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In this work, we propose and analyze a new local time-decoupled squared Wasserstein-2 method for reconstruct-
ing the distribution of unknown parameters in dynamical systems from a finite number of observed temporal
trajectories. Specifically, we show that a stochastic neural network model, which can be effectively trained by
minimizing our proposed local time-decoupled squared Wasserstein-2 loss function, is an effective model for

approximating the distribution of uncertain model parameters in dynamical systems. Through several numerical
examples, we showcase the effectiveness of our proposed method in reconstructing the distribution of parameters

in different dynamical systems.

1. Introduction

The inverse problem of reconstructing a noisy dynamical system
from time-series data finds wide applications across different disciplines.
Efficient algorithms to solve such inverse-type problems advance differ-
ent fields including inferring neural circuit dynamics from spiking data
(Pillow et al., 2008) in neuroscience, modeling and predicting complex
weather patterns from historical data (Carrassi et al., 2018) in climate
science, uncovering disease transmission dynamics from infection case
counts over time (Roda et al., 2020) in epidemiology, and deducing re-
action rates from experimental concentration-time profiles in reaction
kinetics in biochemistry (Loskot et al., 2019). However, such inverse-
type problems pose substantial mathematical and computational chal-
lenges, particularly when data are limited and noisy, motivating ongoing
research into novel algorithms and theoretical frameworks to improve
model reconstruction accuracy and efficiency.

In this paper, we study the inverse problem of inferring the dis-
tribution of model parameters for several dynamical systems includ-
ing ordinary differential equations (ODEs), partial differential equa-
tions (PDEs), and stochastic differential equations (SDEs) from time-
series data or spatiotemporal data. Existing methods for such problems
can be broadly categorized into traditional statistical approaches and
modern data-driven techniques. Traditional statistical methods often in-
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volve parameter estimation frameworks. For example, linear and non-
linear regression methods play a role in simpler systems where the func-
tional form of the model is partially known (Chib & Greenberg, 2002).
Furthermore, maximum likelihood estimation and Bayesian inference
methods (Cresswell, 2015; Marin et al., 2021) are often adopted. Maxi-
mum likelihood estimation optimizes the likelihood of model parameter
values in a proposed model from observed data, while Bayesian meth-
ods incorporate prior information and compute posterior distributions.
These approaches are widely used in applications such as reaction net-
work reconstruction and epidemiological modeling. On the other hand,
data-driven methods, leveraging advances in machine learning, offer a
complementary toolkit for inverse problems. For example, neural net-
works and reservoir computing frameworks have been successful in re-
constructing chaotic systems and inferring governing equations directly
from data (Brunton et al., 2016; Pathak et al., 2018). Sparse identifica-
tion of nonlinear dynamics (SINDy) has emerged as a powerful tool for
discovering interpretable dynamical systems by identifying a parsimo-
nious set of governing equations from time-series data (Brunton et al.,
2016). Gaussian process regression has proven effective for nonpara-
metric inference, especially in uncertainty quantification (Raissi et al.,
2017). Hybrid approaches, which integrate data-driven and traditional
statistical methods such as the physics-informed neural network method
(Raissi et al., 2019), are also gathering increasing attention as they take
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\begin {equation}\bm {X}=(X_1, {\ldots }, X_d),\,\, \hat {\bm {X}}=(\hat {X}_1,{\ldots },\hat {X}_d)\in \mathbb {R}^d \label {Xeqn3-2.1}\end {equation}
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\begin {equation}W_{2, \delta }^{2, \text {e}}\left (\bm {X}(t), \hat {\bm {X}}(t)\right ):= \int _{\mathbb {R}^d}W_2^2\left (\nu ^{\text {e}}_{\bm {X}_0, \delta }(t), \hat {\nu }^{\text {e}}_{\bm {X}_0, \delta }(t)\right ) \nu _0^{\text {e}}({\mathrm {d}}\bm {X}_0). \label {local:squared}\end {equation}
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\begin {equation}\begin {aligned} {\mathrm {d}} \bm {X}(t) &= \bm {f}(\bm {X}(t), t; \theta ){\mathrm {d}} t + \bm {\sigma }(\bm {X}(t), t; \theta ){\mathrm {d}} \bm {B}_t \\ & \quad + \int _U\bm {\beta }(\bm {X}(t), \xi , t; \theta )\tilde {N}( {\mathrm {d}} t, \gamma ({\mathrm {d}}\xi )),\,\,\bm {X}(0)\sim \nu _0 \end {aligned} \label {model:equation}\end {equation}


\begin {equation}\begin {aligned} {\mathrm {d}} \hat {\bm {X}}(t) &= \bm {f}(\hat {\bm {X}}(t), t; \hat {\theta }){\mathrm {d}} t +\bm {\sigma }(\hat {\bm {X}}(t), t; \hat {\theta }){\mathrm {d}} \hat {\bm {B}}_t \\ &\quad +\int _U\bm {\beta }(\hat {\bm {X}}(t), \xi , t; \hat {\theta })\hat {N}\big ({\mathrm {d}} t, \gamma ({\mathrm {d}}\xi )\big ),\,\,\hat {\bm {X}}(0)=\bm {X}(0). \end {aligned} \label {approximate:equation}\end {equation}
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\begin {equation}\tilde {N}({\mathrm {d}} t, \gamma ({\mathrm {d}}\xi )) := N({\mathrm {d}} t, \gamma ({\mathrm {d}}\xi )) - \gamma ({\mathrm {d}}\xi ) {\mathrm {d}} t, \label {compensated:poisson}\end {equation}
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$W_2$


$\bm {y}\in \mathbb {R}^{d'}$


$f_{\bm {x}}$


$\bm {x}\in D\subseteq \mathbb {R}^d$


$\gamma (\cdot )$


$\bm {x}$


$f_{\bm {x}}$


\begin {equation}f_{\bm {x}}(\bm {y}) = \sum _{r=1}^s p_r(\bm {x})\mathcal {N}(\bm {y} - \bm {b}_r(\bm {x}), A_r^T(\bm {x})A_r(\bm {x})), \,\, \sum _{r=1}^s p_r(\bm {x})=1,\,\, p_r(\bm {x})>0.\end {equation}


$\{D_i\}_{i=1}^{\infty }$


$D_i\rightarrow D$


$i\rightarrow \infty $


$\lim _{i\rightarrow \infty }\gamma (D_i)=\gamma (D)=1$


$D$


$\mathbb {R}^d$


$\Delta x>0$


$\{\bm {x}_i\}_{i=1}^{K}\subseteq D$


$D\subseteq \cup _{i=1}^K\otimes _{j=1}^d[x_i^j, x_i^j+\Delta \bm {x})$


$\otimes _{j=1}^d[x_{i_1}^j, x_{i_1}^j+\Delta \bm {x})\cap \otimes _{j=1}^d[x_{i_2}^j, x_{i_2}^j+\Delta \bm {x})=\emptyset $


$i_1\neq i_2$


$f_{\bm {x}}(\bm {y})$


$\bm {x}$


$\epsilon >0$


$\delta >0$


\begin {equation}W_2^2\big (f_{\bm {x}}(\bm {y}), f_{\tilde {\bm {x}}}(\bm {y})\big )<\epsilon , \,\,\forall \|\bm {x} - \tilde {\bm {x}}\|\leq \delta , \,\,\forall \bm {x}, \tilde {\bm {x}}\in D.\end {equation}


\begin {equation}\max _{1\leq r\leq s}\left \|A_r^T(\bm {x})A_r^T(\bm {x})\right \|_F^2 + \|\bm {b}_r(\bm {x})\|^2 \label {bounded:condition}\end {equation}


$\bm {x}\in D$


$c_0>0$


\begin {equation}\int _D W_2^2(f_{\bm {x}}, \hat {f}_{\bm {x}})\gamma ({\mathrm {d}}\bm {x})\leq c_0. \label {mixed:result}\end {equation}


$\hat {f}_{\bm {x}}$


$\bm {x}$


$\bm {y}\in \mathbb {R}^{d'}$


$f(\bm {y})$


$\hat {\bm {y}}\in \mathbb {R}^{d'}$


$\hat {f}$


$\hat {f}$


$f$


$W_2$


$\bm {y}=(y_1,{\ldots },y_{d'})\in \mathbb {R}^{d'}$


$f(\bm {y})\in L^2(\mathbb {R}^{d'})\cap L^{\infty }(\mathbb {R}^{d'})$


$f(\bm {y})$


$\mathbb {R}^n$


\begin {equation}|f|_{\text {mix}}:= \sum _{|\bm {n}|_0\leq d'}\left \|\partial _{\bm {n}}^{|\bm {n}|_0}f\right \|_{L^2}<\infty ,\,\,\,\left |\sqrt {f}\right |_{\text {mix}}<\infty \end {equation}


$|\bm {n}|_0$


$\bm {n}$


$\bm {n}=(n_1,{\ldots },n_j)$


$1\leq n_1<{\ldots }<n_j\leq d'$


$\partial _{\bm {n}}f:= \partial _{y_{n_1}}{\ldots }\partial _{y_{n_j}}f$


$|fy_i^2|_{\text {mix}}<\infty $


$|fy_i^2y_j^2|_{\text {mix}}<\infty $


$\sigma >0, n_0(\sigma )>0$


\begin {equation}\tilde {f}_{\sigma ^2, n_0(\sigma )}(\bm {y}) := \sum _{i=1}^{(n_0(\sigma )+1)^{d'}} p_i\mathcal {N}(\bm {y}- \bm {y}_i;\sigma ^2I_{d'\times d'}),\,\,\bm {y}_i\in \mathbb {R}^{d'} \label {pndef}\end {equation}


$\sigma \rightarrow 0^+$


$n(\sigma )\rightarrow \infty $


\begin {equation}\tilde {f}_{\sigma ^2, n_0(\sigma )}(\bm {y})\rightarrow f(\bm {y}) \label {Xeqn36-3.15}\end {equation}


$\mathbb {R}^{d'}$


$\forall \epsilon >0$


$\sigma >0, n_0(\sigma )$


$\tilde {f}_{\sigma ^2, n_0(\sigma )}(\bm {y})$


\begin {equation}W_2^2(f, \tilde {f}_{\sigma ^2, n_0(\sigma )})\leq 24\epsilon . \label {thm3:result}\end {equation}


$I_{d'\times d'}$


$d'\times d'$


$\bm {y}\in \mathbb {R}^{d'}$


$f$


$\hat {\bm {y}}$


$\tilde {f}_{\sigma ^2, n_0}$


$W_2^2(f, \tilde {f}_{\sigma ^2, n_0})\leq \epsilon $


$n_i^3=x\equiv 1$


$W_2^2(\tilde {f}_{\sigma ^2, n_0}, \hat {f}_{\bm {x}\equiv 1})\leq \epsilon $


$\hat {f}_{\bm {x}\equiv 1}$


$W_2^2(f, \hat {f}_{\bm {x}\equiv 1})\leq 4\epsilon $


$W_2$


$W_2$


$W_2^2(\mu , \hat {\mu })$


$\theta $


$\hat {\theta }$


$W_2$


$\bm {y}=f(\bm {x}, \theta ), \bm {x}\in \mathbb {R}^d, \bm {y}\in \mathbb {R}^{d'}$


$\theta $


$\bm {y}$


$\bm {x}\in D\subseteq \mathbb {R}^d$


$D$


$\mathbb {R}^d$


$\{D_i\}_{i=1}^{\infty }$


$D_i\rightarrow D$


$i\rightarrow \infty $


$\lim _{i\rightarrow \infty }\gamma (D_i)=\gamma (D)=1$


$\Delta x>0$


$\{\bm {x}_i\}_{i=1}^{K}\subseteq D$


$D\subseteq \cup _{i=1}^K\otimes _{j=1}^d[x_i^j, x_i^j+\Delta \bm {x})$


$\otimes _{j=1}^d[x_{i_1}^j, x_{i_1}^j+\Delta \bm {x})\cap \otimes _{j=1}^d[x_{i_2}^j, x_{i_2}^j+\Delta \bm {x})=\emptyset $


$i_1\neq i_2$


$\omega $


$\bm {y}$


$\bm {x}$


$f_{\bm {x}}$


$\epsilon >0$


\begin {equation}\int _D W_2^2(f_{\bm {x}}, \hat {f}_{\bm {x}})\gamma ({\mathrm {d}}\bm {x})\leq \epsilon . \label {Xeqn38-3.17}\end {equation}


$\hat {f}_{\bm {x}}$


$\bm {x}$


$\bm {y}=f(\bm {x}, \theta )$


$\bm {x}\in D\subseteq \mathbb {R}^d$


$f(\bm {x}, \theta ), \bm {x}\in D$


$f(\theta )$


$\theta $


$\bm {y}=f(\bm {x}, \theta )$


$\bm {x}\in D$


$W_2$


\begin {equation}\frac {1}{N_T}\sum _{i=1}^{N_T} W_{2, \delta }^{2, \text {e}}({\bm X}(t_i), \hat {{\bm X}}(t_i))=\frac {1}{N_TN}\sum _{i=1}^{N_T}\sum _{j=1}^NW_2^2\big (\nu _{{\bm X}_{0, j}, \delta }^{\text {e}}(t_i),\hat {\nu }_{{\bm X}_{0, j}, \delta }^{\text {e}}(t_i)\big ), \label {loss:define:empirical}\end {equation}


$W_2$


$W_{2, \delta }^{2, \text {e}}({\bm X}(t_i), \hat {{\bm X}}(t_i))$


$W_2$


$\nu ^{\text {e}}_{{\bm X}_{0, j}, \delta }(t)$


$\hat {\nu }^{\text {e}}_{{\bm X}_{0, j}, \delta }(t)$


$\bm X$


$\hat {{\bm X}}$


$t$


$|{\bm X}(0)-{\bm X}_j(0)|\leq \delta $


$|\hat {{\bm X}}(0)-{\bm X}_j(0)|\leq \delta $


${\bm X}_j(0)$


$j{\text {th}}$


$W_2^2(\nu _{{\bm X}_{0, j}, \delta }^{\text {e}},\hat {\nu }_{{\bm X}_{0, j}, \delta }^{\text {e}})$


\begin {equation}W_2^2\left (\nu _{{\bm X}_{0, j}, \delta }^{\text {e}},\hat {\nu }_{{\bm X}_{0, j}, \delta }^{\text {e}}\right )\approx \texttt {ot.emd2}\Big (\frac {1}{N_j}\vec {\bm I}_{N_j}, \frac {1}{N_j}\vec {\bm I}_{N_j}, {\bm C}_j(t_i)\Big ), \label {time:coupling0}\end {equation}


$\texttt {ot.emd2}$


$\texttt {PoT}$


$N_j$


$X_j:= \Big \{\{{\bm X}_{i}\}_{t=0}^{T}\big |\|{\bm X}_i(0) - {\bm X}_j(0)\|\leq \delta , i=1,{\ldots },N\Big \}$


$\vec {\bm I}_{N_j}$


$N_j$


${\bm C}_j(t_i)\in \mathbb {R}^{N_j\times N_j}$


$({\bm C}_j(t_i))_{sr} = \|{\bm X}_s(t_i)-\hat {{\bm X}}_r(t_i)\|^2$


${\bm X}_s(t_i)$


$\hat {{\bm X}}_r(t_i)$


$s{\text {th}}$


$t_i$


$X_j$


$r{\text {th}}$


$t_i$


$\hat {X}_j:= \Big \{\{\hat {{\bm X}}_{i}\}_{t=0}^{T}\big |\|\hat {{\bm X}}_i(0) - {\bm X}_j(0)\|\leq \delta , i=1,{\ldots },N\Big \}$


$W_2$


\begin {equation*}\tilde {W}_2^2({\bm X}, \hat {{\bm X}})\approx \frac {1}{N_T}\sum _{i=1}^{N_T} W_2^2(\nu ^{\text {e}}(t_i), \hat {\nu }^{\text {e}}(t_i)),\end {equation*}


$\nu ^{\text {e}}(t_i)$


$\hat {\nu }^{\text {e}}(t_i)$


${\bm X}(t_i)$


$\hat {{\bm X}}(t_i)$


\begin {equation}W_2^2(\nu _N^{\text {e}}(t_i), \hat {\nu }_N^{\text {e}}(t_i))\approx \texttt {ot.emd2}\Big (\frac {1}{N}\vec {\bm I}_{N}, \frac {1}{N}\vec {\bm I}_{N}, {\bm C}(t_i)\Big ), \label {time:coupling}\end {equation}


$\texttt {ot.emd2}$


$\texttt {ot}$


$N$


$\vec {\bm I}_{N}$


$N$


${\bm C}(t_i)\in \mathbb {R}^{N\times N}$


$({\bm C}(t_i))_{sj} = \|{\bm X}_s(t_i)-\hat {{\bm X}}_j(t_i)\|^2$


${\bm X}_s(t_i)$


$\hat {{\bm X}}_j(t_i)$


$s{\text {th}}$


$t_i$


$j{\text {th}}$


$t_i$


\begin {equation}\begin {aligned} & \text {MMD}(\{{\bm X}\}, \{\hat {{\bm X}}\}) = \frac {1}{N_T}\sum _{i=1}^{N_T}\E [K(\{{\bm X}(t_i)\}, \{{\bm X}(t_i)\})]\\ &\quad \quad - 2\E [K(\{{\bm X}(t_i)\}, \{\hat {{\bm X}}(t_i)\})] + \E [K(\{\hat {{\bm X}}(t_i)\}, \{\hat {{\bm X}}(t_i)\})], \end {aligned} \label {MMD:def}\end {equation}


$K$


$2$


$5$


$\{{\bm X}(t_i)\}$


$\{\hat {{\bm X}}(t_i)\}$


$t_i$


\begin {equation}\operatorname {MSE}({\bm X}, \hat {{\bm X}}) = \frac {1}{N_TN}\sum _{i=1}^{N_T}\sum _{s=1}^N \|{\bm X}_s(t_i)-\hat {{\bm X}}_s(t_i)\|^2. \label {Xeqn175-J.5}\end {equation}


${\bm X}_s(t_i)$


$\hat {{\bm X}}_s(t_i)$


$s{\text {th}}$


$t_i$


$s{\text {th}}$


$t_i$


$^2$


\begin {equation}\begin {aligned} (\operatorname {Mean}^2+\operatorname {Var})({\bm X}, \hat { {\bm X}}) =& \frac {1}{N_T}\sum _{i=1}^{N_T} \Bigg (\frac {1}{N}\sum _{s=1}^N \|{\bm X}_s(t_i)-\hat {{\bm X}}_s(t_i)\|^2 \\&\quad + |\text {Var}({\bm X}(t_i)) - \text {Var}(\hat {{\bm X}}(t_i))|\Bigg ) \end {aligned} \label {Xeqn176-J.6}\end {equation}


\begin {equation}\text {Var}({\bm X}(t_i)) = \sum _{s=1}^N \big \|{\bm X}_s(t_i) - \sum _{i=1}^N \frac {1}{N}{\bm X}_i(t_i)\big \|^2. \label {Xeqn177-J.7}\end {equation}


${\bm X}_s(t_i)$


$\hat {{\bm X}}_s(t_i)$


$s{\text {th}}$


$t_i$


$s{\text {th}}$


$t_i$


$W_2$


$W_2$


$\texttt {PoT}$


$W_2$


$W_2$


$1$


$W_2$


\begin {equation}\text {error}:= \frac {W_2^2(\mu _{\theta }, \hat {\mu }_{\hat {\theta }})}{\|\theta \|^2}, \label {relative:error}\end {equation}


$\theta $


$\hat {\theta }$


$\textit {e.g.}$


$\mu _{\theta }$


$\hat {\mu }_{\theta }$


$\theta $


$\hat {\theta }$


$c$


$\xi _1, \xi _2$


$\delta =0.4$


$c$


$\hat {c}$


$\hat {c}$


$c$


$c\sim \mathcal {U}(2, 4)$


$\hat {c}$


$|\E [\hat {c}] - \E [c]|$


$|\text {Var}[\hat {c}] - \text {Var}[c]|$


$W_2$


$W_2$


$W_2$


$W_2$


$\hat {c}$


$\hat {c}$


$c$


$W_2$


$^2$


$\hat {c}$


$10^{-5}$


$\hat {c}$


$\hat {c}$


$\hat {c}$


$W_2$


$\hat {c}$


$W_2$


$W_2$


$W_2$


\begin {align}&\partial _t u(x, t;c_1, c_2) = \frac {c_1}{c_2^2}\partial _{xx}u(x, t;c_1, c_2) +\frac {c_1}{c_1t+1}u(x, t;c_1, c_2),\,\,(x, t)\in \mathbb {R}\times [0, 2],\nonumber \\ & u(x, 0) = (1+\xi )\tfrac {x}{\sqrt {4}} \cdot \exp \big (-\tfrac {x^2}{ 2 }), c_1\sim \mathcal {N}(0.5, \sigma _1^2),\nonumber \\& c_2=\tilde {\xi } + \beta (0.5-c_1), \,\,\xi \sim \mathcal {N}(0, \sigma _3^2),\,\, \tilde {\xi }\sim \mathcal {N}(1.5, \sigma _2^2).\label {example2:model}\end {align}


\begin {align}&\partial _t \hat {u}(x, t;\hat {c}_1, \hat {c}_2) = \frac {\hat {c}_1}{\hat {c}_2^2}\partial _{xx}\hat {u}(x, t;\hat {c}_1, \hat {c}_2) +\frac {\hat {c}_1}{\hat {c}_1t+1}\hat {u}(x, t;\hat {c}_1, \hat {c}_2),\,\,(x, t)\in \mathbb {R}\times [0, 2],\nonumber \\ & \hat {u}(x, 0) = u(x, 0). \label {example2:model:approximate}\end {align}


$(c_1, c_2)$


$(\hat {c}_1, \hat {c}_2)$


\begin {equation}\begin {aligned} u(x, t;\theta )\approx u_{n-1}(x,t;\theta )= \sum _{i=0}^{n-1} u_i(t;\theta ){\hat {\mathcal {H}}}_i(x),\,\,\theta := (c_1, c_2)\\ {\hat {u}}(x, t;{\hat {\theta }})\approx {\hat {u}}_{n-1}(x,t;{\hat {\theta }})= \sum _{i=0}^{n-1} {\hat {u}}_i(t;{\hat {\theta }}){\hat {\mathcal {H}}}_i(x),\,\,{\hat {\theta }} := ({\hat {c}}_1, {\hat {c}}_{2}), \end {aligned} \label {spectral:approx}\end {equation}


$\hat {\mathcal {H}}_i$


$(\sigma _1, \sigma _2)$


$(c_1, c_2)$


$(c_1, c_2)$


$\beta =1, \sigma _3=0.2, n=12$


$\delta =0.1$


$\sigma _3$


$\delta $


$\delta $


$(c_1, c_2)$


$\beta =1, \sigma _1=0.1,\sigma _2=0.2, n=12$


$\beta $


$c_1$


$c_2$


$N$


$c_1$


$c_2$


$(c_1, c_2)$


$\sigma _1=0.1,\sigma _2=0.2, \sigma _3 = 0.2, \delta =0.1$


$\hat {u}_{n-1}(x,t; \hat {\theta })$


$u_{n-1}(x, t;\theta )$


$u_{n-1}(x, 2;\theta )$


$\hat {u}_{n-1}(x, 2;\hat {\theta })$


$u_{n-1}(x,2;\theta )$


$\hat {u}_{n-1}(x,2;\hat {\theta })$


$u_{N-1}(x, 2)$


$\hat {u}_{n-1}(x, 2)$


$(c_1, c_2)$


$(\hat {c}_1, \hat {c}_2)$


$\beta =1, \sigma _1=0.15, \sigma _2=0.1, n=12$


$n=12$


$\beta =1, \sigma _1=0.15, \sigma _2=0.1, \sigma _3=0.2, N=12$


$\delta =0.1$


$(\hat {c}_1, \hat {c}_2)$


$\sigma _1, \sigma _2$


$(c_1, c_2)$


$(\hat {c}_1, \hat {c}_2)$


$\sigma _3$


$\epsilon $


$\delta $


$\delta =\text {inf}$


$\delta =\infty $


$W_2$


$(\hat {c}_1, \hat {c}_2)$


$N$


$c_0$


$(\hat {c}_1, \hat {c}_2)$


$c_1$


$(\hat {c}_1, \hat {c}_2)$


$c_1$


$c_1$


$(c_1, c_2)$


$\sigma _3^2$


$\delta $


$(c_1, c_2)$


$\delta $


$(\hat {c}_1, \hat {c}_2)$


$n$


$(\hat {c}_1, \hat {c}_2)$


$(c_1, c_2)$


$W_2$


$(c_1, c_2)$


$r_{\text {vit}}$


$v_{\text {vit}}$


$c_{\text {vit}}$


$h_{\text {vit}}$


$k$


$\text {aq}$


$r_{\text {aq}}, v_{\text {aq}}, c_{\text {aq}}, h_{\text {aq}}$


$CL$


$V_{\text {in}}$


\begin {equation}\begin {aligned} &\frac {{\mathrm {d}} v_{\text {vit}}}{{\mathrm {d}} t} = (k_{\text {off}} c_{\text {vit}} - 2k_{\text {on}} v_{\text {vit}} r_{\text {vit}}) - k_v^{\text {el}} v_{\text {vit}} + \frac {V_{\text {in}}}{V_{\text {vit}}},\\ &\frac {{\mathrm {d}} r_{\text {vit}}}{{\mathrm {d}} t} = (k_{\text {off}} c_{\text {vit}} - 2k_{\text {on}} v_{\text {vit}} r_{\text {vit}}) + (2k_{\text {off}} h_{\text {vit}} - k_{\text {on}} r_{\text {vit}} c_{\text {vit}}) - k_r^{\text {el}} r_{\text {vit}},\\ &\frac {{\mathrm {d}} c_{\text {vit}}}{{\mathrm {d}} t} = -(k_{\text {off}} c_{\text {vit}} - 2k_{\text {on}} v_{\text {vit}} r_{\text {vit}}) + (2k_{\text {off}} h_{\text {vit}} - k_{\text {on}} r_{\text {vit}} c_{\text {vit}}) - k_c^{\text {el}} c_{\text {vit}},\\ &\frac {{\mathrm {d}} h_{\text {vit}}}{{\mathrm {d}} t} = -(2k_{\text {off}} h_{\text {vit}} - k_{\text {on}} r_{\text {vit}} c_{\text {vit}}) - k_h^{\text {el}} h_{\text {vit}}. \end {aligned} \label {vitreous}\end {equation}


\begin {equation}\begin {aligned} &\frac {{\mathrm {d}} v_{\text {aq}}}{{\mathrm {d}} t} = (k_{\text {off}} c_{\text {aq}} - 2k_{\text {on}} v_{\text {aq}} r_{\text {aq}}) + \frac {V_{\text {vit}}}{V_{\text {aq}}} k_v^{\text {el}} v_{\text {vit}} - \frac {CL}{V_{\text {aq}}} v_{\text {aq}},\\ &\frac {{\mathrm {d}} r_{\text {aq}}}{{\mathrm {d}} t} = (k_{\text {off}} c_{\text {aq}} - 2k_{\text {on}} v_{\text {aq}} r_{\text {aq}}) + (2k_{\text {off}} h_{\text {aq}} - k_{\text {on}} r_{\text {aq}} c_{\text {aq}}) + \frac {V_{\text {vit}}}{V_{\text {aq}}} k_r^{\text {el}} r_{\text {vit}}\\&\qquad \quad \,\,- \frac {CL}{V_{\text {aq}}} r_{\text {aq}},\\ &\frac {{\mathrm {d}} c_{\text {aq}}}{{\mathrm {d}} t} = -(k_{\text {off}} c_{\text {aq}} - 2k_{\text {on}} v_{\text {aq}} r_{\text {aq}}) + (2k_{\text {off}} h_{\text {aq}} - k_{\text {on}} r_{\text {aq}} c_{\text {aq}}) + \frac {V_{\text {vit}}}{V_{\text {aq}}} k_c^{\text {el}} c_{\text {vit}}\\&\qquad \quad \,\,- \frac {CL}{V_{\text {aq}}} c_{\text {aq}},\\ &\frac {{\mathrm {d}} h_{\text {aq}}}{{\mathrm {d}} t} \,{=}\, -(2k_{\text {off}} h_{\text {aq}} - k_{\text {on}} r_{\text {aq}} c_{\text {aq}}) \,{+}\, \frac {V_{\text {vit}}}{V_{\text {aq}}} k_h^{\text {el}} h_{\text {vit}} \,{-}\, \frac {CL}{V_{\text {aq}}} h_{\text {aq}}, \, t\in [0, 2]~(\text {unit: day}). \end {aligned} \label {aqueous}\end {equation}


$V_{\text {vit}}=2.05\text {mL}$


$V_{\text {aq}}=0.105\text {mL}$


$V_{\text {in}}=5.408\text {pmol}\cdot \text {day}^{-1}$


$k_{\text {off}}, k_{\text {on}}, k_v^{\text {el}}, k_r^{\text {el}}, k_c^{\text {el}}$


$k_h^{\text {el}}$


$CL$


$\bm {k}:= (k_{\text {off}}, k_{\text {on}}, k_v^{\text {el}}, k_r^{\text {el}}, k_c^{\text {el}}, k_h^{\text {el}}, CL)$


\begin {equation}\bm {k} = \bm {k}_0 + c\bm {k}_0 * A\tilde {\bm {k}}, \label {kinetic:model}\end {equation}


\begin {equation}\begin {aligned} & \bm {k}_0 = (1.669\text {day}^{-1}, 0.00114\text {pM}^{-1}\cdot \text {day}^{-1}, 0.575\text {day}^{-1}, 0.293\text {day}^{-1},\\ & 0.259\text {day}^{-1}, 0.176\text {day}^{-1}, 2.505 \text {mL}\cdot \text {day}^{-1}) \end {aligned} \label {Xeqn47-4.9}\end {equation}


$*$


$A\in \mathbb {R}^{7\times 7}$


$\mathcal {U}(-\frac {1}{2}, \frac {1}{2})$


$\tilde {\bm {k}}:= (k_1,k_2, {\ldots }, k_7)$


$k_1, k_2\sim \mathcal {U}(0, 1)$


$k_3, k_4\sim \mathcal {N}(0, 0.5^2)$


$k_5\sim \text {Exp}(2)$


$k_6 \sim \text {B}(2, 5)$


$\alpha =2, \beta =5$


$k_7\sim \Gamma (2, 2)$


$\alpha =2$


$\lambda =2$


$\mathcal {N}(\bm {I}_7, 0.05^2 I_{7\times 7})$


$\bm {I}_7\in \mathbb {R}^7$


$v_{\text {vit}}(t), r_{\text {vit}}(t), c_{\text {vit}}(t)$


$h_{\text {vit}}(t)$


$\bm {k}$


$\bm {k}$


$v_{\text {vit}}(t), r_{\text {vit}}(t), c_{\text {vit}}(t), h_{\text {vit}}(t)$


$\bm {k}$


$\bm {k}$


$\mathcal {N}(0, 0.03^2)$


$\bm {k}$


$\bm {k}$


$k_{\text {on}}$


$k_{\text {on}}$


$O(10^{-3})$


$O(1)$


$k_{\text {on}}$


$W_2$


$^2$


$\bm {k}$


$\bm {k}$


$W_2$


$^2$


$W_2$


\begin {equation}\begin {aligned} &{\mathrm {d}} X_t = 0.05 {\mathrm {d}} t + s\sqrt {|X_t|} {\mathrm {d}} B_t + \int _{U} \xi X_t{\mathrm {d}} \tilde {N}(\gamma ({\mathrm {d}}\xi ){\mathrm {d}}{t}),\,\,\, t\in [0, 2],\\ & s\sim \sigma _0\mathcal {N}(1, 1),\,\, \xi \sim \mathcal {N}(\beta _0, \sigma _1^2),\,\, X_0\sim \mathcal {N}(2, \sigma _2^2). \end {aligned} \label {example4:model}\end {equation}


$\tilde {N}$


$s$


$\xi $


$\hat {s}_0$


$\hat {\xi }$


\begin {align}{\mathrm {d}} \hat {X}_t &= 0.05 {\mathrm {d}} t + \hat {s}\sqrt {|\hat {X}_t|} {\mathrm {d}} B_t + \int _{U} \hat {\xi } \hat {X}_t{\mathrm {d}} \hat {N}(\gamma ({\mathrm {d}}\xi ){\mathrm {d}}{t}),\,\,\notag \\ \hat {X}_0&=X_0, \,\, t\in [0, 2].\label {example4:model:approximate}\end {align}


