛿
(

𝑿(𝑡1𝑖 ), 𝑿̂(𝑡1𝑖 )
)(

𝑡1𝑖+1 − 𝑡1𝑖
)

−
𝑛3−1
∑

𝑖=0
𝑊 2,e

2,𝛿
(

𝑿(𝑡3𝑘), 𝑿̂(𝑡3𝑘)
)(

𝑡3𝑘+1 − 𝑡3𝑘
)|

|

|

|

≤ 2(𝑋 + 𝑋̂)𝑇 max
𝑖

(
√

𝐹𝑖Δ𝑡 +
√

𝐹𝑖Δ𝑡
)

.

(A.12)

Similarly,

|

|

|

|

𝑛2−1
∑

𝑖=0
𝑊 2,e

2,𝛿
(

𝑿(𝑡2𝑖 ), 𝑿̂(𝑡2𝑖 )
)(

𝑡2𝑖+1 − 𝑡2𝑖
)

−
𝑛2−1
∑

𝑖=0
𝑊 2,e

2,𝛿
(

𝑿(𝑡3𝑘), 𝑿̂(𝑡3𝑘)
)(

𝑡3𝑘+1 − 𝑡3𝑘
)|

|

|

|

≤ 2(𝑋 + 𝑋̂)𝑇 max
𝑖

(
√

𝐹 ′
𝑖 Δ𝑡 +

√

𝐹 ′
𝑖 Δ𝑡

)

,

(A.13)

where

𝐹 ′
𝑖 ∶= sup

𝑿0,𝑗

𝔼
[

∫

𝑡2𝑖+1

𝑡2𝑖

𝑑
∑

𝓁=1
𝑓 2
𝓁 (𝑿(𝑡), 𝑡; 𝜃̂)d𝑡

]

,

𝐹 ′
𝑖 ∶= sup

𝑿0,𝑗

𝔼
[

∫

𝑡2𝑖+1

𝑡2𝑖

𝑑
∑

𝓁=1
𝑓 2
𝓁 (𝑿(𝑡), 𝑡; 𝜃̂)d𝑡

]

. (A.14)

Thus, as Δ𝑡 → 0,

|

|

|

|

𝑛1−1
∑

𝑖=0
𝑊 2,e

2,𝛿
(

𝜈(𝑡1𝑖 ), 𝜈̂(𝑡
1
𝑖 )
)(

𝑡1𝑖+1 − 𝑡1𝑖
)

−
𝑛2−1
∑

𝑖=0
𝑊 2,e

2,𝛿
(

𝜈(𝑡2𝑖 ), 𝜈̂(𝑡
2
𝑖 )
)(

𝑡2𝑖+1 − 𝑡2𝑖
)|

|

|

|

→ 0,

(A.15)

which implies the limit

lim
max(𝑡1𝑖+1−𝑡

1
𝑖 )→0

𝑁−1
∑

𝑖=0
𝑊 2,e

2,𝛿
(

𝜈(𝑡1𝑖 ), 𝜈̂(𝑡
1
𝑖 )
)(

𝑡1𝑖 − 𝑡1𝑖−1
)

(A.16)

exists. Therefore, the local time-decoupled squared 𝑊2 distance in 
Eq.  (2.6):

𝑊̃ 2,e
2,𝛿 (𝑿, 𝑿̂) ∶= ∫

𝑇

0
𝑊 2,e

2,𝛿 (𝑿(𝑡), 𝑿̂(𝑡))d𝑡 (A.17)

is well-defined.

Appendix B.  Proof of Corollary 2.1

The proof of Corollary 2.1 is similar to the proof of Theorem 2.1 
and the proof of Theorem 3.1 in Xia et al. (2024a). Suppose 0 =
𝑡10 < 𝑡11 < … < 𝑡1𝑛1 = 𝑇 ; 0 = 𝑡20 < 𝑡21 < … < 𝑡2𝑛2 = 𝑇  are two sets of grids 
on [0, 𝑇 ]. We define a third set of grids 0 = 𝑡30 < … < 𝑡3𝑛3 = 𝑇  such 
that {𝑡10,…, 𝑡1𝑛1} ∪ {𝑡20,…, 𝑡2𝑁2

} = {𝑡30,…, 𝑡3𝑛3}. Let Δ𝑡 ∶= max{max𝑖(𝑡1𝑖+1 −
𝑡1𝑖 ),max𝑗 (𝑡2𝑗+1 − 𝑡2𝑗 ),max𝑘(𝑡3𝑘+1 − 𝑡3𝑘)}. We denote 𝜈e𝑿0,𝑗 ,𝛿

(𝑡) and 𝜈̂e𝑿0,𝑗 ,𝛿
(𝑡) to 

be the empirical conditional probability distributions of 𝑿(𝑡) and 𝑿̂(𝑡)
at time 𝑡 conditioned on |𝑿(0) −𝑿0,𝑗 | ≤ 𝛿 and |𝑿̂(0) −𝑿0,𝑗 | ≤ 𝛿, respec-
tively. We need to show that

|

|

|

|

𝑛1−1
∑

𝑖=0
𝑊 2,e

2,𝛿
(

𝑿(𝑡1𝑖 ), 𝑿̂(𝑡1𝑖 )
)(

𝑡1𝑖+1 − 𝑡1𝑖
)

−

𝑛3−1
∑

𝑖=0
𝑊 2,e

2,𝛿
(

𝑿(𝑡3𝑖 ), 𝑿̂(𝑡3𝑖 )
)

(𝑡3𝑖+1 − 𝑡3𝑖 )
|

|

|

|

→ 0. (B.1)

For 𝑗 = 1, 2, we define:

𝐹 𝑗
𝑖 ∶= sup

𝑿0 ,𝜃
𝔼
[

∫

𝑡𝑗𝑖+1

𝑡𝑗𝑖

𝑑
∑

𝓁=1
𝑓 2
𝓁 (𝑿(𝑡−), 𝑡−; 𝜃)d𝑡

]

,

𝐹 𝑗
𝑖 ∶= sup

𝑿0 ,𝜃̂
𝔼
[

∫

𝑡𝑗𝑖+1

𝑡𝑗𝑖

𝑑
∑

𝓁=1
𝑓 2
𝓁 (𝑿̂(𝑡−), 𝑡−; 𝜃̂)d𝑡

]

,

Σ𝑗
𝑖 ∶= sup

𝑿0 ,𝜃
𝔼
[

∫

𝑡𝑗𝑖+1

𝑡𝑗𝑖

𝑑
∑

𝓁=1

𝑚
∑

𝑗=1
𝜎2𝓁,𝑗 (𝑿(𝑡−), 𝑡−)d𝑡

]

,

Σ̂𝑗
𝑖 ∶= sup

𝑿0 ,𝜃̂
𝔼
[

∫

𝑡𝑗𝑖+1

𝑡𝑗𝑖

𝑑
∑

𝓁=1

𝑚
∑

𝑗=1
𝜎̂2𝓁,𝑗 (𝑿̂(𝑡−), 𝑡−; 𝜃)d𝑡

]

,

𝐵𝑗
𝑖 ∶= sup

𝑿0 ,𝜃
𝔼
[

∫

𝑡𝑗𝑖+1

𝑡𝑗𝑖

𝑑
∑

𝓁=1
∫𝑈

𝛽2𝓁(𝑿(𝑡−), 𝜉, 𝑡−; 𝜃)𝜈(d𝜉)d𝑡
]

,

𝐵̂𝑗
𝑖 ∶= sup

𝑿0 ,𝜃̂
𝔼
[

∫

𝑡𝑗𝑖+1

𝑡𝑗𝑖

𝑑
∑

𝓁=1
∫𝑈

𝛽2𝓁(𝑿̂(𝑡−), 𝜉, 𝑡−; 𝜃̂)𝜈(d𝜉)d𝑡
]

.

(B.2)

Similar to the proof of Theorem 2.1, we find that:
|

|

|

|

𝑊 2
2
(

𝜈e𝑿0,𝑗 ,𝛿
(𝑡1𝑖 ), 𝜈̂

e
𝑿0,𝑗 ,𝛿

(𝑡1𝑖 )
)

(𝑡1𝑖+1 − 𝑡1𝑖 )

−
𝓁+𝑠−1
∑

𝑘=𝓁
𝑊 2

2
(

𝜈e𝑿0,𝑗 ,𝛿
(𝑡3𝑘), 𝜈̂

e
𝑿0,𝑗 ,𝛿

(𝑡3𝑘)
)

(𝑡3𝑘+1 − 𝑡3𝑘)
|

|

|

|

≤ 2(𝑋 + 𝑋̂)(𝑡1𝑖+1 − 𝑡1𝑖 )
(
√

𝐹 1
𝑖 Δ𝑡 + Σ1

𝑖 + 𝐵1
𝑖 +

√

𝐹 1
𝑖 Δ𝑡 + Σ̂1

𝑖 + 𝐵̂1
𝑖

)

.

(B.3)

Summing over 𝑖 = 0,…, 𝑛1 − 1 and 𝑗 = 1,…, 𝑁 , we can obtain

|

|

|

|

𝑛1−1
∑

𝑖=0
𝑊 2,e

2,𝛿
(

𝑿(𝑡1𝑖 ), 𝑿̂(𝑡1𝑖 )
)

(𝑡1𝑖+1 − 𝑡1𝑖 ) −
𝑛3−1
∑

𝑘=0
𝑊 2,e

2,𝛿
(

𝑿(𝑡3𝑘), 𝑿̂(𝑡3𝑘)
)

(𝑡3𝑘+1 − 𝑡3𝑘)
|

|

|

|

≤ 2(𝑋 + 𝑋̂)𝑇 max
𝑖

(
√

𝐹 1
𝑖 Δ𝑡 + Σ1

𝑖 + 𝐵1
𝑖 +

√

𝐹 1
𝑖 Δ𝑡 + Σ̂1

𝑖 + 𝐵̂1
𝑖

)

.

(B.4)
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Similarly, we have:

|

|

|

|

𝑛2−1
∑

𝑖=0
𝑊 2,e

2,𝛿
(

𝑿(𝑡2𝑖 ), 𝑿̂(𝑡2𝑖 )
)

(𝑡2𝑖+1 − 𝑡2𝑖 ) −
𝑛3−1
∑

𝑘=0
𝑊 2,e

2,𝛿
(

𝑿(𝑡3𝑘), 𝑿̂(𝑡3𝑘)
)

(𝑡3𝑘+1 − 𝑡3𝑘)
|

|

|

|

≤ 2(𝑋 + 𝑋̂)𝑇 max
𝑖

(
√

𝐹 2
𝑖 Δ𝑡 + Σ2

𝑖 + 𝐵2
𝑖 +

√

𝐹 2
𝑖 Δ𝑡 + Σ̂2

𝑖 + 𝐵̂2
𝑖

)

.

(B.5)

Thus,

|

|

|

|

𝑛1−1
∑

𝑖=0
𝑊 2,e

2,𝛿
(

𝑿(𝑡1𝑖 ), 𝑿̂(𝑡1𝑖 )
)

(𝑡1𝑖+1 − 𝑡1𝑖 ) −
𝑛2−1
∑

𝑖=0
𝑊 2,e

2,𝛿
(

𝑿(𝑡3𝑖 ), 𝑿̂(𝑡2𝑖 )
)

(𝑡3𝑖+1 − 𝑡3𝑖 )
|

|

|

|

≤ 2(𝑋 + 𝑋̂)𝑇 max
𝑖

(
√

𝐹 1
𝑖 Δ𝑡 + Σ1

𝑖 + 𝐵1
𝑖 +

√

𝐹 1
𝑖 Δ𝑡 + Σ̂1

𝑖 + 𝐵̂1
𝑖

)

+ 2(𝑋 + 𝑋̂)𝑇 max
𝑖

(
√

𝐹 2
𝑖 Δ𝑡 + Σ2

𝑖 + 𝐵2
𝑖 +

√

𝐹 2
𝑖 Δ𝑡 + Σ̂2

𝑖 + 𝐵̂2
𝑖

)

.

(B.6)

Since 𝒇 ,𝝈, 𝜷 are uniformly bounded, 𝐹 𝑗
𝑖 ,Σ

𝑗
𝑖 , 𝐵

𝑗
𝑖 , 𝐹

𝑗
𝑖 , Σ̂

𝑗
𝑖 , 𝐵̂

𝑗
𝑖 → 0 as Δ𝑡 → 0

uniformly for 𝑗 = 1, 2. Thus, the limit

𝑊̃ 2,e
2,𝛿 (𝑿, 𝑿̂) ∶= ∫

𝑇

0
𝑊 2,e

2,𝛿 (𝑿(𝑡), 𝑿̂(𝑡))d𝑡 (B.7)

exists.