$\hat {N}$


$\tilde {N}$


$\xi \equiv 1$


$s$


$\beta _0$


$\beta _0$


$\sigma _1$


$|s|$


$\xi $


$|s|$


$\hat {s}\sqrt {|\hat {X}_t|} {\mathrm {d}} B_t$


$|\hat {s}|\sqrt {|\hat {X}_t|} {\mathrm {d}} B_t$


$\sigma _0=0.3, \sigma _2=0.1$


$\delta =0.1$


$\sigma _0$


$\sigma _1$


$|s|$


$\xi $


$\beta _0=0.3, \sigma _2=0.1$


$\delta =0.1$


$\sigma _1$


$\sigma _2$


$|s|$


$\xi $


$\sigma _0=0.3, \beta _0=0.3, \sigma _2=0.1$


$\delta =0.1$


$|s|$


$|\hat {s}|$


$\xi $


$|\hat {\xi }|$


$\sigma _0=0.3, \beta _0 = 0.35, \sigma _1=0.15, \sigma _2=0.1$


$\delta =0.1$


$\hat {\sigma }$


$\xi $


$\hat {\sigma }$


$\xi $


$\hat {\sigma }$


$\xi $


$t$


$|s|$


$\xi $


$|\hat {s}|$


$\hat {\xi }$


$\xi $


$s$


$\xi $


$\beta _0$


$\sigma _1$


$\sigma _0$


$s$


$\xi $


$\delta =0.1$


$\sigma _2\in [0.05, 0.2]$


$|\hat {s}|$


$\hat {\xi }$


$\xi $


$\xi $


$W_2$


$W_2$


$W_2$


$W_2$


$O(N_T N \textbf {E}[(N^{\#}(\bm {X}_0;\delta ))^3\log \big (N^{\#}(\bm {X}_0;\delta )\big ) ])$


$N^{\#}(\bm {X}_0; \delta )$


$\|\bm {X}(0)-\bm {X}_0\|\leq \delta $


$N_T$


$O(N_T N \textbf {E}[(N^{\#}(\bm {X}_0;\delta ))^2])$


$W_2$


\begin {equation}W_{2, \delta }^{2, \text {e}}(\bm {X}(t_i), \hat {\bm {X}}(t_i)) = \frac {1}{N} \sum _{j=1}^N W_{2}^{2}\left (\nu _{\bm {X}_{0, j}, \delta }^{\text {e}}(t_i), \hat {\nu }_{\bm {X}_{0, j}, \delta }^{\text {e}}(t_i)\right ), \label {definition:j}\end {equation}


$N$


$\bm {X}_{0, j}$


$j{\text {th}}$


$0=t_0^1<t_1^1<{\ldots }<t_{n_1}^1=T$


$0=t_0^2<t_1^2<{\ldots }<t_{n_2}^2=T$


$[0, T]$


$0=t_0^3<{\ldots }<t_{n_3}^3=T$


$\{t_0^1,{\ldots },t_{n_1}^1\}\cup \{t_0^2,{\ldots },t_{n_2}^2\} = \{t_0^3,{\ldots },t_{n_3}^3\}$


$\Delta t:= \max \{\max _i(t_{i+1}^1-t_i^1), \max _j(t_{j+1}^2-t_j^2), \max _k(t_{k+1}^3-t_k^3)\}$


$\nu ^{\text {e}}_{\bm {X}_{0, j}, \delta }(t)$


$\hat {\nu }^{\text {e}}_{\bm {X}_{0, j}, \delta }(t)$


$\bm {X}(t)$


$\hat {\bm {X}}(t)$


$t$


$|\bm {X}(0)-\bm {X}_{0, j}|\leq \delta $


$|\hat {\bm {X}}(0)-\bm {X}_{0, j}|\leq \delta $


\begin {align}&\bigg |\sum _{i=0}^{n_1-1}W_{2, \delta }^{2, \text {e}}\big (\bm {X}\left (t_i^1\right ), \hat {\bm {X}}\left (t_i^1\right )\big )\left (t_{i+1}^1-t_i^1\right )\bigg .\nonumber \\&\quad \,\,\bigg . -\sum _{i=0}^{n_3-1}W_{2, \delta }^{2, \text {e}}\big (\bm {X}\left (t_i^3\right ), \hat {\bm {X}}\left (t_i^3\right )\big )\left (t_{i+1}^3-t_i^3\right )\bigg | \rightarrow 0, \label {limit:exist}\end {align}


$\Delta t\rightarrow 0$


$(t_i^1, t_{i+1}^1)$


$t_i^1=t_{\ell }^3<t_{\ell +1}^3<{\ldots }<t_{\ell +s}^3=t_{i+1}^1, s\geq 1$


$s>1$


$t_{i+1}^1-t_i^1=\sum _{k=\ell }^{\ell +s-1}(t_{k+1}^3-t_k^3)$


\begin {equation}\begin {aligned} &\bigg |W_{2, \delta }^{2, \text {e}}\big (\bm {X}\left (t_i^1\right ), \hat {\bm {X}}\left (t_i^1\right )\big ) \left (t_{i+1}^1-t_i^1\right ) -\sum _{k=\ell }^{\ell +s-1} W_{2, \delta }^{2, \text {e}}\big (\bm {X}\left (t_k^3\right ), \hat {\bm {X}}\left (t_k^3\right )\big )\left (t_{k+1}^3-t_k^3\right )\bigg | \\ \: & \leq \frac {1}{N}\sum _{j=1}^N\sum _{k=\ell +1}^{\ell +s-1}\Big (W_{2}\big (\nu ^{\text {e}}_{\bm {X}_{0, j}, \delta }(t_i^1), \hat {\nu }^{\text {e}}_{\bm {X}_{0, j}, \delta }\left (t_i^1\right )\big ) + W_{2}\big (\nu ^{\text {e}}_{\bm {X}_{0, j}, \delta }\left (t_i^3\right ), \hat {\nu }^{\text {e}}_{\bm {X}_{0, j}, \delta }\left (t_k^3\right )\big |\Big ) \\ \: &\quad \times \Big |W_{2}\big (\nu ^{\text {e}}_{\bm {X}_{0, j}, \delta }(t_i^1), \hat {\nu }^{\text {e}}_{\bm {X}_{0, j}, \delta }(t_i^1)\big )- W_{2}\big (\nu ^{\text {e}}_{\bm {X}_{0, j}, \delta }\left (t_k^3\right ), \hat {\nu }^{\text {e}}_{\bm {X}_{0, j}, \delta }\left (t_k^3\right )\big )\Big | \left (t_{k+1}^3 - t_k^3\right ). \end {aligned} \label {triang}\end {equation}


$\|\bm {X}\|$


$\|\hat {\bm {X}}\|$


\begin {equation}W_{2}\big (\nu ^{\text {e}}_{\bm {X}_{0, j}, \delta }\left (t_i^1\right ), \hat {\nu }^{\text {e}}_{\bm {X}_{0, j}, \delta }\left (t_i^1\right )\big )\leq \sup _{\bm {X}_0} \E {[\|\bm {X}(t)\|^2]}^{\frac {1}{2}} + \E {[\|\hat {\bm {X}}(t)\|^2]}^{\frac {1}{2}} \leq X + \hat {X} \label {Mcondition}\end {equation}


\begin {equation}W_{2}\big (\nu ^{\text {e}}_{\bm {X}_{0, j}, \delta }\left (t_k^3\right ), \hat {\nu }^{\text {e}}_{\bm {X}_{0, j}, \delta }\left (t_k^3\right )\big )\leq X + \hat {X}, \label {Xeqn54-A.5}\end {equation}


$X, \hat {X}$


$\pi ^*_{\delta , \bm {X}_{0, j}}\big (\bm {X}(t_i^1), \bm {X}(t_k^3)\big )$


\begin {equation}\left (\bm {X}\left (t_i^1\right ), \bm {X}\left (t_k^3\right )\right ):\mathbb {R}^{2d}\rightarrow \mathbb {R}^{2d} \label {Xeqn55-A.6}\end {equation}


$(\bm {X}_0, \tilde {\bm {X}}_0)\in \mathbb {R}^{2d}$


$(\bm {X}(t_i^1), \tilde {\bm {X}}(t_k^3))\in \mathbb {R}^{2d}$


$(t_i^1, t_k^3)$


$\bm {X}(t_i^1)=\bm {X}_0, \tilde {\bm {X}}(t_k^3)=\tilde {\bm {X}}_0$


$\pi ^*_{\delta , \bm {X}_{0, j}}$


$\nu ^{\text {e}}_{\bm {X}_{0, j}, \delta }\cdot \delta _{\tilde {\bm {X}}_0 = \bm {X}_0}$


$(\bm {X}(t_i^1), \bm {X}(t_i^3))$


$\nu ^{\text {e}}_{\bm {X}_{0, j}, \delta }$


$\bm {X}_0$


$|\bm {X}_{0, j}-\bm {X}_0|\leq \delta $


$\bm {X}_{0, j}$


\begin {equation}\begin {aligned} W_{2}^{2}(\nu _{\bm {X}_{0, j}}^{\text {e}}(t_i^1), \nu _{\bm {X}_{0, j}}^{\text {e}}(t_k^3)) \leq & \sup _{\bm {X}_{0, j}}\E _{\big (\bm {X}(t_i^1), \bm {X}(t_k^3)\big )\sim \pi ^*_{\delta , \bm {X}_{0, j}}}\big [\|\bm {X}(t_k^3) - \bm {X}(t_i^1)\|_2^2\big ] \\ \leq & \sup _{\bm {X}_{0, j}}\E \bigg [\int _{t_i^1}^{t_{i+1}^1}\! \sum _{i=1}^d f_i^2(\bm {X}(t),t;\theta ) {\mathrm {d}} t \bigg ] \left (t_{i+1}^1-t_i^1\right ). \end {aligned} \label {bound1}\end {equation}


\begin {equation}\begin {aligned} W_{2}^{2}\big (\hat {\nu }_{\bm {X}_{0, j}}^{\text {e}}(t_i^1), \hat {\nu }_{\bm {X}_{0, j}}^{\text {e}}(t_k^3)\big ) \leq & \,\sup _{\bm {X}_{0, j}}\E \bigg [ \int _{t_i}^{t_{i+1}} \sum _{\ell =1}^d f_{\ell }^2(\bm {X}(t),t; \hat {\theta }) {\mathrm {d}} t \bigg ]\left (t_{i+1}^1-t_i^1\right ). \end {aligned} \label {bound2}\end {equation}


\begin {equation}\begin {aligned} & \Big |W_{2}^{}\big (\nu ^{\text {e}}_{\bm {X}_{0, j}, \delta }(t_i^1), \hat {\nu }^{\text {e}}_{\bm {X}_{0, j}, \delta }(t_i^1)\big ) - W_{2}\big (\nu ^{\text {e}}_{\bm {X}_{0, j}, \delta }(t_k^3), \hat {\nu }^{\text {e}}_{\bm {X}_{0, j}, \delta }(t_k^3)\big )\Big | \\&\quad \quad \leq \Big |W_2\big (\nu ^{\text {e}}_{\bm {X}_{0, j}, \delta }(t_i^1), \hat {\nu }^{\text {e}}_{\bm {X}_{0, j}, \delta }(t_i^1)\big )- W_2\big (\nu ^{\text {e}}_{\bm {X}_{0, j}, \delta }(t_k^3), \hat {\nu }^{\text {e}}_{\bm {X}_{0, j}, \delta }(t_k^1)\big )\Big | \\ &\quad \quad \quad \quad + \Big |W_2\big (\nu ^{\text {e}}_{\bm {X}_{0, j}, \delta }(t_i^3), \hat {\nu }^{\text {e}}_{\bm {X}_{0, j}, \delta }(t_i^1)\big )- W_2\big (\nu ^{\text {e}}_{\bm {X}_{0, j}, \delta }(t_k^3), \hat {\nu }^{\text {e}}_{\bm {X}_{0, j}, \delta }(t_k^3)\big )\Big |\\ &\quad \quad \leq W_2\big (\nu ^{\text {e}}_{\bm {X}_{0, j}, \delta }(t_i^1), \nu ^{\text {e}}_{\bm {X}_{0, j}, \delta }(t_k^3)\big ) + W_2\big (\hat {\nu }^{\text {e}}_{\bm {X}_{0, j}, \delta }(t_i^1), \hat {\nu }^{\text {e}}_{\bm {X}_{0, j}, \delta }(t_k^3)\big ). \end {aligned} \label {traing:property}\end {equation}


\begin {equation}\begin {aligned} &\bigg |W_2^2\big (\nu _{\bm {X}_{0, j}, \delta }^{\text {e}}(t_i^1), \hat {\nu }_{\bm {X}_{0, j}, \delta }^{\text {e}}(t_i^1)\big ) \left (t_{i+1}^1-t_i^1\right ) \\&\quad - \sum _{k=\ell }^{\ell +s-1} W_2^2\big ((\nu _{\bm {X}_{0, j}, \delta }^{\text {e}}(t_k^3), \hat {\nu }_{\bm {X}_{0, j}, \delta }^{\text {e}}(t_k^3)\big )\left (t_{k+1}^3-t_k^3\right )\bigg | \\ & \leq 2(X+\hat {X})(t_{i+1}^1-t_i^1)\big (\sqrt {F_i\Delta t}+ \sqrt {\hat {F}_i \Delta t}\big ), \end {aligned} \label {intermediate}\end {equation}


\begin {align}&F_i:= \sup _{\bm {X}_{0, j}}\E \bigg [\int _{t_i^1}^{t_{i+1}^1} \sum _{\ell =1}^d f_{\ell }^2(\bm {X}(t),t; \theta ) {\mathrm {d}} t \bigg ],\nonumber \\& \hat {F}_i:= \sup _{\bm {X}_{0, j}}\E \bigg [\int _{t_i^1}^{t_{i+1}^1} \sum _{\ell =1}^d f_{\ell }^2(\bm {X}(t),t; \hat {\theta }) {\mathrm {d}} t \bigg ]. \label {Xeqn60-A.11}\end {align}


$i$


$j$


\begin {equation}\begin {aligned} &\bigg |\sum _{i=0}^{n_1-1}W_{2, \delta }^{2, \text {e}}\big (\bm {X}(t_i^1), \hat {\bm {X}}(t_i^1)\big ) \left (t_{i+1}^1-t_i^1\right ) -\sum _{i=0}^{n_3-1} W_{2, \delta }^{2, \text {e}}\big (\bm {X}(t_k^3), \hat {\bm {X}}(t_k^3)\big )\left (t_{k+1}^3-t_k^3\right )\bigg |\\ &\quad \quad \leq 2(X + \hat {X}) T\max _i\big (\sqrt {F_i\Delta t} + \sqrt {\hat {F}_i\Delta t}\big ). \end {aligned} \label {Xeqn61-A.12}\end {equation}


\begin {equation}\begin {aligned} &\bigg |\sum _{i=0}^{n_2-1}W_{2, \delta }^{2, \text {e}}\big (\bm {X}(t_i^2), \hat {\bm {X}}(t_i^2)\big ) \left (t_{i+1}^2-t_i^2\right ) -\sum _{i=0}^{n_2-1} W_{2, \delta }^{2, \text {e}}\big (\bm {X}(t_k^3), \hat {\bm {X}}(t_k^3)\big )\left (t_{k+1}^3-t_k^3\right )\bigg | \\ &\quad \quad \leq 2(X+ \hat {X}) T\max _i\Big (\sqrt {F'_i\Delta t} +\!\sqrt {\hat {F}'_i\Delta t}\,\Big ), \end {aligned} \label {Xeqn62-A.13}\end {equation}


\begin {align}&F_i':= \sup _{\bm {X}_{0, j}}\E \bigg [\int _{t_i^2}^{t_{i+1}^2} \sum _{\ell =1}^d f_{\ell }^2(\bm {X}(t),t; \hat {\theta }) {\mathrm {d}} t \bigg ],\nonumber \\ &\hat {F}_i':= \sup _{\bm {X}_{0, j}}\E \bigg [\int _{t_i^2}^{t_{i+1}^2} \sum _{\ell =1}^d f_{\ell }^2(\bm {X}(t),t; \hat {\theta }) {\mathrm {d}} t \bigg ]. \label {Xeqn63-A.14}\end {align}


$\Delta t\rightarrow 0$


\begin {equation}\bigg |\sum _{i=0}^{n_1-1}W_{2, \delta }^{2, \text {e}}\big (\nu (t_i^1), \hat {\nu }(t_i^1)\big )\left (t_{i+1}^1-t_i^1\right ) - \sum _{i=0}^{n_2-1}W_{2, \delta }^{2, \text {e}}\big (\nu (t_i^2), \hat {\nu }(t_i^2)\big )\left (t_{i+1}^2-t_i^2\right )\bigg |\rightarrow 0, \label {convergence}\end {equation}


\begin {equation}\lim \limits _{\max (t_{i+1}^1-t_{i}^1)\rightarrow 0}\sum _{i=0}^{N-1}W_{2, \delta }^{2, \text {e}}\big (\nu (t_i^1), \hat {\nu }(t_i^1)\big )\left (t_i^1-t_{i-1}^1\right ) \label {limit:exists}\end {equation}


$W_2$


\begin {equation}\tilde {W}_{2, \delta }^{2, \text {e}}(\bm {X}, \hat {\bm {X}}):= \int _0^T {W}_{2, \delta }^{2, \text {e}}(\bm {X}(t), \hat {\bm {X}}(t)){\mathrm {d}} t \label {Xeqn66-A.17}\end {equation}


$0=t_0^1<t_1^1<{\ldots }<t_{n_1}^1=T$


$0=t_0^2<t_1^2<{\ldots }<t_{n_2}^2=T$


$[0, T]$


$0=t_0^3<{\ldots }<t_{n_3}^3=T$


$\{t_0^1,{\ldots },t_{n_1}^1\}\cup \{t_0^2,{\ldots },t_{N_2}^2\} = \{t_0^3,{\ldots },t_{n_3}^3\}$


$\Delta t:= \max \{\max _i(t_{i+1}^1-t_i^1), \max _j(t_{j+1}^2-t_j^2), \max _k(t_{k+1}^3-t_k^3)\}$


$\nu ^{\text {e}}_{\bm {X}_{0, j}, \delta }(t)$


$\hat {\nu }^{\text {e}}_{\bm {X}_{0, j}, \delta }(t)$


$\bm {X}(t)$


$\hat {\bm {X}}(t)$


$t$


$|\bm {X}(0)-\bm {X}_{0, j}|\leq \delta $


$|\hat {\bm {X}}(0)-\bm {X}_{0, j}|\leq \delta $


\begin {align}&\bigg |\sum _{i=0}^{n_1-1}W_{2, \delta }^{2, \text {e}}\big (\bm {X}(t_i^1), \hat {\bm {X}}(t_i^1)\big )\left (t_{i+1}^1-t_i^1\right ) -\nonumber \\ &\quad \sum _{i=0}^{n_3-1}W_{2, \delta }^{2, \text {e}}\big (\bm {X}(t_i^3), \hat {\bm {X}}(t_i^3)\big )(t_{i+1}^3-t_i^3)\bigg | \rightarrow 0. \label {Xeqn67-B.1}\end {align}


$j=1, 2$


\begin {equation}\begin {aligned} &F_i^j:= \sup _{\bm {X}_0, \theta }\E \bigg [\int _{t_i^j}^{t_{i+1}^j} \sum _{\ell =1}^d f_{\ell }^2(\bm {X}(t^-),t^-; \theta ){\mathrm {d}} t\bigg ], \\& \hat {F}_i^j:= \sup _{\bm {X}_0, \hat {\theta }}\E \bigg [\int _{t_i^j}^{t_{i+1}^j} \sum _{\ell =1}^d f_{\ell }^2(\hat {\bm {X}}(t^-),t^-; \hat {\theta }){\mathrm {d}} t\bigg ], \\ &\Sigma _i^j:= \sup _{\bm {X}_0, \theta }\E \bigg [\int _{t_i^j}^{t_{i+1}^j} \sum _{\ell =1}^d \sum _{j=1}^m\sigma _{\ell , j}^2(\bm {X}(t^-),t^-){\mathrm {d}} t\bigg ], \\& \hat {\Sigma }_i^j:= \sup _{\bm {X}_0, \hat {\theta }}\E \bigg [\int _{t_i^j}^{t_{i+1}^j} \sum _{\ell =1}^d\sum _{j=1}^m\hat {\sigma }_{\ell , j}^2(\hat {\bm {X}}(t^-),t^-; \theta ){\mathrm {d}} t\bigg ],\\ &B_i^j:= \sup _{\bm {X}_0, \theta }\E \bigg [\int _{t_i^j}^{t_{i+1}^j} \sum _{\ell =1}^d \int _U \beta _{\ell }^2(\bm {X}(t^-),\xi , t^-;\theta )\nu ({\mathrm {d}}\xi ){\mathrm {d}} t\bigg ], \\& \hat {B}_i^j:= \sup _{\bm {X}_0, \hat {\theta }}\E \bigg [\int _{t_i^j}^{t_{i+1}^j} \sum _{\ell =1}^d\int _U \hat {\beta }_{\ell }^2(\hat {\bm {X}}(t^-),\xi , t^-;\hat {\theta }) \nu ({\mathrm {d}}\xi ){\mathrm {d}} t\bigg ]. \end {aligned} \label {Xeqn68-B.2}\end {equation}


\begin {equation}\begin {aligned} &\bigg |W_2^2\big (\nu _{\bm {X}_{0, j}, \delta }^{\text {e}}(t_i^1), \hat {\nu }_{\bm {X}_{0, j}, \delta }^{\text {e}}(t_i^1)\big ) (t_{i+1}^1-t_i^1) \\ &\qquad - \sum _{k=\ell }^{\ell +s-1} W_2^2\big (\nu _{\bm {X}_{0, j}, \delta }^{\text {e}}(t_k^3), \hat {\nu }_{\bm {X}_{0, j}, \delta }^{\text {e}}(t_k^3)\big )(t_{k+1}^3-t_k^3)\bigg | \\ \: &\quad \leq 2(X+\hat {X})(t_{i+1}^1-t_i^1)\Big (\sqrt {F_i^1\Delta t + \Sigma _i^1 + B_i^1} + \sqrt {\hat {F}_i^1 \Delta t + \hat {\Sigma }_i^1 +\hat {B}_i^1}\Big ). \end {aligned} \label {intermediate:1}\end {equation}


$i=0,{\ldots },n_1-1$


$j=1,{\ldots },N$


\begin {equation}\begin {aligned} \bigg |\sum _{i=0}^{n_1-1}W_{2, \delta }^{2, \text {e}}\big (\bm {X}(t_i^1), \hat {\bm {X}}(t_i^1)\big ) & (t_{i+1}^1-t_i^1) - \sum _{k=0}^{n_3-1}W_{2, \delta }^{2, \text {e}}\big (\bm {X}(t_k^3), \hat {\bm {X}}(t_k^3)\big )(t_{k+1}^3-t_k^3)\bigg | \\ &\hspace {-2cm}\leq 2(X+\hat {X}) T\max _i\Big (\sqrt {F_i^1\Delta t+ \Sigma _i^1 +B_i^1} + \sqrt {\hat {F}_i^1\Delta t+ \hat {\Sigma }_i^1 +\hat {B}_i^1}\Big ). \end {aligned} \label {Xeqn70-B.4}\end {equation}


\begin {equation}\begin {aligned} \bigg |\sum _{i=0}^{n_2-1}W_{2, \delta }^{2, \text {e}}\big (\bm {X}(t_i^2), \hat {\bm {X}}(t_i^2)\big ) & (t_{i+1}^2-t_i^2) - \sum _{k=0}^{n_3-1}W_{2, \delta }^{2, \text {e}}\big (\bm {X}(t_k^3), \hat {\bm {X}}(t_k^3)\big )(t_{k+1}^3-t_k^3)\bigg | \\ &\hspace {-2cm}\leq 2(X+\hat {X}) T\max _i\Big (\sqrt {F_i^2\Delta t+ \Sigma ^2_i +B_i^2} + \sqrt {\hat {F}^2_i\Delta t+ \hat {\Sigma }^2_i +\hat {B}^2_i}\Big ). \end {aligned} \label {intermediate:2}\end {equation}


\begin {equation}\begin {aligned} \bigg |\sum _{i=0}^{n_1-1}W_{2, \delta }^{2, \text {e}}\big (\bm {X}(t_i^1), \hat {\bm {X}}(t_i^1)\big ) & (t_{i+1}^1-t_i^1) - \sum _{i=0}^{n_2-1}W_{2, \delta }^{2, \text {e}}\big (\bm {X}(t_i^3), \hat {\bm {X}}(t_i^2)\big )(t_{i+1}^3-t_i^3)\bigg | \\ &\hspace {-2cm}\leq 2(X+\hat {X}) T\max _i\Big (\sqrt {F_i^1\Delta t+ \Sigma _i^1 +B_i^1} + \sqrt {\hat {F}_i^1\Delta t+ \hat {\Sigma }_i^1 +\hat {B}_i^1}\Big )\\ &\hspace {-2cm}\quad +2(X+\hat {X}) T\max _i\Big (\sqrt {F_i^2\Delta t+ \Sigma ^2_i +B_i^2} + \sqrt {\hat {F}^2_i\Delta t+ \hat {\Sigma }^2_i +\hat {B}^2_i}\Big ). \end {aligned} \label {Xeqn72-B.6}\end {equation}


$\bm {f}, \bm {\sigma }, \bm {\beta }$


$F_i^j, \Sigma _i^j, B_i^j, \hat {F}_i^j, \hat {\Sigma }_i^j, \hat {B}_i^j\rightarrow 0$


$\Delta t\rightarrow 0$


$j=1, 2$


\begin {equation}\tilde {W}_{2, \delta }^{2, \text {e}}(\bm {X}, \hat {\bm {X}}):= \int _0^T W_{2, \delta }^{2, \text {e}}(\bm {X}(t), \hat {\bm {X}}(t)){\mathrm {d}} t \label {Xeqn73-B.7}\end {equation}


$\tilde {\bm {X}}$


\begin {equation}\begin {aligned} &{\mathrm {d}} \tilde {\bm {X}}(t) = \bm {f}(\tilde {\bm {X}}(t), t; \hat {\theta }){\mathrm {d}} t + \bm {\sigma }(\tilde {\bm {X}}(t), t; \hat {\theta }){\mathrm {d}} \bm {B}_t + \int _U\bm {\beta }(\tilde {\bm {X}}(t), \xi , t; \hat {\theta })\tilde {N}( {\mathrm {d}} t, \nu ({\mathrm {d}}\xi )), \\ & \tilde {\bm {X}}(0) = \bm {X}(0). \end {aligned} \label {tilde:X}\end {equation}


\begin {align}&\E \Big [\big \|\bm {X}(t) - \tilde {\bm {X}}(t)\big \|^{2}\Big ]\notag \\ &\quad \leq \E \big [H(t)|\bm {X}(0)\big ] \exp \Big (\big (2C+1+(2C +1)m +(2C+1)\gamma (U)\big )td\Big ), \label {pleq2}\end {align}


$\bm {X}(0)$


$H(t)$


\begin {equation}\begin {aligned} H(t) &:= \E \bigg [\sum _{i=1}^d\int _0^t{\big (f_{i}(\bm {X}(s^-), s^-; \theta ) - f_{i}(\bm {X}(s^-), s^-;\hat {\theta })\big )}^2{\mathrm {d}} s\bigg ]\\ & \quad + \E \bigg [\sum _{i=1}^d\int _0^t\sum _{j=1}^m {\big (\sigma _{i, j}(\bm {X}(s^-), s^-;\theta ) - \sigma _{i, j}(\bm {X}(s^-), s^-;\hat {\theta })\big )}^2{\mathrm {d}} s\bigg ]\\ & \quad + \E \bigg [\sum _{i=1}^d\int _0^t\int _U{\big (\beta _{i}(\bm {X}(s^-), \xi , s^-;\theta ) - \beta _{i}(\bm {X}(s^-), \xi , s^-;\hat {\theta })\big )}^2\gamma ({\mathrm {d}}\xi ){\mathrm {d}} s\bigg ]\\ &\leq Ct(1 + m + \gamma (U)) \|\theta - \hat {\theta }\|^2. \end {aligned} \label {h:define}\end {equation}


$\hat {\bm {X}}(t)\in \mathbb {R}^d$


$\tilde {\bm {X}}(t)$


$t\in [0, T]$


\begin {equation}W_2^2(\nu _{\bm {X}_0}(t), \hat {\nu }_{\bm {X}_0}(t)) = W_2^2(\nu _{\bm {X}_0}(t), \tilde {\nu }_{\bm {X}_0}(t)), \label {Xeqn77-C.4}\end {equation}


$\nu _{\bm {X}_0}(t), \hat {\nu }_{\bm {X}_0}(t)$


$\tilde {\nu }_{\bm {X}_0}(t)$


$\bm {X}(t), \hat {\bm {X}}(t),$


$\tilde {\bm {X}}(t)$


$\bm {X}_0$


$\theta , \hat {\theta }$


$\pi (\mu , \hat {\mu })$


$\theta $


$\hat {\theta }$


$\pi ^*(\bm {X}(t), \bm {\tilde {X}}(t))$


$(\bm {X}(t), \tilde {\bm {X}}(t))\in \mathbb {R}^{2d}$


$\pi ^*$


$\nu _{\bm {X}_0}(t)$


$\tilde {\nu }_{\bm {X}_0}(t)$


\begin {align}\E _{(\bm {X}(t), \tilde {\bm {X}}(t))\sim \pi ^*}\Big [\big \|\bm {X}(t) - \tilde {\bm {X}}(t)\big \|^{2}\Big ]&\leq Ct(1+m + \gamma (U))\E _{(\theta , \hat {\theta })\sim \pi (\mu , \hat {\mu })}\big [\|\theta - \hat {\theta }\|^2\big ]\notag \\ &\hspace {-2cm}\times \exp \Big (\big (2C+1+(2C +1)m +(2C+1)\gamma (U)\big )td\Big ).\label {Xeqn78-C.5}\end {align}


$\pi $


$(\theta , \hat {\theta })$


$\mu $


$\hat {\mu }$


\begin {equation}W_2^2(\nu _{\bm {X}_0}(t), \hat {\nu }_{\bm {X}_0}(t))\
\leq C_1t\exp (C_0t)W_2^2(\mu , \hat {\mu }), \label {upper:bound}\end {equation}


\begin {equation}C_0:= \Big (2C+1+(2C +1)m +(2C+1)\gamma (U)\Big )d,\,\, C_1 := C(1 + m + \gamma (U)) \label {Xeqn80-C.7}\end {equation}


$W_2$


\begin {equation}\begin {aligned} W_2(\nu ^{\text {e}}_{\bm {X}_0, \delta }(t), \hat {\nu }^{\text {e}}_{\bm {X}_0, \delta }(t)) &\leq W_2(\nu _{\bm {X}_0}^{\text {e}}(t), \hat {\nu }^{\text {e}}_{\bm {X}_0}(t)) + W_2(\nu _{\bm {X}_0}^{\text {e}}(t), \nu _{\bm {X}_0, \delta }^{\text {e}}(t)) \\ &\quad \quad + W_2( \hat {\nu }^{\text {e}}_{\bm {X}_0}(t), \hat {\nu }^{\text {e}}_{\bm {X}_0, \delta }(t))\\ &\leq W_2(\nu _{\bm {X}_0}(t), \hat {\nu }_{\bm {X}_0}(t)) +W_2(\hat {\nu }_{\bm {X}_0}(t), \nu ^{\text {e}}_{\bm {X}_0}(t)) \\ &\quad + W_2(\nu _{\bm {X}_0}(t), \hat {\nu }^{\text {e}}_{\bm {X}_0}(t))\\ &\quad + W_2(\nu _{\bm {X}_0}^{\text {e}}(t), \nu _{\bm {X}_0, \delta }^{\text {e}}(t)) + W_2( \hat {\nu }^{\text {e}}_{\bm {X}_0}(t), \hat {\nu }^{\text {e}}_{\bm {X}_0, \delta }(t)), \end {aligned} \label {triang1}\end {equation}


$\nu ^{\text {e}}_{\bm {X}_{0}, \delta }(t)$


$\hat {\nu }^{\text {e}}_{\bm {X}_{0}, \delta }(t)$


$\bm {X}(t)$


$\hat {\bm {X}}(t)$


$t$


$|\bm {X}(0)-\bm {X}_{0}|\leq \delta $


$|\hat {\bm {X}}(0)-\bm {X}_{0}|\leq \delta $


$\theta \in \mathbb {R}^{\ell }$


\begin {equation}\begin {aligned} {\mathrm {d}} \bm {X}(t; \bm {X}_0) &= \bm {f}({\bm {X}}(t; \bm {X}_0), t; \theta ){\mathrm {d}} t + \bm {\sigma }(\bm {X}(t; \bm {X}_0; \theta ), t; \hat {\theta }){\mathrm {d}} \bm {B}_t \\ & \quad + \int _U\bm {\beta }(\bm {X}(t; \bm {X}_0), \xi , t; \theta )\tilde {N}( {\mathrm {d}} t, \gamma ({\mathrm {d}}\xi )),\\ {\mathrm {d}} \bm {X}(t; \bm {X}_0') &= \bm {f}({\bm {X}}(t; \bm {X}_0'), t; \theta ){\mathrm {d}} t + \bm {\sigma }(\bm {X}(t; \bm {X}_0'; \theta ), t; \hat {\theta }){\mathrm {d}} \bm {B}_t \\ & \quad + \int _U\bm {\beta }(\bm {X}(t; \bm {X}_0'), \xi , t; \theta )\tilde {N}( {\mathrm {d}} t, \gamma ({\mathrm {d}}\xi )),\\ \bm {X}(0; \bm {X}_0) &= \bm {X}_0,\,\,\bm {X}(0; \bm {X}_0') = \bm {X}_0', \,\, \|\bm {X}_0-\bm {X}_0'\|\leq \delta . \end {aligned} \label {couple:ic}\end {equation}


\begin {align}&\E \Big [\big \|\bm {X}(t; \bm {X}_0) - \bm {X}(t; \bm {X}_0')\big \|_2^{2}\Big ] \notag \\ &\quad \leq \exp \Big (\big (2dC + dCm + dC\gamma (U)+1)t\Big )\E [\|\bm {X}_0-\bm {X}_0'\|^2]. \label {Xeqn83-C.10}\end {align}


\begin {equation}W_2(\nu _{\bm {X}_0}^{\text {e}}(t), \nu _{\bm {X}_0, \delta }^{\text {e}}(t))\leq \delta \exp (\tfrac {C_0t}{2}). \label {w21}\end {equation}


\begin {equation}W_2(\hat {\nu }_{\bm {X}_0}^{\text {e}}(t), \hat {\nu }_{\bm {X}_0, \delta }^{\text {e}}(t))\leq \delta \exp (\tfrac {C_0t}{2}). \label {w22}\end {equation}


$\hat {\nu }_{\bm {X}_0}(t)$


$\nu ^{\text {e}}_{\bm {X}_0}(t)$


$\hat {\mu }$


$\mu _{\bm {X}_0}^{\text {e}}$


\begin {equation}W_2(\nu _{\bm {X}_0}(t), \nu _{\bm {X}_0}^{\text {e}}(t))\leq \sqrt {C_1t}\exp (\tfrac {C_0t}{2})W_2(\mu , \mu _{\bm {X}_0}^{\text {e}}). \label {empirical1}\end {equation}


\begin {equation}W_2^2(\hat {\nu }_{\bm {X}_0}(t), \hat {\nu }_{\bm {X}_0}^{\text {e}}(t))\leq \sqrt {C_1t}\exp (\tfrac {C_0t}{2})W_2(\hat {\mu }, \hat {\mu }_{\bm {X}_0}^{\text {e}}). \label {empirical2}\end {equation}


$\mu _{\bm {X}_0}^{\text {e}}$


$\hat {\mu }_{\bm {X}_0}^{\text {e}}$


$\theta $


$\hat {\theta }$


\begin {equation}\begin {aligned} &W_2(\nu _{\bm {X}_0, \delta }^{\text {e}}(t), \hat {\nu }^{\text {e}}_{\bm {X}_0, \delta }(t))\leq 2\delta \exp (\tfrac {C_0t}{2}) \\ &\quad \quad + \sqrt {C_1t\exp (C_0t)}\big (W_2(\mu , \mu _{\bm {X}_0}^{\text {e}}) + W_2(\hat {\mu }, \hat {\mu }_{\bm {X}_0}^{\text {e}})+W_2(\mu , \hat {\mu })\big ). \end {aligned} \label {w2:bound1}\end {equation}


$\bm {X}_0$


\begin {align}&\E [\tilde {W}_{2, \delta }^{2, \text {e}}(\bm {X}, \hat {\bm {X}})]\leq 8T\delta ^2 \exp (C_0T)\notag \\ &\quad +\sum _{j=1}^N\frac {1}{N} \frac {6C_1}{C_0}T\exp (C_0T)\big (W_2^2(\mu , \hat {\mu }) \notag \\&\quad + \E \big [W_2^2(\mu _{\bm {X}_{0, j}}^{\text {e}}, \mu )\big ]+ \E \big [W_2^2(\hat {\mu }_{\bm {X}_{0, j}}^{\text {e}}, \hat {\mu })\big ] \big ).\label {thm2:result0}\end {align}


$C_0$


$d$


$W_2$


\begin {equation}\begin {aligned} &\sum _{j=1}^N\frac {1}{N}\E \big [W_2^2(\mu _{\bm {X}_{0, j}}^{\text {e}}, \mu )\big ]\leq C_2\E [h(N^{\#}(\bm {X}_0;\delta ), \ell )]\Theta _6^{\frac {1}{3}},\\ & \,\,\sum _{j=1}^N\frac {1}{N}\E \big [W_2^2(\hat {\mu }_{\bm {X}_{0, j}}^{\text {e}}, \hat {\mu })\big ]\leq C_2\E [h(N^{\#}(\bm {X}_0;\delta ), \ell )]\hat {\Theta }_6^{\frac {1}{3}}, \end {aligned} \label {theorem2:result}\end {equation}


$C_2$


$h$


\begin {equation}\begin {aligned} {\mathrm {d}} U(\bm {x}, t; \theta ) &= A(\theta ) U(\bm {x}, t; \theta ) + f(U(\bm {x}, t; \theta ); \theta ){\mathrm {d}} t + g(U(\bm {x}, t; \theta ); \theta ){\mathrm {d}} B_t,\\ &\quad \,\,\bm {x}\in D, t\in [0, T],\\ &\hspace {-1cm}U(\bm {x}, 0; \theta ) = U(\bm {x}, 0) \in H^{1,2}_0(\Omega ), U(\bm {x}, 0)\sim \nu _0, \,\,U(\bm {x}, t;\theta ) = 0, x\in \partial D. \end {aligned} \label {spde}\end {equation}


$B_t$


$D$


$\mathbb {R}^d$


$\partial D$


$H_0^{1,2}(\Omega )$


$U: \Omega \to \mathbb {R}$


$\partial \Omega $


$U$


$L^2(\Omega )$


$\|U\|_{L^2}:= \int _D U^2(\bm {x}, t){\mathrm {d}}\bm {x}$


$\nu _0$


$\mathcal {B}(H^{1,2}_0(\Omega ))$


$A$


$L^2(\Omega )$


$U \in H^{1,2}(\Omega )$


$AU\in L^2(\Omega )$


$A$


$\alpha >0$


\begin {equation}(-AU, U) \geq \alpha \|U\|^2_{H^{1, 2}}, \quad \forall U \in H_0^{1,2}(\Omega ), \label {spde:coer}\end {equation}


$(\cdot , \cdot )$


$f$


$g$


$L^2(\Omega )$


$H_0^{1, 2}(\Omega )$


$\theta $


\begin {equation}\begin {aligned} &{\mathrm {d}} \hat {U}(\bm {x}, t; \hat {\theta }) = A(\hat {\theta }) \hat {U}(\bm {x}, t; \hat {\theta }) + f(\hat {U}(\bm {x}, t; \hat {\theta }); \hat {\theta }){\mathrm {d}} t + g(\hat {U}(\bm {x}, t; \hat {\theta }); \hat {\theta }){\mathrm {d}} \hat {B}_t,\\&\quad \quad \quad \bm {x}\in D, t\in [0, T],\\ &\quad \quad \hat {U}(\bm {x}, 0) = U(\bm {x}, 0;\theta )=U(\bm {x}, 0), \,\,U(\bm {x}, t;\hat {\theta }) = 0, x\in \partial D. \end {aligned} \label {approx:sde}\end {equation}


$\hat {B}_t$


$B_t$


\begin {equation}\begin {aligned} &{\mathrm {d}} U_n(t;\theta ) = \big (A_n(U_n(t;\theta ); \theta ) + f_n(U_n(t;\theta );\theta )\big ) {\mathrm {d}} t + g_n(U_n(t;\theta );\theta ) {\mathrm {d}} B_t,\\ &{\mathrm {d}} \hat {U}_n(t;\hat {\theta }) = \big (A_n(\hat {U}_n(t;\hat {\theta }); \hat {\theta }) + f_n(\hat {U}_n(t;\hat {\theta }); \hat {\theta })\big ) {\mathrm {d}} t + g_n(\hat {U}_n(t;\hat {\theta });\hat {\theta }) {\mathrm {d}} \hat {B}_t. \end {aligned} \label {SPDE:discretize}\end {equation}


\begin {equation}U_n(\bm {x},t;\theta ) := \sum _{j=1}^n u_j(t;\theta ) \varphi _j(\bm {x}) \in X_n,\,\, \hat {U}_n(\bm {x},t;\hat {\theta }) := \sum _{j=1}^n \hat {u}_j(t;\hat {\theta }) \varphi _j(\bm {x})\in X_n \label {Undef}\end {equation}


$U(\bm {x}, t;\theta )$


$\hat {U}(\bm {x},t;\hat {\theta })$


$X_n$


$n$


$H_0^{1}(\Omega )$


$\{\varphi _1, \ldots , \varphi _n\}$


\begin {equation*}A_n(U; \theta ) := P_n \big (A(\theta )U\big ) , \quad f_n(U; \theta ) := P_n \big (f(\theta )U\big ) , \quad g_n(U; \theta ) := P_n \big (g(\theta )U\big ),\end {equation*}


$P_n$


$L^2(\Omega )$


$H_0^{1, 2}(\Omega )$


$X_n$


$\theta $


$-A$


\begin {equation*}-A(\theta ) \varphi _j = \lambda _j(\theta ) \varphi _j, \quad j = 1, 2, \ldots , n,\,\, \lambda _j\leq \lambda _{j+1}.\end {equation*}


$\varphi _i\in H_0^{1, 2}(D), i=1,2,{\ldots }$


$L^2(D)$


$\|\varphi _j\|_{L^2}=1$


$\lambda _j(\theta ) \rightarrow \infty $


$\theta $


$j \rightarrow \infty $


$A(\theta )$


$H_0^{1}(\Omega )$


$L^2(\Omega )$


$f(\theta )$


$g(\theta )$


$H_0^{1}(\Omega )$


\begin {equation}\begin {aligned} &\|A(\theta )(U, \theta ) - A(\hat {\theta })(\hat {U}, \hat {\theta })\|_{L^2}\leq L(\|U-\hat {U}\|_{H^{1,2}} + \|\theta - \hat {\theta }\|),\\ &\|f(U; \theta ) - f(\hat {U}; \hat {\theta })\|_{{H^{1,2}}}\leq L(\|U-\hat {U}\|_{H^{1,2}} + \|\theta - \hat {\theta }\|),\\ &\|g(U; \theta ) - g(\hat {U}; \hat {\theta })\|_{H^{1,2}}\leq L(\|U-\hat {U}_{H^{1,2}}\|_{{H^{1,2}}} + \|\theta - \hat {\theta }\|), L\leq \infty .\\ \end {aligned} \label {Xeqn96-D.6}\end {equation}


\begin {equation}\E [\|\theta \|^6]\leq \Theta _6,\,\,\E [\|\hat {\theta }\|^6]\leq \hat {\Theta }_6. \label {Xeqn97-D.7}\end {equation}


$U$


$\hat {U}$


\begin {equation}\begin {aligned} \tilde {W}_{2, \delta }^{2, \text {e}}(U, \hat {U}) &\leq 3\cdot \Big (8C_0(\beta _n; n)\delta ^2T \exp (C_0(\beta _n;n )T)\\&\quad +\frac {6C_1(\beta _n)T}{C_0(\beta _n;n)}\exp (C_0(\beta _n; n)T)\\ &\quad \times (W_2^2(\mu , \hat {\mu }) + (\Theta _6^{\frac {1}{3}} + \hat {\Theta }_6^{\frac {1}{3}})2T \E [h(N^{\#}(\bm {U}_n(0;\theta ); \delta ); \ell )])\Big ) \\ &\quad + 3T\sup _{\theta , U(\bm {x}, 0;\theta )} K_{T, U(\cdot , 0), \theta }\lambda _{N+1}^{-1}(\theta ) \\ &\quad + 3T\sup _{\hat {\theta }, U(\bm {x}, 0;\hat {\theta })} K_{T, U(\cdot , 0), \hat {\theta }}\lambda _{N+1}^{-1}(\hat {\theta }). \end {aligned} \label {spde:ineq:result}\end {equation}


$K_{T, U(\cdot , 0), \theta }$


$T, U(\bm {x}, 0)$


$\theta $


$C_i(\beta _n)$


$n$


$\beta _n$


$\{\lambda _i\}_{i=1}^n$


$\bm {U}_n(0;\theta ):= (u_1(0;\theta ),{\ldots },u_n(0;\theta ))$


$\tilde {W}_{2, \delta }^{2, \text {e}}(U, \hat {U})$


$U$


$\hat {U}$


\begin {equation}\tilde {W}_{2, \delta }^{2, \text {e}}(U, \hat {U}):= \int _0^T W_{2, \delta }^{2, \text {e}}\big (U(\bm {x}, t;\theta ), \hat {U}(\bm {x}, t;\hat {\theta })\big ){\mathrm {d}} t, \label {Xeqn99-D.9}\end {equation}


\begin {equation}W_{2, \delta }^{2, \text {e}}\big (U(\bm {x}, t;\theta ), \hat {U}(\bm {x}, t;\hat {\theta })\big ) := \int W_2^2(\nu ^{\text {e}}_{U_0, \delta }(t), \hat {\nu }^{\text {e}}_{U_0, \delta }(t))\nu _0^{\text {e}}({\mathrm {d}} U_0), \label {spde:w2}\end {equation}


$\nu _0^{\text {e}}({\mathrm {d}} U_0)$


$U(\cdot , 0)$


$\nu ^{\text {e}}_{U_0, \delta }(t)$


$\hat {\nu }^{\text {e}}_{U_0, \delta }(t)$


$U(\bm {x},t;\theta )$


$\hat {\nu }^{\text {e}}_{U_0,\delta }(t)$


$t$


$\|U(\bm {x},0) - U_0\|_{L^2}\leq \delta $


$\|\hat {U}(\bm {x},0) - U_0\|_{L^2}\leq {\delta }$


$W_2$


$\nu ^{\text {e}}_{U_0, \delta }(t)$


$\hat {\nu }^{\text {e}}_{U_0, \delta }(t)$


\begin {equation}W_2(\nu ^{\text {e}}_{U_0, \delta }(t), \hat {\nu }^{\text {e}}_{U_0, \delta }(t)) := \inf _{\pi (\nu , \hat \nu )} \E _{(U, \hat {U})\sim \pi (\nu ^{\text {e}}_{U_0, \delta }(t), \hat {\nu }^{\text {e}}_{U_0, \delta }(t))}{\big [\|{U} - \hat {U}\|_{L^2}^{2}\big ]}^{\frac {1}{2}}. \label {Xeqn101-D.11}\end {equation}


$A_n$


\begin {equation}\begin {aligned} \|A_n(U_n;\theta ) - A_n(\hat {U}_n;\hat {\theta })\|_{L^2} &= \|P_n(A(U_n;\theta ) - A(\hat {U}_n;\hat {\theta }))\|_{L^2}\\ &\leq \|A(U_n;\theta ) - A(\hat {U}_n;\hat {\theta })\|_{L^2}\\&\leq L(\|U_n - \hat {U}_n\|_{H^{1, 2}} + \|\theta - \hat {\theta }\|). \end {aligned} \label {Xeqn102-D.12}\end {equation}


$X_n$


$\beta _n$


$\varphi _1,{\ldots },\varphi _n$


$\forall U_n\in X_n$


$\|U\|_{H^{1,2}}\leq \beta _n\|U\|_{L^2}$


\begin {equation}\begin {aligned} \|A_n(U_n; \theta ) - A_n(\hat {U}_n; \hat {\theta })\|_{H^{1,2}}&\leq \beta _n\|A_n(U_n; \hat {\theta }) - A_n(\hat {U}_n;\hat {\theta })\|_{L^{2}}\\ &\leq \beta _n L (\|U_n - \hat {U}_n\|_{L^{2}} + \|\theta - \hat {\theta }\|). \end {aligned} \label {L:condition:a}\end {equation}


$f_n$


$g_n$


$U_n$


$\theta $


\begin {equation}\begin {aligned} \|f_n(U_n; \theta ) - f_n(\hat {U}_n; \hat {\theta })\|_{L^{2}}&\leq \|f_n(U_n; \theta ) - f_n(\hat {U}_n; \hat {\theta })\|_{H^{1,2}}\\ &\leq \beta _n L (\|U_n - \hat {U}_n\|_{L^{2}} + \|\theta - \hat {\theta }\|),\\ \|g_n(U_n; \theta ) - g_n(\hat {U}_n; \hat {\theta })\|_{L^{2}}&\leq \|g_n(U_n; \theta ) - g_n(\hat {\theta }; \hat {U}_n)\|_{H^{1,2}}\\&\leq \beta _n L (\|U_n - \hat {U}_n\|_{L^{2}} + \|\theta - \hat {\theta }\|). \end {aligned} \label {L:condition:f}\end {equation}


$\theta $


\begin {equation}\E [\|U(\bm {x}, k\Delta t; \theta ) - U_n(\bm {x}, k\Delta t;\theta ) \|^2]\leq K_{k\Delta t, U(\cdot , 0), \theta }\lambda _{N+1}^{-1}(\theta ), \label {discretize:bound}\end {equation}


$K_{k\Delta t, U(\cdot , 0), \theta }$


$k\Delta t$


$U(\cdot , 0)$


$\theta $


$K_{k\Delta t, U(\cdot , 0), \theta }$


$k$


$K_{k\Delta t, U(\cdot , 0), \theta }$


$\tilde {K}_{k\Delta t, U(\cdot , 0), \theta }:= \max _{1\leq i\leq k}K_{i\Delta t, U(\cdot , 0), \theta }$


$U(\bm {x}, 0)$


$P_n U(\bm {x}, 0)$


$U(\bm {x}, k\Delta t; \theta )$


$U_n(\bm {x}, T;\theta )$


$\nu _{U(\cdot , 0)}(k\Delta t)$


$\nu _{n, U_n(\cdot , 0)}(k\Delta t)$


$\big (U(\bm {x}, k\Delta t; \theta ), U_n(\bm {x}, k\Delta t;\theta )\big )$


$\nu _{U(\cdot , 0)}(k\Delta t)$


$\nu _{n, U_n(\cdot , 0)}(k\Delta t)$


\begin {equation}\begin {aligned} W_2^2( \nu _{U(\cdot , 0)}(k\Delta t), \nu _{n, U_n(\cdot , 0)}(k\Delta t)) &\leq \E [\|U(\bm {x}, k\Delta t; \theta ) - U_n(\bm {x}, k\Delta t;\theta ) \|^2] \\ &\leq \sup _{\theta , U(\bm {x}, 0)} K_{T, U(\cdot , 0), \theta }\lambda _{N+1}^{-1}(\theta ). \end {aligned} \label {Xeqn106-D.16}\end {equation}


$W_2$


\begin {equation}\begin {aligned} W_{2, \delta }^{2, \text {e}}\big (U(\cdot , k\Delta t;\theta ), U_n(\cdot , k\Delta t;\theta )\big ) &\leq \sup _{\theta , U(\bm {x}, 0)}\E [\|U(\bm {x}, k\Delta t; \theta ) - U_n(\bm {x}, k\Delta t;\theta ) \|^2] \\ &\leq \sup _{\theta , U(\bm {x}, 0)} K_{T, U(\cdot , 0), \theta }\lambda _{N+1}^{-1}(\theta ). \end {aligned} \label {Xeqn107-D.17}\end {equation}


\begin {equation}\begin {aligned} W_{2, \delta }^{2, \text {e}}\big (\hat {U}(\cdot , k\Delta t;\hat {\theta }), \hat {U}_n(\cdot , k\Delta t;\hat {\theta } )\big ) &\leq \sup _{\hat {\theta }, U(\bm {x}, 0)} K_{T, U(\cdot , 0), \theta }\lambda _{N+1}^{-1}(\hat {\theta }). \end {aligned} \label {Xeqn108-D.18}\end {equation}


$U(\bm {x}, 0)=\hat {U}(\bm {x}, 0)$


\begin {equation}\begin {aligned} &W_{2, \delta }^{2, \text {e}}(U(\bm {x}, t;\theta ), \hat {U}(\bm {x}, t;\hat {\theta }))\leq 3W_{2, \delta }^{2, \text {e}}\big (U(\cdot , k\Delta t;\theta ), U_n(\cdot , k\Delta t;\theta )\big ) \\ &\qquad + 3W_{2, \delta }^{2, \text {e}}\big (\hat {U}(\cdot , k\Delta t;\hat {\theta }), \hat {U}_n(\cdot , k\Delta t;\hat {\theta })\big ) + 3W_{2, \delta }^{2, \text {e}}(U_n(\bm {x}, t;{\theta }), \hat {U}_n(\bm {x}, t;\hat {\theta }))\big )\\ &\quad \leq 3W_{2, \delta }^{2, \text {e}}(U_n(\bm {x}, t;\theta ), \hat {U}_n(\bm {x}, t;\hat {\theta })) + 3\sup _{\theta , U(\bm {x}, 0)} K_{T, U(\cdot , 0), \theta }\lambda _{N+1}^{-1}(\theta ) \\ &\qquad + 3\sup _{\hat {\theta }, U(\bm {x}, 0)} K_{T, U(\cdot , 0), \hat {\theta }}\lambda _{N+1}^{-1}(\hat {\theta }). \end {aligned} \label {theorem:spde:ineq0}\end {equation}


\begin {equation}\begin {aligned} \tilde {W}_{2, \delta }^{2, \text {e}}\big (U, \hat {U}\big )&\leq 3 \tilde {W}_{2, \delta }^{2, \text {e}}(U_n, \hat {U}_n) + 3T\sup _{\theta , U(\bm {x}, 0)} K_{T, U(\cdot , 0), \theta }\lambda _{N+1}^{-1}(\theta ) \\ &\quad \quad + 3T\sup _{\hat {\theta }, U(\bm {x}, 0)} K_{T, U(\cdot , 0), \hat {\theta }}\lambda _{N+1}^{-1}(\hat {\theta }). \end {aligned} \label {theorem:spde:ineq}\end {equation}


\begin {equation}\begin {aligned} \bm {U}_n(t;\theta ):= (u_1(t;\theta ),{\ldots },u_n(t;\theta )),\,\,\hat {\bm {U}}_n(t,\hat {\theta }):= (\hat {u}_1(t,\hat {\theta }),{\ldots },\hat {u}_n(t,\hat {\theta })) \end {aligned} \label {Xeqn111-D.21}\end {equation}


$U_n(\bm {x},t;\theta )$


$\hat {U}_n(\bm {x},t;\hat {\theta })$


$\|U_n(\bm {x}, t;\theta )\|_{L^2}=\|\bm {U}_n(t)\|$


$\|\hat {U}_n(\bm {x}, t)\|_{L^2}=\|\hat {\bm {U}}_n(t)\|$


$\|\varphi _i\|_{L^2}=1, i=1,{\ldots },n$


$\bm {U}_n$


$\hat {\bm {U}}_n$


\begin {equation}\begin {aligned} {\mathrm {d}} \bm {U}_n = \big (\bm {A}_n(\bm {U}_n,t;\theta ) +\bm {F}_n(\bm {U}_n,t;\theta )\big ){\mathrm {d}} t + \bm {G}_n(\bm {U}_n,t;\theta ){\mathrm {d}} B_t,\\ {\mathrm {d}} \hat {\bm {U}}_n = \big (\bm {A}_n(\hat {\bm {U}}_n,t;\hat {\theta }) +\bm {F}_n(\hat {\bm {U}}_n,t;\hat {\theta })\big ){\mathrm {d}} t + \bm {G}_n(\hat {\bm {U}}_n,t;\hat {\theta }){\mathrm {d}} B_t \end {aligned} \label {Xeqn112-D.22}\end {equation}


$\bm {A}_n(\bm {U}_n,t;\theta ), \bm {F}_n(\bm {U}_n,t;\theta )$


$\bm {F}_n(\bm {G}_n,t;\theta )$


$n$


$A_n(U_n; \theta ), f_n(U_n; \theta )$


$g_n(U_n; \theta )$


$\bm {A}_n, \bm {F}_N$


$\bm {G}_n$


$U_n$


$\theta $


\begin {equation}\begin {aligned} &\E [\tilde {W}_{2, \delta }^{2, \text {e}}(U_n, {\hat {U}}_n)] = \E [\tilde {W}_{2, \delta }^{2, \text {e}}(\bm {U}_n, {\hat {\bm {U}}}_n)]\leq 8C_0(\beta _n, n)T\delta ^2 \exp (C_0(\beta _n;n)T) \\ &\quad + \frac {6C_1(\beta _n)}{C_0(\beta _n;n)}T\exp (C_0(\beta _n; n)T)\big (W_2^2(\mu , {\hat {\mu }}) + 2C_2 \E [h(N^{\#}(\bm {U}_n(\bm {x}, 0);\delta ), \ell )]\\&\quad \cdot (\Theta _6^{\frac {1}{3}}+{\hat {\Theta }}_6^{\frac {1}{3}})\big ) \end {aligned} \label {identity:ineq}\end {equation}


$C_i, i=0,{\ldots },2$


$\E [\tilde {W}_{2, \delta }^{2, \text {e}}(U_n, \hat {U}_n)]$


$f_{\bm {x}}$


$\hat {f}_{\bm {x}}$


$f_{\bm {x}}$


$W_2$


$0<c<\epsilon _0$


$\Delta x>0$


\begin {equation}W_2^2(f_{\bm {x}}, f_{\tilde {\bm {x}}})<c, \,\,\forall \bm {x}, \tilde {\bm {x}}\in D,\,\, \|\bm {x} - \tilde {\bm {x}}\|< \sqrt {d}\Delta x. \label {Xeqn114-E.1}\end {equation}


$X:= \{\bm {x}_i\}_{i=1}^K, \bm {x}_i=(x_i^1,{\ldots },x_i^d)$


$\Delta x$


$D\subseteq \cup _{i=1}^K\otimes _{j=1}^d[x_i^j, x_i^j+\Delta \bm {x})$


$\otimes _{j=1}^d[x_{i_1}^j, x_{i_1}^j+\Delta \bm {x})\cap \otimes _{j=1}^d[x_{i_2}^j, x_{i_2}^j+\Delta \bm {x})=\emptyset $


$i_1\neq i_2$


$\forall \bm {x}=(x^1,{\ldots },x^d)\in D$


$\bm {x}_i\in X$


$|\bm {x}-\bm {x}_i|<\sqrt {d}\Delta x$


$0<\epsilon <\tfrac {1}{2}$


$4dK$


$dK$


$\bm {x}$


$(i, j), i=1,\ldots , K, j=1,{\ldots },d$


\begin {equation}\begin {aligned} &n_{i, j, 1}^1 =\text {ReLU}\left (\epsilon ^{-1}(x^j - x_i^j-\Delta x)\right ),\,\, n_{i, j, 2}^1 =\text {ReLU}\left (\epsilon ^{-1}(x^j - x_i^j-\Delta x+\epsilon )\right ), \\ &n_{i, j, 3}^1 =\text {ReLU}\left (\epsilon ^{-1}\left (x^j - x_i^j-\epsilon \right )\right ),\,\, n_{i, j, 4}^1 = \text {ReLU}\left (\epsilon ^{-1}\left (x^j - x_i^j\right )\right ). \end {aligned} \label {Xeqn115-E.2}\end {equation}


$dK$


$(i, j), i=1,\ldots ,K, j=1,{\ldots },d$


$(i, j)$


\begin {equation}\begin {aligned} n_{i, j}^{2, \text {in}}:= n_{i, j, 2}^1-n_{i, j, 1}^1 - \left (n_{i, j, 4}^1 - n_{i, j, 3}^1\right ). \end {aligned} \label {Xeqn116-E.3}\end {equation}


$n_{i, j}^{2, \text {in}}\in [0, 1]$


$x^j \in [x_{i}^j+\epsilon , x_{i}^j+\Delta x]$


$n_{i, j}^{2, \text {in}}=1, j=1,{\ldots },d$


$x^j\leq x^j_{i}$


$x^j\geq x_{i}^j+\Delta x$


$n_{i, j}^{2, \text {in}}=0$


$(i, j)$


\begin {equation}n^2_{i, j} = \text {ReLU}\left ( \epsilon ^{-1}\left (n^{2, \text {in}}_{i, j} - 1+\epsilon \right )\right ),\,\, i=1,{\ldots },K,\,\, j=1,{\ldots }d. \label {Xeqn117-E.4}\end {equation}


$K$


\begin {equation}n_i^3 = \text {ReLU}\left ( \sum _{j=1}^d\epsilon ^{-1}\left (n^2_{i, j} - 1+\tfrac {\epsilon }{d}\right )\right ), i=1,{\ldots },K. \label {Xeqn118-E.5}\end {equation}


$n_i^3\in [0, 1]$


$n_i^3 = 1$


$\bm {x}\in \otimes _j [x_{j, i}+\epsilon , x_{j, i}+\Delta x-\epsilon ]$


$j=1, {\ldots }, d$


$x^j< x_{i}^{j}$


$x^j> x_{i}^{j}+\Delta x$


$n_i^3=0$


$\bm {x}\in D$


$i$


$n_i^3\neq 0$


$D(\epsilon ) = \{x\in D: \exists ! i, n_i^3=1\}$


$\epsilon \rightarrow 0$


$D(\epsilon )\rightarrow D$


$d' K$


$(i, j), i=1,\ldots ,K, k=1,{\ldots },d'$


$(i, j)$


\begin {equation}n_i^3 (\omega _{i, k}^4 + (A_i^{-1}\bm {b}_i)_k), \,\,i=1,\ldots ,K, \,\, k=1,{\ldots },d'. \label {Xeqn119-E.6}\end {equation}


$\omega _{i, k}\sim \mathcal {N}(0, 1)$


$\bm {b}_i$


$A_i$


$f_{\bm {x}_i}(\bm {y})=\mathcal {N}(\bm {b}_i, A_i)$


$(A_i^{-1}\bm {b}_i)_k$


$k{\text {th}}$


$A_i^{-1}\bm {b}_i$


$d'$


\begin {equation}\sum _{i=1}^K n_i^3(A_i \bm {\omega }_i^4 + \bm {b}_i), \label {Xeqn120-E.7}\end {equation}


$\bm {\omega }_i := (\omega _{i,1},{\ldots }, \omega _{i, d'})$


$\bm {x}\in D$


$i$


$n_{i}^3\neq 0$


$\bm {x}\in D$


\begin {equation}\begin {aligned} \sup _{\hat {\bm {y}}\sim f_{\bm {x}}}\E [\|\bm {y}\|^2]&\leq \sup _i\E \big [\|A_i\bm {\omega }_i^4 + \bm {b}_i\|^2\big ]\\ &\leq \sup _i(\|A^T_iA_i\|_F^2 + \|\bm {b}_i\|_2^2. \end {aligned} \label {Xeqn121-E.8}\end {equation}


$\bm {x}\in D(\epsilon )$


$n_i^3=1$


$\|\bm {x}-\bm {x}_i\|<\Delta x$


$\hat {f}_{\bm {x}}$


$\hat {f}_{\bm {x}}$


$f_{\bm {x}_i}$


\begin {equation}\begin {aligned} &\int _D W_2^2(f_{\bm {x}}, \hat {f}_{\bm {x}})\gamma (\text {d}\bm {x})< \int _{D(\epsilon )} W_2^2(f_{\bm {x}}, \hat {f}_{\bm {x}})\gamma (\text {d}\bm {x}) \\ &\qquad + 2 \gamma (D-D(\epsilon ))\cdot \Big (\sup _{\bm {y}\sim f_{\bm {x}}}\E [\|\bm {y}\|^2] + \sup _{\hat {\bm {y}}\sim f_{\bm {x}}}\E [\|\hat {\bm {y}}\|^2]\Big )\\ & \quad \leq c\gamma (D) + \gamma (D-D(\epsilon ))2\left (\sup _{\hat {\bm {y}}\sim f_{\bm {x}}}\E [\|\bm {y}\|^2] + \sup _i\left (\|A^T_iA_i\|_F^2 + \|\bm {b}_i\|_2^2\right )\right )\\ & \quad \leq c + 4\gamma (D-D(\epsilon ))Y. \end {aligned} \label {snn:approx}\end {equation}