Appendix C.  The proof of Theorem 2.2

In this section, we prove Theorem 2.2. First, consider 𝑿̃ that solves 
the following jump-diffusion process:

d𝑿̃(𝑡) = 𝒇 (𝑿̃(𝑡), 𝑡; 𝜃̂)d𝑡 + 𝝈(𝑿̃(𝑡), 𝑡; 𝜃̂)d𝑩𝑡 + ∫𝑈
𝜷(𝑿̃(𝑡), 𝜉, 𝑡; 𝜃̂)𝑁̃(d𝑡, 𝜈(d𝜉)),

𝑿̃(0) = 𝑿(0).
(C.1)

Using Theorem 2.1 in Xia et al. (2024a), we have:

𝔼
[

‖

‖

‖

𝑿(𝑡) − 𝑿̃(𝑡)‖‖
‖

2]

≤ 𝔼
[

𝐻(𝑡)|𝑿(0)
]

exp
(

(

2𝐶 + 1 + (2𝐶 + 1)𝑚 + (2𝐶 + 1)𝛾(𝑈 )
)

𝑡𝑑
)

, (C.2)

where 𝑿(0) is the initial condition and 𝐻(𝑡) is defined as

𝐻(𝑡) ∶= 𝔼
[ 𝑑
∑

𝑖=1
∫

𝑡

0

(

𝑓𝑖(𝑿(𝑠−), 𝑠−; 𝜃) − 𝑓𝑖(𝑿(𝑠−), 𝑠−; 𝜃̂)
)2d𝑠

]

+ 𝔼
[ 𝑑
∑

𝑖=1
∫

𝑡

0

𝑚
∑

𝑗=1

(

𝜎𝑖,𝑗 (𝑿(𝑠−), 𝑠−; 𝜃) − 𝜎𝑖,𝑗 (𝑿(𝑠−), 𝑠−; 𝜃̂)
)2d𝑠

]

+ 𝔼
[ 𝑑
∑

𝑖=1
∫

𝑡

0 ∫𝑈

(

𝛽𝑖(𝑿(𝑠−), 𝜉, 𝑠−; 𝜃) − 𝛽𝑖(𝑿(𝑠−), 𝜉, 𝑠−; 𝜃̂)
)2𝛾(d𝜉)d𝑠

]

≤ 𝐶𝑡(1 + 𝑚 + 𝛾(𝑈 ))‖𝜃 − 𝜃̂‖2.
(C.3)

Since the probability distribution of 𝑿̂(𝑡) ∈ ℝ𝑑 is the same as the prob-
ability distribution of 𝑿̃(𝑡) for any 𝑡 ∈ [0, 𝑇 ], we conclude that
𝑊 2

2 (𝜈𝑿0
(𝑡), 𝜈̂𝑿0

(𝑡)) = 𝑊 2
2 (𝜈𝑿0

(𝑡), 𝜈̃𝑿0
(𝑡)), (C.4)

where 𝜈𝑿0
(𝑡), 𝜈̂𝑿0

(𝑡), and 𝜈̃𝑿0
(𝑡) are the probability distributions of 

𝑿(𝑡), 𝑿̂(𝑡), and 𝑿̃(𝑡) given the same initial condition 𝑿0, respectively. 
Given any coupled distribution of 𝜃, 𝜃̂ denoted by 𝜋(𝜇, 𝜇̂) such that 
its marginal distributions coincide with the probability distributions 
of 𝜃 and 𝜃̂, we denote 𝜋∗(𝑿(𝑡), 𝑿̃(𝑡)) to be its pushforward probability 
measure for (𝑿(𝑡), 𝑿̃(𝑡)) ∈ ℝ2𝑑 . We can easily check that the marginal 
distributions of 𝜋∗ coincide with 𝜈𝑿0

(𝑡) and 𝜈̃𝑿0
(𝑡), respectively. From 

Eqs.  (C.2), (C.3), we have

𝔼(𝑿(𝑡),𝑿̃(𝑡))∼𝜋∗
[

‖

‖

‖

𝑿(𝑡) − 𝑿̃(𝑡)‖‖
‖

2]
≤ 𝐶𝑡(1 + 𝑚 + 𝛾(𝑈 ))𝔼(𝜃,𝜃̂)∼𝜋(𝜇,𝜇̂)

[

‖𝜃 − 𝜃̂‖2
]

× exp
(

(

2𝐶 + 1 + (2𝐶 + 1)𝑚 + (2𝐶 + 1)𝛾(𝑈 )
)

𝑡𝑑
)

. (C.5)

Taking the infimum of 𝜋 over all coupled distributions of (𝜃, 𝜃̂) whose 
marginal distributions are 𝜇 and 𝜇̂, respectively, we conclude that
𝑊 2

2 (𝜈𝑿0
(𝑡), 𝜈̂𝑿0

(𝑡)) ≤ 𝐶1𝑡 exp(𝐶0𝑡)𝑊 2
2 (𝜇, 𝜇̂), (C.6)

where

𝐶0 ∶=
(

2𝐶 + 1 + (2𝐶 + 1)𝑚 + (2𝐶 + 1)𝛾(𝑈 )
)

𝑑, 𝐶1 ∶= 𝐶(1 + 𝑚 + 𝛾(𝑈 ))

(C.7)

are two constants.
Using the triangular inequality of the 𝑊2 distance (Clement & Desch, 

2008), we have
𝑊2(𝜈e𝑿0 ,𝛿

(𝑡), 𝜈̂e𝑿0 ,𝛿
(𝑡)) ≤ 𝑊2(𝜈e𝑿0

(𝑡), 𝜈̂e𝑿0
(𝑡)) +𝑊2(𝜈e𝑿0

(𝑡), 𝜈e𝑿0 ,𝛿
(𝑡))

+𝑊2(𝜈̂e𝑿0
(𝑡), 𝜈̂e𝑿0 ,𝛿

(𝑡))

≤ 𝑊2(𝜈𝑿0
(𝑡), 𝜈̂𝑿0

(𝑡)) +𝑊2(𝜈̂𝑿0
(𝑡), 𝜈e𝑿0

(𝑡))

+𝑊2(𝜈𝑿0
(𝑡), 𝜈̂e𝑿0

(𝑡))

+𝑊2(𝜈e𝑿0
(𝑡), 𝜈e𝑿0 ,𝛿

(𝑡)) +𝑊2(𝜈̂e𝑿0
(𝑡), 𝜈̂e𝑿0 ,𝛿

(𝑡)),

(C.8)

where 𝜈e𝑿0 ,𝛿
(𝑡) and 𝜈̂e𝑿0 ,𝛿

(𝑡) are the empirical conditional probability dis-
tributions of 𝑿(𝑡) and 𝑿̂(𝑡) at time 𝑡 conditioned on |𝑿(0) −𝑿0| ≤ 𝛿 and 
|𝑿̂(0) −𝑿0| ≤ 𝛿, respectively. For any 𝜃 ∈ ℝ𝓁 , consider
d𝑿(𝑡;𝑿0) = 𝒇 (𝑿(𝑡;𝑿0), 𝑡; 𝜃)d𝑡 + 𝝈(𝑿(𝑡;𝑿0; 𝜃), 𝑡; 𝜃̂)d𝑩𝑡

+ ∫𝑈
𝜷(𝑿(𝑡;𝑿0), 𝜉, 𝑡; 𝜃)𝑁̃(d𝑡, 𝛾(d𝜉)),

d𝑿(𝑡;𝑿′
0) = 𝒇 (𝑿(𝑡;𝑿′

0), 𝑡; 𝜃)d𝑡 + 𝝈(𝑿(𝑡;𝑿′
0; 𝜃), 𝑡; 𝜃̂)d𝑩𝑡

+ ∫𝑈
𝜷(𝑿(𝑡;𝑿′

0), 𝜉, 𝑡; 𝜃)𝑁̃(d𝑡, 𝛾(d𝜉)),

𝑿(0;𝑿0) = 𝑿0, 𝑿(0;𝑿′
0) = 𝑿′

0, ‖𝑿0 −𝑿′
0‖ ≤ 𝛿.

(C.9)

Using the stochastic Gronwall lemma (Mehri & Scheutzow, 2019, The-
orem 2.2) and (Xia et al., 2024a, Theorem 2.1), we conclude that:

𝔼
[

‖

‖

‖

𝑿(𝑡;𝑿0) −𝑿(𝑡;𝑿′
0)
‖

‖

‖

2

2

]

≤ exp
(

(

2𝑑𝐶 + 𝑑𝐶𝑚 + 𝑑𝐶𝛾(𝑈 ) + 1)𝑡
)

𝔼[‖𝑿0 −𝑿′
0‖

2]. (C.10)

Therefore, we have:
𝑊2(𝜈e𝑿0

(𝑡), 𝜈e𝑿0 ,𝛿
(𝑡)) ≤ 𝛿 exp(𝐶0𝑡

2 ). (C.11)

Similarly, we conclude that:
𝑊2(𝜈̂e𝑿0

(𝑡), 𝜈̂e𝑿0 ,𝛿
(𝑡)) ≤ 𝛿 exp(𝐶0𝑡

2 ). (C.12)

Eq.  (C.6) also holds if we replace 𝜈̂𝑿0
(𝑡) on the LHS of Eq.  (C.6) 

with the empirical distribution 𝜈e𝑿0
(𝑡) and then replace 𝜇̂ with 𝜇e𝑿0

 on 
the RHS, i.e.,
𝑊2(𝜈𝑿0

(𝑡), 𝜈e𝑿0
(𝑡)) ≤

√

𝐶1𝑡 exp(
𝐶0𝑡
2 )𝑊2(𝜇, 𝜇e𝑿0

). (C.13)

Similarly,

𝑊 2
2 (𝜈̂𝑿0

(𝑡), 𝜈̂e𝑿0
(𝑡)) ≤

√

𝐶1𝑡 exp(
𝐶0𝑡
2 )𝑊2(𝜇̂, 𝜇̂e𝑿0

). (C.14)

In Eqs.  (C.13) and (C.14), 𝜇e𝑿0
 and 𝜇̂e𝑿0

 denote the empirical distribu-
tions of 𝜃 and 𝜃̂, respectively. Finally, by plugging Eqs. (C.11), (C.12),
(C.13), (C.14), (C.6) into Eq. (C.8), we conclude that:
𝑊2(𝜈e𝑿0 ,𝛿

(𝑡), 𝜈̂e𝑿0 ,𝛿
(𝑡)) ≤ 2𝛿 exp(𝐶0𝑡

2 )

+
√

𝐶1𝑡 exp(𝐶0𝑡)
(

𝑊2(𝜇, 𝜇e𝑿0
) +𝑊2(𝜇̂, 𝜇̂e𝑿0

) +𝑊2(𝜇, 𝜇̂)
)

.
(C.15)

Squaring both sides of Eq.  (C.15), integrating over time, and taking 
the expectation w.r.t. the empirical probability measure of the initial 
condition 𝑿0, we conclude that:
𝔼[𝑊̃ 2,e

2,𝛿 (𝑿, 𝑿̂)] ≤ 8𝑇 𝛿2 exp(𝐶0𝑇 )
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+
𝑁
∑

𝑗=1

1
𝑁

6𝐶1
𝐶0

𝑇 exp(𝐶0𝑇 )
(

𝑊 2
2 (𝜇, 𝜇̂)

+ 𝔼
[

𝑊 2
2 (𝜇

e
𝑿0,𝑗

, 𝜇)
]

+ 𝔼
[

𝑊 2
2 (𝜇̂

e
𝑿0,𝑗

, 𝜇̂)
])

. (C.16)

Specifically, 𝐶0 grows linearly with the dimensionality 𝑑. Finally, taking 
the expectation of Eq.  (C.16) and applying the empirical error bound 
of the squared 𝑊2 distance in Fournier and Guillin (2015), we conclude 
that:
𝑁
∑

𝑗=1

1
𝑁

𝔼
[

𝑊 2
2 (𝜇

e
𝑿0,𝑗

, 𝜇)
]

≤ 𝐶2𝔼[ℎ(𝑁#(𝑿0; 𝛿),𝓁)]Θ
1
3
6 ,

𝑁
∑

𝑗=1

1
𝑁

𝔼
[

𝑊 2
2 (𝜇̂

e
𝑿0,𝑗

, 𝜇̂)
]

≤ 𝐶2𝔼[ℎ(𝑁#(𝑿0; 𝛿),𝓁)]Θ̂
1
3
6 ,

(C.17)

where 𝐶2 is a constant used in (Fournier & Guillin, 2015, Theorem 1) 
and ℎ is defined in Eq.  (2.19). This completes the proof of Theorem 2.2.

Appendix D.  Reconstructing the distribution of parameters in an 
SPDE

We consider the following parabolic SPDE with a Dirichlet boundary 
condition studied in Grecksch and Kloeden (1996):

d𝑈 (𝒙, 𝑡; 𝜃) = 𝐴(𝜃)𝑈 (𝒙, 𝑡; 𝜃) + 𝑓 (𝑈 (𝒙, 𝑡; 𝜃); 𝜃)d𝑡 + 𝑔(𝑈 (𝒙, 𝑡; 𝜃); 𝜃)d𝐵𝑡,

𝒙 ∈ 𝐷, 𝑡 ∈ [0, 𝑇 ],

𝑈 (𝒙, 0; 𝜃) = 𝑈 (𝒙, 0) ∈ 𝐻1,2
0 (Ω), 𝑈 (𝒙, 0) ∼ 𝜈0, 𝑈 (𝒙, 𝑡; 𝜃) = 0, 𝑥 ∈ 𝜕𝐷.

(D.1)

In Eq.  (D.1), 𝐵𝑡 is a standard scalar Wiener process and 𝐷 is a bounded 
domain in ℝ𝑑 with sufficiently smooth boundary 𝜕𝐷. 𝐻1,2

0 (Ω) is the 
space of functions 𝑈 ∶ Ω → ℝ that vanish on 𝜕Ω such that 𝑈 and its 
first-order generalized derivatives belong to 𝐿2(Ω) equipped with the 
norm ‖𝑈‖𝐿2 ∶= ∫𝐷 𝑈2(𝒙, 𝑡)d𝒙. 𝜈0 is a probability measure defined on 
the Sobolev space (𝐻1,2

0 (Ω)). 𝐴 is a linear operator densely defined in 
𝐿2(Ω) such that for 𝑈 ∈ 𝐻1,2(Ω), 𝐴𝑈 ∈ 𝐿2(Ω). 𝐴 is strongly monotone, 
i.e., there is a constant 𝛼 > 0 such that
(−𝐴𝑈,𝑈 ) ≥ 𝛼‖𝑈‖

2
𝐻1,2 , ∀𝑈 ∈ 𝐻1,2

0 (Ω), (D.2)

where (⋅, ⋅) is the inner product. In addition, 𝑓 and 𝑔, which map either 
𝐿2(Ω) or 𝐻1,2

0 (Ω) into itself, are formed from real-valued functions of a 
real variable with uniformly bounded derivatives of appropriate order.

We reconstruct the distribution of the model parameter 𝜃 in Eq.  (D.1) 
using an approximate model
d𝑈̂ (𝒙, 𝑡; 𝜃̂) = 𝐴(𝜃̂)𝑈̂ (𝒙, 𝑡; 𝜃̂) + 𝑓 (𝑈̂ (𝒙, 𝑡; 𝜃̂); 𝜃̂)d𝑡 + 𝑔(𝑈̂ (𝒙, 𝑡; 𝜃̂); 𝜃̂)d𝐵̂𝑡,

𝒙 ∈ 𝐷, 𝑡 ∈ [0, 𝑇 ],

𝑈̂ (𝒙, 0) = 𝑈 (𝒙, 0; 𝜃) = 𝑈 (𝒙, 0), 𝑈 (𝒙, 𝑡; 𝜃̂) = 0, 𝑥 ∈ 𝜕𝐷.