$c<\epsilon _0$


$\epsilon $


$\gamma (D - D(\epsilon ))\leq \frac {\epsilon _0-c}{4Y}$


$c>0$


$\Delta x>0$


\begin {equation}W_2^2(f_{\bm {x}}, f_{\tilde {\bm {x}}})<c,\,\, \forall \|\bm {x} - \tilde {\bm {x}}\|<\sqrt {d}\Delta x,\,\, \bm {x}, \tilde {\bm {x}}\in D. \label {Xeqn123-F.1}\end {equation}


$X:= \{\bm {x}_i\}_{i=1}^K$


$D$


$\Delta x$


$D\subseteq \cup _{i=1}^K\otimes _{j=1}^d[x_i^j, x_i^j+\Delta \bm {x})$


$\otimes _{j=1}^d[x_{i_1}^j, x_{i_1}^j+\Delta \bm {x})\cap \otimes _{j=1}^d[x_{i_2}^j, x_{i_2}^j+\Delta \bm {x})=\emptyset $


$i_1\neq i_2$


$\forall \bm {x}\in D$


$\bm {x}_i\in X$


$|\bm {x}-\bm {x}_i|\leq \sqrt {d}\Delta x$


$\Phi (x)$


$-M=h_{i, 0}<h_{i, 1}<{\ldots }<h_{i, s}=M$


\begin {align}&\Phi (\added {h}_{i, r+1}) - \Phi (\added {h}_{i, r})=p_{i, r+1}, r=\added {1},{\ldots },s-2,\,\, \Phi (h_{i, 1}) = p_{i, 1},\,\nonumber \\&\Phi (h_{i, s-1}) = 1 - p_{i, s}, \label {Xeqn124-F.2}\end {align}


$p_{i, r}:= p_r(\bm {x}_i)$


$n_i^3, i=1,{\ldots }, K$


$\bm {x}_i\in X$


$\bm {x}_i = (x_{i}^1,{\ldots },x_{i}^d)$


$n_i^3\in [0, 1]$


$n_i^3 = 1$


$\bm {x}=(x^1,{\ldots },x^d)\in \otimes _{j=1}^d [x_{i}^j+\epsilon , x_{i}^j+\Delta x-\epsilon ]$


$n_i^3 = 0$


$\bm {x}\in D- \otimes _{j=1}^d [x_{i}^j, x_{i}^j+\Delta x]$


$\epsilon >0$


$j=1, {\ldots }, d$


$x^j< x_{i}^j$


$x^j> x_{i}^j+\Delta x$


$n_i^3=0$


$\bm {x}\in D$


$i$


$n_i^3=1$


$K(s+1)$


$(i, r), i=1,{\ldots },K, r=0,{\ldots },s$


\begin {equation}n_{i, r}^4 = \text {ReLU}(\tilde {w}_i^3n_i^3 - h_{i, r}-M_0), \tilde {n}_{i, r}^4 = \text {ReLU}(\tilde {w}_i^3n_i^3 - h_{i, r} - \epsilon _0-M_0). \label {Xeqn125-F.3}\end {equation}


$\tilde {w}_i^3\sim \mathcal {N}(M_0, 1)$


$M_0>|h_{i, r}|, \forall i, r$


$\epsilon _0>0$


$\epsilon _0<\min _{i, r}\frac {h_{i, r+1}-h_{i, r}}{2}$


$M_0$


$\epsilon _0$


$sK$


$(i, r)$


\begin {equation}n_{i, r+1}^5 = \text {ReLU}\left (\epsilon _0^{-1}\left (n_{i, r}^4 - \tilde {n}_{i, r}^4 - \left (n_{i, r+1}^4 - \tilde {n}_{i, r+1}^4\right )\right )\right ),\,\, r=0,{\ldots },s-1. \label {Xeqn126-F.4}\end {equation}


$n_i^3=1$


$r=0,{\ldots },s-1$


\begin {equation}\begin {aligned} &n_{i, r+1}^5=1, \omega _i^3\in [M_0+h_{i, r}+\epsilon _0, M_0+h_{i, r+1}],\\ &n_{i, r+1}^5=0, \omega _i^3<M_0+h_{i, r}~ \text {or}~ \omega _i^3>M_0+h_{i, r+1}+\epsilon _0,\\ &n_{i, r+1}^5\in (0, 1), \text {otherwise}; \end {aligned} \label {Xeqn127-F.5}\end {equation}


$n_{i}^3\in [0, 1]$


\begin {equation}0\leq \sum _{r=1}^s n_{i, r}^5\leq 1, \label {Xeqn128-F.6}\end {equation}


$n_{i, s}^5, n_{i+1, s}^5>0$


$(n_{i, 1}^5,{\ldots },n_{i, s}^5)$


$\epsilon _1>0$


$\epsilon _0> 0$


$M_0>0$


$n_i^3=1$


\begin {equation}0\leq p_{i, r} - \hat {p}_{i, r} \leq \frac {\epsilon _1}{s},\,\, \hat {p}_{i, r}:= p(n_{i, r}^5=1),\,\, i=1,{\ldots },K. \label {Xeqn129-F.7}\end {equation}


$sKd'$


\begin {equation}n_{i, r, k}^6 = n_{i, r}^5(w_{i, r, k} + (A_{i, r}^{-1}\bm {b}_{i, r})_k), i=1,{\ldots },K, r=1,{\ldots },s, k=1,{\ldots },d'. \label {Xeqn130-F.8}\end {equation}


$w_{i, r, k}\sim \mathcal {N}(0, 1)$


$\bm {b}_{i, s}$


$A_{i, s}$


\begin {equation}f_{\bm {x}_i}(\bm {y}) = \sum _{r=1}^sp_r(\bm {x}_i)\mathcal {N}\left (\bm {b}_{i, r}, A_{i, r}^TA_{i, r}\right ). \label {Xeqn131-F.9}\end {equation}


$d'$


\begin {equation}\sum _{i=1}^K\sum _{r=1}^s n_{i, r}^5(A_{i, r}\bm {w}_{i, r} + \bm {b}_{i, r}), \label {Xeqn132-F.10}\end {equation}


$\bm {w}_{i, r}:= (w_{i, r, 1},{\ldots },w_{i, r, d'})$


$\bm {x}\in D(\epsilon ):= \{x\in D: \exists ! i, n_i^3=1\}$


$n_i^3=1$


\begin {equation}\sum _{r=1}^s \hat {p}_{i, r}\mathcal {N}\left (\bm {b}_{i, r}, A_{i, r}^TA_{i, r}\right ) + p_i(\bm {y}), \,\, \int _{\mathbb {R}^{d'}} p_i(\bm {y}){\mathrm {d}}\bm {y}:= 1-\sum _{r=1}^s \hat {p}_{i, r}\leq \epsilon _1, \,\, p_i(\bm {y})\geq 0. \label {Xeqn133-F.11}\end {equation}


$n_{i, s}^5, n_{i+1, s}^5>0$


\begin {equation}\begin {aligned} \int _{\mathbb {R}^{d'}} \|\bm {y}\|^2p_i(\bm {y}){\mathrm {d}}\bm {y}&\leq \int _{\mathbb {R}^{d'}}p_i(\bm {y}){\mathrm {d}}\bm {y}\cdot \Big (2\max _{i, r}\E _{\bm {y}\sim \mathcal {N}(\bm {b}_{i, r}, A_{i, r}^TA_{i, r}) }[\|\bm {y}\|^2] \\ &\quad + 2\max _{i, r}\E _{\bm {y}\sim \mathcal {N}(\bm {b}_{i, r}, A_{i, r}^TA_{i, r}) }[\|\bm {y}\|^2]\Big )\\ &=(1 - \sum _{r=1}^s\hat {p}_{i, r})4\max _{r}\left (\|\bm {b}_{i, r}\|^2+\|A_{i, r}^TA_{i, r}\|_F^2\right )\\ &\leq 4\epsilon _1 \max _{r}\left (\|\bm {b}_{i, r}\|^2+\|A_{i, r}^TA_{i, r}\|_F^2\right ). \end {aligned} \label {Xeqn134-F.12}\end {equation}


\begin {align}W_2^2(\hat {f}_{\bm {x}}, f_{\bm {x}_i})&\leq 2 \max _r\frac {\epsilon _1}{s}\cdot s\left (\|A_{i, r}^TA_{i, r}\|_F^2 +\|\bm {b}_{i, r}\|^2\right )\nonumber \\&\quad + 4\epsilon _1\max _r\left (\|\bm {b}_{i, r}\|^2+\|A_{i, r}^TA_{i, r}\|_F^2\right ), \label {6epsilon}\end {align}


$\bm {x}\in D^i(\epsilon ):= \{\bm {x}\in D(\epsilon )|\|\bm {x}_i-\bm {x}\|\leq \|\bm {x}_j-\bm {x}\|, \forall j\neq i\}$


\begin {equation}\begin {aligned} &\quad \int _D W_2^2(f_{\bm {x}}, \hat {f}_{\bm {x}})\gamma ({\mathrm {d}}\bm {x}) \\&\leq \int _{D(\epsilon )}W_2^2(f_{\bm {x}}, \hat {f}_{\bm {x}})\gamma ({\mathrm {d}}\bm {x})\\ &\qquad +2(1 - \gamma (D(\epsilon ))\Big (\E [\|\bm {y}\|^2] + 4\sup _{i, r}\big (\|A_{i, r}^TA_{i, r}\|_F^2 + \|\bm {b}_{i, r}\|^2]\big )\Big )\\ &\quad \leq 2\sum _i\int _{ D^i(\epsilon )}W_2^2(\hat {f}_{\bm {x}}, f_{\bm {x}_i})\gamma ({\mathrm {d}}\bm {x}) +2\sum _i\int _{D^i(\epsilon )}c\gamma ({\mathrm {d}}\bm {x}) \\ &\qquad + 2(1-\gamma (D(\epsilon ))\Big (\E [\|\bm {y}\|^2] + 4\sup _{i, r}(\|A_{i, r}^TA_{i, r}\|_F^2 + \|\bm {b}_{i, r}\|^2])\Big )\\ &\quad \leq 2\sup _{i, r}\Big (6\epsilon _1\big (\|A_{i, r}^TA_{i, r}\|_F^2 + \|\bm {b}_{i, r}\|^2\big )\Big ) + 2c \\ & \qquad + 2(1-\gamma (D(\epsilon ))\Big (\E [\|\bm {y}\|^2] + 4\sup _{i, r}(\|A_{i, r}^TA_{i, r}\|_F^2 + \|\bm {b}_{i, r}\|^2])\Big ). \end {aligned} \label {col3:result}\end {equation}


$\sup _{i, r}(\|A_{i, r}^TA_{i, r}\|_F^2+ \|\bm {b}_{i, r}\|^2)$


$c, \epsilon , \epsilon _1\rightarrow 0^+$


$\sigma $


\begin {equation}f_{\sigma ^2}(\bm {y}):= \int _{\mathbb {R}^{d'}}f(\bm {y}')\mathcal {N}(\bm {y}-\bm {y}';\sigma ^2 I_{d'\times d'}){\mathrm {d}}\bm {y}'. \label {Xeqn137-G.1}\end {equation}


$f$


$\forall \epsilon _0>0$


$\delta >0$


$\sigma _0>0$


$\sigma <\sigma _0$


$|f(\bm {y})-f(\tilde {\bm {y}})|<\epsilon _0, \forall \|\tilde {\bm {y}}-\bm {y}\|<\delta $


\begin {equation}\int _{B(0, \delta )} \mathcal {N}(\bm {y}; \sigma ^2I_{d'\times d'}){\mathrm {d}}\bm {y}>1-\epsilon _0. \label {Xeqn138-G.2}\end {equation}


$\lim _{\sigma \rightarrow 0}f_{\sigma ^2}(\deleted {\bm {x}}\added {\bm {y}})=f(\deleted {\bm {x}}\added {\bm {y}})$


$\mathbb {R}^{d'}$


$\{\bm {y}_j\}_{j=1}^{(n_0+1)^{d'}}$


$\{w_j\}_{j=1}^{(n_0+1)^{d'}}$


$\mathbb {R}^{d'}$


\begin {align}&\int _{\mathbb {R}^{d'}} \mathcal {I}_{n_0}f(\bm {y}')\cdot \mathcal {I}_{n_0}\mathcal {N}(\bm {y}-\bm {y}';\sigma ^2I_{d'\times d'}){\mathrm {d}}\bm {y}'\nonumber \\ &\quad = \sum _{i=1}^{(n_0+1)^{d'}}f(\bm {y}_i)\mathcal {N}(\bm {y}-\bm {y}_i;\sigma ^2I_{d'\times d'})w_i. \label {inter:polate}\end {align}


$\mathcal {I}_{n_0}$


\begin {equation}f(\bm {y}_j) = \mathcal {I}_{n_0}f(\bm {y_j})\in P_{n_0},\,\, j=1,{\ldots },(n_0+1)^{d'}, \label {Xeqn140-G.4}\end {equation}


$P_{n_0}$


$\hat {\mathcal {H}}_{\bm {n}}(\bm {y})$


$|\bm {n}|_{\infty }\leq n_0$


\begin {equation}\hat {\mathcal {H}}_{\bm {n}}(\bm {y}):= \prod _{i=1}^{d'}\hat {\mathcal {H}}_{n_i}(y_i),\,\, \bm {n}=(n_1,{\ldots },n_{d'}),\,\, \bm {y}=(y_1,{\ldots },y_{d'}) \label {Xeqn141-G.5}\end {equation}


$\hat {\mathcal {H}}_{n_i}$


$n_i$


\begin {equation}\begin {aligned} f_{\sigma ^2, n_0}(\bm {y})&:= \sum _{i=1}^{(n_0+1)^{d'}}f(\bm {y}_i)\cdot \mathcal {N}(\bm {y}-\bm {y}_i;\sigma ^2I_{d'\times d'})w_i\\ &\quad =\int _{\mathbb {R}^{d'}} \mathcal {I}_{n_0}f(\bm {y}')\cdot \mathcal {I}_{n_0}\mathcal {N}(\bm {y}-\bm {y}';\sigma ^2I_{d'\times d'})\text {d}\bm {y}', \end {aligned} \label {Xeqn142-G.6}\end {equation}


$f_{\sigma ^2, n_0}$


$w_j>0$


\begin {align}&\Big |\int _{\mathbb {R}^{d'}} f(\bm {y}')\mathcal {N}(\bm {y}-\bm {y}';\sigma ^2I_{d'\times d'}) - \mathcal {I}_{n_0}f(\bm {y}')\mathcal {I}_{n_0}\mathcal {N}(\bm {y}-\bm {y}';\sigma ^2I_{d'\times d'})\text {d}\bm {y}'\Big |\notag \\ &\quad \leq \|f-\mathcal {I}_{n_0}f\|_{L^2}\cdot \|\mathcal {N}(\bm {y}-\bm {y}';\sigma ^2I_{d'\times d'})\|_{L^2} \notag \\ &\qquad + \|\mathcal {I}_{n_0}f\|_{L^2}\cdot \|\mathcal {N}(\bm {y}-\bm {y}';\sigma ^2I_{d'\times d'})-\mathcal {I}_{n_0}\mathcal {N}(\bm {y}-\bm {y}';\sigma ^2I_{d'\times d'})\|_{L^2}. \label {error:inter}\end {align}


\begin {equation}\begin {aligned} \|f - \mathcal {I}_{n_0}f\|&\leq \| f - \mathcal {I}_{n_0}^1f \|_{L^2} + \|\mathcal {I}_{n_0}^2\circ {\ldots }\circ \mathcal {I}_{n_0}^{d'}f - f\|_{L^2} \\ &\quad \quad + \|(\mathcal {I}_{n_0}^1-\mathbb {I}) \circ ( \mathcal {I}_{n_0}^2\circ {\ldots }\circ \mathcal {I}_{n_0}^{d'}f - f)\|_{L^2},\\ &\leq Cn_0^{-\frac {1}{3}}\|\partial _{y_1}f\|_{L^2} + \|\mathcal {I}_{n_0}^2\circ {\ldots }\circ \mathcal {I}_{n_0}^{d'}f - f\|_{L^2} \\ &\quad \quad + \| \mathcal {I}_{n_0}^2\circ {\ldots }\circ (\mathcal {I}_{n_0}^1-\mathbb {I})(\mathcal {I}_{n_0}^{d'}f - f)\|_{L^2},\\ & \leq Cn_0^{-\frac {1}{3}}\|\partial _{y_1}f\|_{L^2} + \|\mathcal {I}_{n_0}^2\circ {\ldots }\circ \mathcal {I}_{n_0}^{d'}f - f\|_{L^2} \\ &\quad \quad + Cn_0^{-\frac {1}{3}}\| (\mathcal {I}_{n_0}^2\circ {\ldots }\circ \mathcal {I}_{n_0}^{d'}\partial _{y_1}{f} -\partial _{y_1}{f}\|_{L^2}\\ &\leq {\ldots }\\ &\leq C{n_0}^{-\frac {1}{3}}| {f}|_{\text {mix}} \end {aligned} \label {mixf}\end {equation}


$C$


$n_0$


$C{n_0}^{-\frac {1}{3}}<1$


$\mathbb {I}$


$\mathcal {I}_{n_0}^i, i=1,\ldots ,d'$


$i{\text {th}}$


$X_{n_0}:= \{y_i\}_{i=0}^{n_0}$


\begin {equation}\mathcal {I}_{n_0}^if(\bm {y}) = f(\bm {y}), \,\,\forall \bm {y}=(y_1,{\ldots },y_{d'})~\text {if}~ y_i \in X_{n_0}. \label {Xeqn145-G.9}\end {equation}


$\bm {y}\in \mathbb {R}^{d'}$


\begin {align}& \|\mathcal {N}(\bm {y}-\bm {y}';\sigma ^2I_{d'\times d' }) - \mathcal {I}_{n_0}\mathcal {N}(\bm {y}-\bm {y}';\sigma ^2I_{d'\times d' })\|_{L^2}\nonumber \\ &\quad \leq \sum _{|\bm {n}|_0\leq n_0}Cn_0^{-\frac {1}{3}}\|\partial _{\bm {n}} \mathcal {N}\|_{L^2}. \label {mixn}\end {align}


$\bm {y}$


$\sigma >0$


$n_0\rightarrow \infty $


\begin {equation}\begin {aligned} &\Big |\sum _{i=1}^{(n_0+1)^{d'}} f(\bm {y}_j)\mathcal {N}(\bm {y}-\bm {y}_j;\sigma ^2I_{d'\times d'})w_j- \int _{\mathbb {R}^{d'}} f(\bm {y}')\mathcal {N}(\bm {y}-\bm {y}';\sigma ^2I_{d'\times d'}){\mathrm {d}}\bm {y}'\Big |\\ &\hspace {0.2cm}\leq Cn_0^{-\frac {1}{3}}\Big (|f|_{\text {mix}}\|\mathcal {N}(\bm {y}, \sigma ^2I_{d'\times d'})\|_{L^2} + \big (\|f\|_{L^2} + Cn_0^{-\frac {1}{3}}|f|_{\text {mix}})|\big )\\&\hspace {0.2cm}\cdot |\mathcal {N}(\bm {y}, \sigma ^2I_{d' \times d'})|_{\text {mix}}\Big ), \end {aligned} \label {Xeqn147-G.11}\end {equation}


$\sigma >0$


\begin {align}f_{\sigma ^2, n_0}(\bm {y}) &= \sum _{i=1}^{(n_0+1)^{d'}} f(\bm {y}_i)\mathcal {N}(\bm {y}-\bm {y}_i;\sigma ^2I_{d'\times d'})w_i\nonumber \\&\rightarrow \int _{\mathbb {R}^{d'}} f(\bm {y}')\mathcal {N}(\bm {y}-\bm {y}';\sigma ^2I_{d'\times d'}){\mathrm {d}}\bm {y}' \label {convergence:n}\end {align}


$\bm {y}\in \mathbb {R}^{d'}$


$n_0\rightarrow \infty $


\begin {align}&\int _{\mathbb {R}^{d'}}\|\bm {y}\|^2 \sum _{i=1}^{(n_0+1)^{d'}}f(\bm {y}_i)w_i\mathcal {N}(\bm {y}-\bm {y}_i; \sigma ^2I_{d'\times d'}){\mathrm {d}}\bm {y}\notag \\ &\quad = \sum _{i=1}^{(n_0+1)^{d'}} f(\bm {y}_i)(|\bm {y}_i|^2+d'\sigma ^2)w_i\notag \\ &\quad = \sum _{i=1}^{(n_0+1)^{d'}} f(\bm {y}_j){(|\bm {y}_i|^2+d'\sigma ^2)}^2\frac {1}{|\bm {y}_i|^2+d'\sigma ^2}w_i\notag \\ &\quad =\int _{\mathbb {R}^{d'}} \mathcal {I}_{n_0}\big (f(\bm {y}){(\|\bm {y}\|^2+d'\sigma ^2)}^{2}\big )\cdot \mathcal {I}_{n_0}\left (\frac {1}{(\|\bm {y}\|^2+d'\sigma ^2)}\right ){\mathrm {d}}\bm {y}\notag \\ &\quad \leq \int _{\mathbb {R}^{d'}} f(\bm {y}){(\|\bm {y}\|^2+d'\sigma ^2)}^{2}\cdot \frac {1}{(\|\bm {y}\|^2+d'\sigma ^2)}{\mathrm {d}}\bm {y} \notag \\ &\quad \quad + \big \|(\mathcal {I}_{n_0}-\mathbb {I})\big (f(\bm {y}){(\|\bm {y}\|^2+d'\sigma ^2)}^2\big )\big \|_{L^2}\cdot \big \|\frac {1}{\|\bm {y}\|^2+d'\sigma ^2}\big \|_{L^2} \notag \\ & \quad \quad + \|\mathcal {I}_{n_0}\big (f(\bm {y}){(\|\bm {y}\|^2+d'\sigma ^2)}^2\big )\|_{L^2}\cdot \|(\mathbb {I}-\mathcal {I}_{n_0})\big (\frac {1}{\|\bm {y}\|^2+d'\sigma ^2}\big )\|_{L^2}\notag \\ &\quad \leq (\sum _{i, j=1}^{d'} 2C n_0^{-\frac {1}{3}}|f(\bm {y})y_i^2y_j^2|_{\text {mix}}+2C n_0^{-\frac {1}{3}}d'\sigma ^2\sum _{i=1}^{d'}|f(\bm {y})y_i^2|_{\text {mix}} \notag \\ &\quad \quad + C n_0^{-\frac {1}{3}}{(d')}^2\sigma ^4 |f|_{\text {mix}})\cdot \sigma ^{-\frac {1}{2}}C_1(d') \notag \\ &\quad \quad + \|\mathcal {I}_{n_0}\big (f(\bm {y}){(\bm {y}+d'\sigma ^2)}^{2}\big )\|_{L^2} \cdot Cn_0^{-\frac {1}{3}}\big |\frac {1}{\|\bm {y}\|^2+d'\sigma ^2}\big |_{\text {mix}} + \E [\|y\|^2] + d'\sigma ^2,\label {expectation:bound}\end {align}


$C_1(d')$


$d'$


\begin {equation}\begin {aligned} &\|\mathcal {I}_{n_0}\big (f(\bm {y}){(\|\bm {y}\|^2+d'\sigma ^2)}^2\big ) - f(\bm {y}){({\|\bm {y}\|}^{2}+d'\sigma ^2)}^2\|_{L^2} \\ &\quad \leq \sum _{i, j=1}^{d'} 2C n_0^{-\frac {1}{3}}|f(\bm {y})y_i^2y_j^2|_{\text {mix}}+2C n_0^{-\frac {1}{3}}d'\sigma ^2\sum _{i=1}^{d'}|f(\bm {y})y_i^2|_{\text {mix}} \\ &\qquad \, + C n_0^{-\frac {1}{3}}{(d')}^2\sigma ^4 |f|_{\text {mix}}\leq \infty , \end {aligned} \label {bounded}\end {equation}


\begin {equation}\int _{\mathbb {R}^{d'}}\|\bm {y}\|^2 \sum _{i=1}^{(n_0+1)^{d'}}f(\bm {y}_i)w_i\mathcal {N}(\bm {y}-\bm {y}_i; \sigma ^2){\mathrm {d}}\bm {y}<\infty . \label {Xeqn151-G.15}\end {equation}


$\|\mathcal {I}_{n_0}\big (f(\bm {y}){(\|\bm {y}\|^2+d'\sigma ^2)}^2\big )\|_{L^2}\rightarrow \|f(\bm {y}){(\|\bm {y}\|^2+d'\sigma ^2)}^2\|_{L^2}$


$n_0\rightarrow \infty $


\begin {equation}\tilde {f}_{\sigma ^2, n_0}(\bm {y}) := \frac {1}{\sum _{j=1}^{(n_0+1)^{d'}}f(\bm {y}_j)w_j}f_{\sigma ^2, n_0}(\bm {y}). \label {f:tilde:def}\end {equation}


$\int _{\mathbb {R}^{d'}}\tilde {f}_{\sigma ^2, n_0}(\bm {y}){\mathrm {d}}\bm {y} =1$


\begin {equation}\begin {aligned} &\big |\int _{\mathbb {R}^{d'}}f(\bm {y}){\mathrm {d}}\bm {y} - \sum _{i=1}^{(n_0+1)^{d'}}f(\bm {y}_i)w_i\big |= \int _{\mathbb {R}^{d'}} f - \mathcal {I}_{n_0}\sqrt {f}\cdot \mathcal {I}_{n_0}\sqrt {f}{\mathrm {d}}\bm {y}\\ &\quad \leq \|\sqrt {f}\|_{L^2}Cn_0^{-\frac {1}{3}}|\sqrt {f}|_{\text {mix}} + \|\mathcal {I}_{n_0}\sqrt {f}\|_{L^2}Cn_0^{-\frac {1}{3}}|\sqrt {f}|_{\text {mix}},\\ &\quad \leq Cn_0^{-\frac {1}{3}}|\sqrt {f}|_{\text {mix}}(2\|\sqrt {f}\|_{L^2} + Cn_0^{-\frac {1}{3}}|\sqrt {f}|_{\text {mix}}). \end {aligned} \label {Xeqn153-G.17}\end {equation}


\begin {equation}\sum _{i=1}^{n_0^{d'}}f(\bm {y}_i)w_i := 1 + n_0^{-\frac {1}{3}}c(\sqrt {f})\leq \infty , \label {Xeqn154-G.18}\end {equation}


$c(\sqrt {f})$


$|\sqrt {f}|_{\text {mix}}$


$\|\sqrt {f}\|_{L^2}=1$


$n_0$


$n_0^{-\frac {1}{3}}c(\sqrt {f})<\frac {1}{2}$


$\tilde {f}_{\sigma ^2, n_0}$


$\E _{\bm {y}\sim \tilde {f}_{\sigma ^2, n_0}}[\|\bm {y}\|^2]$


\begin {equation}\begin {aligned} \E _{\bm {y}\sim \tilde {f}_{\sigma ^2, n_0}}[\|\bm {y}\|^2]&\leq \frac {1}{1 - |c(f)|n_0^{-\frac {1}{3}}}\Big [ \E _{\bm {y}\sim f}[\|\bm {y}\|^2]+ d'\sigma ^2 \\ &\quad + n_0^{-\frac {1}{3}}(C_2(\sigma ; f)+\E _{\bm {y}\sim f}[\|\bm {y}\|^2]+1) \Big ]\\ & \leq \Big [ \E _{\bm {y}\sim f}[\|\bm {y}\|^2] + n_0^{-\frac {1}{3}}(C_2(\sigma ; f)+\E _{\bm {y}\sim f}[\|y\|^2]+1) + d'\sigma ^2\Big ] \\ &\quad + 2|c(\sqrt {f})|n_0^{-\frac {1}{3}}\Big [ \E _{\bm {y}\sim f}[\|\bm {y}\|^2] + n_0^{-\frac {1}{3}}(C_2(\sigma ; f)\\&\quad +\E _{\bm {y}\sim f}[\|\bm {y}\|^2]+1) + d'\sigma ^2\Big ]\\ & = \E [\|\bm {y}\|^2] +d'\sigma ^2+n_0^{-\frac {1}{3}}C_3(\sigma ; f), \end {aligned} \label {n:0:bound}\end {equation}
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$\sigma $
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$f, \sqrt {f}$


$\sigma $


\begin {equation}\begin {aligned} &\pi (f, \tilde {f}_{\sigma ^2, n_0})({\bm y}, {\hat {{\bm y}}}) := \min \big (f({\bm y}), \tilde {f}_{\sigma ^2, n_0}({\bm y})\big ) {\delta }({\bm y} - {\hat {{\bm y}}}) \\ &\quad + \frac {1}{A}\big (f({\bm y}) - \min (f, \tilde {f}_{\sigma ^2, n_0})({\bm y})\big )\cdot \big (\tilde {f}_{\sigma ^2, n_0}(\hat {{\bm y}}) - \min (f, \tilde {f}_{\sigma ^2, n_0})(\hat {{\bm y}})\big ),\\ &\text {if} \int _{\mathbb {R}^{d'}} \min (f({\bm y}), \tilde {f}_{\sigma ^2, n_0}({\bm y})){\mathrm {d}}{\bm y}<1,\\ &\pi (f, \tilde {f}_{\sigma ^2, n_0})({\bm y}, \hat {{\bm y}}) := f({\bm y})\delta ({{\bm y} - \hat {{\bm y}}}), \,\, \text {if} \int _{\mathbb {R}^{d'}} \min (f({\bm y}), \tilde {f}_{\sigma ^2, n_0}({\bm y})){\mathrm {d}}{\bm y}=1, \end {aligned} \label {Xeqn156-G.20}\end {equation}


$A := \int _{\mathbb {R}^{d'}} \min \big (f({\bm y}), \tilde {f}_{\sigma ^2, n_0}({\bm y})\big ){\mathrm {d}}{\bm y}$


$\delta $


$\pi (f, \tilde {f}_{\sigma ^2, n_0})$


$f({\bm y})$


$\tilde {f}_{\sigma ^2, n_0}({\bm y})$


\begin {equation}\begin {aligned} &\E _{({\bm y}, \hat {{\bm y}})\sim \pi (f, \tilde {f}_{\sigma ^2, n_0})}\big [\|{\bm y} - \hat {{\bm y}}\|^2\big ] \\ &\quad \leq 2 \int _{\mathbb {R}^{d'}} \|{\bm y}\|^2 (f({\bm y}) - \min (f({\bm y}), \tilde {f}_{\sigma ^2, n_0}({\bm y}))){\mathrm {d}}{\bm y} \\ &\qquad + 2 \int _{\mathbb {R}^{d'}} \|\hat {{\bm y}}\|^2 (\tilde {f}_{\sigma ^2, n_0}({\bm y}) - \min (f({\bm y}), \tilde {f}_{\sigma ^2, n_0}({\bm y}))){\mathrm {d}}{\bm y}\\ &\quad \leq 4\int _{\mathbb {R}^{d'}}\|{\bm y}\|^2|f({\bm y}) - \tilde {f}_{\sigma ^2, n_0}({\bm y})|{\mathrm {d}}{\bm y}. \end {aligned} \label {Xeqn157-G.21}\end {equation}


$\sigma >0$


$f_{\sigma ^2, n_0}\rightarrow f_{\sigma ^2}$


$n_0\rightarrow \infty $
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$\tilde {f}_{\sigma ^2, n_0}\rightarrow f_{\sigma ^2, n_0}$


$n_0\rightarrow \infty $


$\lim _{\sigma \rightarrow 0}f_{\sigma ^2}({\bm y})=f({\bm y})$


$\sigma \rightarrow 0$


${\bm y}\in \mathbb {R}^{d'}$


\begin {equation}\tilde {f}_{\sigma ^2, n_0(\sigma )}\rightarrow f \label {Xeqn158-G.22}\end {equation}


$\sigma \rightarrow 0$


$n_0(\sigma )\rightarrow \infty $


$\mathbb {R}^{d'}$


$\E _{{\bm y}\sim f}\|{\bm y}\|^2]<\infty $


$\E _{{\bm y}\sim \tilde {f}_{\sigma ^2, n_0(\sigma )}}[\|{\bm y}\|^2]\rightarrow \E _{{\bm y}\sim f}[\|{\bm y}\|^2] + d'\sigma ^2$


$n_0(\sigma )\rightarrow \infty $


$\epsilon >0$


$A\subseteq \mathbb {R}^{d'}$


$|\int _{A}\|{\bm y}\|^2f({\bm y}){\mathrm {d}}{\bm y} - \E _{{\bm y}\sim f}[\|{\bm y}\|^2]|<\epsilon $


$\sigma $


$n_0(\sigma )$


$d'\sigma ^2<\epsilon $


\begin {equation}\int _A \|{\bm y}\|^2\cdot |f({\bm y}) - \tilde {f}_{\sigma ^2, n_0(\sigma )}({\bm y})|{\mathrm {d}}{\bm y}\leq \epsilon . \label {Xeqn159-G.23}\end {equation}


\begin {equation}\begin {aligned} &\E _{({\bm y}, \hat {{\bm y}})\sim \pi (f, \tilde {f}_{\sigma ^2, n_0(\sigma )})}[\|{\bm y} - \hat {{\bm y}}\|^2] \leq 4\int _A \|{\bm y}\|^2|f({\bm y}) - \tilde {f}_{\sigma ^2, n_0(\sigma )}({\bm y})|{\mathrm {d}}{\bm y} \\ &\quad \quad + 4\int _{\mathbb {R}^{d'}-A}\|{\bm y}\|^2f({\bm y}){\mathrm {d}}{\bm y} + 4\int _{\mathbb {R}^{d'}-A}\|{\bm y}\|^2\tilde {f}_{\sigma ^2, n_0(\sigma )}({\bm y}){\mathrm {d}}{\bm y}\\ &\quad \leq 4\epsilon + 4\epsilon + 4 \Bigg (\E _{{\bm y}\sim f}[\|{\bm y}\|^2] + d'\sigma ^2 + n_0(\sigma )^{-\frac {1}{3}}C_3(\sigma ; f)\\&\quad \quad \quad -\left (\int _A\|{\bm y}\|^2f({\bm y}){\mathrm {d}}{\bm y}-\epsilon \right )\Bigg )\\ &\quad \quad \leq 16\epsilon + 4d'\sigma ^2 + 4n_0(\sigma )^{-\frac {1}{3}}C_3(\sigma ; f)\leq 24\epsilon , \end {aligned} \label {Xeqn160-G.24}\end {equation}


$n_0(\sigma )$


$n_0(\sigma )^{-\frac {1}{3}}C_3(\sigma ; f)\leq \epsilon $


\begin {equation}\tilde {f}_{\sigma ^2, n_0(\sigma )}({\bm y}) = \sum _{i=1}^{(n_0(\sigma )+1)^{d'}}\frac {f({\bm y}_i)w_i}{\sum _{j=1}^{(n_0(\sigma )+1)^{d'}}f({\bm y}_j)w_j}\cdot \mathcal {N}({\bm y}-{\bm y}_i;\sigma ^2I_{d'\times d'}), \label {Xeqn161-G.25}\end {equation}


${\bm y}_{{\bm x}}\sim f_{{\bm x}}, {\bm y}\in \mathbb {R}^{d'}$


${\bm x}\in D\subseteq \mathbb {R}^d, {\bm x}\sim \gamma (\cdot )$


$f_{{\bm x}}$


$\epsilon $


$\Delta x$


$W_2^2(f_{{\bm x}}, f_{\tilde {{\bm x}}})\leq \epsilon , \,\,\forall {\bm x}, \tilde {{\bm x}}\in D, \|{\bm x}-\tilde {{\bm x}}\|\leq \Delta x$


$\bm x$


$f_{{\bm x}}$


$\epsilon >0$


$\Delta x>0$


$W_2^2(f_{{\bm x}}, f_{\tilde {{\bm x}}})<\frac {\epsilon }{4}$


$\|{\bm x}-\tilde {{\bm x}}\|\leq \sqrt {d}\Delta x, \forall {\bm x}\, \tilde {{\bm x}}\in D$


$X:= \{{\bm x}_i\}_{i=1}^K$


$\Delta {\bm x}$


$D\subseteq \cup _{i=1}^K\otimes _{j=1}^d[x_i^j, x_i^j+\Delta {\bm x})$


$\otimes _{j=1}^d[x_{i_1}^j, x_{i_1}^j+\Delta {\bm x})\cap \otimes _{j=1}^d[x_{i_2}^j, x_{i_2}^j+\Delta {\bm x})=\emptyset $


$i_1\neq i_2$


${\bm x}\in D$


${\bm x}_i\in X$


$W_2^2(f_{{\bm x}}, f_{{\bm x}_i})<\frac {\epsilon }{4}$


${\bm x}_i=(x_i^1,{\ldots },x_i^d)\in X$


\begin {equation}\tilde {f}_{n_{0, i}, \sigma _i^2}({\bm y}_{{\bm x}_i}) = \sum _{r=1}^{n_{0, i}}p_{i, r}\mathcal {N}\left ({\bm y}_{\bm {x}_i}-{\bm b}_{i, r}, A_{i, r}^TA_{i, r}\right ), \,\,\sum _{r=1}^{n_{0, i}}p_{i, r}=1, \label {Xeqn162-H.1}\end {equation}


$W_2^2(f_{{\bm x}_i}, \tilde {f}_{n_{0, i}, \sigma _i^2})< \frac {\epsilon }{4}, i=1,{\ldots },K$


$n_0:= \max _{1\leq i\leq K}n_{0, i}$


\begin {equation}\begin {aligned} f_{n_{0}, \sigma _i^2}({\bm y}_{{\bm x}_i}) &= \sum _{r=1}^{n_{0, i}-1}p_{i, r}\mathcal {N}\left ({\bm y}_{\bm {x}_i} - {\bm b}_{i, r}, A_{i, r}^TA_{i, r}\right ) \\ &\quad + \sum _{r=n_{0, i}}^{n_0}\tfrac {p_{i, n_{0, i}}}{n_0-n_{0, i}+1}\mathcal {N}\left ({\bm y}_{\bm {x}_i} - {\bm b}_{i, n_{0, i}}, A_{i, n_{0, i}}^TA_{i, n_{0, i}}\right ). \end {aligned} \label {f:def1}\end {equation}


$W_2^2(f_{{\bm x}_i}, f_{n_{0, i}, \sigma _i^2})< \frac {\epsilon }{4}, i=1,{\ldots },K$


$f_{n_{0, i}, \sigma _i^2}$


$W_2^2(f_{{\bm x}_i}, f_{n_{0, i}, \sigma _i^2}) = W_2^2(\tilde {f}_{{\bm x}_i}, f_{n_{0, i}, \sigma _i^2})$


$\tilde {{\bm y}}_{{\bm x}}$


$\tilde {f}_{{\bm x}}, {\bm x}\in D$


\begin {equation}\tilde {f}_{{\bm x}} = f_{n_{0}, \sigma ^2_i}, \,\, \text {if}\,\,{\bm x}\in D\cap \otimes _{j=1}^d[x_i^j, x_i^j+\Delta {\bm x}). \label {Xeqn164-H.3}\end {equation}


\begin {align}\int _D W_2^2(\tilde {f}_{{\bm x}}, f_{{\bm x}})\gamma ({\mathrm {d}}{\bm x})&< \sum _{i=1}^K\int _{D\cap \otimes [x_i^j, x_i^j+\Delta x]} 2 \big (W_2^2(\tilde {f}_{{\bm x}}, f_{{\bm x}_i})\nonumber \\ &\quad + W_2^2(f_{{\bm x}}, f_{{\bm x}_i})\big )\gamma ({\mathrm {d}}{\bm x})=\epsilon . \label {Xeqn165-H.4}\end {align}


\begin {equation}Y(\epsilon , X):= \sup _{i=1,{\ldots },K , s=1,{\ldots },n_{0}} \left (\|{\bm b}_{i, s}\|^2 + \|A^T_{i, s}A_{i, s}\|_F^2\right ), \label {Y:epsilon}\end {equation}
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$A^T_{i, s}A_{i, s}$


$\epsilon _1>0$


\begin {equation}D(\epsilon _1) := D\cap \big (\cup _{i=1}^K\otimes _{j=1}^d [x_{i}^{j}, x_{i}^{j}+\Delta x-\epsilon _1]\big ) \label {Xeqn167-H.6}\end {equation}


$\gamma (D - D(\epsilon _1)):= \int _{D - D(\epsilon _1)}1\gamma ({\mathrm {d}}{\bm x}) \leq \epsilon $


$\hat {f}_{{\bm x}}$


\begin {equation}\begin {aligned} &W_2^2(\hat {f}_{{\bm x}}, \tilde {f}_{{\bm x}_i})\leq 6\epsilon Y(\epsilon , X),\,\, {\bm x}\in D^i(\epsilon _1):= \{{\bm x}\in D(\epsilon _1)|\|{\bm x}_i-{\bm x}\|\leq \|{\bm x}_j-{\bm x}\|\}\\ &W_2^2(\hat {f}_{{\bm x}}, f_{{\bm x}_i}) \leq 2\max _i\E _{{\bm y}_{{\bm x}}\sim f_{n_{0}, \sigma _i^2}}[\|{\bm y}_{{\bm x}}\|^2] + 2 \E _{{\bm y}_{{\bm x}}\sim \hat {f}_{{\bm x}}}[\|{\bm y}_{{\bm x}}\|^2]\\ &\qquad \qquad \quad \leq 10\max _i\E _{{\bm y}_{{\bm x}}\sim f_{n_{0}, \sigma _i^2}}[\|{\bm y}_{{\bm x}}\|^2]\leq 10Y(\epsilon , X),\,\, x\notin D(\epsilon _1). \end {aligned} \label {Xeqn168-H.7}\end {equation}


\begin {equation}\begin {aligned} \int _D W_2^2(\hat {f}_{{\bm x}}, \tilde {f}_{{\bm x}})\gamma ({\mathrm {d}}{\bm x})&\leq \int _{D(\epsilon _1)}W_2^2(\hat {f}_{{\bm x}}, \tilde {f}_{{\bm x}})\gamma ({\mathrm {d}}{\bm x}) + \int _{D-D(\epsilon _1)}W_2^2(\hat {f}_{{\bm x}}, \tilde {f}_{{\bm x}}) \gamma ({\mathrm {d}}{\bm x})\\ &=6\epsilon Y(\epsilon , X) + 10\epsilon Y(\epsilon , X)=16\epsilon Y(\epsilon , X), \end {aligned} \label {Xeqn169-H.8}\end {equation}


\begin {align}\int _D W_2^2(\hat {f}_{{\bm x}}, f_{{\bm x}})\gamma ({\mathrm {d}}{\bm x})&\leq 2\int _D \big (W_2^2(\hat {f}_{{\bm x}}, \tilde {f}_{{\bm x}})+ W_2^2(\tilde {f}_{{\bm x}}, f_{{\bm x}})\big )\gamma ({\mathrm {d}}{\bm x})\nonumber \\ &\leq 32Y(\epsilon , X)\epsilon +2\epsilon . \label {Y:epsilon1}\end {align}
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\begin {align}&{\mathrm {d}} X_t = 0.05 {\mathrm {d}} t + \sigma _0\sqrt {|X_t|} {\mathrm {d}} B_t + \int _{U} \xi X_t{\mathrm {d}} \tilde {N}(\nu ({\mathrm {d}}\xi ){\mathrm {d}}{t}),\,\,\, t\in [0, 2],\nonumber \\ &\xi \sim \mathcal {N}(\beta _0, \sigma _1^2),\,\, X_0\sim \mathcal {N}(2, \sigma _2^2). \label {example4:model:appendix}\end {align}
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\begin {align}{\mathrm {d}} \hat {X}_t = 0.05 {\mathrm {d}} t + \hat {\sigma }(\hat {X}_t) {\mathrm {d}} \hat {B}_t + \int _{U} \hat {\xi } \hat {X}_t{\mathrm {d}} \hat {N}(\nu ({\mathrm {d}}\xi ){\mathrm {d}}{t}),\,\,\, t\in [0, 2], \,\, \hat {X}_0=X_0.\label {example4:model:appendix:approx}\end {align}
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advantage of both statistical methods and data-driven methods and pro-
vide more interpretable machine-learning tools.

The Wasserstein distance, which can effectively measure the discrep-
ancy between two probability distributions (Balasubramanian et al.,
2024; Panaretos & Zemel, 2019; Villani , 2009), was utilized for var-
ious uncertainty quantification (UQ) tasks. In (Bernton et al., 2019),
the Wasserstein distance was proposed to estimate model parameters
that govern a probabilistic model. Compared to empirical maximum
likelihood estimates, using the Wasserstein distance to estimate model
parameters in uncertainty models can be more efficient and accurate
(Blanchet & Kang, 2021). However, previous methods mainly focused
on point estimates of model parameters (inferring the exact values of the
parameters) and could not quantify the uncertainty in the model param-
eters, i.e., they cannot reconstruct a distribution of the model parame-
ters from data. Recently, a time-decoupled Wasserstein-2 (W,) distance
method, which compares the distributions of two stochastic processes
across different time points, has been revealed to be an efficient loss
function for reconstructing intrinsically noisy stochastic processes such
as pure-diffusion processes and jump-diffusion processes using parame-
terized neural networks (Xia et al., 2024a,b). Furthermore, in Xia and
Shen (2024), a local squared W, method, which adopts a “neighborhood
technique” to enlarge the amount of available data, was proposed to in-
fer the distribution of y given observed data x in the uncertainty model
y = f(x, w) where w are uncertain latent unobserved variables. However,
for the specific problem of inferring unknown parameters in determinis-
tic or stochastic dynamical models, these two methods are not suitable:
the time-decoupled W, distance method assumes that there is no uncer-
tainty in the underlying model (i.e., the ODE or SDE to be reconstructed
is fixed), and the local squared W, method is not directly applicable to
parameter inference problems. Two major difficulties arise: first, an effi-
cient model is required to approximate the distribution of parameters in
a dynamical system; second, it is necessary to distinguish uncertainty in
model parameters from uncertainty in the initial state of the dynamical
systems and intrinsic stochasticity in the dynamical system, such as the
Wiener process in SDEs.

In this work, we propose and analyze a local time-decoupled squared
W, method, which builds upon the time-decoupled squared W, method
(Xia et al., 2024Db) for efficiently reconstructing the underlying dynamics
from noisy time-series data and the local squared W, method (Xia &
Shen, 2024) for handling the uncertainty in the initial state. This in
turn is implemented to infer the distribution of model parameters in
deterministic or stochastic dynamical systems given a finite number of
observations. As an illustration, consider the following ODE:

dX(1;0) = f(X(1;0),1;0)dt, X € RY, €[0,T], X(0) ~ vg, 0 ~p, (1.1)

where 9 € R? is a continuous random variable representing uncertain
parameters in the ODE and f : R*1* — R?. v is a probability mea-
sure defined on the Borel c-algebra B(R?). For each realization of the
ODE (1.1), 6 is sampled independently. Thus, we obtain different tra-
jectories by solving the ODE (1.1) multiple times due to uncertainty in
model parameters. We use another ODE model as an approximation to
Eq. (1.1):

dX(t;0) = f(X(t;0),1;0)dt, X e R, 1 €[0,T], X(©0) = Xy, 0~ p. (1.2)

Here, 8 € R’ is another continuous random variable and denotes un-
certain parameters in the approximate ODE. We aim to construct the
probability density function f, i.e. the distribution of § € R?, such that
it can match y well in Eq. (1.1). Specifically, we show that minimizing
our proposed loss function can lead to efficient training of a stochastic
neural network (SNN) model with weight uncertainty.

SNNs are effective in uncertainty quantification, generative model-
ing, and time-series analysis (Gal & Ghahramani, 2016; Rezende et al.,
2014; Senan et al., 2017; Vadivel et al., 2020). Instead of deterministic
outputs, SNNs introduce randomness in the weights and/or biases (Blun-
dell et al., 2015; Yu et al., 2021) or utilize stochastic neurons whose out-
puts are binary (Tang & Salakhutdinov, 2013). Theoretical results exist
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for the approximation errors for certain types of SNNs, such as the ap-
proximation error of a single-layer SNN (Gonon et al., 2023) as well as
the universal approximation ability of dropout neural networks (Manita
et al., 2022). In this work, we prove that the SNN model we use can
serve as an effective model to approximate a general random field model
in the W, metric under moderate assumptions. Our result generalizes
the universal approximation ability property of deterministic multilayer
feedforward neural networks for approximating deterministic functions
(Hornik et al., 1989; Leshno et al., 1993) to SNNs for approximating
random fields. As a special case, when the input of the SNN is fixed,
we show that the output of the SNN can approximate any continuous
random variable under moderate assumptions, making it an ideal surro-
gate model for reconstructing the distribution of unknown parameters
in dynamical systems. Compared with traditional Bayesian methods, our
proposed approach has the advantage of not requiring any knowledge
or prior distributions of model parameters and directly reconstructing
model parameter distributions from time-series data. Compared to other
data-driven methods, such as Bayesian neural networks (Neal, 2012),
generative modeling methods (Bohm et al., 2019), and Wasserstein gen-
erative adversarial networks (WGANSs) that train a generator and a dis-
criminator (Arjovsky et al., 2017; Boukraichi et al., 2022), our method is
more physics-informed and provides more insights and interpretability
of the dynamical system. Our method directly outputs the distribution
of unknown parameters governing the dynamical system. Furthermore,
our method does not require deep neural networks and we shall show
that shallow SNNs with hundreds of neurons are capable of reconstruct-
ing the joint distribution of several model parameters when inputting
only a few hundred trajectories as training data.
The main contributions of our work are as follows:

* We propose and analyze a local time-decoupled squared W, method
for the direct reconstruction of model parameters in specific dynami-
cal systems including ODEs, SDEs, and PDEs from time-series or spa-
tiotemporal data. Our method takes into account both uncertainties
in the initial state as well as intrinsic fluctuations, e.g Wiener pro-
cesses, of the dynamical system when reconstructing model param-
eters.

e We analyze an SNN model whose weights are sampled from inde-
pendent normal distributions. We prove that this SNN model can ap-
proximate any multidimensional continuous random variable under
moderate assumptions. Furthermore, this SNN model can be trained
by direct minimization of our local time-decoupled squared W, loss
function.

e Through numerical experiments, we showcase the effectiveness of
our proposed method for reconstructing the distribution of model pa-
rameters in several deterministic and stochastic dynamical systems.

The structure of this paper is as follows. In Section 2, we analyze a
local time-decoupled squared W, loss function for reconstructing model
parameters in dynamical systems. In Section 3, we prove that an SNN
model can approximate a continuous random variable in the squared
W, sense, which makes this SNN model an ideal approximate model
for reconstructing the distribution of uncertain parameters in dynamical
systems. In Section 4, we carry out numerical experiments and showcase
the effectiveness of training the SNN model by minimizing our proposed
local function on the reconstruction of uncertain model parameters in
different dynamical systems. In Section 5, we summarize our results and
propose potential future research directions.

2. Alocal time-decoupled squared W, loss function

In this section, we propose and analyze a local time-decoupled
squared W, method for reconstructing the distribution of uncertain
parameters in specific dynamical systems. Our local time-decoupled
squared W, method integrates the time-decoupled squared W,-distance
method proposed in Xia et al. (2024a,b) and the local squared W,-
distance method in Xia and Shen (2024). Therefore, both intrinsic
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fluctuations in the dynamical systems and uncertainties in the initial
condition can be taken into account. First, we introduce the W, dis-
tance between distributions associated with two multidimensional ran-
dom variables.

Definition 2.1. For two d-dimensional random variables

=Xp ... X)), X=X,,...%,) e R4 2.1)

with associated probability measures v, ¥, respectively, the W,-distance
W, (v, V) between their probability measures is defined as

1
Wav,9) := inf Eix g)n(u9) [I1x — X%]2. 2.2)

In Eq. (2.2) and throughout this paper, the norm || - || denotes the I> norm
1

of a vector: || X|| := ( Zle(X,»)z) z, 7(v,V) is a coupling probability mea-

sure which iterates over all coupled distributions of X (t), X@), defined by the
condition:

{P,,(W)(A x R?) = P,(A),

d
P (RY x A) = Pi(A). VA € B(RY), (2.3)

4
where B(R?) denotes the Borel o-algebra associated with the space of d-
dimensional functions in R9.

Next, we define the local squared W, distance for the probability
measures associated with the trajectories of two dynamical systems,
which builds upon the local squared W, distance introduced in Xia and
Shen (2024).

Definition 2.2. The local squared W, distance between the probability
measures associated with two dynamical systems { X (1)},c(011, (X)) 1€l0.T]
at a specific time t is defined by:

W2 (X(). X)) 1= /R (g, 5055 506X (2.4)

Here, e( -) is the empirical distribution of the initial condition for X(t) and
X@). v s and ¥/ (t) are the empirical conditional probability distri-
butions of X(1) and X (t) at time t conditioned on || X(0) — X,|| <6 and
11X (0) — Xl < 8 for a given initial state X, respectively.

Now, we define the local time-decoupled squared W, distance be-
tween the probability measures associated with trajectories of two dy-
namical systems.

Definition 2.3. Let0=1t, <t < ... <t, =T be atime discretization mesh
in [0, T']. The local time-decoupled squared W, distance between the dis-
tributions associated with two dynamical systems {X },c(0.1)> (X hepor at
time ¢ is defined by:

W“(X X): /0 W“(X(t) X(0)dt

= Z WX (1), XUty — 1), (2.5)
n—oo de(IH_l —t; )—»0
where W;:(X (1), X(t)) is the local squared W, distance in Definition 2.2.
Empirically, we use

WX, X) ~ Z WS (X (1), X (D)t gy — 1), (2.6)

as an approximation to Eq. (2.5) for numerically calculating the local time-
decoupled squared W, distance loss function. Under some technical condi-
tions, the approximation error of using the time-discretized RHS of Eq. (2.6)
to approximate the local time-decoupled squared W, distance loss function in
Eq. (2.5) is O(max"_ (1,4, — t;)) for ODEs and O(y/max"_ ! (1,4, —1;)) for
jump-diffusion processes, which will be analyzed in the proof of Theorem 2.1
for ODEs and in the proof of Corollary 2.1 for jump-diffusion processes, re-
spectively.
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The loss function Eq. (2.6) was also used to reconstruct the dy-
namics of an ODE using a parameterized neural network in Xia and
Shen (2024). Yet, there is no understanding of why minimizing the loss
function Eq. (2.6) leads to the successful reconstruction of the distribu-
tion of parameters underlying a dynamical system. Additionally, intrinsic
stochasticity, such as Wiener processes in stochastic dynamical systems,
was not considered in Xia and Shen (2024). In this section, we shall
show that: i) the local time-decoupled squared W, distance in Eq. (2.5)
is well-defined in several deterministic or stochastic dynamical systems
and ii) minimizing the loss function in Eq. (2.6) is a necessary condi-
tion for the reconstruction of the distribution of parameters in dynamical
systems.

First, we prove that the local time-decoupled squared W, distance is
well-defined in some typical dynamical systems including ODEs and cer-
tain SDEs. We can prove that the local squared W, distance between the
probability measures associated with {X},r and (X }tetor)> Which
are trajectories generated by solving the two ODEs (1.1) and (1.2), is
well-defined. In Eqs. (1.1), (1.2), and the models we study below, we
assume that the model parameters are independent of the initial condi-
tion, e.g., in Eqs. (1.1), (1.2) 6 is independent of X(0) and @ is indepen-
dent of X(0).

Theorem 2.1. Suppose

sup [ XOI* < X,
X(0).0.

sup [IX(|* < X 2.7)
X(0),0,1
are uniformly bounded, where X (t) and X (1) are solutions to the ODEs (1.1)
and (1.2), respectively. Furthermore, we assume that f is continuous and
uniformly bounded. Then, the limit

2 WESX (@), R gy = 1) (2.8)

im
max(t;y—t;)—0 pr
on the RHS of Eq. (2.5) exists.

We provide a proof of Theorem 2.1 in Appendix A, which is similar
to the proof of Theorem 3.1 in Xia et al. (2024a). Theorem 2.1 can be
extended to reveal that the local time-decoupled squared W, distance
between probability measures associated with two noisy jump-diffusion
processes is also well-defined. We can prove the following corollary.

Corollary 2.1. Consider the following two d-dimensional jump-diffusion
processes:

dX (1) = f(X(1),t;0)dt + 6(X(¥),1;0)dB,

- (2.9)
+/ BX (), &, 1;0)N(d1,7(dE)), X(0) ~ v
U

and

dX () = f(X@),1;0)dt + 6(X (1), 1;0)dB,

R N . (2.10)
+/Uﬁ(X(f)a§J;9)N(dl‘,3’(d§)), X(0) = X(0).
In Eq. (2.9), f : R+ R4 and 6 : R+ - R denote the drift
and diffusion functions of the SDE, respectively; v, is a probability mea-
sure defined on the Borel c-algebra B(R?); B(t) represents an m-dimensional
standard Brownian motion; N (dt,y(d&)) is a compensated Poisson process
independent of B, defined as follows:

N(dr,y(d&)) 1= N(dr, y(d&)) — r(dé)dr,

where N(dt,y(d&)) is a Poisson process with intensity y(d&)dt, and y(d¢)
is a measure defined on U C R, the measure space of the Poisson process.
N(dt, y(d&)) is another compensated Poisson process of intensity y(d&)dr and
independent of B,, N, in Eq. (2.9) and B, in Eq. (2.10). 0,0 € R? are uncer-
tain model parameters. We assume that f, o, B are continuous and uniformly
bounded. Then

(2.11)

Z W“(X(t 2 XAy — 1)) (2.12)

1
mux(t,_H —1;)—0 o

W“(X X)



M. Xia et al.

exists. Furthermore,
n—

)Z WYX 1), XA = 1) = Wy s (X D)
i=

< 2(X + X)T max (\/F,-At+2,~ + B, +\/ FAt+ 5, + Bi>,
1

where At 1= max’f’:‘ol (tiy1 — 1), and v(t;) and (t;) are the probability mea-
sures of X(t;) and X(t,.), respectively. In Eq. (2.13),

(2.13)

[t &
F,:=supE / > f;(X(f),z—;e)dz],
LJ1; =1

Xo.0

N Mot & N N
F:=supE / > fg(X(m,t—;e)dt],

Xo.0 LJu o

ot 40

%, i=supE / > Y op (X, t‘;H)dt],

Xp0 LJy 5o
N litl . om A
£ 1=supE / I A () t‘;H)dt], 214

s 2.0,

>
=

ES
Y
I
<~
I

®
I
Z =
=] >
m
"\2. -
E
M=

ﬂg(X(z ), E 17 H)y(df;')dt]

M=

&
\_\

N Tiv1
B, :=supE /
Xo.0 !

1
X := sup E[IX(®]*17,
Xo.0,1

ﬁf(X(z ), E 17 B)y(d’g')dt]

Y
LK

X := sup E[IX@®)I*12
Xo.0.t

where f,(X(t7),1:6), 0, ,(X(17),1”
left-hand limits:

;0), and (X (17),&,17; 0) refer to the

Se(X (), 1750)

oy j(X(W),17:0) =

= lim_f,(X(5).5:0).

im0y (X (5),5:6), (2.15)

B (X(17),17,8:0) = lim f,(X(s),s5,&;0).
s—=1,5<t
The proof of Corollary 2.1 is in Appendix B Next, we show that the
local time-decoupled squared W, distance W (X X) in Definition 2.3
can be bounded by the squared W, dlstance between the two proba-
bility measures associated with the two sets of parameters 0 and § in
gs. (1.1) and (1.2), which implies the necessity of minimizing the lo-
cal time-decoupled squared W, distance WZZ.(’Se(X , X) if we wish to match

the distribution of 6 using the distribution of the reconstructed 4.

Theorem 2.2. Suppose the drift, diffusion, and jump functions in the two
jump-diffusion processes Egs. (2.9) and (2.10) satisfy the following Lipschitz
condition:

d
DX, 50) = f(X, 0] < CUIX = X[ + 1|6 - 6],
i=1
d

6, (X, 1;0)—0, (X,;0)| <CUX =X+ 16-6]D, j=1,...m
;| g i | <l Il +110 = 1. Jj 2.16)

d
Y IBX & 1:0) - (X, £.1:0)] < CUIX = X+ 116 - 6],

i=1

VX,X eR? V0,0 eR?, C < .

In Eq. (2.16), f; and p; denote the ith component of f and B, respectively,
and o, ; denotes the (i, j) element of the matrix ¢ in Eq. (2.9). Furthermore,
we assume that the assumptions in Corollary 2.1 hold and the sixth-order
moments

E[10]1°] < ©. EL0]1°1 < &g (2.17)

Neural Networks 193 (2026) 107893

are uniformly bounded. Then, W2 e(X X) can be bounded by the squared
W, distance W7 (u, fi):

[E[Wz%;se(x, X)] < 8CyT & exp(CT) + 1T exp(CyT)

[ (2.18)
X<WZZ(;4,;2)+2C3 [h(N#(XO,zS) ) ( 3+®g>]>,

where u and ji are the probability measures associated with 6 and 0, respec-
tively. In Eq. (2.18), C,, C,, C, are three constants, and

NI (log(1 + N) + 1), < 4,
h(N,£) =

, (2.19)
INTZ 2> 4

In Eq. (2.18), N*(X,;6) refers to the number of trajectories in the data set
such that their initial conditions satisfy || X (0) — X,|| < 8.

We prove Theorem 2.2 in Appendix C. Theorem 2.2 implies that min-
imizing the local time-decoupled squared W, distance VT/zz_('se is a neces-
sary condition if we wish to match the distribution of 6 with the dis-
tribution of §. In Eq. (2.18), there is a trade-off between the first term
and the third term on the RHS: if we increase 6, then the first term on
the RHS of Eq. (2.18) will increase but the factor A(N*#(X,;6); #) in the
last term will decrease. In (Xia & Shen, 2024), it is found that a § that
is too large may lead to systematic errors, while a § that is too small
is insufficient to quantify the uncertainty. The optimal choice of § is
problem-specific and also depends on the amount of available training
data, which may require some fine-tuning. When an appropriate 6 is cho-
sen, both the first and last terms on the RHS of Eq. (2.18) can be kept
small so that the expected local time-decoupled squared W, distance

W2 e(X X)] can be well controlled by W2(;4 ). In this case, minimiz-

ing [E[W2 e(X X)] is necessary to minimize Wz( u, ji), i.e., match the dis-

tributlon of 6 with the distribution of 4. On the other hand, in Eq. (2.19),
the rate of convergence when using the empirical probability measure

is 2N_% (log(1+ N)+1),¢ <4or N_%,zf’ > 4 as the number of observed
trajectories increases, which depends only on the dimensionality of the
parameter 0 instead of on the dimensionality of X(¢). Therefore, it is
harder to reconstruct the joint distribution of higher-dimensional un-
certain parameters due to a slower convergence rate when only finite
training trajectories are available.

ODEs can be regarded as special jump-diffusion processes whose
diffusion function and jump function are both 0. Thus, Theorem 2.2
can be applied to bound the time-decoupled local squared W, distance
between the distributions of trajectories of the two ODEs Egs. (1.1)
and (1.2) using the squared W, distance between the probability dis-
tributions of # and 4. Finally, Theorem 2.2 can also be generalized to
the cases of reconstructing parameters in spatiotemporal stochastic par-
tial differential equations (SPDEs). We provide an example of bounding
the local time-decoupled squared W, distance between solutions to a
parabolic SPDE associated with two different sets of model parameters in
Appendix D.

Finally, one can also take into account time discretization errors
using a time discretization scheme such as the Runge-Kutta scheme
for solving ODEs and the strong Itd-Taylor approximation (Kloeden &
Platen, 1992) for numerically solving SDEs. Specifically, for stiff prob-
lems, a detailed analysis of the numerical implementation is worth car-
rying out. Additionally, it is also possible to extend Theorem 2.2 to
more complicated spatiotemporal dynamics by replacing B, with more
complicated spatiotemporal cylindrical Brownian noise (Liu & Rockner,
2015) or considering spatiotemporal integrodifferential equations (Deng
et al., 2025). Such discussions require a more detailed analysis of SPDEs
and are thus beyond the scope of this paper.
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3. An SNN model for approximating the distribution of
continuous random variables

In this section, we analyze an SNN model used in Xia and Shen
(2024). We apply this SNN model to reconstruct the distribution of un-
known parameters for general dynamical systems. Specifically, we will
prove that this SNN model can approximate the probability distribu-
tion of any continuous multidimensional random variable under certain
technical assumptions in the W, distance sense, and the training of this
SNN can be done by direct minimization of the local time-decoupled
squared W, loss function Eq. (2.6) analyzed in Section 2. We sketch
the structure of the SNN with weight uncertainty in Fig. 1. All weights
in the neural networks {w; ;,} are sampled from independent normal
distributions with w; ; , ~ ./\/'(a,;j’k,o‘.z'j’k). The biases {b;, } for all i, k are
deterministic. The means and variances of the weights {q; ;}, {Gi%j,k}
and the biases {b;,} are optimized through training.