(D.3)

In Eq.  (D.3), 𝐵̂𝑡 is another standard scalar Wiener process independent 
of 𝐵𝑡 in Eq.  (D.1). We use the Itô-Galerkin scheme for spatial discretiza-
tion of Eqs.  (D.1) and  (D.3):
d𝑈𝑛(𝑡; 𝜃) =

(

𝐴𝑛(𝑈𝑛(𝑡; 𝜃); 𝜃) + 𝑓𝑛(𝑈𝑛(𝑡; 𝜃); 𝜃)
)

d𝑡 + 𝑔𝑛(𝑈𝑛(𝑡; 𝜃); 𝜃)d𝐵𝑡,

d𝑈̂𝑛(𝑡; 𝜃̂) =
(

𝐴𝑛(𝑈̂𝑛(𝑡; 𝜃̂); 𝜃̂) + 𝑓𝑛(𝑈̂𝑛(𝑡; 𝜃̂); 𝜃̂)
)

d𝑡 + 𝑔𝑛(𝑈̂𝑛(𝑡; 𝜃̂); 𝜃̂)d𝐵̂𝑡.
(D.4)

In Eq.  (D.4),

𝑈𝑛(𝒙, 𝑡; 𝜃) ∶=
𝑛
∑

𝑗=1
𝑢𝑗 (𝑡; 𝜃)𝜑𝑗 (𝒙) ∈ 𝑋𝑛, 𝑈̂𝑛(𝒙, 𝑡; 𝜃̂) ∶=

𝑛
∑

𝑗=1
𝑢̂𝑗 (𝑡; 𝜃̂)𝜑𝑗 (𝒙) ∈ 𝑋𝑛

(D.5)

refer to the spectral approximations of 𝑈 (𝒙, 𝑡; 𝜃) and 𝑈̂ (𝒙, 𝑡; 𝜃̂) in 
Eqs.  (D.1) and (D.3), respectively. 𝑋𝑛 is the 𝑛-dimensional subspace 
of 𝐻1

0 (Ω) spanned by the basis functions {𝜑1,… , 𝜑𝑛}. In Eq.  (D.4),
𝐴𝑛(𝑈 ; 𝜃) ∶= 𝑃𝑛

(

𝐴(𝜃)𝑈
)

, 𝑓𝑛(𝑈 ; 𝜃) ∶= 𝑃𝑛
(

𝑓 (𝜃)𝑈
)

, 𝑔𝑛(𝑈 ; 𝜃) ∶= 𝑃𝑛
(

𝑔(𝜃)𝑈
)

,

where 𝑃𝑛 denotes the projection of 𝐿2(Ω) or 𝐻1,2
0 (Ω) onto 𝑋𝑛 In the 

spatiotemporal SPDEs (D.1) and (D.3), we assume that for all 𝜃, the 
operator −𝐴 has the same set of corresponding eigenfunctions
−𝐴(𝜃)𝜑𝑗 = 𝜆𝑗 (𝜃)𝜑𝑗 , 𝑗 = 1, 2,… , 𝑛, 𝜆𝑗 ≤ 𝜆𝑗+1.

𝜑𝑖 ∈ 𝐻1,2
0 (𝐷), 𝑖 = 1, 2,… forms an orthonormal basis in 𝐿2(𝐷) with 

‖𝜑𝑗‖𝐿2 = 1 and 𝜆𝑗 (𝜃) → ∞ uniformly in 𝜃 as 𝑗 → ∞. We can prove the 
following result.
Corollary D.1. We assume that 𝐴(𝜃), interpreted as mappings of 𝐻1

0 (Ω)
into 𝐿2(Ω) and 𝑓 (𝜃) and 𝑔(𝜃), interpreted as mappings of 𝐻1

0 (Ω) into itself, 
are Lipschitz continuous:
‖𝐴(𝜃)(𝑈, 𝜃) − 𝐴(𝜃̂)(𝑈̂ , 𝜃̂)‖𝐿2 ≤ 𝐿(‖𝑈 − 𝑈̂‖𝐻1,2 + ‖𝜃 − 𝜃̂‖),

‖𝑓 (𝑈 ; 𝜃) − 𝑓 (𝑈̂ ; 𝜃̂)‖𝐻1,2 ≤ 𝐿(‖𝑈 − 𝑈̂‖𝐻1,2 + ‖𝜃 − 𝜃̂‖),

‖𝑔(𝑈 ; 𝜃) − 𝑔(𝑈̂ ; 𝜃̂)‖𝐻1,2 ≤ 𝐿(‖𝑈 − 𝑈̂𝐻1,2‖𝐻1,2 + ‖𝜃 − 𝜃̂‖), 𝐿 ≤ ∞.

(D.6)

Furthermore, we assume that
𝔼[‖𝜃‖6] ≤ Θ6, 𝔼[‖𝜃̂‖6] ≤ Θ̂6. (D.7)

Then, we have the following bound for the local time-decoupled squared 
distance between the probability measures of 𝑈 and 𝑈̂ :

𝑊̃ 2,e
2,𝛿 (𝑈, 𝑈̂ ) ≤ 3 ⋅

(

8𝐶0(𝛽𝑛; 𝑛)𝛿2𝑇 exp(𝐶0(𝛽𝑛; 𝑛)𝑇 )

+
6𝐶1(𝛽𝑛)𝑇
𝐶0(𝛽𝑛; 𝑛)

exp(𝐶0(𝛽𝑛; 𝑛)𝑇 )

× (𝑊 2
2 (𝜇, 𝜇̂) + (Θ

1
3
6 + Θ̂

1
3
6 )2𝑇𝔼[ℎ(𝑁

#(𝑼𝑛(0; 𝜃); 𝛿);𝓁)])
)

+ 3𝑇 sup
𝜃,𝑈 (𝒙,0;𝜃)

𝐾𝑇 ,𝑈 (⋅,0),𝜃𝜆
−1
𝑁+1(𝜃)

+ 3𝑇 sup
𝜃̂,𝑈 (𝒙,0;𝜃̂)

𝐾𝑇 ,𝑈 (⋅,0),𝜃̂𝜆
−1
𝑁+1(𝜃̂).

(D.8)

In Eq.  (D.8), 𝐾𝑇 ,𝑈 (⋅,0),𝜃 is a constant that depends on 𝑇 , 𝑈 (𝒙, 0) and 𝜃, 
while 𝐶𝑖(𝛽𝑛) are constants in Theorem 2.2 that grow at most linearly with 
𝑛. 𝛽𝑛 is another constant depending on the eigenvalues {𝜆𝑖}𝑛𝑖=1. The vector 
𝑼𝑛(0; 𝜃) ∶= (𝑢1(0; 𝜃),…, 𝑢𝑛(0; 𝜃)) refers to the spectral expansion of the initial 
condition. 𝑊̃ 2,e

2,𝛿 (𝑈, 𝑈̂ ) is the local time-decoupled squared distance between 
the probability measures of 𝑈 and 𝑈̂ :

𝑊̃ 2,e
2,𝛿 (𝑈, 𝑈̂ ) ∶= ∫

𝑇

0
𝑊 2,e

2,𝛿
(

𝑈 (𝒙, 𝑡; 𝜃), 𝑈̂ (𝒙, 𝑡; 𝜃̂)
)

d𝑡, (D.9)

and

𝑊 2,e
2,𝛿

(

𝑈 (𝒙, 𝑡; 𝜃), 𝑈̂ (𝒙, 𝑡; 𝜃̂)
)

∶= ∫ 𝑊 2
2 (𝜈

e
𝑈0 ,𝛿

(𝑡), 𝜈̂e𝑈0 ,𝛿
(𝑡))𝜈e0(d𝑈0), (D.10)

where 𝜈e0(d𝑈0) is the empirical distribution of the initial condition 𝑈 (⋅, 0), and 
𝜈e𝑈0 ,𝛿

(𝑡) and 𝜈̂e𝑈0 ,𝛿
(𝑡) are the empirical conditional distributions of 𝑈 (𝒙, 𝑡; 𝜃)

and 𝜈̂e𝑈0 ,𝛿
(𝑡) at time 𝑡 conditioned on ‖𝑈 (𝒙, 0) − 𝑈0‖𝐿2 ≤ 𝛿 and ‖𝑈̂ (𝒙, 0) −

𝑈0‖𝐿2 ≤ 𝛿, respectively. In Eq.  (D.10), the 𝑊2 distance between 𝜈e𝑈0 ,𝛿
(𝑡) and 

𝜈̂e𝑈0 ,𝛿
(𝑡) is defined as

𝑊2(𝜈e𝑈0 ,𝛿
(𝑡), 𝜈̂e𝑈0 ,𝛿

(𝑡)) ∶= inf
𝜋(𝜈,𝜈̂)

𝔼(𝑈,𝑈̂ )∼𝜋(𝜈e𝑈0 ,𝛿
(𝑡),𝜈̂e𝑈0 ,𝛿

(𝑡))
[

‖𝑈 − 𝑈̂‖

2
𝐿2

]

1
2 . (D.11)

Proof.  First, we show that 𝐴𝑛 is also Lipschitz continuous:
‖𝐴𝑛(𝑈𝑛; 𝜃) − 𝐴𝑛(𝑈̂𝑛; 𝜃̂)‖𝐿2 = ‖𝑃𝑛(𝐴(𝑈𝑛; 𝜃) − 𝐴(𝑈̂𝑛; 𝜃̂))‖𝐿2

≤ ‖𝐴(𝑈𝑛; 𝜃) − 𝐴(𝑈̂𝑛; 𝜃̂)‖𝐿2

≤ 𝐿(‖𝑈𝑛 − 𝑈̂𝑛‖𝐻1,2 + ‖𝜃 − 𝜃̂‖).

(D.12)

Because 𝑋𝑛 is a finite dimensional space, there exists a constant 𝛽𝑛 de-
pending on 𝜑1,…, 𝜑𝑛 such that ∀𝑈𝑛 ∈ 𝑋𝑛, ‖𝑈‖𝐻1,2 ≤ 𝛽𝑛‖𝑈‖𝐿2 . Thus,
‖𝐴𝑛(𝑈𝑛; 𝜃) − 𝐴𝑛(𝑈̂𝑛; 𝜃̂)‖𝐻1,2 ≤ 𝛽𝑛‖𝐴𝑛(𝑈𝑛; 𝜃̂) − 𝐴𝑛(𝑈̂𝑛; 𝜃̂)‖𝐿2

≤ 𝛽𝑛𝐿(‖𝑈𝑛 − 𝑈̂𝑛‖𝐿2 + ‖𝜃 − 𝜃̂‖).
(D.13)

Neural Networks 193 (2026) 107893 

16 



M. Xia et al.

Similarly, 𝑓𝑛 and 𝑔𝑛 can also be shown to be Lipschitz continuous in 𝑈𝑛
and 𝜃:
‖𝑓𝑛(𝑈𝑛; 𝜃) − 𝑓𝑛(𝑈̂𝑛; 𝜃̂)‖𝐿2 ≤ ‖𝑓𝑛(𝑈𝑛; 𝜃) − 𝑓𝑛(𝑈̂𝑛; 𝜃̂)‖𝐻1,2

≤ 𝛽𝑛𝐿(‖𝑈𝑛 − 𝑈̂𝑛‖𝐿2 + ‖𝜃 − 𝜃̂‖),

‖𝑔𝑛(𝑈𝑛; 𝜃) − 𝑔𝑛(𝑈̂𝑛; 𝜃̂)‖𝐿2 ≤ ‖𝑔𝑛(𝑈𝑛; 𝜃) − 𝑔𝑛(𝜃̂; 𝑈̂𝑛)‖𝐻1,2

≤ 𝛽𝑛𝐿(‖𝑈𝑛 − 𝑈̂𝑛‖𝐿2 + ‖𝜃 − 𝜃̂‖).

(D.14)

From Grecksch and Kloeden (1996, Section 3), for every 𝜃, we have
𝔼[‖𝑈 (𝒙, 𝑘Δ𝑡; 𝜃) − 𝑈𝑛(𝒙, 𝑘Δ𝑡; 𝜃)‖2] ≤ 𝐾𝑘Δ𝑡,𝑈 (⋅,0),𝜃𝜆

−1
𝑁+1(𝜃), (D.15)

where 𝐾𝑘Δ𝑡,𝑈 (⋅,0),𝜃 is a constant depending on time 𝑘Δ𝑡 and the ini-
tial condition 𝑈 (⋅, 0), and 𝜃. Without loss of generality, we assume 
that 𝐾𝑘Δ𝑡,𝑈 (⋅,0),𝜃 is non-decreasing in 𝑘 (otherwise we can replace 
𝐾𝑘Δ𝑡,𝑈 (⋅,0),𝜃 with 𝐾̃𝑘Δ𝑡,𝑈 (⋅,0),𝜃 ∶= max1≤𝑖≤𝑘 𝐾𝑖Δ𝑡,𝑈 (⋅,0),𝜃). Given the initial 
condition 𝑈 (𝒙, 0) and 𝑃𝑛𝑈 (𝒙, 0), we denote the probability measures of 
𝑈 (𝒙, 𝑘Δ𝑡; 𝜃) and 𝑈𝑛(𝒙, 𝑇 ; 𝜃) by 𝜈𝑈 (⋅,0)(𝑘Δ𝑡) and 𝜈𝑛,𝑈𝑛(⋅,0)(𝑘Δ𝑡), respectively. 
Moreover, the joint probability measure of (𝑈 (𝒙, 𝑘Δ𝑡; 𝜃), 𝑈𝑛(𝒙, 𝑘Δ𝑡; 𝜃)

)

has marginal distributions 𝜈𝑈 (⋅,0)(𝑘Δ𝑡) and 𝜈𝑛,𝑈𝑛(⋅,0)(𝑘Δ𝑡), respectively. 
From Eq.  (D.15), we can deduce that:

𝑊 2
2 (𝜈𝑈 (⋅,0)(𝑘Δ𝑡), 𝜈𝑛,𝑈𝑛(⋅,0)(𝑘Δ𝑡)) ≤ 𝔼[‖𝑈 (𝒙, 𝑘Δ𝑡; 𝜃) − 𝑈𝑛(𝒙, 𝑘Δ𝑡; 𝜃)‖2]

≤ sup
𝜃,𝑈 (𝒙,0)

𝐾𝑇 ,𝑈 (⋅,0),𝜃𝜆
−1
𝑁+1(𝜃).

(D.16)

Furthermore, using the definition of the local squared 𝑊2 distance in 
Eq.  (2.4), we have:

𝑊 2,e
2,𝛿

(

𝑈 (⋅, 𝑘Δ𝑡; 𝜃), 𝑈𝑛(⋅, 𝑘Δ𝑡; 𝜃)
)

≤ sup
𝜃,𝑈 (𝒙,0)

𝔼[‖𝑈 (𝒙, 𝑘Δ𝑡; 𝜃) − 𝑈𝑛(𝒙, 𝑘Δ𝑡; 𝜃)‖2]

≤ sup
𝜃,𝑈 (𝒙,0)

𝐾𝑇 ,𝑈 (⋅,0),𝜃𝜆
−1
𝑁+1(𝜃).