First, we prove that the SNN model in Fig. 1 can approximate any
continuous random variable whose probability distribution follows a pa-
rameterized multivariate normal distribution in the squared W, distance
sense. In the following, N'(y — b, ) denotes the probability density func-
tion of a d’-dimensional multivariate normal distribution with mean b
and the covariance matrix X and takes the form:

Ny-b3=——. L coxp (- 10— B2 b)), a1

d' 1
Vor o IZ2
Theorem 3.1. Let ye RY be a continuous random vari-
able whose probability density is f,.(y),x € DCRY such that
fx) =N —bx), Ax)T Ax)). D is a bounded set and x has a
probability measure y(-) on D. We make the following assumptions:

1. For any sequence of sets {D;}, if D;—> D as i— oo, then
lim;_,, y(D;) = y(D) = 1. Furthermore, for any Ax > 0, we can find a
set of equidistance grids {x; }I.’i | € D such that the distance between two
adjacent grids is Ax, D C U’_’il ®7=1 [x{,x{ + Ax), and ®;’=1[x{I ,x{] +
AX) N @ [x] x| +Ax) =0 if iy #in.

2. fy(y) is uniformly continuous in x such that for any e > 0, there exists
Ax > 0 satisfying:

Wi (fe f2) <€ Vlx—%| < Ax, x,% € D. (3.2)
3. Y i=supeep 1B + [|AGx)T AX)|13 < oo, where || - || is the Frobe-

nius norm of a matrix.

Then, for any ¢, > 0, there exists an SNN model as described in Fig. 1
which uses the ReLU activation and the linear forward propagation such
that if we denote the probability density function of the output by f, given
the input x, the following inequality holds:

/ W (fr For(dx) < €. (3.3)
D

-
‘g@ e
A

V@@

SDN
N/

Wi g~
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We prove Theorem 3.1 in Appendix E. Theorem 3.1 can be further
generalized and we can prove that the probability density distribution
of the output of the SNN model in Fig. 1 can approximate a multivariate
Gaussian mixture model (defined in Corollary 3.1 below) in the squared
W, distance sense. First, we prove the following lemma.

Lemma 3.1. Let y € R? be a continuous random variable that has the
following probability density function of a Gaussian mixture model:

fO =Y pN(y-b.AT4). p;>0, Y p =1 (3.4)
i=1 i=1

Suppose another continuous random variable § € R?' has the following prob-
ability density function:

N

F@) = Y BN (9= b AT A,) + p(3). b; >0 (3.5)
i=1

where  p; < p,, p() : RY = Rty {0} is  non-negative, and

Jra 19117p(9)d9 < co. Then, the following bound of the squared W,
distance between the probability measures of y and y holds:

s

WA <2( X (= ) (1B + 14T A1) + /R Iylp()dy ).

i=1
(3.6)

Proof. First,if p, = p,i =1,....s, then f(y) = f(y) and WX(f, /) = 0, in-
dicating that Eq. (3.6) holds. Next, we assume that }77_, p; < 1. Without
loss of generality, we assume that y and y are independent of each other.
We define a special coupling probability measure of the random variable
.9 € R

7 N0 = [ X 5N (v = b, AT 4,) |6y - 9)
- 5 (3.7)
+ % | X 0= 50N (v = b AT 4)] -2,

i=1

where p 1= Y7 (p; — B;) = [ P(P)dP, and 6 is the Dirac delta measure.
We can check that the marginal distributions of z(f, f) coincide with
f(y) and f(9), respectively. Furthermore, we have

Wi D <Eysnir [HY - ﬁllz]
z S - b — b ATAN - 0G)ly — $112dvd
= /de’ P[[:Z](pi pl),/\/(y b, A; A:)] pDlly — ylI~dydy

e . )
: /RZd’ ;[g}(p" _pi)N(y_bi’AlTAi)] - p()

2(IyI1* + 19117)dydy

Linear: g; 1 = ):f{:l Wi—1,jkGi—1,j + bik
ReLU activation: g; = ReLU(Zle Wi—1,4kGi—1,5 + bi k)
ResNet: g; =RCLU(Z;I:1 Wit jkGi-1,; + Vi) - Gic1k

N(ajji, o ;

ik )

H: the number of neurons per hidden layer
ReLU: the ReLU activation function

Fig. 1. A sketch of the structure of the neural network model with weight uncertainty used in Xia and Shen (2024) and in this paper. The weights w; ;, ~ N'(a; ; s, "iz,/, )

are independently sampled, i.e., w; ; i,

is independent of w; ; , when (i, ji, k) # (i1, j», k;). When using this neural network model to make predictions, for each

input x = (x,, ..., x,) € D C RY, we resample all weights {w, ;,} again. For each neuron in the hidden layer, one of the following four forward propagation methods
is considered: the linear operation, the ReLU activation, the ELU activation, and the ResNet technique.
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<2 2 (o= B (1Ib 17 + 1A A% ) +2 / I917p(3)dy.  (3.8)
4 Rrd’

i=1

which proves the inequality (3.6). O

Next, we show that the SNN model in Fig. 1 can approximate a mul-
tivariate Gaussian mixture model in the squared W, distance sense.

Corollary 3.1. Lety € R? " be a continuous random variable with a proba-
bility density function f,, where x € D C R is continuous and has a prob-
ability density y(-). At each x, f, is the probability density function of a
Gaussian mixture model:

) =D BN = b,(x), AT ()A,(x), Y p,(x) =1, p,(x)>0.
r=1

r=1

(3.9

We make the following three additional assumptions:

1. For any sequence of sets {D‘-};’Zl, if D> D as i— oo, then
lim;_,, y(D;) = y(D) = 1. Additionally, D is a bounded set in R¢ and for
any Ax > 0, we can find a set of equidistance grids {x;} ,’i | € D such that
Dcuk @ [x/.x/ +Ax) and @ [x] x| +A0)N@L_ [x] x| +
Ax) =@ if iy # iy

2. f,(y) is uniformly continuous in x such that for any ¢ > 0, there exists a
6> 0:

WE(£:). f:) <e, Vllx - %|| <8, Vx,% € D. (3.10)
3. The quantity
2
max ArT(x)ArT(x)” + [1b, ()] (3.11)
1<r<s F

is uniformly bounded for all x € D.

Then, for any positive number c, > 0, there exists an SNN with weight un-
certainty described in Fig. 1 such that:

/ W2 (fxr [)7(dx) < . (3.12)
D

Here, f, is the distribution of the output of the SNN when the input is x.

We prove Corollary 3.1 in Appendix F. Finally, we prove that for
each continuous random variable y € RY with a probability distribu-
tion function f(y), under certain conditions, we can find a random vari-
able § € RY' obeying a Gaussian mixture distribution whose probability
distribution function is denoted by f such that f can approximate f in
the W, sense. We have the following result.

Theorem 3.2. Supposey = (y|,....,yy) € R is a continuous random vari-
able with a smooth probability density function f(y) € L*(R?") n L*®(R?").
Furthermore, we assume the following conditions hold: 1. f(y) is uniformly

continuous in R" 2.
Vi| <
mix

. Inlo

Ui 1= 2, [or]] < oo,
Injo<d’

where |n|, is the number of non-zero components inn, n = (ny, ...,n ;) satis-

fyingl <n; <...<n;<d,and d,f := aynl ...ayn/_f.

(3.13)

3. 1/ ¥} Imie < 00 and | f Y77 |mix < co.
Then, for every ¢ > 0,ny(c) > 0, there exists a probability density func-
tion of a Gaussian mixture model:

(ng(o)+1 )d’
~ !
Trmo® = Y, NG = Y0 L), v €R? (3.14)
i=1
such that as ¢ — 0 and n(c) = oo:
Fo2 @) = f) (3.15)

uniformly in RY'. Furthermore, Ve >0, there exist o> 0,ny(c) and
Ngz,,,o(n)(y) in Eq. (3.14) such that

WS+ Fo2 o) < 24e.
InEq. (3.14), Iy is ad’ x d’ identity matrix.

(3.16)
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We prove Theorem 3.2 in Appendix G. For any continuous random
variable y € R?" with a probability density function f satisfying the as-
sumptions in Theorem 3.2, there exists a random variable y whose prob-
ability density function is the probability density function of a multivari-
ate Gaussian mixture model denoted by £, such that W3(f, /,2,,.) <
e. As a special case of the proof of Corollary 3.1 in Appendix F, there
exists an SNN (Fig. 1) which takes the input ni3 =x = 1, i.e. this SNN
consists of the fourth, fifth, sixth, and seventh layers of the SNN model
we constructed in Appendix F, such that I/sz( faz,no’ fE]) < ¢, where
f.z1 is the probability density function of the output of the SNN. Thus,
we have W22(f, fez1) < 4e, i.e., the SNN model in Fig. 1 can approxi-
mate the distribution of any continuous random variable in the squared
W, sense under the assumptions specified in Theorem 3.2. From Theo-
rem 2.2, minimizing the local time-decoupled squared W, loss function
Eq. (2.6) is necessary to minimize W22(/4, i), i.e., to match the distribu-
tion of model parameters 6 by the distribution of § in dynamical systems
like Egs. (2.9) and (2.10). Thus, we can train the SNN model in Fig. 1 by
direct minimization of the local time-decoupled squared W, loss func-
tion Eq. (2.6).

Remark: Consider the more general model y = f(x,0),x € R,y €
R4’ as in Xia and Shen (2024), where 0 is the latent random model pa-
rameters (e.g measurement noise). y is a continuous random variable
whose distribution is determined by the observed continuous variable
x € DCR? D is a bounded set in R?, and for any sequence of sets
{D;i}2), if D, > Dasi — oo, then lim;_,  y(D;) = y(D) = 1. Additionally,
we assume that for any Ax > 0, we can find a set of equidistance grids
{x;}K, € D such that D CuUX ®;’.=1 [x{,x{ + Ax) and ®7=][x{],x{l +
Ax)N ®;.’=1 [x{z, x{z + Ax) =0 if i; # i,. @ are continuous latent param-
eters in the model sampled from an unknown distribution. We denote
the distribution of y given x by f,. Under certain assumptions, for any
€ > 0, there exists an SNN in Fig. 1 such that:

/D Wy (fer fr(dx) <e. (3.17)
where £, is the probability density function of the output of the SNN
given the input x. We give a brief discussion on this “universal approx-
imation” property of the SNN model to approximate a family of contin-
uous random variables y = f(x,6) for all x € D C R¢ in Appendix H.
Our SNN can approximate a family of probability density functions
f(x,0),x € D simultaneously, while in Lu and Lu (2020) only a single
probability density function f(0) dependeing on 6 is to be approximated.
Furthermore, our SNN utilizes only seven hidden layers and the number
of neurons in each layer scales linearly with the dimensionality of either
the input or the output variable. This implies that even with a shallow
neural network, we might be able to reconstruct a family of uncertainty
models y = f(x,0) characterized by different x € D.

4. Numerical results

In this section, we conduct numerical experiments to test our pro-
posed local squared W, method, which involves training the SNN model
in Fig. 1 by minimizing the loss function Eq. (J.1), a scaled numeri-
cal approximation to the local time-decoupled squared W, distance loss
function Eq. (2.6). The W, distance between two empirical probability
measures is then numerically evaluated using the PoT package of Python
in Flamary et al. (2021). A pseudocode of our method is given in Algo-
rithm 1, and a schematic diagram on the training of the SNN using our
proposed local time-decoupled squared W, loss function Eq. (2.4) in
presented in Fig. 2.

Specifically, when applying the SNN model in Fig. 1 for the recon-
struction of the distribution for uncertain model parameters, we assume
that uncertain model parameters are sampled from the same underly-
ing distribution across all samples and thus always input a scalar 1 as
the input into the SNN. Default hyperparameters and training settings
are given in Appendix I. We use the ELU activation function to replace
the ReLU activation function in Examples 4.1-4.3 to tackle the issue
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Algorithm 1 The pseudocode of our local time-decoupled squared W,
method for training the SNN (the local time-decoupled squared W, loss
Eq. (2.4) can be replaced with other loss functions).

Given N observed time-series data {X;(t;),t; = jAt,j =1, ~--’NT},~]L’
the underlying dynamical system with unknown model parameters
0 (such as the jump-diffusion process Eq. (2.9)), and the maximal
epochs i ..
Initialize the SNN model in Fig. 1.
Input a scalar 1 into the SNN and evaluate the SNN N times inde-
pendently (each time, the weights in the SNN are resampled), which
outputs N sets of approximate parameters denoted by {4} ,’i I
Generate N trajectories {X} ,]Z , from the approximate dynamical sys-
tem (such as Eq. (2.10)) with the approximate parameters {6} I’i I
while i <i,, do
Perform gradient descent to minimize the loss function VT/ZZ;(X ,X)
(Eq. (2.4)) and update the parameters (biases & means and vari-
ances of weights) in the SNN model.
Input a scalar 1 into the updated SNN and evaluate the updated
SNN N times independently, which outputs N sets of approximate
parameters denoted by {4} ,’i iy
Generate N trajectories from the approximate dynamical system

with the approximate parameters {6} ,11 .
end while
return the trained SNN model
Tnputs: 1 {SNN model |— 0] [ Dynamical system

X))}

Gradient descent using W2£(X, X) H Observed trajectorics (X.(1,)] |

Trained SNN T Maximal epoch reached?

e

Fig. 2. A schematic diagram on the training of the SNN using our proposed
local time-decoupled squared W, loss function.

of vanishing gradients and improve the representational power of the
SNN. In the following, errors in the distribution of reconstructed model
parameters denote the scaled squared W, distance:

2 A~
error := 220 F0), @.1)

e
where 6 and § are unknown ground truth model parameters and recon-
structed model parameters, e.g. in Eqs. (1.1) and (1.2), and y, and f,
are the distributions of 0 and @, respectively. For numerically solving
ODE:s in all examples, we use the odeint function with default settings
in the torchdiffeq package (Chen et al., 2018). In Example 4.4, we use
the package developed in Xia et al. (2024a) for numerically solving a
jump-diffusion process using the Euler scheme (Platen & Bruti-Liberati,
2010), which allows for back-propagation and gradient descent for hy-
perparameter optimization in the neural networks. The It6 integral is
adopted for evaluating the stochastic integrals. The numerical experi-
ment in Example 4.1 is conducted using Python 3.11 on a desktop with
a 32-core Intel® i9-13900KF CPU (when comparing runtimes and RAM
usage, we train each model on just one core). Numerical experiments in
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Examples 4.2-4.4 are carried out using Python 3.11 on NYU HPC with
a GPU (NYU HPC, 2025).

Example 4.1. First, we consider reconstructing the following 2D ODE char-
acterizing the Lokta—Volterra predator-prey dynamics with one uncertain pre-
dation rate parameter:

dy |
— =2x—cxy, — = -cxy—2y,
dt g T ATy

(x(0), ¥(0)) = (§1.&), ¢ ~V'(2,4), §1.6 ~V(1,2), 1 €[0,8].

(4.2)

In Eq. (4.2), c is the uncertain predation rate parameter, and &,,&, are
two independent random variables. We train the SNN model in Fig. 1 by
minimizing the loss function Eq. (J.1) (the neighborhood size § = 0.4) to
reconstruct the distribution of the parameter c. For comparison, we mini-
mize other loss functions (definitions given in Appendix J) commonly used in
statistical inference tasks to train the SNN model in Fig. 1. We also compare
our method with a Bayesian neural network (BNN) method used in Bayesian
Neural Network Derivation (2020), Mullachery et al. (2018) which mini-
mizes the Kullback-Leibler divergence as well as a WGAN method presented
in Arjovsky et al. (2017), Gulrajani et al. (2017). For implementing the
WGAN method, the generator is the same as the SNN in Fig. 1 when uti-
lizing other loss functions, while the discriminator is a feedforward neural
network with one hidden layer equipped with 32 neurons and the ReLU acti-
vation function. Within each epoch for training the generator, 256 randomly
selected samples are provided to train the discriminator, repeated 4 times.
After training, the generator (SNN) is used to generate the distribution of the
reconstructed model parameter.

From Fig. 3(a), (b), the distribution of ground truth trajectories of the
prey and predator population can be matched well by the distribution of tra-
jectories generated by numerically solving Eq. (4.2) with ¢ sampled from the
reconstructed distribution. Furthermore, the distribution of the reconstructed
¢ generated by the SNN model trained using our loss function Eq. (J.2)
aligns well with the distribution of the ground truth predation rate ¢ (shown
in Fig. 3(c)). Using the previous time-decoupled squared W, loss function in
Xia et al. (2024b), the MMD loss function, or the Mean® + Var loss function
all lead to an inaccurate calculated value of the mean in the reconstructed ¢.
The WGAN method and the BNN method both yield qualitatively incorrect
results. We find that training the discriminator and generator in the WGAN
approach requires fine-tuning of hyperparameters by setting the learning rate
to be a relatively small value of 10~5, otherwise the training of the generator
and discriminator will terminate prematurely due to blowup, as reported in
the literature (Hoffer et al., 2017). Nonetheless, the WGAN could not yield
a qualitatively correct mean of the reconstructed ¢. On the other hand, the
BNN method also does not perform well, and one possible reason could be
that randomly initialized means and variances of weights as well as the bi-
ases in the neural network do not provide a good prior distribution for the
BNN. Using the MSE as the loss function to train the SNN Yyields an almost
degenerate distribution of ¢ and the calculated value of the variance in ¢
is inaccurate, indicating that it is not suitable to train the SNN model for
reconstructing the distribution of unknown parameters. Using our proposed
local time-decoupled squared W, loss function yields more accurate values
of the mean and variance of the reconstructed ¢ compared to other methods
(shown in Fig. 3(d)). Finally, from Table 1, the runtime and RAM usage
when using our proposed local time-decoupled squared W, loss function is
generally comparable to those when using other benchmark loss functions,
and the runtime and RAM usage of the WGAN method and BNN method
are significantly larger than training the SNN in Fig. 1 by directly minimizing
any one of the loss functions we use. Thus, using our proposed local time-
decoupled squared W, method is more efficient than using other benchmark
statistical loss functions for training the SNN in Fig. 1 to reconstruct the dis-
tribution of the unknown predation rate in Eq. (4.2), and it also outperforms
the WGAN method and the BNN method.

Next, we apply our local time-decoupled squared W, method for the
reconstruction of model parameters in a spatiotemporal PDE.
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(b) predator population over time

ground truth y(t) ‘

N
)

s predicted g(t)

_\
13 N

-

0.5

time
(d) errors in E[¢] and Var|¢]

0.5

0.4+

0.3+

0.2

loss functions

Fig. 3. (a) Ground truth (red dashed lines) prey population dynamics versus predicted prey population dynamics (blue solid lines) obtained with reconstructed
predation rate é. (b) Ground truth (red) predator population dynamics versus predicted predator population dynamics (blue) obtained with reconstructed predation
rate é. In (a) and (b), for clarity, we plot the first 50 groups of prey and predatory trajectories. Since the predation rate ¢ in Eq. (4.2) is sampled independently for
each realization of the model Eq. (4.2), the ground truth trajectories also form a distribution. (¢) Ground truth ¢ ~ U°(2,4) versus the distribution of the approximate
¢ when minimizing different loss functions or using the BNN or WGAN method. The black horizontal line and the box indicate the median and the interquartile range
of the ground truth or predicted predation rate. (d) Errors in the predicted mean |E[¢] — E[c]| and predicted variance |Var[¢] — Var[c]| when minimizing different loss
functions. The errors are their averaged values over 5 independent experiments. In (c) and (d), “local W,” refers to our scaled local time-decoupled squared W, loss
function Eq. (J.1) while “W,” refers to previous time-decoupled squared W, loss function in Xia et al. (2024b).

Table 1

Computational time and memory usage when utilizing different loss functions. Mean and the standard deviation in the runtime
(unit: hour) and RAM (unit: Mb) usage over five repeated experiments are recorded.

Ours (Eq. (J.1)) Time-decoupled sz MMD MSE Mean? + Var WGAN BNN
Time 1.53 + 0.35 1.57+0.36 1.91+0.47 1.37+0.46 1.73+0.57 7.88+1.17 21.31 +5.40
RAM  729.8 +56.3 648.4+108.7 834.3+19.3  616.5+110.3 614.3+108.2 1341.4+293.5  3406.2:+300.0
Example 4.2. We consider reconstructing the distributions of parameters numerically:
in the following parabolic PDE: -
ot ) ¢ o ) ) ( e € RX[0.2] u(x,t;0) 2 u,_1(x,t;0) = Z u;(t; O)H;(x), 0 :=(cq,cy)
u(x,t;¢1,6y) = — u(x,t;cy,0y) + u(x,t;c1,0), (x,1) € RX[0,2], i=0
1 1:2) = 75 O TS 12 i (4.5)
2 n—1
2 o 0~ B D) = 5+ OV H-—(p A
exp (- %),cl ~ J\f(o,s,gf), a(x,1;0) =, (x,1;0) = Zui(I,G)Hi(X), 0 :=(¢,6),

u(x,())=(1+§)\/%I

¢ =E+p05-¢c)), £~ N(©,03), E~ N(15,0)). 4.3

We use another parabolic PDE model to approximate Eq. (4.3):
e A A
Tzdxxu(x, 1,61,6) +
)

é

0,0(x,1;¢1,6)) = : 1 i(x,t;,¢1,6,), (x,1) € Rx[0,2],

&+

i(x,0) = u(x,0). 4.9
We wish to reconstruct the distribution of (c,,c,) in Eq. (4.3) using the
distribution of (¢,, é,) in the approximate Eq. (4.4). We use a pseudo-spectral
method with a spectral expansion in space to solve Egs. (4.3) and (4.4)

i=0

where H; is the generalized Hermite function described in Shen and Wang
(2010).
We carry out the following sensitivity tests:

. Vary (o, 6,) which determines the variance in (c,, ¢,) to investigate how
variances in model parameters would affect the reconstruction accuracy
of the joint distribution of (c,, ¢,). Other parameters are setas f = 1,05 =
0.2,n=12and 6 =0.1.

. Change the value of o3 characterizing the uncertainty in the initial condi-
tion and the size of the neighborhood & in our loss function Eq. (J.1) to
investigate how uncertainty in the initial condition and the hyperparame-
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Fig. 4. (a) Ground truth u,_,(x,2;0) (red dashed lines) versus reconstructed 4,_
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numerical solutions versus 50 approximate numerical solutions &,_;(x,2;d) in Eq. (4.5). (b) Mean and standard deviations of the ground truth uy_,(x,2) versus

reconstructed 4,

_1(x,2). (c) The ground truth (c,, ¢,) versus reconstructed (¢,,é,) when f = 1,6, = 0.15,0, = 0.1,n = 12. In (a), (b) and (c), the parameters are n = 12

and f=1,0, =0.15,6, =0.1,6;, =0.2, N = 12 and 6 = 0.1 in the loss function Eq. (J.1). (d) Errors in (¢,,é,) w.r.t. different variances o, 0, for (c;,c,) in Eq. (4.3)

(Case 1 on Page 23). (e) Errors in (¢, &) w.r.t. different values of the variance o; in the initial condition ¢ and different 6. 6 =

inf indicates that we set § = oo, which

corresponds to the time-decoupled squared W, loss function in Xia et al. (2024a) (Case 2 on Page 23). (f) Errors in (¢, é,) w.r.t. different values N and ¢, (Case 3 on

Page 23).

ter 6 affect the reconstruction of the distribution (c,, ¢,). Other parameters

are f=1,00=0.1,0, =02,n=12.

3. Vary p which determines the correlation between ¢, and c, as well as
the expansion order N in the spectral approximation in Eq. (4.5) to
explore how the correlation between ¢, and ¢, and the dimensionality of
the discretized ODE affect the reconstruction accuracy of (¢, c,). Other
parameters are o; =0.1,0, =0.2,063 =0.2,6 =0.1.

We plot the reconstructed numerical solution f,_,(x,t; 0) versus the
ground truth numerical solution u,_,(x,t;0) in Eq. (4.5) as the numeri-
cal solution to Eq. (4.3) in Fig. 4(a), (b). The distribution of ground truth
numerical solutions can be matched well by the distribution of the numerical
solutions generated with the reconstructed (¢,, ¢,), shown in Fig. 4(c). From
Fig. 4(d), the larger the variance in c,, the larger the errors in the predicted
distribution of (¢, é,). When the variance c, is too large, we might have close-
to-zero or even negative ¢, in Eq. (4.3), which makes numerically solving
Eq. (4.3)ill-posed and yields a poor reconstruction of the joint distribution of
(¢}, ¢p). Thus, it is reasonable to reconstruct the distribution of model parame-
ters for well-posed dynamical systems instead of ill-posed dynamical systems.
From Fig. 4(e), when the variance ag in the initial condition is small and the
initial conditions are more densely distributed, a smaller & leads to a more
accurate reconstruction of (c;, ¢,). Thus, it is necessary to consider uncertain-
ties in the initial condition of an ODE or PDE for the accurate reconstruction
of unknown model parameters and find the size of the neighborhood § that
is compatible with uncertainty in the initial state. Finally, from Fig. 4(f), the
error in the reconstructed distribution of (¢,, é,) is independent of the dimen-
sionality n of the discretized ODE system. Furthermore, the accuracy of the
reconstructed (¢,, ¢,) is insensitive to the correlation between the two uncer-
tain model parameters (c|, c,), indicating the robustness of our proposed local
temporally decoupled squared W, method for reconstructing the distribution
of (¢, ¢y) in Eq. (4.3).

As an application of our proposed method for parameter inference
problems in biophysics, we reconstruct reaction rates in an 8D ODE sys-

tem characterizing drug dynamics in an ocular model studied in Craw-
shaw et al. (2025).

Example 4.3. We consider an ODE system that arises from modeling studies
of monoclonal antibodies (MABs) injected into the vitreous gel of the eye in
the treatment of wet age-related macular degeneration. The monoclonal anti-
bodies bind to the vascular endothelial growth factor (VEGF) with this bind-
ing inhibiting the latter’s stimulation of pathological capillary growth through
the retina (Chappelow & Kaiser, 2008; Mitchell et al., 2018). However, in-
jected MABs are cleared from the eye, by passing into the aqueous compart-
ment at the front of the eye. This in turn necessitates multiple injections of
MABs into the eye. Hence, analyzing how long MABs are retained within the
eye and the prospect of reducing injection frequency has motivated numerous
modeling studies (e.g. (Caruso et al., 2019; Crawshaw et al., 2025; Hutton-
Smith et al.,, 2018, 2016; Lamirande et al., 2024)). However, a common
theme within these studies is the need to estimate the parameters (Crawshaw
et al., 2025; Hutton-Smith et al., 2016; Mitchell et al., 2018).

Hence, we consider a simple well-mixed model in the literature for the
MAB ranibizumab (Crawshaw et al., 2025; Hutton-Smith et al., 2016),
with its concentration in the vitreous of the eye denoted by r,;, and the
vitreous VEGF concentration denoted by v,;. A complex of one MAB
bound to one VEGF in the vitreous has concentration c,; and, noting
that VEGF has two binding sites, a complex of two MABs and a VEGF
is also considered, with concentration h,;. The formation and disassoci-
ation of these species is represented by the law of mass action, with the
reaction rates labeled by “k”, and all species can pass into the aque-
ous at the front of the eye, with concentrations in this compartment
then distinguished by the subscript “aq” (raq,uaq,caq,haq). Once in this
latter compartment, all species are taken to pass into the bloodstream
via Schlemm’s canal, with a clearance rate CL. In addition, there is a
flux, Vi, of vitreal VEGF to reflect the rate of elevated levels of VEGF
leaking into the vitreous in pathology. This generates the set of eight
ODEs:
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Vitreous
doy; V.
th = (kuffcvit = 2K onUyigvit) — kiluvit + WU;*
dr; el
T = (koffcvit - 2anUVitrVit) + (anffhvit - kunrvitcvit) - kr Fyits “4.6)
de,; ’
d:lt = _(koffcvit - 2konUvitrVit) + (Zkoffhvit - konrvitcvit) - kilcvib
dh,;
1
drlt = _(Zkoffhvit = konTyitCyir) — k?, Pyig.
Aqueous
dugg Vit el CL
T = (kaﬁ‘caq - 2k0nuaqraq) + quv Uyit — qu)aq,
draq Vit 7 el
el (kuﬁcaq —2konUagrag) + (2k0ﬁ‘haq — konragCag) + qukr it
CL
- V_raq’
aq
deqg vit ; el
& = —(kuﬁccaq - ZkOHanraq) + (Zk(,ﬁchaq - konraqcaq) + flch Cyit
CL
- V—Caqs
aq
dh, Vii CL .
d;‘q = — Qkofrhaq — KonragCaq) + VL“kjfhm = 3 hag> 1 €10,2] (unit: day).
aq aq

4.7)

From (Crawshaw et al., 2025), we set the vitreous and aqueous hu-
mor volumes V,; = 2.05mL and Vg = 0.105mL, respectively, and V,, =
5.408pmol - day™!. We aim to reconstruct the distribution of the seven reac-
tion rate parameters: K o7, ko, kel ke, ke, kff and CLinEgs. (4.6) and (4.7),
which are subject to uncertainties in the drug properties (Crawshaw et al.,
2025; Hutton-Smith et al., 2016; Mitchell et al., 2018).

We generate a synthetic data set of model parameters by sampling the
seven kinetic parameters: k := (offs ko> kf,l, kfl, kﬁl, k‘;ll, CL) from the follow-
ing model:

k = ko + cky = Ak, 4.8
where
ko = (1.669day™",0.00114pM™~" - day™",0.575day™",0.293day ™", “4.9)

0.259day™!,0.176day™",2.505mL - day™")

is the vector of mean values of those kinetic parameters used in Crawshaw
et al. (2025). In Eq. (4.8), * is the Hadamard componentwise product. A €
R7¥7 is a randomly generated matrix whose components are sampled inde-
pendently from the distribution U'(—%, %). InEq. (4.8),k := (ki kg, o kq)
is independently generated for each trajectory in the training dataset. Omit-
ting the units for simplicity, we sample k,, ky ~ U'(0, 1), k3, ky ~ N(0,0.5%),
ks ~ Exp(2), k¢ ~ B(2,5) (the Beta distribution with shape parameters a =
2,4 =95), and k; ~ T'(2,2) (the Gamma distribution with a shape parameter
a =2 and scale parameter A = 2). The initial condition of each trajectory
is independently sampled from N'(I;,0.05% ), where I; € R refers to a
constant vector whose components are 1.

The distribution of trajectories of the four quantities v,; (1), r,;(t), ¢, (t)
and h,;(t) obtained with the parameter vector k sampled from the ground
truth distribution Eq. (4.8) can be matched well by the distribution of tra-
jectories obtained by using the parameter vector k sampled from the recon-
structed distribution generated by the trained SNN in Fig. 5(a)—(d). Addi-
tionally, we plot the empirical joint distribution of any two parameters in k
versus the empirical joint reconstructed distribution of the corresponding two
variables in Fig. 5(e), and most pairwise joint distributions of any two compo-
nents in k can be matched well by their reconstructed counterparts. However,
the reconstruction of k,, is not accurate. A possible reason could be that the
magnitude of k,, (0(107%)) is much smaller than that of other parameters
(0(1)), making it harder to reconstruct the distribution of k.. Another pos-
sibility is a lack of practical identifiability for these parameters. Since only

10
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Table 2

Errors in the reconstructed distribution of kinetic parameters in the ocular
pharmacokinetic model. Here, ELU refers to using the ELU activation func-
tion for forward propagation and ResNet refers to using the ResNet technique
(described in Fig. 1). When using the W,, MMD, MSE, and the Mean? + Var
loss functions, the SNN has 3 hidden layers with 10 neurons in each layer.

Width # of layers  Forward Initialization for =~ Error
propagation weights & biases

10 1 ELU N(0,0.03%) 7.79 x 1073
10 2 ELU N(0,0.03%) 1.39x1073
10 3 ELU N(0,0.03%) 1.10x 1073
10 4 ELU N(0,0.03%) 8.93x 107*
5 3 ELU N(0,0.032) 8.85x 107*
15 3 ELU N(0,0.03%) 9.20x 107*
20 3 ELU N(0,0.03%) 0.156

10 2 ResNet N(0,0.03?) 8.25x 107*
10 3 ResNet N(0,0.03%) 8.67x 1074
10 4 ResNet N'(0,0.03%) 8.71x 107*
10 3 ELU N(0,0) 0.609

10 3 ELU N(0,0.01%) 7.98 x 107*
10 3 ELU N(0,0.02%) 8.42x 107*
w, 3 ELU N(0,0.03%) 1.24x 1073
MMD 3 ELU N(0,0.03%) 1.21x1073
MSE 3 ELU N(0,0.03%) 1.23x 1073
Mean? +Var 3 ELU N(0,0.03%) 1.19x 1073

observed trajectories are available, the reconstruction of the distribution of
model parameters using our method signifies a “worst case scenario” with no
prior information on the magnitudes of model parameters.

We also investigate how the number of neurons in each layer, the number
of hidden layers in the SNN model (Fig. 1), the initialization for the distri-
bution of weights in the SNN model, as well as whether adopting the ResNet
technique (He et al., 2016) for forward propagation would affect the accu-
racy of the reconstructed distribution of the kinetic parameters. From Table 2,
SNNs with more than one hidden layer and 10 neurons in each layer can all
reconstruct the distribution of k in Eq. (4.8) well. Thus, we do not need a
wide or deep SNN model in Fig. 1 to reconstruct the distribution of k. As an
additional comparison with other loss functions, we train the SNN with 3 hid-
den layers and 10 neurons in each layer by minimizing the W,, MMD, MSE,
and the Mean® + Var loss functions (defined in Appendix J) as was done in
Example 4.1. Our results indicate that the SNN model, when equipped with
appropriate numbers of hidden layers and neurons in each layer, has the
ability to approximate the distribution of unknown model parameters well,
and minimizing our local time-decoupled squared W, loss function can most
efficiently train the SNN and yield the most accurate reconstructed distribu-
tion of unknown model parameters. Also, applying the ResNet technique can
moderately increase the reconstruction accuracy when the number of hidden
layers increases. Finally, initializing the weights and biases to small non-zero
values is important, as the reconstruction error is huge if we set all weights
and biases to zero. It is worth further investigation on how to optimally design
the structure of the SNN model in Fig. 1, which is beyond the scope of this

paper.

Finally, we consider reconstructing the distribution of parameters
of a jump-diffusion process, in which intrinsic stochasticity from the
Wiener process and Poisson process as well as uncertainty in the initial
condition of the jump-diffusion process are coupled with uncertainty in
the parameters governing the jump-diffusion process.

Example 4.4. We reconstruct the distribution of uncertain parameters gov-
erning a jump-diffusion process that can be used to describe the posited stock
returns (Merton, 1976; Xia et al., 2024a). Instead of considering a deter-
ministic jump magnitude function as in (Xia et al., 2024a, Example 2), we
consider the following jump-diffusion process:

dX,=0.05dt+ss/|X,|dB,+/5X,dl\7(y(d§)dt), t€10,2],
U (4.10)

s~ 0o N (1L, 1), &~ N(By,02), Xy~ N(2,02).
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Fig. 5. (a)—(d) The first 50 out of 400 trajectories of the four quantities vy; (), r; (1), ¢y; (1), hy; (1) obtained with the parameter vector k sampled from the ground
truth distribution Eq. (4.8) (red dashed lines) versus trajectories obtained by using the parameter vector k sampled from the reconstructed distribution generated
by the trained SNN (blue solid lines). The SNN has 3 hidden layers and 10 neurons in each layer. The nodes and weights are initialized by independently sampling
from N'(0,0.03%). (e) The reconstructed joint distribution of any two kinetic parameters in Eq. (4.8). In all subplots, the red dots are sampled from the ground truth
joint distribution while the blue dots are sampled from the reconstructed distribution. When using the ResNet technique for forward propagation, the scalar input of

the SNN is 0.1 as inputting 1 leads to overflow during training.

InEq. (4.10), the drift term represents the risk-free interest rate, the diffusion
term stands for the fluctuation in the stock price, and the jump term repre-
sents events of paying dividends. In Eq. (4.10), N is a compensated Poisson
process defined in Eq. (2.11). We aim at reconstructing the distributions of
s as well as & employing two separate SNNs using the distribution of §, and
& in the following approximate jump-diffusion process:

dX, = 0.05dr + 54/|X,|dB, + / EX, AN (y(d&)dn),
U

Xy = X, t €10,2]. (4.11)

InEq. (4.11), N is another compensated Poisson process that is indepen-
dent of N. It has been showned in Xia et al. (2024a) that when & = 1, larger
values of s and f, make it more difficult to reconstruct the jump-diffusion
process i.e., relative errors in the learned diffusion and jump functions get

11

larger because the trajectories are more sparsely distributed. Here, we carry
out further experiments on the following cases:

1. Change the values of f, as well as the value of o in Eq. (4.10) to
explore how the mean and variance of the jump magnitude function affect
the reconstruction of distributions of |s| and & (here we reconstruct the

distribution of |s| because 54/ |X,|dB, and |3|4/ |X’,|dB, are identically
distributed). Other parameters are o, = 0.3,0, = 0.1, and § = 0.1 (the
neighborhood size in the loss function Eq. (J.1)).

. Vary the value of o as well as the value of ¢, to investigate how the un-
certainty in the diffusion function and uncertainty in the jump magnitude
affect the reconstruction of distributions of |s| and £. Other parameters
are f, =0.3,0, =0.1, and 6 = 0.1.
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Fig. 6. (a) Ground truth trajectories generated from Eq. (4.10) versus the reconstructed trajectories generated from the approximate Eq. (4.11). For clarity, we
plot 50 ground truth trajectories and 50 reconstructed trajectories. (b) The empirical probability density function ground truth |s| versus the empirical probability

density function of the reconstructed |3| in Egs.

(4.10) and (4.11). (c) The empirical probability density function ground truth ¢ versus the empirical probability

density function of the reconstructed |£| in Eqgs. (4.10) and (4.11). In (a)~(c), o, = 0.3, f, = 0.35,6, = 0.15,6, = 0.1, and & = 0.1 in the loss function Eq. (J.1). (d) and
(g) The errors in the reconstructed distribution of 6 and ¢ for case 1 of Example 4.4 on Page 11, respectively. (e) and (h) The errors in the reconstructed distribution
of 6 and ¢ for case 2 of Example 4.4 on Page 12, respectively. (f) and (i) The errors in the reconstructed distribution of 6 and ¢ for case 3 of Example 4.4 on Page

12, respectively.

3. Vary the value of ¢, and o, to determine how uncertainty in the initial
condition and jump magnitude affects the reconstruction of |s| and é&.
Other parameters are o, = 0.3, §, = 0.3,6, = 0.1, and 6 = 0.1.

From Fig. 6(a), the distribution of reconstructed trajectories of the ap-
proximate jump-diffusion process Eq. (4.11) match well with the distribu-
tion of ground truth jump-diffusion trajectories at each time t. Also, from
Fig. 6(b), (¢), the probability density functions of |s| and & can be matched
well by the probability density functions of |§| and & in Eq. (4.11), respec-
tively. From Fig. 6(d), (g), when the mean and variance of ¢ in the jump func-
tion of Eq. (4.10) become large, the reconstruction of the distributions of s
and ¢ is also less accurate. The increase in the mean f, of the jump magnitude
impacts the reconstruction accuracy more than the increase in the variance
o, does. From Fig. 6(e), (h), a larger o, characterizing greater uncertainty
in the diffusion function of the jump-diffusion process Eq. (4.10) also leads
to less accurate reconstructions of both s and ¢&. Finally, from Fig. 6(f), (D,
choosing a neighborhood size § = 0.1 works well for ¢, € [0.05,0.2] charac-
terizing different levels of uncertainty in the initial condition and errors in
both |3| and & are well controlled.

12

When the form of the diffusion function in the jump-diffusion pro-
cess in Eq. (4.10) is unknown but the diffusion function itself is de-
terministic, we can use a deterministic parameterized neural network to
reconstruct the diffusion function as was done in Xia et al. (2024a)
while simultaneously using an SNN to reconstruct the distribution of ¢ in
the jump function of Eq. (4.10). When the diffusion function is deter-
ministic, the reconstruction accuracy of both the diffusion function and
the distribution of ¢ in Eq. (4.10) is good. The results are shown in
Appendix K.

5. Summary and conclusions

In this paper, we proposed and analyzed a local time-decoupled
squared W, distance method for reconstructing the distributions of pa-
rameters in specific dynamical systems from time-series data using an
SNN model (Fig. 1). We also analyzed the SNN model and proved
that it could approximate any continuous random variable as long as
moderate assumptions are satisfied, making it a suitable model for
reconstructing the distribution of parameters in a dynamical system.
Our method took advantage of a previous local squared W, method
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and a previous time-decoupled squared W, method so that both uncer-
tainty in the initial state and intrinsic fluctuations such as the Wiener
process in the dynamics could be considered. We showcased the effec-
tiveness of our approach for reconstructing the distribution of model
parameters in several dynamical systems such as ODEs, PDEs and
SDEs. Our method outperformed several other benchmark statistical
methods.

One limitation of our proposed method is that when the model pa-
rameters span across different magnitudes, the reconstruction of the
distribution of model parameters whose magnitudes are smaller is less
accurate. In practice, prior information on the distribution of model
parameters might be available either from biophysical estimates or ex-
perimental assays. Thus, how to incorporate prior information of the
model parameter distribution, such as confining the range of model pa-
rameters, is a potential future research direction. Specifically, it is il-
luminating to make comparisons with Bayesian approaches or Monte—
Carlo simulation approaches, both of which can incorporate a prior
distribution of model parameters, in terms of both accuracy and compu-
tational complexity. Also, it is helpful to consider applying our method
to quantify uncertainties in model selection from time-series data or
spatiotemporal data (Nardini et al., 2020). Taking into account mea-
surement errors might also be necessary when such errors are not neg-
ligible (Nardini & Bortz, 2019). The computational complexity of eval-
uating our proposed local time-decoupled squared W, loss function is
O(Ny NE[(N*(X,; 8)) log (N*(X¢; 8))1), where N*(X,;5) refers to the
number of trajectories in the data set such that their initial conditions
satisfy || X(0) — X,|| < 6 and N denotes the number of time steps. There-
fore, considering utilizing entropic regularized Wasserstein distances
and applying the Sinkhorn algorithm (Cuturi, 2013) to solve the cor-
responding optimal transport problems could be helpful in further re-
ducing the computational complexity to O(Ny NE[(N*(X,; 5)21). Addi-
tionally, it will be promising to apply our proposed local time-decoupled
squared W, method for reconstructing the distribution of uncertain pa-
rameters in more complicated dynamical systems such as multidimen-
sional SPDEs. It will be useful to analyze other stochastic neural net-
works’ ability to approximate the distribution of uncertain model param-
eters, especially model parameters that take categorical values. On the
other hand, more theoretical analysis on the Wasserstein-distance-based
loss function, such as proving that minimizing a Wasserstein-distance-
type loss function is sufficient for reconstructing the distribution of pa-
rameters in a dynamical system, can also be interesting, which would
require the analysis of identifiability of model parameters, i.e., whether
two different sets of model parameters would lead to different trajecto-
ries. Finally, more theoretical and empirical studies on how to design
the optimal architecture, e.g. the depth and width, of the SNN model in
Fig. 1 would be informative.
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Appendix A. The proof of Theorem 2.1

Here, we prove Theorem 2.1. Note that

2W2(

where N is the number of observed trajectories and X, ; de-
notes the initial condition of the ,jth trajectory. Suppose 0=
t(')<ti<...<l,1,l=T; 0=t3<tf< ..<tﬁ2=T are sets of grids on
[0,T]. We define a third set of grids O:t3<
that {7, .. zl yu e, t2 y=1{3, .., 13 ).
t ), max ; (t2 -1 2y, max, (3 }. We denote v

WX (1), X (1) = FONAO) A1)

< t23 =T such
Let At := max{max.(t,.l+l
el = tk) s and ¥ ,5(1) to

be the emplrlcal conditional probability distributlons of X(r) and X
at time 7 conditioned on |X(0) — X, ;| < 6 and | X(0) — Xy,;| < 6, respec-
tively. We shall show that:

J+1

ny—1
2 W2e

n3—1

DX (1)) (1 = 17)

= Z W XX (D) =)= 0. A.2)
as At — 0.

First, suppose in the interval (t,.l,t,.lﬂ), we have t‘ = ﬁ < t:,H <
£, =t ,s=1Fors>l,sincer! -1l = AP (1, — 1)), we have:
£4s—1
Wrs (X (e]). X (1) (1), — 1) Z Wos (X(5). X (1)) (5, = 12)

LS
v 2 X (Walvg, a0, 5(11) + Walvg ()05, 5(3)])

X Wa(vs, .85, S0D) = W05, (2).95 S(2))] (2~ D).

(A.3)
Since || X|| and || X|| are uniformly bounded, we have

Wa(V, 5 (17): 9%, (1)) < spELIX (@)1 12+ ENXOIP) < X + X
L) (J

(A.4)
and

W2 (Y, 6 (1) 9%y, (1)) S X+ X, (A5)

where X, X are the upper bounds in Eq. (2.7). We can take a specific
coupling measure z* (X . x (tz)) such that if we regard

(X (1) X (1))
as a mapping from initial state space (X, X,) € R* to the solutions
(X1}, X(1})) € R at times (s},1)) satisfying X(1}) = Xy, X(5}) = X,
then %, is the pushforward measure of the probability measure of the

3, X0,

: R¥M o RM (A.6)

5.X,;

initial condltion v;o/ 50 Xo=Xo under the mapping (X (t}), X (I?)). Here,
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v§,0 5 is the empirical conditional distribution of the initial condition
7

X, conditioned on | X, ; — X,| < é. Then, for any X, ;, we have

W (v, @) vy, ) < supE( [I1X (@) = X3
" " 0.j .

XD X))~ 5,

i, d (A7)
SSup[E[/’ fo(X(t),t;G)dt](t}H —1).
Xo, it
Similarly, we have
sz(og(oyj(z}) %, ) < sup[E[/ fo(X(t) t €)dt]( ).
(A.8)

Using the triangular inequality of the Wasserstein distance (Clement
& Desch, 2008), we have

a5 D) = Wavy .o @)
VXo.j»S(til )’ O;(J.jﬁ(t[l)) - ( 5(t3) % (t ))|

‘A’;OJ,&(’})) - (

}W

< (Wz
(A.9)

AT (r3) %0,60D))|

1 3 N
< %(V;OJ,(S(I:’)’ ";01,.,5(’1()) + %(VXO‘/,S(II' )’ VXOJ,é(tk))'
Substituting Eqgs. (A.4), (A.7), (A.8), and (A.9) into Eq. (A.3), we con-
clude that
W3 (Vi 60 ¥, 600) (i = 17)
+s—1
= X W0, 605, D) (R = 11) (A.10)
k=¢
<2AX + X)), —tH(VFAt+4/FAr),
where
t’1+1 4
F = suptE[ / Zf§<X<t>,z;e)dz],
Xo, [
t'l+l a
F o= sup[E[/ ng(X(t),z;é)dz]. (A.11)
X, i 0

Summing over i and j for the inequality (A.10), we have:

n—1

2 W2e Xh, Xah)(

n3—1

= 2 Way (XD X)) (5, 1)

I+| i

< 2(X + X)T max (\/F,At + 1/ FAt).
1

(A.12)
Similarly,
ny—1 np—1
Z s (XaH. X)) (7, = 17) ZW“ X1, X)) (14, — 1)
< 20X + K0T max (\/F/ A ++/Flar),
(A.13)
where
d
F := E X 0)d
[ [/ Z:‘, FX@.1; )t]
d
F! = supE X, t:0)d A14
F, = [/ gff( (z)z)t] (A14)
Thus, as At — 0,
np—1 ny—1
2, Way (v D) (il = 11) = 2 W (D D) (1, - ?)| o
i=0
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(A.15)

which implies the limit

Z W (vah, o)) (1 =11, (A.16)

max(t "t )—»0

exists. Therefore, the local time-decoupled squared W, distance in
Eq. (2.6):

er(X X) = / W“(X(z) X@t))dt (A.17)

is well-defined.

Appendix B. Proof of Corollary 2.1

The proof of Corollary 2.1 is similar to the proof of Theorem 2.1
and the proof of Theorem 3.1 in Xia et al. (2024a). Suppose 0=
14l I e 02 <42 2 _ ;
fp<ty<..<t, =T; O0=15<17<..<r, =T are two sets of grids
on [0,7]. We define a third set of grids O—t3
that {z},...,1} ol 20 b= {tg,...,t23}. Let Atf: —max{max (z
1), max; (17, S Xo’jﬁ(t) to
be the empirical conditional probability distributions of X (r) and X(r)
at time ¢ conditioned on |X(0) — X, ;| < 6 and | X(0) — Xy,;| < 6, respec-
tively. We need to show that

. < 13 =T such
—t 2, maxk(r

We denote VXo,,»é(I) and ¥/

ny—1

Z WS (XaD. Xap) (rly, = 17)=

n3—1
2 Way (X@), X))@, (B.1)
i=0
For j = 1,2, we define:
F/ = sup [/l Y 22X e)dz}
Xo.0 [
L ’j+1 a 5 N
FJ = sup [E[ // I 0 (G t‘;é))dt],
Xo.0 r =1
J d m
¥ = supE /’“ > Za;/.(X(z—),z—)dt],
X0 L/ 43
i om (B.2)
£ = supE /‘“ > Z&;J(f((t_),t‘;e)dt],
xp0 Ui =ija
B{ :=supE / Z/ﬂf(X(t ), &t G)V(df)dt],
X0 LJd  oJu
L [ ’{+1 a
B{ = suR[E /j Z/ﬂf(X(t ), &t G)V(dé)dt].
Xp.0 LJ1; =1
Similar to the proof of Theorem 2.1, we find that:
2 ("?(0,,-,5(’})’ OXUJ-.E(I}))(Z:H -1
£+s—1
= X (000 T D) et = D) (B.3)

<2AX + X)), —z})<\/Fl.]At+Z} +B + \/F“}At+2} + é})'

Summing overi =0,...,n; — 1 and j = 1, ..., N, we can obtain
ny—1 n3—1
> Wos(xah, Xah) ), —1h - Z Wys (XD, X)), — 1)
i=0

4 1 1 1 )l 1 Rl
52(X+X)Tml_ax(\/Fi At +3! + B +\/Fi Ar+ 8] +B,.).
(B.4)
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Similarly, we have:

ny—1 n3—1
D WS (X, XaD)ar, — 1) - Z WS (X, X)),
i=0
<2+ K0T max (\/ 200+ 37 + B 4/ 200+ 57 + B,?).
(B.5)
Thus,
n—1 ny—1

z WS (X(h, X(h)( Z W (X @), X))@,

A+1 i

<2 + 0T max (\/Fl A+ 3] + B!+ Flac+ ] +1§,.1)
1

4 2 2 2 2 $2 R2
+2(X+X)Tmlax(\/Fl. At +32 + B +\/F,. Ar+52 + B )
(B.6)

Since f, o, p are uniformly bounded, F,.j, 2{ B,j F/ i{ B{ —>0asAt— 0
uniformly for j = 1,2. Thus, the limit

T
WS (X X) = / WS(X (), X(0)dt (B.7)
: L "

exists.
Appendix C. The proof of Theorem 2.2

In this section, we prove Theorem 2.2. First, consider X that solves
the following jump-diffusion process:

dX (1) = f(X(t),1;0)dt + o(X(t),1;0)dB, + / BX (1), &, 1, 0)N(dt, v(de)),
U

X(0) = X(0).

(C.1
Using Theorem 2.1 in Xia et al. (2024a), we have:
-2
E[Jxo - xa |
<E[H®)|X(0)] exp ((zc +14+Q2C+1m+Q2C+ l)y(U))td), (C.2)

where X (0) is the initial condition and H (¢) is defined as

d '
H({) := [E[Z/O (f,-(X(s‘),s‘;H)—fi(X(s‘),s‘;é))zds]
i=1
d t m N
+[E[Z/ Y (04, (X(s7),5730) = 0,,(X(57),57:60)) ds]
i=1 /0 j=1

d t
e [ )Y / / (BXG5),E5750) = B(X(s), &, s‘;9>)27(d‘5)d5]
i=1 /0 JU
<Ci(1+m+yU))|6 - 0],
(C.3)

Since the probability distribution of X(r) € R? is the same as the prob-
ability distribution of X(t) for any ¢ € [0, T], we conclude that

W (v, (0, D, (0) = WS (vy, (1), Vx, (1),

where v, 1, Vx, (®), and x, () are the probability distributions of

(C.4)

X(1), X(1), and X (1) given the same initial condition X, respectively.

Given any coupled distribution of 9,0 denoted by z(u, /i) such that

its marginal distributions coincide with the probability distributions

of 6 and 6, we denote 7*(X (1), X (1)) to be its pushforward probability

measure for (X(¢), X(r)) € R??. We can easily check that the marginal

distributions of z* coincide with vx, (1) and x, (1), respectively. From
gs. (C.2), (C.3), we have

~ 2 A2
‘X(z) - X(t)” ] < C1(1+m+y(UNE g gy piiy [16 = 017

Exo. %y~ [
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xexp ((2C+1+@2C+ hm+QC+1yW)d). (€5

Taking the infimum of z over all coupled distributions of (9, ) whose
marginal distributions are u and £, respectively, we conclude that

W3 (vx, (1), Vx, (1) < Cy1exp(Cot) W5 (s ),

where

(C.6)

= (zc +14+QC+m+Q2C + l)y(U))d, C, :=C(1+m+yU))
€7

are two constants.
Using the triangular inequality of the W, distance (Clement & Desch,
2008), we have

Wy, 50, 95, 5(0) < Walvy, (0.
+ Wz(

%, () + W20V, (0, vy, 50)
0,95 50)
< Walvx, (0, 9, (0) + W), (0. Vi ()
)
+ Wa(v, 0, Vi, 5O) + Wa(P

(C.8)
+ Wi(vg, (0.9
Vx5 (0),

where ngo, s and OXO, 5(1 are the empirical conditional probability dis-

tributions of X (¢) and X (¢) at time ¢ conditioned on | X (0) — Xyl <6 and
| X(0) — X,| < 6, respectively. For any § € R?, consider
dX(1; Xo) = f(X(1; Xo), 1;0)dt + 6(X(t; X; 0), 1, H)dB,
+ / B(X(t; Xo),&,1;0)N (dt, y(dE)),
U
dX(z; X(')) = f(X(t; X(')), t0)dt + o(X(t; X';0),1; 9)dB, (C.9)

+/ﬁ(X(t;X(]),f,t;O)N(dl,V(df)),
U

X(0; Xo) = X, X(0; X)) =

Using the stochastic Gronwall lemma (Mehri & Scheutzow, 2019, The-
orem 2.2) and (Xia et al., 2024a, Theorem 2.1), we conclude that:

X5 1Xo = Xgll < 6.

e x0) - xxp |

<exp ((2dc +dCm+dCy(U) + 1)t)[E[||X0 - X/21. (C.10)
Therefore, we have:
W)V, (v, (1) < S exp(Z). (C.11)
Similarly, we conclude that:
Wz(f/e ®), 9% Xo.6(0) < S exp( CD') (C12)

Eq. (C.6) also holds if we replace ﬁxo(t) on the LHS of Eq. (C.6)
with the empirical distribution vio(t) and then replace i with ;4;0 on
the RHS, i.e.,

Walvg, (0, v, () < Vit exp(LHOWatu, ). (€13)
Similarly,
W20y, (1), 9, (0) < V/Crt exp(LOWa(a i ) (C.14)

In Egs. (C.13) and (C.14), ;4§(0 and 4, denote the empirical distribu-

Xo
tions of # and 6, respectively. Finally, by plugging Eqgs. (C.11), (C.12),

(C.13), (C.14), (C.6) into Eq. (C.8), we conclude that:
%(V}ioﬁ(t),ﬁ W) <26 eXP( )

+ Vit exp(Con) (W, 1 ) + Walit, 4 ) + Walu ).

Squaring both sides of Eq. (C.15), integrating over time, and taking
the expectation w.r.t. the empirical probability measure of the initial
condition X, we conclude that:

(C.15)

E[W, 5 (X, X)] < 8T6% exp(CyT)
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N
Z % —LT exp(CoT) (W2 (u. )
s

2 2~ R
E[W; (ﬂXOJaM)] +E[W, (ix, ml). (C.16)
Specifically, C, grows linearly with the dimensionality d. Finally, taking
the expectation of Eq. (C.16) and applying the empirical error bound
of the squared W, distance in Fournier and Guillin (2015), we conclude

that:

1
EW (s, -] < GEIRN*(X(:6). 010, .

™M=
Z|=

<.
Il

(C.17)

1
O3
6

M=
z|—

E[W, (A%, - M) < GEIAN®(X,:5).£)16

1

J

where C, is a constant used in (Fournier & Guillin, 2015, Theorem 1)
and 4 is defined in Eq. (2.19). This completes the proof of Theorem 2.2.

Appendix D. Reconstructing the distribution of parameters in an
SPDE

We consider the following parabolic SPDE with a Dirichlet boundary
condition studied in Grecksch and Kloeden (1996):

dU(x,1;0) = AU (x,1,0) + f(U(x,1;0);0)dr + g(U (x,1;0);6)dB,,
x € D,te[0,T],
U(x,0;0)=U(x,0) € H(:’Z(Q), U(x,0) ~ vy, U(x,t;0) =0,x € 9D.

(D.1)

In Eq. (D.1), B, is a standard scalar Wiener process and D is a bounded
domain in RY with sufficiently smooth boundary dD. Hé'z(Q) is the
space of functions U : Q — R that vanish on dQ such that U and its
first-order generalized derivatives belong to L*(Q) equipped with the
norm ||U|;2 := fD U?(x,1)dx. v, is a probability measure defined on
the Sobolev space B(HS’Z(Q)). A is a linear operator densely defined in
L*(Q) such that for U € H'2(Q), AU € L*(Q). A is strongly monotone,
i.e., there is a constant a > 0 such that

(=AU, U) > a||U|I? YU € H)*(Q), (D.2)

H12®
where (., ) is the inner product. In addition, f and g, which map either
L%(Q) or H(;'Z(Q) into itself, are formed from real-valued functions of a
real variable with uniformly bounded derivatives of appropriate order.

We reconstruct the distribution of the model parameter 6 in Eq. (D.1)
using an approximate model

dU(x,1,0) = AU (x,1,0) + f(U(x,1;0); 6)dr + g(U(x,1; 0); H)dB,,
x € D,t€[0,T],
U(x,0)=U(x,0;0) =

(D.3)

U(x,0), U(x,t;0) =0,x € dD.

In Eq. (D.3), B, is another standard scalar Wiener process independent
of B, in Eq. (D.1). We use the It6-Galerkin scheme for spatial discretiza-
tion of Egs. (D.1) and (D.3):

dU,(1;0) = (A,(U,(1;0);0) + f,(U,(1;0);0))dr + g, (U, (t; 6); 6)dB,, 0.4
d0,(t:0) = (A,(0,(1:0):0) + £,(0,(1:0):0))dt + g,(0,(1:6):0)dB,.
In Eq. (D.4),
Uy(x.1:0) 1= ) u;(1:0)0,(x) € X, Uy(x.1:0) 1= Y\ i;(1:0)9;(x) € X,
Jj=1 j=1
(D.5)

refer to the spectral approximations of U(x,t;0) and U(x,1;0) in
Egs. (D.1) and (D.3), respectively. X, is the n-dimensional subspace
of Hé () spanned by the basis functions {¢,,...,¢,}. In Eq. (D.4),

A U:0) =P, (AOU), f,U;0) :=P,(fOU),

8:(U;0) := P,(g(O)U),
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where P, denotes the projection of L*(Q) or Hé'z(Q) onto X, In the
spatiotemporal SPDEs (D.1) and (D.3), we assume that for all 9, the
operator —A has the same set of corresponding eigenfunctions

~AO)p; = 4;0)p;.

@; € Hé’z(D),i =1,2,... forms an orthonormal basis in L%*(D) with
lo;ll 2 =1 and 2;(6) = o uniformly in 6 as j — co. We can prove the
following result.

j=12,...,n, Aj < /114-1-

Corollary D.1. We assume that A(0), interpreted as mappings of H(} Q)
into L*(Q) and f(0) and g(9), interpreted as mappings of H,(Q) into itself,
are Lipschitz continuous:

1A@)U,0) — AU, )|l 2 < LUIU — Ull 12 + 16 — 81,

If(U;60) = fU:0)ll g2 < LAU = Ull gz + 116 = 81D, (D.6)
lgU:0) = g(U:0)ll 12 < LA = Ugrzligrz + 110 = 81D, L < co.
Furthermore, we assume that

ELI01I°] < 8, EL1I0]1°] < 6. (D.7)

Then, we have the following bound for the local time-decoupled squared
distance between the probability measures of U and U:

W2WU.0) <3 (Sco(ﬂn2 3T exp(Colf,: mT)

Ci(B,)T

Co B exp(Co(B,; MT)

1 1

X (W, i) + (O] + 607 2TE[R(N*(U,(0; 0); 6); f)]))

+3T sup KT U 0)9/1N+1(‘9)
0.U(x,0
+3T sup KTU( 0)9’1N+1(9)

0.U(x.0:0)
(D.8)
In Eq. (D.8), Kry.0)p is a constant that depends on T,U(x,0) and 6,
while C;(p,) are constants in Theorem 2.2 that grow at most linearly with
n. f3, is another constant depending on the eigenvalues {4;}"_,. The vector
U,(0;0) := (u;(0;6), ...,u,(0; 0)) refers to the spectral expanslon of the initial
condition. W2 e(U U) is the local time-decoupled squared distance between

the probablllty measures of U and U:

T
W“(U 0): _/
0

and

W, (U(x,150), U (x,1;0))dr 0.9)

WS (Ux,1,0), U(x,1;0)) / W 50, 5 5OE(dUy), (D.10)

where ve(dUO) is the empirical distribution of the initial condition U (-, 0), and

s and 5(1‘) are the empirical conditional distributions of U(x,t;6)
s at ame t conditioned on ||U(x,0) — Uyl|;2 < é and 10 (x,0) —
Upll ;2 S 5, respectively. In Eq. (D.10), the W, distance between VU() HO! and
OUO,(S(t) is defined as

and v

1
mf E [lU - U||2Lz] 2. (D.11)

Wa (v, 5@ 9, 5(0) 1= RO o

ST 5@
Proof. First, we show that A, is also Lipschitz continuous:
U012 = |1 P,(AU,; 0) U,; 0l 2
<lAU,;0) - ,,,9)||L2
< LU, - U,,nm,z + 116~ 8.