(D.17)

Similarly, we can conclude that:
𝑊 2,e

2,𝛿
(

𝑈̂ (⋅, 𝑘Δ𝑡; 𝜃̂), 𝑈̂𝑛(⋅, 𝑘Δ𝑡; 𝜃̂)
)

≤ sup
𝜃̂,𝑈 (𝒙,0)

𝐾𝑇 ,𝑈 (⋅,0),𝜃𝜆
−1
𝑁+1(𝜃̂). (D.18)

Given the same initial condition 𝑈 (𝒙, 0) = 𝑈̂ (𝒙, 0), using the triangle 
inequality of the Wasserstein distance (Clement & Desch, 2008), we have

𝑊 2,e
2,𝛿 (𝑈 (𝒙, 𝑡; 𝜃), 𝑈̂ (𝒙, 𝑡; 𝜃̂)) ≤ 3𝑊 2,e

2,𝛿
(

𝑈 (⋅, 𝑘Δ𝑡; 𝜃), 𝑈𝑛(⋅, 𝑘Δ𝑡; 𝜃)
)

+ 3𝑊 2,e
2,𝛿

(

𝑈̂ (⋅, 𝑘Δ𝑡; 𝜃̂), 𝑈̂𝑛(⋅, 𝑘Δ𝑡; 𝜃̂)
)

+ 3𝑊 2,e
2,𝛿 (𝑈𝑛(𝒙, 𝑡; 𝜃), 𝑈̂𝑛(𝒙, 𝑡; 𝜃̂))

)

≤ 3𝑊 2,e
2,𝛿 (𝑈𝑛(𝒙, 𝑡; 𝜃), 𝑈̂𝑛(𝒙, 𝑡; 𝜃̂)) + 3 sup

𝜃,𝑈 (𝒙,0)
𝐾𝑇 ,𝑈 (⋅,0),𝜃𝜆

−1
𝑁+1(𝜃)

+ 3 sup
𝜃̂,𝑈 (𝒙,0)

𝐾𝑇 ,𝑈 (⋅,0),𝜃̂𝜆
−1
𝑁+1(𝜃̂).

(D.19)

Integrating both sides of the ineqeuality (D.19) over time, we have:
𝑊̃ 2,e

2,𝛿
(

𝑈, 𝑈̂
)

≤ 3𝑊̃ 2,e
2,𝛿 (𝑈𝑛, 𝑈̂𝑛) + 3𝑇 sup

𝜃,𝑈 (𝒙,0)
𝐾𝑇 ,𝑈 (⋅,0),𝜃𝜆

−1
𝑁+1(𝜃)

+ 3𝑇 sup
𝜃̂,𝑈 (𝒙,0)

𝐾𝑇 ,𝑈 (⋅,0),𝜃̂𝜆
−1
𝑁+1(𝜃̂).

(D.20)

Let

𝑼𝑛(𝑡; 𝜃) ∶= (𝑢1(𝑡; 𝜃),…, 𝑢𝑛(𝑡; 𝜃)), 𝑼̂𝑛(𝑡, 𝜃̂) ∶= (𝑢̂1(𝑡, 𝜃̂),…, 𝑢̂𝑛(𝑡, 𝜃̂)) (D.21)

be two vectors of the spectral expansion coefficients of 𝑈𝑛(𝒙, 𝑡; 𝜃)
and 𝑈̂𝑛(𝒙, 𝑡; 𝜃̂) in Eq.  (D.5). We have ‖𝑈𝑛(𝒙, 𝑡; 𝜃)‖𝐿2 = ‖𝑼𝑛(𝑡)‖ and 
‖𝑈̂𝑛(𝒙, 𝑡)‖𝐿2 = ‖𝑼̂𝑛(𝑡)‖ because ‖𝜑𝑖‖𝐿2 = 1, 𝑖 = 1,…, 𝑛. Furthermore, 𝑼𝑛
and 𝑼̂𝑛 are solutions to the two SDEs:
d𝑼𝑛 =

(

𝑨𝑛(𝑼𝑛, 𝑡; 𝜃) + 𝑭𝑛(𝑼𝑛, 𝑡; 𝜃)
)

d𝑡 +𝑮𝑛(𝑼𝑛, 𝑡; 𝜃)d𝐵𝑡,

d𝑼̂𝑛 =
(

𝑨𝑛(𝑼̂𝑛, 𝑡; 𝜃̂) + 𝑭𝑛(𝑼̂𝑛, 𝑡; 𝜃̂)
)

d𝑡 +𝑮𝑛(𝑼̂𝑛, 𝑡; 𝜃̂)d𝐵𝑡
(D.22)

where 𝑨𝑛(𝑼𝑛, 𝑡; 𝜃),𝑭𝑛(𝑼𝑛, 𝑡; 𝜃) and 𝑭𝑛(𝑮𝑛, 𝑡; 𝜃) are the 𝑛-dimensional vec-
tor of the coefficients in the spectral expansions of 𝐴𝑛(𝑈𝑛; 𝜃), 𝑓𝑛(𝑈𝑛; 𝜃)

and 𝑔𝑛(𝑈𝑛; 𝜃) in Eqs.  (D.13) and (D.14), respectively. 𝑨𝑛,𝑭𝑁  and 𝑮𝑛 are 
also Lipschitz continuous in 𝑈𝑛 and 𝜃 from Eqs.  (D.13), (D.14). Applying 
Eq.  (2.18) in Theorem 2.2, we obtain:

𝔼[𝑊̃ 2,e
2,𝛿 (𝑈𝑛, 𝑈̂𝑛)] = 𝔼[𝑊̃ 2,e

2,𝛿 (𝑼𝑛, 𝑼̂𝑛)] ≤ 8𝐶0(𝛽𝑛, 𝑛)𝑇 𝛿2 exp(𝐶0(𝛽𝑛; 𝑛)𝑇 )

+
6𝐶1(𝛽𝑛)
𝐶0(𝛽𝑛; 𝑛)

𝑇 exp(𝐶0(𝛽𝑛; 𝑛)𝑇 )
(

𝑊 2
2 (𝜇, 𝜇̂) + 2𝐶2𝔼[ℎ(𝑁#(𝑼𝑛(𝒙, 0); 𝛿),𝓁)]

⋅ (Θ
1
3
6 + Θ̂

1
3
6 )

)

(D.23)

where 𝐶𝑖, 𝑖 = 0,…, 2 are constants defined in Theorem (2.2). Taking the 
expectation of Eq.  (D.20) and plugging in the inequality (D.23) for 
𝔼[𝑊̃ 2,e

2,𝛿 (𝑈𝑛, 𝑈̂𝑛)], the inequality (D.8) is proved. ∎

Appendix E.  Proof of Theorem 3.1

Given a parameterized multivariate normal distribution 𝑓𝒙, we de-
sign an SNN described in Fig. 1 with the ReLU activation and the linear 
forward propagation. The probability density function of the output of 
this SNN, denoted by 𝑓𝒙, can approximate 𝑓𝒙 in the 𝑊2 distance sense. 
Given a real number 0 < 𝑐 < 𝜖0, we choose Δ𝑥 > 0 such that:
𝑊 2

2 (𝑓𝒙, 𝑓𝒙̃) < 𝑐, ∀𝒙, 𝒙̃ ∈ 𝐷, ‖𝒙 − 𝒙̃‖ <
√

𝑑Δ𝑥. (E.1)

We consider a uniform equidistance grid set 𝑋 ∶= {𝒙𝑖}𝐾𝑖=1,𝒙𝑖 =
(𝑥1𝑖 ,…, 𝑥𝑑𝑖 ) such that the distance between two adjacent points is Δ𝑥, 𝐷 ⊆
∪𝐾
𝑖=1 ⊗

𝑑
𝑗=1 [𝑥

𝑗
𝑖 , 𝑥

𝑗
𝑖 + Δ𝒙), and ⊗𝑑

𝑗=1[𝑥
𝑗
𝑖1
, 𝑥𝑗𝑖1 + Δ𝒙) ∩⊗𝑑

𝑗=1[𝑥
𝑗
𝑖2
, 𝑥𝑗𝑖2 + Δ𝒙) = ∅

if 𝑖1 ≠ 𝑖2. Therefore, ∀𝒙 = (𝑥1,…, 𝑥𝑑 ) ∈ 𝐷, there exists 𝒙𝑖 ∈ 𝑋 such that 
|𝒙 − 𝒙𝑖| <

√

𝑑Δ𝑥. Let 0 < 𝜖 < 1
2  be a small positive number. We set 4𝑑𝐾

neurons in the first layer, grouped into 𝑑𝐾 groups. When inputting 𝒙
into the SNN, the outputs of the four neurons in the (𝑖, 𝑗), 𝑖 = 1,… , 𝐾, 𝑗 =
1,…, 𝑑 group are:

𝑛1𝑖,𝑗,1 = ReLU
(

𝜖−1(𝑥𝑗 − 𝑥𝑗𝑖 − Δ𝑥)
)

, 𝑛1𝑖,𝑗,2 = ReLU
(

𝜖−1(𝑥𝑗 − 𝑥𝑗𝑖 − Δ𝑥 + 𝜖)
)

,

𝑛1𝑖,𝑗,3 = ReLU
(

𝜖−1
(

𝑥𝑗 − 𝑥𝑗𝑖 − 𝜖
))

, 𝑛1𝑖,𝑗,4 = ReLU
(

𝜖−1
(

𝑥𝑗 − 𝑥𝑗𝑖
))

.

(E.2)

The second hidden layer contain 𝑑𝐾 neurons labeled by (𝑖, 𝑗), 𝑖 =
1,… , 𝐾, 𝑗 = 1,…, 𝑑. We set weights between the first layer and the sec-
ond layer such that the input of the (𝑖, 𝑗) neuron in the second layer 
is:

𝑛2,in𝑖,𝑗 ∶= 𝑛1𝑖,𝑗,2 − 𝑛1𝑖,𝑗,1 −
(

𝑛1𝑖,𝑗,4 − 𝑛1𝑖,𝑗,3
)

. (E.3)

It is easy to verify that 𝑛2,in𝑖,𝑗 ∈ [0, 1]. Furthermore, when 𝑥𝑗 ∈ [𝑥𝑗𝑖 +
𝜖, 𝑥𝑗𝑖 + Δ𝑥], then 𝑛2,in𝑖,𝑗 = 1, 𝑗 = 1,…, 𝑑. If 𝑥𝑗 ≤ 𝑥𝑗𝑖  or 𝑥𝑗 ≥ 𝑥𝑗𝑖 + Δ𝑥, then 
𝑛2,in𝑖,𝑗 = 0. The output of the (𝑖, 𝑗) neuron in the second hidden layer is 
designed as
𝑛2𝑖,𝑗 = ReLU

(

𝜖−1
(

𝑛2,in𝑖,𝑗 − 1 + 𝜖
))

, 𝑖 = 1,…, 𝐾, 𝑗 = 1,…𝑑. (E.4)

The third layer contains 𝐾 neurons, and the output of each neuron 
in the third hidden layer is:

𝑛3𝑖 = ReLU

( 𝑑
∑

𝑗=1
𝜖−1

(

𝑛2𝑖,𝑗 − 1 + 𝜖
𝑑

)

)

, 𝑖 = 1,…, 𝐾. (E.5)

Thus, 𝑛3𝑖 ∈ [0, 1] and 𝑛3𝑖 = 1 when 𝒙 ∈ ⊗𝑗 [𝑥𝑗,𝑖 + 𝜖, 𝑥𝑗,𝑖 + Δ𝑥 − 𝜖]. If there 
is a 𝑗 = 1,…, 𝑑 such that 𝑥𝑗 < 𝑥𝑗𝑖  or 𝑥𝑗 > 𝑥𝑗𝑖 + Δ𝑥, then 𝑛3𝑖 = 0. For 𝒙 ∈ 𝐷, 
there exists at most one 𝑖 such that 𝑛3𝑖 ≠ 0. We denote 𝐷(𝜖) = {𝑥 ∈ 𝐷 ∶
∃!𝑖, 𝑛3𝑖 = 1}. It is easy to check that as 𝜖 → 0, 𝐷(𝜖) → 𝐷.

We set 𝑑′𝐾 neurons in the fourth layer. Each neuron is labeled with 
(𝑖, 𝑗), 𝑖 = 1,… , 𝐾, 𝑘 = 1,…, 𝑑′. The input and output of the (𝑖, 𝑗) neuron 
in the fourth layer are identical (i.e., each neuron in the fourth layer 
outputs its input):
𝑛3𝑖 (𝜔

4
𝑖,𝑘 + (𝐴−1

𝑖 𝒃𝑖)𝑘), 𝑖 = 1,… , 𝐾, 𝑘 = 1,…, 𝑑′. (E.6)
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Here, 𝜔𝑖,𝑘 ∼  (0, 1) are independent random variables, while 𝒃𝑖 and 𝐴𝑖
are the mean and covariance matrix of 𝑓𝒙𝑖 (𝒚) =  (𝒃𝑖, 𝐴𝑖), respectively. 
(𝐴−1

𝑖 𝒃𝑖)𝑘 refers to the 𝑘th component of the vector 𝐴−1
𝑖 𝒃𝑖. The output of 

the fifth layer is 𝑑′ dimensional:
𝐾
∑

𝑖=1
𝑛3𝑖 (𝐴𝑖𝝎4

𝑖 + 𝒃𝑖), (E.7)

where 𝝎𝑖 ∶= (𝜔𝑖,1,…, 𝜔𝑖,𝑑′ ). Because for any 𝒙 ∈ 𝐷, there exists at most 
one 𝑖 such that 𝑛3𝑖 ≠ 0, for any 𝒙 ∈ 𝐷, we have:

sup
𝒚̂∼𝑓𝒙

𝔼[‖𝒚‖2] ≤ sup
𝑖
𝔼
[

‖𝐴𝑖𝝎4
𝑖 + 𝒃𝑖‖2

]

≤ sup
𝑖
(‖𝐴𝑇

𝑖 𝐴𝑖‖
2
𝐹 + ‖𝒃𝑖‖22.

(E.8)

For each 𝒙 ∈ 𝐷(𝜖), if 𝑛3𝑖 = 1 i.e., ‖𝒙 − 𝒙𝑖‖ < Δ𝑥, then 𝑓𝒙 is the prob-
ability density function of a multivariate normal distribution, and 𝑓𝒙 is 
identical to 𝑓𝒙𝑖 . Therefore, we have

∫𝐷
𝑊 2

2 (𝑓𝒙, 𝑓𝒙)𝛾(d𝒙) < ∫𝐷(𝜖)
𝑊 2

2 (𝑓𝒙, 𝑓𝒙)𝛾(d𝒙)

+ 2𝛾(𝐷 −𝐷(𝜖)) ⋅
(

sup
𝒚∼𝑓𝒙

𝔼[‖𝒚‖2] + sup
𝒚̂∼𝑓𝒙

𝔼[‖𝒚̂‖2]
)

≤ 𝑐𝛾(𝐷) + 𝛾(𝐷 −𝐷(𝜖))2

(

sup
𝒚̂∼𝑓𝒙

𝔼[‖𝒚‖2] + sup
𝑖

(

‖𝐴𝑇
𝑖 𝐴𝑖‖

2
𝐹 + ‖𝒃𝑖‖22

)

)

≤ 𝑐 + 4𝛾(𝐷 −𝐷(𝜖))𝑌 .
(E.9)

Choosing 𝑐 < 𝜖0 and a small 𝜖 such that 𝛾(𝐷 −𝐷(𝜖)) ≤ 𝜖0−𝑐
4𝑌 , we have 

proved Theorem 3.1.

Appendix F.  Proof of Corollary 3.1

The proof of Corollary 3.1 is based on the proof of Theorem 3.1. 
Given any positive number 𝑐 > 0, we can find a Δ𝑥 > 0 such that:

𝑊 2
2 (𝑓𝒙, 𝑓𝒙̃) < 𝑐, ∀‖𝒙 − 𝒙̃‖ <

√

𝑑Δ𝑥, 𝒙, 𝒙̃ ∈ 𝐷. (F.1)

We establish an equidistance grid point set 𝑋 ∶= {𝒙𝑖}𝐾𝑖=1 on 𝐷 such 
that the distance between two adjacent points is Δ𝑥, 𝐷 ⊆ ∪𝐾

𝑖=1 ⊗
𝑑
𝑗=1

[𝑥𝑗𝑖 , 𝑥
𝑗
𝑖 + Δ𝒙) and ⊗𝑑

𝑗=1[𝑥
𝑗
𝑖1
, 𝑥𝑗𝑖1 + Δ𝒙) ∩⊗𝑑

𝑗=1[𝑥
𝑗
𝑖2
, 𝑥𝑗𝑖2 + Δ𝒙) = ∅ if 𝑖1 ≠ 𝑖2. 

Thus, ∀𝒙 ∈ 𝐷, there exists 𝒙𝑖 ∈ 𝑋 such that |𝒙 − 𝒙𝑖| ≤
√

𝑑Δ𝑥. Denote 
Φ(𝑥) to be the cumulative distribution function of a standard normal 
random variable. Suppose −𝑀 = ℎ𝑖,0 < ℎ𝑖,1 < … < ℎ𝑖,𝑠 = 𝑀 such that:
Φ(ℎ𝑖,𝑟+1) − Φ(ℎ𝑖,𝑟) = 𝑝𝑖,𝑟+1, 𝑟 = 1,…, 𝑠 − 2, Φ(ℎ𝑖,1) = 𝑝𝑖,1,

Φ(ℎ𝑖,𝑠−1) = 1 − 𝑝𝑖,𝑠, (F.2)

where 𝑝𝑖,𝑟 ∶= 𝑝𝑟(𝒙𝑖). We design an SNN of the form in Fig. 1 that satisfies 
Eq.  (3.12). We set the first three hidden layers of this SNN to be the same 
as the first three layers of the SNN designed in the proof of Theorem 3.1 
in Appendix E. We also refer to the outputs of the third hidden layer as 
𝑛3𝑖 , 𝑖 = 1,…, 𝐾. For 𝒙𝑖 ∈ 𝑋, we denote 𝒙𝑖 = (𝑥1𝑖 ,…, 𝑥𝑑𝑖 ). From Appendix E, 
𝑛3𝑖 ∈ [0, 1], 𝑛3𝑖 = 1 when 𝒙 = (𝑥1,…, 𝑥𝑑 ) ∈ ⊗𝑑

𝑗=1[𝑥
𝑗
𝑖 + 𝜖, 𝑥𝑗𝑖 + Δ𝑥 − 𝜖], and 

𝑛3𝑖 = 0 when 𝒙 ∈ 𝐷 −⊗𝑑
𝑗=1[𝑥

𝑗
𝑖 , 𝑥

𝑗
𝑖 + Δ𝑥]. 𝜖 > 0 is a small number to be 

determined. If there is a 𝑗 = 1,…, 𝑑 such that 𝑥𝑗 < 𝑥𝑗𝑖  or 𝑥𝑗 > 𝑥𝑗𝑖 + Δ𝑥, 
then 𝑛3𝑖 = 0. For 𝒙 ∈ 𝐷, there is at most one 𝑖 such that 𝑛3𝑖 = 1.

The fourth layer contains 𝐾(𝑠 + 1) groups of neurons with each group 
containing 2 neurons. The outputs of the (𝑖, 𝑟), 𝑖 = 1,…, 𝐾, 𝑟 = 0,…, 𝑠
group are:
𝑛4𝑖,𝑟 = ReLU(𝑤̃

3
𝑖 𝑛

3
𝑖 − ℎ𝑖,𝑟 −𝑀0), 𝑛̃4𝑖,𝑟 = ReLU(𝑤̃

3
𝑖 𝑛

3
𝑖 − ℎ𝑖,𝑟 − 𝜖0 −𝑀0). (F.3)

𝑤̃3
𝑖 ∼  (𝑀0, 1) are independent random variables. 𝑀0 > |ℎ𝑖,𝑟|,∀𝑖, 𝑟 is a 

large number and 𝜖0 > 0 is a small number satisfying 𝜖0 < min𝑖,𝑟
ℎ𝑖,𝑟+1−ℎ𝑖,𝑟

2 . 
Both 𝑀0 and 𝜖0 are to be determined.

The fifth layer contains 𝑠𝐾 neurons and the output of the (𝑖, 𝑟) neuron 
is:

𝑛5𝑖,𝑟+1 = ReLU
(

𝜖−10
(

𝑛4𝑖,𝑟 − 𝑛̃4𝑖,𝑟 −
(

𝑛4𝑖,𝑟+1 − 𝑛̃4𝑖,𝑟+1
)))

, 𝑟 = 0,…, 𝑠 − 1. (F.4)

Therefore, when 𝑛3𝑖 = 1, for 𝑟 = 0,…, 𝑠 − 1, we have:

𝑛5𝑖,𝑟+1 = 1, 𝜔3
𝑖 ∈ [𝑀0 + ℎ𝑖,𝑟 + 𝜖0,𝑀0 + ℎ𝑖,𝑟+1],

𝑛5𝑖,𝑟+1 = 0, 𝜔3
𝑖 < 𝑀0 + ℎ𝑖,𝑟 or 𝜔3

𝑖 > 𝑀0 + ℎ𝑖,𝑟+1 + 𝜖0,

𝑛5𝑖,𝑟+1 ∈ (0, 1), otherwise;

(F.5)

Furthermore, we can see that for any 𝑛3𝑖 ∈ [0, 1]

0 ≤
𝑠
∑

𝑟=1
𝑛5𝑖,𝑟 ≤ 1, (F.6)

and there exist at most two non-zero 𝑛5𝑖,𝑠, 𝑛5𝑖+1,𝑠 > 0 in (𝑛5𝑖,1,…, 𝑛5𝑖,𝑠).
For any 𝜖1 > 0, there exist a small 𝜖0 > 0 and a large 𝑀0 > 0 such 

that when 𝑛3𝑖 = 1:

0 ≤ 𝑝𝑖,𝑟 − 𝑝̂𝑖,𝑟 ≤
𝜖1
𝑠
, 𝑝̂𝑖,𝑟 ∶= 𝑝(𝑛5𝑖,𝑟 = 1), 𝑖 = 1,…, 𝐾. (F.7)

The sixth hidden layer contains 𝑠𝐾𝑑′ neurons, each of whose input 
and output are both

𝑛6𝑖,𝑟,𝑘 = 𝑛5𝑖,𝑟(𝑤𝑖,𝑟,𝑘 + (𝐴−1
𝑖,𝑟 𝒃𝑖,𝑟)𝑘), 𝑖 = 1,…, 𝐾, 𝑟 = 1,…, 𝑠, 𝑘 = 1,…, 𝑑′. (F.8)

Here, 𝑤𝑖,𝑟,𝑘 ∼  (0, 1) are independent random variables. 𝒃𝑖,𝑠 and 𝐴𝑖,𝑠, 
respectively, are the mean vector and covariance matrix such that

𝑓𝒙𝑖 (𝒚) =
𝑠
∑

𝑟=1
𝑝𝑟(𝒙𝑖)

(

𝒃𝑖,𝑟, 𝐴𝑇
𝑖,𝑟𝐴𝑖,𝑟

)

. (F.9)

The seventh layer contains 𝑑′ neurons whose output is:

𝐾
∑

𝑖=1

𝑠
∑

𝑟=1
𝑛5𝑖,𝑟(𝐴𝑖,𝑟𝒘𝑖,𝑟 + 𝒃𝑖,𝑟), (F.10)

where 𝒘𝑖,𝑟 ∶= (𝑤𝑖,𝑟,1,…, 𝑤𝑖,𝑟,𝑑′ ). When 𝒙 ∈ 𝐷(𝜖) ∶= {𝑥 ∈ 𝐷 ∶ ∃!𝑖, 𝑛3𝑖 = 1}, 
if 𝑛3𝑖 = 1, then the probability density function of the output of the sev-
enth layer can be written as:

𝑠
∑

𝑟=1
𝑝̂𝑖,𝑟

(

𝒃𝑖,𝑟, 𝐴𝑇
𝑖,𝑟𝐴𝑖,𝑟

)

+ 𝑝𝑖(𝒚), ∫ℝ𝑑′
𝑝𝑖(𝒚)d𝒚 ∶= 1 −

𝑠
∑

𝑟=1
𝑝̂𝑖,𝑟 ≤ 𝜖1, 𝑝𝑖(𝒚) ≥ 0.

(F.11)

Furthermore, since there exist at most two non-zero consecutive 
𝑛5𝑖,𝑠, 𝑛

5
𝑖+1,𝑠 > 0, we have:

∫ℝ𝑑′
‖𝒚‖2𝑝𝑖(𝒚)d𝒚 ≤ ∫ℝ𝑑′

𝑝𝑖(𝒚)d𝒚 ⋅
(

2max
𝑖,𝑟

𝔼𝒚∼ (𝒃𝑖,𝑟 ,𝐴𝑇
𝑖,𝑟𝐴𝑖,𝑟)

[‖𝒚‖2]

+ 2max
𝑖,𝑟

𝔼𝒚∼ (𝒃𝑖,𝑟 ,𝐴𝑇
𝑖,𝑟𝐴𝑖,𝑟)

[‖𝒚‖2]
)

= (1 −
𝑠
∑

𝑟=1
𝑝̂𝑖,𝑟)4max

𝑟

(

‖𝒃𝑖,𝑟‖2 + ‖𝐴𝑇
𝑖,𝑟𝐴𝑖,𝑟‖

2
𝐹

)

≤ 4𝜖1 max
𝑟

(

‖𝒃𝑖,𝑟‖2 + ‖𝐴𝑇
𝑖,𝑟𝐴𝑖,𝑟‖

2
𝐹

)

.

(F.12)

Applying Lemma 3.1, we have

𝑊 2
2 (𝑓𝒙, 𝑓𝒙𝑖 ) ≤ 2max

𝑟

𝜖1
𝑠

⋅ 𝑠
(

‖𝐴𝑇
𝑖,𝑟𝐴𝑖,𝑟‖

2
𝐹 + ‖𝒃𝑖,𝑟‖2

)

+ 4𝜖1 max
𝑟

(

‖𝒃𝑖,𝑟‖2 + ‖𝐴𝑇
𝑖,𝑟𝐴𝑖,𝑟‖

2
𝐹

)

, (F.13)

Neural Networks 193 (2026) 107893 

18 



M. Xia et al.

when 𝒙 ∈ 𝐷𝑖(𝜖) ∶= {𝒙 ∈ 𝐷(𝜖)|‖𝒙𝑖 − 𝒙‖ ≤ ‖𝒙𝑗 − 𝒙‖,∀𝑗 ≠ 𝑖}. Finally, we 
have:

∫𝐷
𝑊 2

2 (𝑓𝒙, 𝑓𝒙)𝛾(d𝒙)

≤ ∫𝐷(𝜖)
𝑊 2

2 (𝑓𝒙, 𝑓𝒙)𝛾(d𝒙)

+ 2(1 − 𝛾(𝐷(𝜖))
(

𝔼[‖𝒚‖2] + 4 sup
𝑖,𝑟

(

‖𝐴𝑇
𝑖,𝑟𝐴𝑖,𝑟‖

2
𝐹 + ‖𝒃𝑖,𝑟‖2]

)

)

≤ 2
∑

𝑖 ∫𝐷𝑖(𝜖)
𝑊 2

2 (𝑓𝒙, 𝑓𝒙𝑖 )𝛾(d𝒙) + 2
∑

𝑖 ∫𝐷𝑖(𝜖)
𝑐𝛾(d𝒙)

+ 2(1 − 𝛾(𝐷(𝜖))
(

𝔼[‖𝒚‖2] + 4 sup
𝑖,𝑟

(‖𝐴𝑇
𝑖,𝑟𝐴𝑖,𝑟‖

2
𝐹 + ‖𝒃𝑖,𝑟‖2])

)

≤ 2 sup
𝑖,𝑟

(

6𝜖1
(

‖𝐴𝑇
𝑖,𝑟𝐴𝑖,𝑟‖

2
𝐹 + ‖𝒃𝑖,𝑟‖2

)

)

+ 2𝑐

+ 2(1 − 𝛾(𝐷(𝜖))
(

𝔼[‖𝒚‖2] + 4 sup
𝑖,𝑟

(‖𝐴𝑇
𝑖,𝑟𝐴𝑖,𝑟‖

2
𝐹 + ‖𝒃𝑖,𝑟‖2])

)

.

(F.14)

Note that sup𝑖,𝑟(‖𝐴𝑇
𝑖,𝑟𝐴𝑖,𝑟‖

2
𝐹 + ‖𝒃𝑖,𝑟‖2) is uniformly bounded from the as-

sumption Eq.  (3.11). Letting 𝑐, 𝜖, 𝜖1 → 0+ in Eq.  (F.14), we have proved 
the inequality (3.12).

Appendix G.  Proof of Theorem 3.2

First, we define an auxiliary function with an additional parameter 
𝜎:

𝑓𝜎2 (𝒚) ∶= ∫ℝ𝑑′
𝑓 (𝒚′) (𝒚 − 𝒚′; 𝜎2𝐼𝑑′×𝑑′ )d𝒚′. (G.1)

Since 𝑓 is uniformly continuous and uniformly bounded, ∀𝜖0 > 0, there 
exist a small 𝛿 > 0 and a small 𝜎0 > 0 such that for any 𝜎 < 𝜎0, we have 
i) |𝑓 (𝒚) − 𝑓 (𝒚̃)| < 𝜖0,∀‖𝒚̃ − 𝒚‖ < 𝛿 and ii)

∫𝐵(0,𝛿)
 (𝒚; 𝜎2𝐼𝑑′×𝑑′ )d𝒚 > 1 − 𝜖0. (G.2)

Therefore, we conclude that lim𝜎→0 𝑓𝜎2 (𝒚) = 𝑓 (𝒚) uniformly on ℝ𝑑′ .