14,(U,;6) - A
(D.12)

Because X, is a finite dimensional space, there exists a constant g, de-

pending on ¢, ..., ¢, such that VU, € X,, ||[U || 12 < B,IIU|| 2. Thus,
14,(U,30) = Ay(U,: Ol 12 < B A,(U,30) = A0, 01112

. ~ (D.13)
< B LU, = U,lig2 + 116 - 61D
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Similarly, f, and g, can also be shown to be Lipschitz continuous in U,
and 6:

1,3 0) = £, 0,2 < 1o 0) = £, D D)l 2
<B LU -U 6 -9,
o SALAU =Tl + 0 - 0m (D.14)
18:(U:0) = &40, D)l 2 < 118,(U,30) = 8,0: Ul 12

<B,LUU, = U,llp2 + 116 = 81D
From Grecksch and Kloeden (1996, Section 3), for every 0, we have

ELIU(x, kAL; 0) — U, (x, kAL 0171 < Kyayu(.0,.045 1 ©0)- (D.15)

where K, .00 iS @ constant depending on time kAt and the ini-
tial condition U(-,0), and 6. Without loss of generality, we assume
that Kya, (0,0 is non-decreasing in k (otherwise we can replace
Kiarveoro With Kiaueoe 2= max << Kiarue.00)- Given the initial
condition U(x,0) and P,U(x,0), we denote the probability measures of
U(x, kAt;0) and U, (x, T 0) by vy (. o) (kA7) and Vi, (.0 (KAD, respectively.
Moreover, the joint probability measure of (U(x, kAt;0), U, (x, kAt; 6))
has marginal distributions vy (kA?) and v, (.o (kA?), respectively.
From Eq. (D.15), we can deduce that:

W (v .0)(kAD, v, . .0y (kAD) < E|U(x, kAL 0) = U, (x, kAL; 0)]|°]
< sup K a7 0).
GU(P TUC0.04N+1
(D.16)

Furthermore, using the definition of the local squared W, distance in
Eq. (2.4), we have:
sz,ise(U(-,kAt;e), U, (. kAL 0)) <

sup E[||U(x, kAt; 0) — U,(x, kAt; 0)||2]

0.U(x,0)
< sup K AL (o).
M(s TU0.04N+1
(D.17)
Similarly, we can conclude that:
2. (1 N 5 -1 5
W, 5 (UG kAL 6), U0, kAT 0)) < ; (S]l(lpo) Kz 00000451, ©0)- (D.18)
o X,

Given the same initial condition U(x,0) = U(x, 0), using the triangle
inequality of the Wasserstein distance (Clement & Desch, 2008), we have
WS (U, 1,0),U(x,1;0)) < 3W,5 (U(, kAL 0), U, (-, kAL 0))

+3W 5 (O kAL 0), U, kAL 0) + 3W, 5 (U, (x,1:0), U, (x.1; 0)))

< 3W“(U x,1,0),U,(x,1:0)) + 3 sup KT U002 01 (0)
6,U

+3 sup KTU( 0)g/{NJrl(B)
6,U(x,0)

(D.19)
Integrating both sides of the ineqeuality (D.19) over time, we have:

772, o 2, 7y -
Wy (U.0) <3W,5 WU, U,) + 3T9 lS]l(lJ[C)O) Krue0n02n,,©0)

o (D.20)
+ 3T _sup KT,U(<,0),9}’N+1(9)'
0,U(x.,0)
Let
U,(t:0) = (u)(t:0), ....u,(1:0)), U, 0) := @,¢.0),....a,(.0)  (D.21)

be two vectors of the spectral expansion coefficients of U,(x,t;6)
and U,(x,1;0) in Eq. (D.5). We have ||U,(x,t;0)||;2 = |U,()| and
10, x, 02 = |0, because ||g;|l;2 = 1,i = 1,...,n. Furthermore, U,
and U, are solutions to the two SDEs:

dU, = (A,(U,.1;0) + F,(U,.1;0))dt + G,(U,.1;6)dB,,

d0, = (A,(0,.1;0) + F,(U,,1;0))dt + G,(U,.1;0)dB,

where A,(U,,1,0), F,(U,
tor of the coefficients in the spectral expansions of A,(U,

(D.22)

,1;0) and F,(G,,t;0) are the n-dimensional vec-
30), £, (U3 0)
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and g,(U,;0) in Egs. (D.13) and (D.14), respectively. A,, Fy and G, are
also Lipschitz continuous in U, and 6 from Egs. (D.13), (D.14). Applying
Eq. (2.18) in Theorem 2.2, we obtain:

WZe( U,,)]:[E[WZe( U,.0,)] < 8Cy(,. mT5? exp(Co(f,: n)T)
6C1(ﬂn)T C T W2 R 2C|EhN#U 05,
Colhrin) exp(Co(hys M) (W3 i, )+ 20, LN (U, (x,00; ), )]

1 L
@, +6,)
(D.23)

where C;,i =0, ...,2 are constants defined in Theorem (2.2). Taking the
expectation of Eq. (D.20) and plugging in the inequality (D.23) for
er( U,,)], the inequality (D.8) is proved. [

Appendix E. Proof of Theorem 3.1

Given a parameterized multivariate normal distribution f,, we de-
sign an SNN described in Fig. 1 with the ReLU activation and the linear
forward propagation. The probability density function of the output of
this SNN, denoted by fx, can approximate f, in the W, distance sense.
Given a real number 0 < ¢ < ¢;, we choose Ax > 0 such that:

W2(fyo fz) < ¢, Vx, % € D, [Ix - %|| < VdAx. (E.1)

We consider a uniform equidistance grid set X := {x,-}ili pXi =
(x} yeees xj.’) such that the distance between two adjacent points is Ax, D C
UK, ®7 [x],x] + Ax), and @ [x] ,x] +Ax)n @7 [x] x| +Ax) =
if iy # i,. Therefore, Vx = (x!, ..., x%) € D, there exists x; € X such that
[x —x;| < \/EAx. LetO<e< % be a small positive number. We set 4d K
neurons in the first layer, grouped into dK groups. When inputting x
into the SNN, the outputs of the four neurons in the (i, j),i = 1, ..., K, j =
1,...,d group are:

j
[x;,»

nhyy =RelU(e7 (o =5 = Ax)). nl , =ReLU(e”!(x/ = x/ = Ax+ ) ),
nl,'j,3 = ReLU(e_1 (x/ - x{ - e)), n;,j,4 = ReLU(e_1 (x/ - xl/))

The second hidden layer contain dK neurons labeled by (i,j),i =
I,...,K,j=1,...,d. We set weights between the first layer and the sec-
ond layer such that the input of the (i, /) neuron in the second layer

is:
1 1 1
i1 (ni,jA ;3 )

21n

(E.2)

2in . _ 1
ijo T g2

(E.3)

€ [0, 1]. Furthermore, when x/ € [x +

d. If xJ Sxi or x/ in + Ax, then

It is easy to verify that n;’

2,in

ex +Ax] thenn —1,]=1,...,

ni}" =0. The output of the (i, /) neuron in the second hidden layer is

designed as
n, =ReLU(e” (n)" = 1+¢)). i=1,...

The third layer contains K neurons, and the output of each neuron
in the third hidden layer is:

d
n = ReLU<Ze1(n§j -1+ 3)),:‘ =1,...
j=1

Thus,n € [0, l]andn —1whenxe®[x +e€,x;; + Ax —e]. If there
dsuchthatxf<x or x/ >x +Ax thenn =0.Forx € D,
{xeD:

K,j=1,..4d. (E.4)

K. (E.5)

isaj=1,.
there exists at most one i such that ”1 # 0 We denote D(e) =
3li,n} = 1}. It is easy to check that as e — 0, D(¢) — D.

We set d’ K neurons in the fourth layer. Each neuron is labeled with
@(i,j),i=1,....,K,k=1,...,d". The input and output of the (i, /) neuron
in the fourth layer are identical (i.e., each neuron in the fourth layer
outputs its input):

m(@}, +(A7'b), i=1,... K, .d'.

k=1,... (E.6)
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Here, w; ; ~ N(0,1) are independent random variables, while b; and A;
are the mean and covariance matrix of e, (¥) = N (b;, A;), respectively.
(A7'b)), refers to the kth component of the vector A7!b;. The output of
the fifth layer is d’ dimensional:

K
Y n(A@} +b), (E.7)
i=1

where ®; := (®;, ..., ®; ). Because for any x € D, there exists at most

one i such that n? # 0, for any x € D, we have:

sup E[llyll*] < supE[l|4,0] + ;7]
1

I~fx (E.8)

< sup(|A] A; 113 + 118;15.
1

For each x € D(e), if © =1 i.e., [|Ix — x;|| < Ax, then f, is the prob-
ability density function of a multivariate normal distribution, and f, is
identical to f,. Therefore, we have

/D W (fe f(dx) < /D Wi (fe fOr(d)

+2/(D = (e sup EllyIP1+ sup ENlIPI)
e~ I~Sx

<cy(D)+y(D - D(e))2<§ufp ElllylI*]+ sup (I A] A1l + ||b,~||§))
y~ x 1
<c+4y(D - D(e))Y.
(E.9)

proved Theorem 3.1.

Appendix F. Proof of Corollary 3.1

The proof of Corollary 3.1 is based on the proof of Theorem 3.1.
Given any positive number ¢ > 0, we can find a Ax > 0 such that:

W2(fyo fz) < ¢, Vlix — %]l < VdAx, x,% € D. (F.1)

We establish an equidistance grid point set X := {xi}{i , on D such
that the distance between two adjacent points is Ax, D C U’.’i . ®;‘.:]
[x/.x] + Ax) and @7_ [x] .x] +A0)n @7 @ if i) # iy.
Thus, Vx € D, there exists x; € X such that |x — x;| < VdAx. Denote
®(x) to be the cumulative distribution function of a standard normal

JoJ —
[xiz, X, + Ax) =

random variable. Suppose —~M = h;, < h;; < ... < h; ; = M such that:
DRy 1) = PNy ,) = piyyrsr = 1,05 =2, O(hyp) = piy,
cp(hf,s—]) =1- Dis» (F.2)

where p;, := p,(x;). We design an SNN of the form in Fig. 1 that satisfies
Eq. (3.12). We set the first three hidden layers of this SNN to be the same
as the first three layers of the SNN designed in the proof of Theorem 3.1
in Appendix E. We also refer to the outputs of the third hidden layer as
n?,i =1,....K.Forx; € X, we denote x; = (x/, ..., x4). From Appendix E,
n? e[0,1], n? =1 when x=(x!,...,x%) e ®;_1=l[x{ +€,x{ + Ax — €], and
n? =0 when x € D — ®7=1[x{,x{ + Ax]. € > 0 is a small number to be
determined. If there is a j =1, ...,d such that x/ < x{ or x/ > x{ + Ax,
then n} = 0. For x € D, there is at most one i such that n? = 1.

The fourth layer contains K (s + 1) groups of neurons with each group

containing 2 neurons. The outputs of the (i,r),i=1,...,K,r=0,...,s
group are:

4 _ -3 3 4 _ -3 3
n;, = ReLUW;n; — h;, — My), 7], = ReLU@;n] — h;, — €y — My). (F.3)

LZJ? ~ N'(Mj, 1) are independent random variables. M, > |h; |, Vi,r is a
. ‘o N P
large number and ¢, > 0 is a small number satisfying ¢, < min, , ——

Both M|, and ¢, are to be determined.
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The fifth layer contains sK neurons and the output of the (i, ) neuron
is:

_ReLU( (4 —

ir ir

~ (=) P =0 =1 B

Therefore, when n[.3 =1,forr=0,...,

u+1

s — 1, we have:

5

noe =1 L@} € [My + h;, + €5 My + Ry 1
n:'5r+1 =0,0] < My+h;, or &} > My+hy,p; + €, (F.5)
", +1 € (0, 1), otherwise;
Furthermore, we can see that for any n? e[0,1]
s
0< Zni,g 1, F.6)
=

and there exist at most two non-zero nfs, mons > 0in (n L 5)

For any e, > 0, there exist a small ¢, > 0 and a large M, > 0 such
that when ”i =1

€
0<piy=hip S = by i= 00, =1, i= 1, K. (F.7)

The sixth hidden layer contains sKd’ neurons, each of whose input
and output are both
Ld.

=1 Wi+ (AN )),0 = 1,

ik LK, r=1,...

L, k=1, .. (E.8)
Here, w;,; ~ N'(0,1) are independent random variables. b, ; and 4, ,

respectively, are the mean vector and covariance matrix such that

s
fo ) = Zpr(x,.)N(b,,,A”A, r) (F.9)
r=1
The seventh layer contains d’ neurons whose output is:
K s
XY n (A w,, + by, (F.10)

i=1 r=1

where w;, = (w;,,...,w; ). When x € D(¢) := {x € D : li,n’ =1},
if n} = 1, then the probability density function of the output of the sev-
enth layer can be written as:

<blr’A All‘)+pl(y) / pz(y)dy —l—Zp,,Sel, pl(y)>0'

r=1

N

D hiN

r=1
(F.11)

Furthermore, since there exist at most two non-zero consecutive

. >0, we have:

5
n i+1,s

i,s°

/w’ I¥11*p:(y)dy < /Ra’ pi(y)dy - (2 max Eynib,.a7 a, U]

F2maxEy_x, a7, IYIP)

(F.12)
—<1—Zp,,)4max(||b,,||2+||A,, %)
<4elmax(||b,,||2+||A” ,,||2)
Applying Lemma 3.1, we have
Wi fe) < 2max L (1A A, I + 118, )
+ dey max (11,112 + 147, A 113 ). (F.13)
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when x € Di(e) :=
have:

{x € D(e)|lIx; — x|| < llx; — x||,V/j #i}. Finally, we

/ W2 (fr )7 (dx)

D

<[ Wi for(dx)
D(e)

+ 21 = y(D@)(ELYIP1 + 4 sup (147, A4, 1 + l15,,1%1) )

szz

+20 = 7 (DE)(ENYIP1+ 4up(IAT, 4,1 + 1,,17D )

cy(dx) (F.14)

W2(f oo £ )7(dx) + 2 /
Di(e) 2 i z i(e)

< 2sup (661 (1147, 4,1 + 1, 117) ) + 2¢

+ 21 = y(D@)(ELYIP) + 4 sup(l AT, A, I+ 115, 17D ).

Note that sup; ,(||Al . ,,||2 + Ib;, .|I?) is uniformly bounded from the as-
sumption Eq. (3.11). Letting ¢, e,¢; — 0% in Eq. (F.14), we have proved
the inequality (3.12).

Appendix G. Proof of Theorem 3.2

First, we define an auxiliary function with an additional parameter
o:

120 i= [ FOONG =0 LY. @)
R

Since f is uniformly continuous and uniformly bounded, Ve, > 0, there

exist a small 6 > 0 and a small 6, > 0 such that for any ¢ < o,;, we have

D1fy) = fD) < €, Y[l -yl < 6 and ii)

N @362 Lysg)dy > 1 — ¢ (G.2)

B(0,6)

Therefore, we conclude that lim,,_, fUz (y) = f(y) uniformly on RY.

}(Vlo+1) and {w }jrflﬂ)

collocation points and weights on RY" described in Shen et al. (2011),
we have

Letting {y; be the multidimensional Hermite

/Rd’ L ) - Ty Ny = ¥'5 6% Ly )dy’

(no+D?"
Y FOING =y 0 Lyaw;. (G.3)
i=1
Here, 7, is the interpolation operator such that
FO) =Ly fO)) € Pygo = Looces (g + D (G.4)

where P,
#,(y) such that |n|, < n, and

is the space spanned by the generalized Hermite functions

d'

H,(y) = Hﬁ,,,,(yi), n=(ny,...,

i=1

ng1)s ¥ =0 Yar) (G.5)
is the multidimensional generalized Hermite function defined in Shen
et al. (2011) (f{,,i is the 1D generalized Hermite function of order n;).

We denote

(ng+ D)

So2,¥) 1= Z FO) - N =y 6" Ly w;

i=1

= [ T f 0D L NG~ ¥ i Ly

(G.6)

where f,
thermore,

is nonnegative because the collocation weights w; > 0. Fur-

} /Rd, FOONG =y 6 grear) = L, FGVL Ny =y 6% Ly )dY
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SIS =Ly fllp2 - IN G = Y567 L)l 2

T, g2 - ING =56 g = Ty N3 = V'3 6° Lyl 2
(G.7)

Using (Shen et al., 2011, Theorem 7.18, Theorem 8.6), we have:
I =L fIl SUF =Ty Fllp2 + T3 0.0 £ = fll2

!
+1@, = DIy o...oLy f = 2

o...ozj’f—fan
oLy = DL f = 2,

_1
< Cnylloy, fllp2 + 127

+ ||Ij
(G.8)

1
-3 2 d’
<Cny 10y, fllpz + 112 0.0 £ = [ll,2

1
-3 ’
Cn,’ ||(1§Oo...ozjoay1f =0y, fllp2

<.

< C"o_% |f|mix
Here, C is a constant and n, is taken to be large enough such that
i=1,...
tion operator in the ith direction, i.e., if we denote X, o
the 1D Hermite collocation points, then

,d' is the projec-
= {yi}fio to be

1 .
Cny~ 3 < 1. [ is the identity operator and L,

LS =1, ¥y =01 v) if v € X, (G.9)
Similarly, for any fixed y € RY":
IN (G = ¥':6% Larear) = Ly N = ¥ 62 Lyran)l 12
_1
< D Cn 10, N N2 (G.10)

Inlo<ng
Combining Egs. (G.3), (G.7), (G.8) and (G.10), for every y and every

o >0, as ny — oo,
(no+1)!"

| X FOING =y L

i=1

- /Rd/ FOON(y - y’;azldrxdr)dy"

_1 _1
<y (1 il . 0> L ll 2 + (1112 + € ¥ 1f i)

AN @ )i )

(G.11)
which implies that for any fixed ¢ > 0,
(g +1D?’
20 = D FOING =y 0P Tara
i=1
- / L TOONG =y 0 ar)dy’ (G.12)
R

uniformly in y € R as ny — oo.
Additionally, we have:

o

g+

Y17 Y, fOIwN (G = yi3 0 g )dy

i=1

g+’

Y, Sy +d oM

i=1
(n0+l)d

Z Ty +d'6?’

fo

[, 100+ oy
Rd

| |2+d!62

w (SO +d'e) - 1,, Erdon )Y

S S
UIyl1? +d's?)

+ ”(1,,0 =Dyl + d’ffz)z)”Lz : H

IA

1

IylI? + d’c? ”Lz
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2 1 232 1
Iy (SO + ')z - 10 = L) (s s
d/ _l _l d/
< (Y 20 | f Y mix +2Cn, 2 d'0” 1 f (937 Imix

i,j=1 i=1

1
2 ) 1
+Cny 3 (@) 6% f i) - 672C(d")

1

1
7 232 . 3
+ L, (FD +d'0*) )2 - Cn, (”y”“d,az

)mix

(G.13)

where C,(d’) is another constant depending on the dimensionality d’.
Since

IZ,,, (SO +d'6>7) = FOAYIE +d'0?) ]2

d/ 71 7l d/
< X 2Cn S WYY Imix +2Cn 2 d'0? Y | F ()] Imix (G.14)
ij=1 i=1
_1
+Cny* (d')0* | flmix < 0
we conclude that
("0+1)d’
/ LIV X @0 N (y - yis oty < co. (G.15)
R i=1
Furthermore, from the inequality (G.19),
2 2
I1Z,, (fOUAYIZ + "0 )2 = IFDUYI*+d'oD N2 as ng = oo.
We denote
. 1
Form®) = —— o2y ). (G.16)
ijol f(yj)wj
Therefore, [ f;z’no (»)dy = 1. Note that:
(g +1)¢’
| / Loy = ¥ fw| = / =Ly VT 1, VTdy
R i=1 R
_1 1 (G.17)
IV 2Cny IV F i + 1T VFL2Cy > 1V F i
_1 _1
<Cn IV Flais @IV 2 + €y 1V F lmi)-
Therefore, we can write
nd/
0 _1
3 Fow; =140y  e(VF) < . (G.18)

i=1
where c(\/7) is a constant depending on |\/7|mix Al \/7||L2 =1). We as-
1

sume n, is large enough such that n;gc(\/? ) < % From the inequal-
ity (G.13) and the definition of f,,z),,o in Eq. (G.16), we can bound

Eyers, (VI by
1

IE f 1
1= le(Nln,

yoiay IR < [Ey-stlyIP1+ a'c?

+n;%(C2(o;f) +E,,llyl*1+ 1)

< [[Eny[llyIIZ] + ";%(Cz(a; N+E, AIFT+ D+ d’oz]
+2Ae/ Pl [Ey-rtlyIP1+ S (Cylo: )
+Ey g lyIP1+ D+ d'o?)

_1
=Elllyl*1+d'o> +n,* C5(o; ),
(G.19)

where C,(o; f) is a constant that depends on f and ¢, and Cs(o; f) is
another constant depending on f, \/7 and o.

+E[lyI*1+d' o,
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Consider the special coupling measure
n(fvf,,zmo)(y, $) :=min (f(y), fa2,n0(y))6(y 5

b L (1) =007 2 00) - (T ) - 0 ).
if/Rdf min(f(y). £z, ¥Ndy < 1,

A(fs For0) 3 9) 1= (DY = 9, if/Rd/ min(f(y), fp2,,,(¥)dy = 1,
(G.20)

where A := o min (f(y), fazmo(y))dy and 6 is the Dirac delta measure.
The marginal probability densities of z(f, faz!no) are f(y) and faz,,,o(y),
respectively. Furthermore, we have:

. S12
[E(y,ﬁ)wr(f,fgzmo) [Ily =7l ]

< Z/Rd, Y17 (f (y) = min(f ), f2,,, PD)dY

) ) (G.21)
#2 [ IR0 = min(F 9. £, (90K
R

< [P = 0.
Rd

Fixing ¢ > 0, from Eq. (G.12), faz’"o — f,2 uniformly as ny — oo;
furthermore, from the definition of faz,no in Eq. (G.16), faz‘nu = formy
uniformly as ny — oo. Finally, since lim,_, f,2(y) = f(y) uniformly as
o — 0 for any y € RY', we conclude that

Fog@ = (G.22)

uniformly as ¢ — 0 and ny(c) - oo in RY',
Since E,.;[lyl*] < oo and By, ”0(6)[”)’”2] = EyyllylP1+ a0 as

ny(c) - oo from Eq. (G.19), for any e > 0, there exists a measurable
set A C RY such that:

L[, I dy — Ey LlylPI < e
2. we can find a sufficiently small ¢ and a sufficiently large n,(c) such
that d’6? < ¢ and:

/A VI 1£ @) = oo DIy < €. ©.23)
Using the inequality (G.19), we have
sty I = IPT<4 [IIP170) = F i1
wd [ Wy s [ 00
<de+4c+ 4<[Eny[||y||2] +d'6? + no(0) "3 Cs(0: f) (G.24)

- ( [Py - e))

1
< 16€ + 4d' 6% + 4ny(6) "3 C(0; f) < 24e,
1
if we take an ny(o) large enough such that ny(6)” 3 Cz(o; f) < €. From
Eq. (G.16), we have:

(ny(@)+ D

>

i=1

fy)w;

(no(e)+1)d’
Zj:]

fUZ,nO(J)(Y) = . N(y —Yis Uzld/xd/), (G.25)

Sy j)w j
which is indeed the probability density function of a Gaussian mixture
model, and this completes the proof of Theorem 3.2.

Appendix H. The approximation ability of the SNN model in Fig. 1

In this subsection, we analyze the capability of the SNN model to
approximate a family of probability density functions for a random vari-
able y, ~ fy,y € RY characterized by x € D C R?,x ~ y(-). We assume
the following conditions hold:
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1. f, is uniformly continuous such that for any e, there exists a Ax
satisfying W(fy, fz) < €, ¥x,% € D, ||x — %|| < Ax.
2. For any x, f, satisfies the conditions in Theorem 3.2.

Let € > 0 be a small positive number. We can find a Ax > 0 such that
W (e fa) <3 Cif lx—%| < \/_Ax Vx % € D. We can find an equidis-
tance grid pomt set X := {x,»}i"= . such that the distance between two
adjacent points is Ax, D C u‘.’(=1 ®;’=1 [xf,x{ + Ax), and ®j=1[x{1,x{1 +
Ax)n®7=l[x{2, g if i #i,.
exists x; € X satisfying I/sz( Jar fx) < i. Furthermore, for any x; =
(x!,....x%) € X, from Theorem 3.2, there exists a probability density
function of a Gaussian mixture model:

x{z + Ax) = Thus, for any x € D, there

1o, i 10,i

fno.”a’?(}’x,) = Zp,v,, ( b,n Al rA,r), ZP,‘W =1,
r=1 r=1

suchthathz(fxi,fno 2 )< & 4, i=1,...,

(H.1)

K.Wedenote ny := max,;<x o,

and
ng,;i—1
Srpo2 ) = Z PN (35, = biro AT A, )
” (H.2)
Pi, 0, i T
+ Z no=no ;+1 (y,,l _b”v”o.i’Af,"o.,A’F"w)'
r=ng;
W2 (S, Fagpo?) < Si=1,..,K for Fgs? defined in Eq. (H.2) because
Wi Fxps Frgyo2) = W5 (fx, f,,oy“(,[z)-

We define a new continuous random variable ¥, with a probability
distribution f,,x € D such that:

fx= "ty o ifxeDn ®d_1[x x) + Ax). (H.3)
Therefore, we have
[ WG ronan < Z 2WEFe f)
D DN®Lx] x/ +Ax]
+ Wf(fx, fx,. )r(dx) =e. (H4)
We denote
Yexyi= sup (6P + 1AL AR ). (HS5)
i=1,.., K, s=1,...,n
where b, ; and A ,A; s are the mean vectors and covariance matrices

in Eq. (H 2), respectlvely Similar to the proof of Corollary 3.1 in Ap-
pendix F, for any ¢, > 0, there exists

D(ep) i= D0 (UX, @1 [x],x] + Ax —¢]) (H.6)

such that y(D — D(¢))) := fD_D(e]) 1y(dx) < e. Additionally, similar to
the estimates Egs. (F.13) and (F.14), we can find an SNN whose output
obeys a distribution f, satisfying:

W2(fer fi) < 66Y (€. X), x € Di(ey) := (x € D(eplllx; — x|l < [lx; - x]|}

Wi Fe fi) S 2maxEy p L (1YelP1+2E, 7 (115l

< 10max E [y 1?1 < 10Y (e, X), x & D(ey).
1

nyf”QVD"»Z
(H.7)

Therefore, we have

/ W2(frr () < / W for@o + / W2(f Frr(dx)
D Dey)

D—-D(ey)
=6¢Y (e, X) + 10eY (¢, X) = 16€Y (¢, X),
(H.8)

and
/ W2 (fr f)7(dx) <2 / (WE(fe f) + Wi (f £0)) 7(dx)
D D

< 32Y (e, X)e + 2e. (H.9)
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In Eq. (H.9), Y(¢, X) also depends on ¢ and the choice of the grid
point set X = {x,}f‘= - Specifically, as ¢ — 0, if we can design a grid
point set {x}ili(“) such that the quantity ¢-Y(e, X) — 0 (e.g., when y

is uniformly bounded for any x € D, by the construction of fno ;2 in

Appendix G, sup,_; 1. (||b,._s||2 + ||AZSAI.’S||§> in Eq. H.5 is uni-
formly bounded and its upper bound is independent of the choice of the
grid point set), then there exists an SNN model in Fig. 1 such that the dis-
tribution of its output can approximate f,, the probability distribution

of y given the input x, in the squared W, sense.
Appendix I. Default training settings

We list the hyperparameters and settings for training the SNN model
in Fig. 1 of each example in Table 1.3 below.

Table 1.3
Training settings for each example.

Hyperparame-
ters

Example 4.1 Example 4.2 Example 4.3 Example 4.4

Gradient descent Adam Adam Adam Adam
method
Learning rate 0.001 0.0005 0.0003 0.001
Weight decay 0.01 0 0.005 0.02
No. of epochs 500 400 2000 400
No. of training 200 200 400 300
trajectories
Hidden layers 1 3 3 2
Activation ELU ELU ELU ReLU
function
Neurons in each 40 50 10 50
layer
time step At 0.1 0.1 0.05 0.1
Number of 81 21 41 21
timesteps Ny
Initialization for 2 N(0,0.01) N(0,0.03%) 0.01
biases (W((1.5,05)7,0.11,)

for the output layer)
Initialization for ~ N(0,0.012)  N(0,0.012) N(0,0.03%)  N(0,0.01%)
means of
weights
Initialization for  A(0,0.012)  A(0,0.01%) N(0,0.03%)  N(0,0.01%)

variances of
weights

Appendix J. Definitions of different loss metrics

Below, we provide descriptions and definitions for the different loss
functions used for comparison in this study. In the following, N de-
notes the number of samples, and 7; = INL,Z =0,..., Ny denotes a uni-
form mesh in [0, T].

1. A scaled local time-decoupled squared W, distance:

z

M=

1
NyN 4

1 ,€ e ne
N2 Z WS (X (1), X (1) = 2 W3 (v, , 61y, 500):

i
o
i

J.n

where W (X @), X @; )) is the local squared W, distance defined in
Eq. (2. 4) v 5(1) and ¥ % 5(1) are the empirical conditional prob-
)

ability dlstrlbutions of X and X at time r conditioned on |X(0) —
X;(0)| <sand |X(0) - X ;(0)] < 8, respectively (X (0) denotes the ini-

tial state of the jth trajectory in the training set). VVf(v}O A;Q o)
is estimated by
) . 1 1=
W2 (¥, 5 %50,) 0t -emd2( - - T €1, (.2)
j

J
where ot .emd?2 is the function for solving the earth movers distance
problem in the PoT package of Python in Flamary et al. (2021). N; is
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the number of elements in the set X; := { {X }tho)HX,-(O) -X;0)| <
6,i=1,.
are all 1, and C;(t)e RN*N; is a matrix with entries (C;(t))sr =
1X,() — X Lt )||2 X,(t;) and X (t;) are the states of the sth ground
truth trajectory at time #; in the set X; and the states of the rth

| 12:0)

o N } Iy, is an N ;-dimensional vector whose elements

predicted trajectory at time 7; in the set X ;= {{X,

X0l <6.i=1..,N
2. A scaled time-decoupled squared W, distance

}, respectively.

Ny
- 5 1 o
WX X) m = 3 WRR(). 9°,)).
T i=1

where vo(r;) and 7°(¢;) are the empirical distributions of X(z;) and
X(1,), respectively. It is estimated by

. 1= 1=
W28, (1), 9%, (1) = ot emdQ(NIN, Sxe C(t,-)), (J.3)

where ot . emd?2 is the function for solving the earth movers distance
problem in the ot package of Python in Flamary et al. (2021). N
is the number of ground truth and predicted samples, T ~ is an N-
dimensional vector whose elements are all 1, and C(t;) € RVN is a
matrix with entries (C(1,)),; = | X,(t;) — X;(t)||. X,(t;) and X ;(t;) are
the states of the sth ground truth trajectory at time #; and the states
of the jth predicted trajectory at time ¢;, respectively.

3. MMD (maximum mean discrepancy) (Li et al., 2015):

Nt
MMD((X ), (X)) = - > EIK(X()), (X)) o)
T =1 .

= 2E[K{ X ()} AX D]+ EIK{ X )} X DD,

where K is the standard radial basis function (or Gaussian kernel)
with the multiplier equal to 2 and the number of kernels equal to 5.
{X(r,)} and (X (t;)} denote the sets of ground truth observations and
predicted trajectories at time ¢;, respectively.

4. Mean squared error (MSE):

ZZHX(z) > O]

llS—

MSE(X, X) = (J.5)
X,(t,) and X,(1,) are the states of the sth ground truth trajectory at
time #; and the states of the sth predicted trajectory at time ¢;, re-
spectively.

5. Mean? + Var loss function:

(Mean” + Var)(X, X) DX, ) - Xl

1%(1 al
NTi=1 Ns:l

(J.6)
+ |Var(X (1)) — Var(f((t,.))|>

10(21) trajectories of the jump-diffusion process

——ground truth

predicted

) error in |6(X;)]

1
0.8
B 0.6 B
-
)
. 04 035
0.2
E 0.3
0

a1
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where

N N

1 2
Var(X(1;)) = gl %, - ; FX,.(t,.)” A (.7
X,(1;) and X (1, are the states of the sth ground truth trajectory at
time #; and the states of the sth predicted trajectory at time ¢;, re-
spectively.

Appendix K. Using a neural network to approximate the diffusion
function in Example 4.4

Here, we apply a feedforward neural network with deterministic
weights and biases to approximate the diffusion function in a jump-
diffusion process when the form of the diffusion function is unknown.
We consider the following jump-diffusion process:

dX, = 0.05dr + 6+/]X,[dB, + / EX, AN (W(d&)dn), 1€ [0,2],
U

&~ N(By.oD), Xo ~ N (2,065). (K.1)

InEq. (K.1), o, is a positive constant, and B, and N, are an independent
Wiener process and a compensated Poisson process, respectively. We
use the following approximate jump-diffusion process to approximate
Eq. (K.1):

dX, = 0.05dt + 6(X,)dB, + / EX, AN (W(de)dn), t€[0,2], Xy = X,.
U
(K.2)

InEq. (K.2), 8(X,) is a deterministic feedforward parameterized neu-
ral network that takes the state X, as the input. We aim to approximate
the ground truth diffusion function |o(X,)| := |o,|4/IX,] in Eq. (K.1)
using the approximate |6(X,)| in Eq. (K.2). & is the output of an SNN
when the input is 1, which aims at approximating the distribution of
&, and B, is another Wiener process independent of the Wiener pro-
cess B, in Eq. (K.1) while N is another compensated Poisson process
independent of B,, B, and N,. We train both the deterministic neural
network &(X,) and the SNN that approximates the distribution of ¢ si-
multaneously by minimizing our local time-decoupled squared W, loss
function Eq. (2.6). The parameterized neural network &(X,) consists
of two hidden layers with fifty neurons in each layer. All other hyper-
parameters are the same as those used in Example 4.4, described in
Table 1.3. We vary the variance of ¢ as well as the value of ¢, when re-
constructing the diffusion function and the distribution of ¢ in the jump
function.

The trajectories generated by the reconstructed jump-diffusion pro-
cess align well with ground truth trajectories (shown in Fig. K.7(a)).
Furthermore, the error in the reconstructed diffusion function, as well
as the error in the reconstructed distribution of &, is small. Thus, when

(c) error in €

0.8
0.6
0.4
0.2
0

o1

0.45

Fig. K.7. (a) Ground truth trajectories versus the reconstructed trajectories when o, = 0.3, f, = 0.3,6, = 0.15,0, = 0.1, and § = 0.1 in the loss function Eq. (2.6). For
clarity, 50 ground truth trajectories and 50 reconstructed trajectories are plotted. (b) The error in the reconstructed diffusion function é. Here, the error denotes

Jy UB(X)I=00V/IX,Dde
S (oo /TX DRdr

the relative squared L? error:

. (¢) The error in the reconstructed distribution of & (Eq. (4.1)). In (b) and (c), the values of other parameters are:

py =0.3,0, = 0.1, and the size of neighborhood 6 = 0.1 in the loss function Eq. (J.1). Errors are the average error over three repeated experiments.

22
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the form of the diffusion function is unknown while the diffusion func-
tion itself is deterministic, we could consider using a deterministic feed-
forward neural network to reconstruct it while using an SNN (Fig. 1) to
simultaneously reconstruct the distribution of ¢ in the jump magnitude
function in Eq. (K.1) by minimizing the loss function Eq. (J.1).
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