Letting {𝒚𝑗}(𝑛0+1)
𝑑′

𝑗=1  and {𝑤𝑗}
(𝑛0+1)𝑑

′

𝑗=1  be the multidimensional Hermite 
collocation points and weights on ℝ𝑑′  described in Shen et al. (2011), 
we have

∫ℝ𝑑′
𝑛0𝑓 (𝒚

′) ⋅ 𝑛0 (𝒚 − 𝒚′; 𝜎2𝐼𝑑′×𝑑′ )d𝒚′

=
(𝑛0+1)𝑑

′
∑

𝑖=1
𝑓 (𝒚𝑖) (𝒚 − 𝒚𝑖; 𝜎2𝐼𝑑′×𝑑′ )𝑤𝑖. (G.3)

Here, 𝑛0  is the interpolation operator such that

𝑓 (𝒚𝑗 ) = 𝑛0𝑓 (𝒚𝒋) ∈ 𝑃𝑛0 , 𝑗 = 1,…, (𝑛0 + 1)𝑑
′
, (G.4)

where 𝑃𝑛0  is the space spanned by the generalized Hermite functions 
̂𝒏(𝒚) such that |𝒏|∞ ≤ 𝑛0 and

̂𝒏(𝒚) ∶=
𝑑′
∏

𝑖=1
̂𝑛𝑖 (𝑦𝑖), 𝒏 = (𝑛1,…, 𝑛𝑑′ ), 𝒚 = (𝑦1,…, 𝑦𝑑′ ) (G.5)

is the multidimensional generalized Hermite function defined in Shen 
et al. (2011) (̂𝑛𝑖  is the 1D generalized Hermite function of order 𝑛𝑖). 
We denote

𝑓𝜎2 ,𝑛0 (𝒚) ∶=
(𝑛0+1)𝑑

′
∑

𝑖=1
𝑓 (𝒚𝑖) ⋅ (𝒚 − 𝒚𝑖; 𝜎2𝐼𝑑′×𝑑′ )𝑤𝑖

= ∫ℝ𝑑′
𝑛0𝑓 (𝒚

′) ⋅ 𝑛0 (𝒚 − 𝒚′; 𝜎2𝐼𝑑′×𝑑′ )d𝒚′,

(G.6)

where 𝑓𝜎2 ,𝑛0  is nonnegative because the collocation weights 𝑤𝑗 > 0. Fur-
thermore,

|

|

|∫ℝ𝑑′
𝑓 (𝒚′) (𝒚 − 𝒚′; 𝜎2𝐼𝑑′×𝑑′ ) − 𝑛0𝑓 (𝒚

′)𝑛0 (𝒚 − 𝒚′; 𝜎2𝐼𝑑′×𝑑′ )d𝒚′
|

|

|

≤ ‖𝑓 − 𝑛0𝑓‖𝐿2 ⋅ ‖ (𝒚 − 𝒚′; 𝜎2𝐼𝑑′×𝑑′ )‖𝐿2

+ ‖𝑛0𝑓‖𝐿2 ⋅ ‖ (𝒚 − 𝒚′; 𝜎2𝐼𝑑′×𝑑′ ) − 𝑛0 (𝒚 − 𝒚′; 𝜎2𝐼𝑑′×𝑑′ )‖𝐿2 .
(G.7)

Using (Shen et al., 2011, Theorem 7.18, Theorem 8.6), we have:
‖𝑓 − 𝑛0𝑓‖ ≤ ‖𝑓 − 1

𝑛0
𝑓‖𝐿2 + ‖2

𝑛0
◦…◦𝑑′

𝑛0
𝑓 − 𝑓‖𝐿2

+ ‖(1
𝑛0

− 𝕀)◦(2
𝑛0
◦…◦𝑑′

𝑛0
𝑓 − 𝑓 )‖𝐿2 ,

≤ 𝐶𝑛
− 1

3
0 ‖𝜕𝑦1𝑓‖𝐿2 + ‖2

𝑛0
◦…◦𝑑′

𝑛0
𝑓 − 𝑓‖𝐿2

+ ‖2
𝑛0
◦…◦(1

𝑛0
− 𝕀)(𝑑′

𝑛0
𝑓 − 𝑓 )‖𝐿2 ,

≤ 𝐶𝑛
− 1

3
0 ‖𝜕𝑦1𝑓‖𝐿2 + ‖2

𝑛0
◦…◦𝑑′

𝑛0
𝑓 − 𝑓‖𝐿2

+ 𝐶𝑛
− 1

3
0 ‖(2

𝑛0
◦…◦𝑑′

𝑛0
𝜕𝑦1𝑓 − 𝜕𝑦1𝑓‖𝐿2

≤ …

≤ 𝐶𝑛0
− 1

3
|𝑓 |mix

(G.8)

Here, 𝐶 is a constant and 𝑛0 is taken to be large enough such that 
𝐶𝑛0

− 1
3 < 1. 𝕀 is the identity operator and 𝑖

𝑛0
, 𝑖 = 1,… , 𝑑′ is the projec-

tion operator in the 𝑖th direction, i.e., if we denote 𝑋𝑛0 ∶= {𝑦𝑖}
𝑛0
𝑖=0 to be 

the 1D Hermite collocation points, then
𝑖
𝑛0
𝑓 (𝒚) = 𝑓 (𝒚), ∀𝒚 = (𝑦1,…, 𝑦𝑑′ ) if 𝑦𝑖 ∈ 𝑋𝑛0 . (G.9)

Similarly, for any fixed 𝒚 ∈ ℝ𝑑′ :

‖ (𝒚 − 𝒚′; 𝜎2𝐼𝑑′×𝑑′ ) − 𝑛0 (𝒚 − 𝒚′; 𝜎2𝐼𝑑′×𝑑′ )‖𝐿2

≤
∑

|𝒏|0≤𝑛0

𝐶𝑛
− 1

3
0 ‖𝜕𝒏‖𝐿2 . (G.10)

Combining Eqs.  (G.3), (G.7), (G.8) and (G.10), for every 𝒚 and every 
𝜎 > 0, as 𝑛0 → ∞,

|

|

|

(𝑛0+1)𝑑
′

∑

𝑖=1
𝑓 (𝒚𝑗 ) (𝒚 − 𝒚𝑗 ; 𝜎2𝐼𝑑′×𝑑′ )𝑤𝑗 − ∫ℝ𝑑′

𝑓 (𝒚′) (𝒚 − 𝒚′; 𝜎2𝐼𝑑′×𝑑′ )d𝒚′
|

|

|

≤ 𝐶𝑛
− 1

3
0

(

|𝑓 |mix‖ (𝒚, 𝜎2𝐼𝑑′×𝑑′ )‖𝐿2 +
(

‖𝑓‖𝐿2 + 𝐶𝑛
− 1

3
0 |𝑓 |mix)|

)

⋅ | (𝒚, 𝜎2𝐼𝑑′×𝑑′ )|mix
)

,

(G.11)

which implies that for any fixed 𝜎 > 0,

𝑓𝜎2 ,𝑛0 (𝒚) =
(𝑛0+1)𝑑

′
∑

𝑖=1
𝑓 (𝒚𝑖) (𝒚 − 𝒚𝑖; 𝜎2𝐼𝑑′×𝑑′ )𝑤𝑖

→ ∫ℝ𝑑′
𝑓 (𝒚′) (𝒚 − 𝒚′; 𝜎2𝐼𝑑′×𝑑′ )d𝒚′ (G.12)

uniformly in 𝒚 ∈ ℝ𝑑′  as 𝑛0 → ∞.
Additionally, we have:

∫ℝ𝑑′
‖𝒚‖2

(𝑛0+1)𝑑
′

∑

𝑖=1
𝑓 (𝒚𝑖)𝑤𝑖 (𝒚 − 𝒚𝑖; 𝜎2𝐼𝑑′×𝑑′ )d𝒚

=
(𝑛0+1)𝑑

′
∑

𝑖=1
𝑓 (𝒚𝑖)(|𝒚𝑖|2 + 𝑑′𝜎2)𝑤𝑖

=
(𝑛0+1)𝑑

′
∑

𝑖=1
𝑓 (𝒚𝑗 )(|𝒚𝑖|2 + 𝑑′𝜎2)2 1

|𝒚𝑖|2 + 𝑑′𝜎2
𝑤𝑖

= ∫ℝ𝑑′
𝑛0

(

𝑓 (𝒚)(‖𝒚‖2 + 𝑑′𝜎2)2
)

⋅ 𝑛0

(

1
(‖𝒚‖2 + 𝑑′𝜎2)

)

d𝒚

≤ ∫ℝ𝑑′
𝑓 (𝒚)(‖𝒚‖2 + 𝑑′𝜎2)2 ⋅ 1

(‖𝒚‖2 + 𝑑′𝜎2)
d𝒚

+ ‖

‖

‖

(𝑛0 − 𝕀)
(

𝑓 (𝒚)(‖𝒚‖2 + 𝑑′𝜎2)2
)

‖

‖

‖𝐿2 ⋅
‖

‖

‖

1
‖𝒚‖2 + 𝑑′𝜎2

‖

‖

‖𝐿2
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+ ‖𝑛0
(

𝑓 (𝒚)(‖𝒚‖2 + 𝑑′𝜎2)2
)

‖𝐿2 ⋅ ‖(𝕀 − 𝑛0 )
( 1
‖𝒚‖2 + 𝑑′𝜎2

)

‖𝐿2

≤ (
𝑑′
∑

𝑖,𝑗=1
2𝐶𝑛

− 1
3

0 |𝑓 (𝒚)𝑦2𝑖 𝑦
2
𝑗 |mix + 2𝐶𝑛

− 1
3

0 𝑑′𝜎2
𝑑′
∑

𝑖=1
|𝑓 (𝒚)𝑦2𝑖 |mix

+ 𝐶𝑛
− 1

3
0 (𝑑′)2𝜎4|𝑓 |mix) ⋅ 𝜎

− 1
2 𝐶1(𝑑′)

+ ‖𝑛0
(

𝑓 (𝒚)(𝒚 + 𝑑′𝜎2)2
)

‖𝐿2 ⋅ 𝐶𝑛
− 1

3
0

|

|

|

1
‖𝒚‖2 + 𝑑′𝜎2

|

|

|mix
+ 𝔼[‖𝑦‖2] + 𝑑′𝜎2,

(G.13)

where 𝐶1(𝑑′) is another constant depending on the dimensionality 𝑑′. 
Since

‖𝑛0
(

𝑓 (𝒚)(‖𝒚‖2 + 𝑑′𝜎2)2
)

− 𝑓 (𝒚)(‖𝒚‖2 + 𝑑′𝜎2)2‖𝐿2

≤
𝑑′
∑

𝑖,𝑗=1
2𝐶𝑛

− 1
3

0 |𝑓 (𝒚)𝑦2𝑖 𝑦
2
𝑗 |mix + 2𝐶𝑛

− 1
3

0 𝑑′𝜎2
𝑑′
∑

𝑖=1
|𝑓 (𝒚)𝑦2𝑖 |mix

+ 𝐶𝑛
− 1

3
0 (𝑑′)2𝜎4|𝑓 |mix ≤ ∞,

(G.14)

we conclude that

∫ℝ𝑑′
‖𝒚‖2

(𝑛0+1)𝑑
′

∑

𝑖=1
𝑓 (𝒚𝑖)𝑤𝑖 (𝒚 − 𝒚𝑖; 𝜎2)d𝒚 < ∞. (G.15)

Furthermore, from the inequality (G.14), 
‖𝑛0

(

𝑓 (𝒚)(‖𝒚‖2 + 𝑑′𝜎2)2
)

‖𝐿2 → ‖𝑓 (𝒚)(‖𝒚‖2 + 𝑑′𝜎2)2‖𝐿2  as 𝑛0 → ∞. 
We denote
𝑓𝜎2 ,𝑛0 (𝒚) ∶=

1
∑(𝑛0+1)𝑑

′

𝑗=1 𝑓 (𝒚𝑗 )𝑤𝑗

𝑓𝜎2 ,𝑛0 (𝒚). (G.16)

Therefore, ∫ℝ𝑑′ 𝑓𝜎2 ,𝑛0 (𝒚)d𝒚 = 1. Note that:

|

|

|∫ℝ𝑑′
𝑓 (𝒚)d𝒚 −

(𝑛0+1)𝑑
′

∑

𝑖=1
𝑓 (𝒚𝑖)𝑤𝑖

|

|

|

= ∫ℝ𝑑′
𝑓 − 𝑛0

√

𝑓 ⋅ 𝑛0
√

𝑓d𝒚

≤ ‖

√

𝑓‖𝐿2𝐶𝑛
− 1

3
0 |

√

𝑓 |mix + ‖𝑛0
√

𝑓‖𝐿2𝐶𝑛
− 1

3
0 |

√

𝑓 |mix,

≤ 𝐶𝑛
− 1

3
0 |

√

𝑓 |mix(2‖
√

𝑓‖𝐿2 + 𝐶𝑛
− 1

3
0 |

√

𝑓 |mix).

(G.17)

Therefore, we can write
𝑛𝑑

′
0
∑

𝑖=1
𝑓 (𝒚𝑖)𝑤𝑖 ∶= 1 + 𝑛

− 1
3

0 𝑐(
√

𝑓 ) ≤ ∞, (G.18)

where 𝑐(
√

𝑓 ) is a constant depending on |
√

𝑓 |mix (‖
√

𝑓‖𝐿2 = 1). We as-
sume 𝑛0 is large enough such that 𝑛

− 1
3

0 𝑐(
√

𝑓 ) < 1
2 . From the inequal-

ity (G.13) and the definition of 𝑓𝜎2 ,𝑛0  in Eq.  (G.16), we can bound 
𝔼𝒚∼𝑓𝜎2 ,𝑛0

[‖𝒚‖2] by

𝔼𝒚∼𝑓𝜎2 ,𝑛0
[‖𝒚‖2] ≤ 1

1 − |𝑐(𝑓 )|𝑛
− 1

3
0

[

𝔼𝒚∼𝑓 [‖𝒚‖2] + 𝑑′𝜎2

+ 𝑛
− 1

3
0 (𝐶2(𝜎; 𝑓 ) + 𝔼𝒚∼𝑓 [‖𝒚‖2] + 1)

]

≤
[

𝔼𝒚∼𝑓 [‖𝒚‖2] + 𝑛
− 1

3
0 (𝐶2(𝜎; 𝑓 ) + 𝔼𝒚∼𝑓 [‖𝑦‖2] + 1) + 𝑑′𝜎2

]

+ 2|𝑐(
√

𝑓 )|𝑛
− 1

3
0

[

𝔼𝒚∼𝑓 [‖𝒚‖2] + 𝑛
− 1

3
0 (𝐶2(𝜎; 𝑓 )

+ 𝔼𝒚∼𝑓 [‖𝒚‖2] + 1) + 𝑑′𝜎2
]

= 𝔼[‖𝒚‖2] + 𝑑′𝜎2 + 𝑛
− 1

3
0 𝐶3(𝜎; 𝑓 ),

(G.19)

where 𝐶2(𝜎; 𝑓 ) is a constant that depends on 𝑓 and 𝜎, and 𝐶3(𝜎; 𝑓 ) is 
another constant depending on 𝑓,

√

𝑓 and 𝜎.

Consider the special coupling measure

𝜋(𝑓, 𝑓𝜎2 ,𝑛0 )(𝒚, 𝒚̂) ∶= min
(

𝑓 (𝒚), 𝑓𝜎2 ,𝑛0 (𝒚)
)

𝛿(𝒚 − 𝒚̂)

+ 1
𝐴
(

𝑓 (𝒚) − min(𝑓, 𝑓𝜎2 ,𝑛0 )(𝒚)
)

⋅
(

𝑓𝜎2 ,𝑛0 (𝒚̂) − min(𝑓, 𝑓𝜎2 ,𝑛0 )(𝒚̂)
)

,

if∫ℝ𝑑′
min(𝑓 (𝒚), 𝑓𝜎2 ,𝑛0 (𝒚))d𝒚 < 1,

𝜋(𝑓, 𝑓𝜎2 ,𝑛0 )(𝒚, 𝒚̂) ∶= 𝑓 (𝒚)𝛿(𝒚 − 𝒚̂), if∫ℝ𝑑′
min(𝑓 (𝒚), 𝑓𝜎2 ,𝑛0 (𝒚))d𝒚 = 1,

(G.20)

where 𝐴 ∶= ∫ℝ𝑑′ min
(

𝑓 (𝒚), 𝑓𝜎2 ,𝑛0 (𝒚)
)

d𝒚 and 𝛿 is the Dirac delta measure. 
The marginal probability densities of 𝜋(𝑓, 𝑓𝜎2 ,𝑛0 ) are 𝑓 (𝒚) and 𝑓𝜎2 ,𝑛0 (𝒚), 
respectively. Furthermore, we have:
𝔼(𝒚,𝒚̂)∼𝜋(𝑓,𝑓𝜎2 ,𝑛0

)
[

‖𝒚 − 𝒚̂‖2
]

≤ 2∫ℝ𝑑′
‖𝒚‖2(𝑓 (𝒚) − min(𝑓 (𝒚), 𝑓𝜎2 ,𝑛0 (𝒚)))d𝒚

+ 2∫ℝ𝑑′
‖𝒚̂‖2(𝑓𝜎2 ,𝑛0 (𝒚) − min(𝑓 (𝒚), 𝑓𝜎2 ,𝑛0 (𝒚)))d𝒚

≤ 4∫ℝ𝑑′
‖𝒚‖2|𝑓 (𝒚) − 𝑓𝜎2 ,𝑛0 (𝒚)|d𝒚.

(G.21)

Fixing 𝜎 > 0, from Eq.  (G.12), 𝑓𝜎2 ,𝑛0 → 𝑓𝜎2  uniformly as 𝑛0 → ∞; 
furthermore, from the definition of 𝑓𝜎2 ,𝑛0  in Eq.  (G.16), 𝑓𝜎2 ,𝑛0 → 𝑓𝜎2 ,𝑛0
uniformly as 𝑛0 → ∞. Finally, since lim𝜎→0 𝑓𝜎2 (𝒚) = 𝑓 (𝒚) uniformly as 
𝜎 → 0 for any 𝒚 ∈ ℝ𝑑′ , we conclude that
𝑓𝜎2 ,𝑛0(𝜎) → 𝑓 (G.22)

uniformly as 𝜎 → 0 and 𝑛0(𝜎) → ∞ in ℝ𝑑′ .
Since 𝔼𝒚∼𝑓‖𝒚‖2] < ∞ and 𝔼𝒚∼𝑓𝜎2 ,𝑛0(𝜎)

[‖𝒚‖2] → 𝔼𝒚∼𝑓 [‖𝒚‖2] + 𝑑′𝜎2 as 
𝑛0(𝜎) → ∞ from Eq.  (G.19), for any 𝜖 > 0, there exists a measurable 
set 𝐴 ⊆ ℝ𝑑′  such that:
1. | ∫𝐴 ‖𝒚‖2𝑓 (𝒚)d𝒚 − 𝔼𝒚∼𝑓 [‖𝒚‖2]| < 𝜖
2. we can find a sufficiently small 𝜎 and a sufficiently large 𝑛0(𝜎) such 
that 𝑑′𝜎2 < 𝜖 and:

∫𝐴
‖𝒚‖2 ⋅ |𝑓 (𝒚) − 𝑓𝜎2 ,𝑛0(𝜎)(𝒚)|d𝒚 ≤ 𝜖. (G.23)

Using the inequality (G.19), we have

𝔼(𝒚,𝒚̂)∼𝜋(𝑓,𝑓𝜎2 ,𝑛0(𝜎)
)[‖𝒚 − 𝒚̂‖2] ≤ 4∫𝐴

‖𝒚‖2|𝑓 (𝒚) − 𝑓𝜎2 ,𝑛0(𝜎)(𝒚)|d𝒚

+ 4∫ℝ𝑑′−𝐴
‖𝒚‖2𝑓 (𝒚)d𝒚 + 4∫ℝ𝑑′−𝐴

‖𝒚‖2𝑓𝜎2 ,𝑛0(𝜎)(𝒚)d𝒚

≤ 4𝜖 + 4𝜖 + 4

(

𝔼𝒚∼𝑓 [‖𝒚‖2] + 𝑑′𝜎2 + 𝑛0(𝜎)
− 1

3 𝐶3(𝜎; 𝑓 )

−
(

∫𝐴
‖𝒚‖2𝑓 (𝒚)d𝒚 − 𝜖

)

)

≤ 16𝜖 + 4𝑑′𝜎2 + 4𝑛0(𝜎)
− 1

3 𝐶3(𝜎; 𝑓 ) ≤ 24𝜖,

(G.24)

if we take an 𝑛0(𝜎) large enough such that 𝑛0(𝜎)−
1
3 𝐶3(𝜎; 𝑓 ) ≤ 𝜖. From 

Eq.  (G.16), we have:

𝑓𝜎2 ,𝑛0(𝜎)(𝒚) =
(𝑛0(𝜎)+1)𝑑

′
∑

𝑖=1

𝑓 (𝒚𝑖)𝑤𝑖
∑(𝑛0(𝜎)+1)𝑑

′

𝑗=1 𝑓 (𝒚𝑗 )𝑤𝑗

⋅ (𝒚 − 𝒚𝑖; 𝜎2𝐼𝑑′×𝑑′ ), (G.25)

which is indeed the probability density function of a Gaussian mixture 
model, and this completes the proof of Theorem 3.2.

Appendix H.  The approximation ability of the SNN model in Fig. 1

In this subsection, we analyze the capability of the SNN model to 
approximate a family of probability density functions for a random vari-
able 𝒚𝒙 ∼ 𝑓𝒙, 𝒚 ∈ ℝ𝑑′  characterized by 𝒙 ∈ 𝐷 ⊆ ℝ𝑑 ,𝒙 ∼ 𝛾(⋅). We assume 
the following conditions hold:
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1. 𝑓𝒙 is uniformly continuous such that for any 𝜖, there exists a Δ𝑥
satisfying 𝑊 2

2 (𝑓𝒙, 𝑓𝒙̃) ≤ 𝜖, ∀𝒙, 𝒙̃ ∈ 𝐷, ‖𝒙 − 𝒙̃‖ ≤ Δ𝑥.
2. For any 𝒙, 𝑓𝒙 satisfies the conditions in Theorem 3.2.

Let 𝜖 > 0 be a small positive number. We can find a Δ𝑥 > 0 such that 
𝑊 2

2 (𝑓𝒙, 𝑓𝒙̃) <
𝜖
4  if ‖𝒙 − 𝒙̃‖ ≤

√

𝑑Δ𝑥,∀𝒙 𝒙̃ ∈ 𝐷. We can find an equidis-
tance grid point set 𝑋 ∶= {𝒙𝑖}𝐾𝑖=1 such that the distance between two 
adjacent points is Δ𝒙, 𝐷 ⊆ ∪𝐾

𝑖=1 ⊗
𝑑
𝑗=1 [𝑥

𝑗
𝑖 , 𝑥

𝑗
𝑖 + Δ𝒙), and ⊗𝑑

𝑗=1[𝑥
𝑗
𝑖1
, 𝑥𝑗𝑖1 +

Δ𝒙) ∩⊗𝑑
𝑗=1[𝑥

𝑗
𝑖2
, 𝑥𝑗𝑖2 + Δ𝒙) = ∅ if 𝑖1 ≠ 𝑖2. Thus, for any 𝒙 ∈ 𝐷, there 

exists 𝒙𝑖 ∈ 𝑋 satisfying 𝑊 2
2 (𝑓𝒙, 𝑓𝒙𝑖 ) <

𝜖
4 . Furthermore, for any 𝒙𝑖 =

(𝑥1𝑖 ,…, 𝑥𝑑𝑖 ) ∈ 𝑋, from Theorem 3.2, there exists a probability density 
function of a Gaussian mixture model:

𝑓𝑛0,𝑖 ,𝜎2𝑖
(𝒚𝒙𝑖 ) =

𝑛0,𝑖
∑

𝑟=1
𝑝𝑖,𝑟

(

𝒚𝒙𝑖 − 𝒃𝑖,𝑟, 𝐴𝑇
𝑖,𝑟𝐴𝑖,𝑟

)

,
𝑛0,𝑖
∑

𝑟=1
𝑝𝑖,𝑟 = 1, (H.1)

such that 𝑊 2
2 (𝑓𝒙𝑖 , 𝑓𝑛0,𝑖 ,𝜎2𝑖 ) <

𝜖
4 , 𝑖 = 1,…, 𝐾. We denote 𝑛0 ∶= max1≤𝑖≤𝐾 𝑛0,𝑖

and

𝑓𝑛0 ,𝜎2𝑖
(𝒚𝒙𝑖 ) =

𝑛0,𝑖−1
∑

𝑟=1
𝑝𝑖,𝑟

(

𝒚𝒙𝑖 − 𝒃𝑖,𝑟, 𝐴𝑇
𝑖,𝑟𝐴𝑖,𝑟

)

+
𝑛0
∑

𝑟=𝑛0,𝑖

𝑝𝑖,𝑛0,𝑖
𝑛0−𝑛0,𝑖+1


(

𝒚𝒙𝑖 − 𝒃𝑖,𝑛0,𝑖 , 𝐴
𝑇
𝑖,𝑛0,𝑖

𝐴𝑖,𝑛0,𝑖

)

.

(H.2)

𝑊 2
2 (𝑓𝒙𝑖 , 𝑓𝑛0,𝑖 ,𝜎2𝑖 ) <

𝜖
4 , 𝑖 = 1,…, 𝐾 for 𝑓𝑛0,𝑖 ,𝜎2𝑖  defined in Eq.  (H.2) because 

𝑊 2
2 (𝑓𝒙𝑖 , 𝑓𝑛0,𝑖 ,𝜎2𝑖 ) = 𝑊 2

2 (𝑓𝒙𝑖 , 𝑓𝑛0,𝑖 ,𝜎2𝑖 ).
We define a new continuous random variable 𝒚̃𝒙 with a probability 

distribution 𝑓𝒙,𝒙 ∈ 𝐷 such that:
𝑓𝒙 = 𝑓𝑛0 ,𝜎2𝑖

, if 𝒙 ∈ 𝐷 ∩⊗𝑑
𝑗=1[𝑥

𝑗
𝑖 , 𝑥

𝑗
𝑖 + Δ𝒙). (H.3)

Therefore, we have

∫𝐷
𝑊 2

2 (𝑓𝒙, 𝑓𝒙)𝛾(d𝒙) <
𝐾
∑

𝑖=1
∫𝐷∩⊗[𝑥𝑗𝑖 ,𝑥

𝑗
𝑖+Δ𝑥]

2
(

𝑊 2
2 (𝑓𝒙, 𝑓𝒙𝑖 )

+𝑊 2
2 (𝑓𝒙, 𝑓𝒙𝑖 )

)

𝛾(d𝒙) = 𝜖. (H.4)

We denote
𝑌 (𝜖,𝑋) ∶= sup

𝑖=1,…,𝐾,𝑠=1,…,𝑛0

(

‖𝒃𝑖,𝑠‖2 + ‖𝐴𝑇
𝑖,𝑠𝐴𝑖,𝑠‖

2
𝐹

)

, (H.5)

where 𝒃𝑖,𝑠 and 𝐴𝑇
𝑖,𝑠𝐴𝑖,𝑠 are the mean vectors and covariance matrices 

in Eq.  (H.2), respectively. Similar to the proof of Corollary 3.1 in Ap-
pendix F, for any 𝜖1 > 0, there exists
𝐷(𝜖1) ∶= 𝐷 ∩

(

∪𝐾
𝑖=1 ⊗

𝑑
𝑗=1[𝑥

𝑗
𝑖 , 𝑥

𝑗
𝑖 + Δ𝑥 − 𝜖1]

)

(H.6)

such that 𝛾(𝐷 −𝐷(𝜖1)) ∶= ∫𝐷−𝐷(𝜖1)
1𝛾(d𝒙) ≤ 𝜖. Additionally, similar to 

the estimates Eqs.  (F.13) and (F.14), we can find an SNN whose output 
obeys a distribution 𝑓𝒙 satisfying:

𝑊 2
2 (𝑓𝒙, 𝑓𝒙𝑖 ) ≤ 6𝜖𝑌 (𝜖,𝑋), 𝒙 ∈ 𝐷𝑖(𝜖1) ∶= {𝒙 ∈ 𝐷(𝜖1)|‖𝒙𝑖 − 𝒙‖ ≤ ‖𝒙𝑗 − 𝒙‖}

𝑊 2
2 (𝑓𝒙, 𝑓𝒙𝑖 ) ≤ 2max

𝑖
𝔼𝒚𝒙∼𝑓𝑛0 ,𝜎2𝑖

[‖𝒚𝒙‖2] + 2𝔼𝒚𝒙∼𝑓𝒙
[‖𝒚𝒙‖2]

≤ 10max
𝑖

𝔼𝒚𝒙∼𝑓𝑛0 ,𝜎2𝑖
[‖𝒚𝒙‖2] ≤ 10𝑌 (𝜖,𝑋), 𝑥 ∉ 𝐷(𝜖1).

(H.7)

Therefore, we have

∫𝐷
𝑊 2

2 (𝑓𝒙, 𝑓𝒙)𝛾(d𝒙) ≤ ∫𝐷(𝜖1)
𝑊 2

2 (𝑓𝒙, 𝑓𝒙)𝛾(d𝒙) + ∫𝐷−𝐷(𝜖1)
𝑊 2

2 (𝑓𝒙, 𝑓𝒙)𝛾(d𝒙)

= 6𝜖𝑌 (𝜖,𝑋) + 10𝜖𝑌 (𝜖,𝑋) = 16𝜖𝑌 (𝜖,𝑋),
(H.8)

and

∫𝐷
𝑊 2

2 (𝑓𝒙, 𝑓𝒙)𝛾(d𝒙) ≤ 2∫𝐷

(

𝑊 2
2 (𝑓𝒙, 𝑓𝒙) +𝑊 2

2 (𝑓𝒙, 𝑓𝒙)
)

𝛾(d𝒙)

≤ 32𝑌 (𝜖,𝑋)𝜖 + 2𝜖. (H.9)

In Eq.  (H.9), 𝑌 (𝜖,𝑋) also depends on 𝜖 and the choice of the grid 
point set 𝑋 = {𝒙𝑖}𝐾𝑖=1. Specifically, as 𝜖 → 0, if we can design a grid 
point set {𝒙}𝐾(𝜖)

𝑖=1  such that the quantity 𝜖 ⋅ 𝑌 (𝜖,𝑋) → 0 (e.g., when 𝒚
is uniformly bounded for any 𝒙 ∈ 𝐷, by the construction of 𝑓𝑛0 ,𝜎2𝑖  in 
Appendix  G, sup𝑖=1,…,𝐾,𝑠=1,…,𝑛0

(

‖𝒃𝑖,𝑠‖2 + ‖𝐴𝑇
𝑖,𝑠𝐴𝑖,𝑠‖

2
𝐹

)

 in Eq. H.5 is uni-
formly bounded and its upper bound is independent of the choice of the 
grid point set), then there exists an SNN model in Fig. 1 such that the dis-
tribution of its output can approximate 𝑓𝒙, the probability distribution 
of 𝒚 given the input 𝒙, in the squared 𝑊2 sense.

Appendix I.  Default training settings

We list the hyperparameters and settings for training the SNN model 
in Fig. 1 of each example in Table I.3 below.

Table I.3 
Training settings for each example.
Hyperparame-
ters

Example 4.1 Example 4.2 Example 4.3 Example 4.4

Gradient descent 
method

 Adam Adam  Adam  Adam

Learning rate  0.001 0.0005  0.0003  0.001
Weight decay  0.01 0  0.005  0.02
No. of epochs  500 400  2000  400
No. of training 
trajectories

 200 200  400  300

Hidden layers  1 3  3  2
Activation 
function

 ELU ELU  ELU  ReLU

Neurons in each 
layer

 40 50  10  50

time step Δ𝑡  0.1 0.1  0.05  0.1
Number of 
timesteps 𝑁𝑇

 81 21  41  21

Initialization for 
biases

 2  (0, 0.01)
(

(

(1.5, 0.5)𝑇 , 0.1𝐼2
)

for the output layer)

 (0, 0.032)  0.01

Initialization for 
means of 
weights

 (0, 0.012)  (0, 0.012)  (0, 0.032)  (0, 0.012)

Initialization for 
variances of 
weights

 (0, 0.012)  (0, 0.012)  (0, 0.032)  (0, 0.012)

Appendix J.  Definitions of different loss metrics

Below, we provide descriptions and definitions for the different loss 
functions used for comparison in this study. In the following, 𝑁 de-
notes the number of samples, and 𝑡𝑖 = 𝑖 𝑇

𝑁𝑇
, 𝑖 = 0,…, 𝑁𝑇  denotes a uni-

form mesh in [0, 𝑇 ].

1. A scaled local time-decoupled squared 𝑊2 distance:

1
𝑁𝑇

𝑁𝑇
∑

𝑖=1
𝑊 2,e

2,𝛿 (𝑿(𝑡𝑖), 𝑿̂(𝑡𝑖)) =
1

𝑁𝑇𝑁

𝑁𝑇
∑

𝑖=1

𝑁
∑

𝑗=1
𝑊 2

2
(

𝜈e𝑿0,𝑗 ,𝛿
(𝑡𝑖), 𝜈̂e𝑿0,𝑗 ,𝛿

(𝑡𝑖)
)

,

(J.1)

where 𝑊 2,e
2,𝛿 (𝑿(𝑡𝑖), 𝑿̂(𝑡𝑖)) is the local squared 𝑊2 distance defined in 

Eq.  (2.4). 𝜈e𝑿0,𝑗 ,𝛿
(𝑡) and 𝜈̂e𝑿0,𝑗 ,𝛿

(𝑡) are the empirical conditional prob-
ability distributions of 𝑿 and 𝑿̂ at time 𝑡 conditioned on |𝑿(0) −
𝑿𝑗 (0)| ≤ 𝛿 and |𝑿̂(0) −𝑿𝑗 (0)| ≤ 𝛿, respectively (𝑿𝑗 (0) denotes the ini-
tial state of the 𝑗th trajectory in the training set). 𝑊 2

2 (𝜈
e
𝑿0,𝑗 ,𝛿

, 𝜈̂e𝑿0,𝑗 ,𝛿
)

is estimated by

𝑊 2
2

(

𝜈e𝑿0,𝑗 ,𝛿
, 𝜈̂e𝑿0,𝑗 ,𝛿

)

≈ ot.emd2
( 1
𝑁𝑗

𝑰𝑁𝑗
, 1
𝑁𝑗

𝑰𝑁𝑗
,𝑪𝑗 (𝑡𝑖)

)

, (J.2)

where ot.emd2 is the function for solving the earth movers distance 
problem in the PoT package of Python in Flamary et al. (2021). 𝑁𝑗 is 
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the number of elements in the set 𝑋𝑗 ∶=
{

{𝑿𝑖}𝑇𝑡=0
|

|

|

‖𝑿𝑖(0) −𝑿𝑗 (0)‖ ≤

𝛿, 𝑖 = 1,…, 𝑁
}

, 𝑰𝑁𝑗
 is an 𝑁𝑗 -dimensional vector whose elements 

are all 1, and 𝑪𝑗 (𝑡𝑖) ∈ ℝ𝑁𝑗×𝑁𝑗  is a matrix with entries (𝑪𝑗 (𝑡𝑖))𝑠𝑟 =
‖𝑿𝑠(𝑡𝑖) − 𝑿̂𝑟(𝑡𝑖)‖2. 𝑿𝑠(𝑡𝑖) and 𝑿̂𝑟(𝑡𝑖) are the states of the 𝑠th ground 
truth trajectory at time 𝑡𝑖 in the set 𝑋𝑗 and the states of the 𝑟th
predicted trajectory at time 𝑡𝑖 in the set 𝑋̂𝑗 ∶=

{

{𝑿̂𝑖}𝑇𝑡=0
|

|

|

‖𝑿̂𝑖(0) −

𝑿𝑗 (0)‖ ≤ 𝛿, 𝑖 = 1,…, 𝑁
}

, respectively.
2. A scaled time-decoupled squared 𝑊2 distance

𝑊̃ 2
2 (𝑿, 𝑿̂) ≈ 1

𝑁𝑇

𝑁𝑇
∑

𝑖=1
𝑊 2

2 (𝜈
e(𝑡𝑖), 𝜈̂e(𝑡𝑖)),

where 𝜈e(𝑡𝑖) and 𝜈̂e(𝑡𝑖) are the empirical distributions of 𝑿(𝑡𝑖) and 
𝑿̂(𝑡𝑖), respectively. It is estimated by

𝑊 2
2 (𝜈

e
𝑁 (𝑡𝑖), 𝜈̂e𝑁 (𝑡𝑖)) ≈ ot.emd2

( 1
𝑁

𝑰𝑁 , 1
𝑁

𝑰𝑁 ,𝑪(𝑡𝑖)
)

, (J.3)

where ot.emd2 is the function for solving the earth movers distance 
problem in the ot package of Python in Flamary et al. (2021). 𝑁
is the number of ground truth and predicted samples, 𝑰𝑁  is an 𝑁-
dimensional vector whose elements are all 1, and 𝑪(𝑡𝑖) ∈ ℝ𝑁×𝑁  is a 
matrix with entries (𝑪(𝑡𝑖))𝑠𝑗 = ‖𝑿𝑠(𝑡𝑖) − 𝑿̂𝑗 (𝑡𝑖)‖2. 𝑿𝑠(𝑡𝑖) and 𝑿̂𝑗 (𝑡𝑖) are 
the states of the 𝑠th ground truth trajectory at time 𝑡𝑖 and the states 
of the 𝑗th predicted trajectory at time 𝑡𝑖, respectively.

3. MMD (maximum mean discrepancy) (Li et al., 2015):

MMD({𝑿}, {𝑿̂}) = 1
𝑁𝑇

𝑁𝑇
∑

𝑖=1
𝔼[𝐾({𝑿(𝑡𝑖)}, {𝑿(𝑡𝑖)})]

− 2𝔼[𝐾({𝑿(𝑡𝑖)}, {𝑿̂(𝑡𝑖)})] + 𝔼[𝐾({𝑿̂(𝑡𝑖)}, {𝑿̂(𝑡𝑖)})],

(J.4)

where 𝐾 is the standard radial basis function (or Gaussian kernel) 
with the multiplier equal to 2 and the number of kernels equal to 5. 
{𝑿(𝑡𝑖)} and {𝑿̂(𝑡𝑖)} denote the sets of ground truth observations and 
predicted trajectories at time 𝑡𝑖, respectively.

4. Mean squared error (MSE):

MSE(𝑿, 𝑿̂) = 1
𝑁𝑇𝑁

𝑁𝑇
∑

𝑖=1

𝑁
∑

𝑠=1
‖𝑿𝑠(𝑡𝑖) − 𝑿̂𝑠(𝑡𝑖)‖2. (J.5)

𝑿𝑠(𝑡𝑖) and 𝑿̂𝑠(𝑡𝑖) are the states of the 𝑠th ground truth trajectory at 
time 𝑡𝑖 and the states of the 𝑠th predicted trajectory at time 𝑡𝑖, re-
spectively.

5. Mean2+Var loss function:

(Mean2 +Var)(𝑿, 𝑿̂) = 1
𝑁𝑇

𝑁𝑇
∑

𝑖=1

(

1
𝑁

𝑁
∑

𝑠=1
‖𝑿𝑠(𝑡𝑖) − 𝑿̂𝑠(𝑡𝑖)‖2

+ |Var(𝑿(𝑡𝑖)) − Var(𝑿̂(𝑡𝑖))|

)
(J.6)

where

Var(𝑿(𝑡𝑖)) =
𝑁
∑

𝑠=1

‖

‖

‖

𝑿𝑠(𝑡𝑖) −
𝑁
∑

𝑖=1

1
𝑁

𝑿𝑖(𝑡𝑖)
‖

‖

‖

2
. (J.7)

𝑿𝑠(𝑡𝑖) and 𝑿̂𝑠(𝑡𝑖) are the states of the 𝑠th ground truth trajectory at 
time 𝑡𝑖 and the states of the 𝑠th predicted trajectory at time 𝑡𝑖, re-
spectively.

Appendix K.  Using a neural network to approximate the diffusion 
function in Example 4.4

Here, we apply a feedforward neural network with deterministic 
weights and biases to approximate the diffusion function in a jump-
diffusion process when the form of the diffusion function is unknown. 
We consider the following jump-diffusion process:

d𝑋𝑡 = 0.05d𝑡 + 𝜎0
√

|𝑋𝑡|d𝐵𝑡 + ∫𝑈
𝜉𝑋𝑡d𝑁̃(𝜈(d𝜉)d𝑡), 𝑡 ∈ [0, 2],

𝜉 ∼  (𝛽0, 𝜎21 ), 𝑋0 ∼  (2, 𝜎22 ). (K.1)

In Eq.  (K.1), 𝜎0 is a positive constant, and 𝐵𝑡 and 𝑁̃𝑡 are an independent 
Wiener process and a compensated Poisson process, respectively. We 
use the following approximate jump-diffusion process to approximate 
Eq.  (K.1): 

d𝑋̂𝑡 = 0.05d𝑡 + 𝜎̂(𝑋̂𝑡)d𝐵̂𝑡 + ∫𝑈
𝜉𝑋̂𝑡d𝑁̂(𝜈(d𝜉)d𝑡), 𝑡 ∈ [0, 2], 𝑋̂0 = 𝑋0.

(K.2)

In Eq.  (K.2), ̂𝜎(𝑋̂𝑡) is a deterministic feedforward parameterized neu-
ral network that takes the state 𝑋̂𝑡 as the input. We aim to approximate 
the ground truth diffusion function |𝜎(𝑿𝑡)| ∶= |𝜎0|

√

|𝑋𝑡| in Eq.  (K.1) 
using the approximate |𝜎̂(𝑋𝑡)| in Eq.  (K.2). 𝜉 is the output of an SNN 
when the input is 1, which aims at approximating the distribution of 
𝜉, and 𝐵̂𝑡 is another Wiener process independent of the Wiener pro-
cess 𝐵𝑡 in Eq.  (K.1) while 𝑁̂ is another compensated Poisson process 
independent of 𝐵𝑡, 𝐵̂𝑡 and 𝑁̃𝑡. We train both the deterministic neural 
network 𝜎̂(𝑋̂𝑡) and the SNN that approximates the distribution of 𝜉 si-
multaneously by minimizing our local time-decoupled squared 𝑊2 loss 
function Eq.  (2.6). The parameterized neural network 𝜎̂(𝑋̂𝑡) consists 
of two hidden layers with fifty neurons in each layer. All other hyper-
parameters are the same as those used in Example 4.4, described in 
Table I.3. We vary the variance of 𝜉 as well as the value of 𝜎0 when re-
constructing the diffusion function and the distribution of 𝜉 in the jump
function.

The trajectories generated by the reconstructed jump-diffusion pro-
cess align well with ground truth trajectories (shown in Fig. K.7(a)). 
Furthermore, the error in the reconstructed diffusion function, as well 
as the error in the reconstructed distribution of 𝜉, is small. Thus, when 

Fig. K.7. (a) Ground truth trajectories versus the reconstructed trajectories when 𝜎0 = 0.3, 𝛽0 = 0.3, 𝜎1 = 0.15, 𝜎2 = 0.1, and 𝛿 = 0.1 in the loss function Eq.  (2.6). For 
clarity, 50 ground truth trajectories and 50 reconstructed trajectories are plotted. (b) The error in the reconstructed diffusion function 𝜎̂. Here, the error denotes 
the relative squared 𝐿2 error: ∫

𝑇
0 (|𝜎̂(𝑋𝑡)|−𝜎0

√

|𝑋𝑡 |)2d𝑡

∫ 𝑇
0 (𝜎0

√

|𝑋𝑡 |)2d𝑡
. (c) The error in the reconstructed distribution of 𝜉 (Eq.  (4.1)). In (b) and (c), the values of other parameters are: 

𝛽0 = 0.3, 𝜎2 = 0.1, and the size of neighborhood 𝛿 = 0.1 in the loss function Eq.  (J.1). Errors are the average error over three repeated experiments.
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the form of the diffusion function is unknown while the diffusion func-
tion itself is deterministic, we could consider using a deterministic feed-
forward neural network to reconstruct it while using an SNN (Fig. 1) to 
simultaneously reconstruct the distribution of 𝜉 in the jump magnitude 
function in Eq.  (K.1) by minimizing the loss function Eq.  (J.1).
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