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Phase differences in reaction-diffusion-advection systems and
applications to morphogenesis
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The authors study the effect of advection on reaction-diffusion patterns. It is
shown that the addition of advection to a two-variable reaction-diffusion system
with periodic boundary conditions results in the appearance of a phase difference
between the patterns of the two variables which depends on the difference
between the advection coefficients. The spatial patterns move like a travelling
wave with a fixed velocity which depends on the sum of the advection coefficients.
By a suitable choice of advection coefficients, the solution can be made stationary
in time. In the presence of advection a continuous change in the diffusion
coefficients can result in two Turing-type bifurcations as the diffusion ratio is
varied, and such a bifurcation can occur even when the inhibitor species does not
diffuse. It is also shown that the initial mode of bifurcation for a given domain
size depends on both the advection and diffusion coefficients. These phenomena
are demonstrated in the numerical solution of a particular reaction-diffusion
system, and finally a possible application of the results to pattern formation in
Drosophila larvae is discussed.

1. Introduction

Diffusion driven instability was first proposed as a mechanism of developmental
pattern formation by Turing (1952). In this mechanism reacting and diffusing
chemicals (morphogens) form a pattern which controls subsequent cell
differentiation. Subsequent research has led to a detailed understanding of the
mechanism and its applications (see Murray, 1989, and Meinhardt, 1982, for a
review) and many variants have been studied (e.g. Benson et al, 1993; Dillon et
al. 1994). However, one feature common to all variants is that the prepattern of
the different morphogens is either in phase or wholly out of phase. This limits the
applicability of diffusion-driven instability: in particular Russell (1985) has shown
that a chemical prepattern in which the morphogens have inexact phase
differences could be used to explain metamerism (segmentation) and its mutant
variants in the Drosophila larva. In this paper we discuss reaction-diffusion-
advection systems as possible candidates for the generation of chemical waves
with inexact phase differences.
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2. Derivation of the model

Consider a system of reacting morphogens, say u = (uuu2,. •., un), each of
which exhibits advection in addition to diffusing through the surrounding
medium. In order to describe their behaviour, a continuum approach using
density functions to describe the distribution of the basic particles is typically
used. For the ith chemical morphogen we define u,(x, t) as the concentration,
Qi(x, t) as the net creation rate of particles, and Jt(x, t) as the flux density in the
region Q. The conservation equations for these chemicals have the form

f'—v-y + G. (i)

In our model we assume /, = -d^ut + atuh where a, and dt are constants. This
implies that the flux depends both on the concentration (advection) and the
gradient (diffusion). Hence we have the system of equations for the n
morphogens of the form

u, = D • V2« + V(a • u) + /(«). (2)

We consider for simplicity the case of two interacting morphogens u and v, in one
space dimension, so that

dt ~ ^ ( "'

dv

dt

du
>V) + adx +

. ,dv

D —
" dx1

D ^vdx2

for 0 < x < l . Here y is a scale parameter, resulting from the rescaling of the
domain. We assume that the kinetics /and g are such that there is a homogeneous
steady state, (u0, v0) say. For algebraic simplicity, we will in future write p =a + b
and q=a-b.

We now consider the most appropriate boundary conditions for (3) and (4).
Most reaction-diffusion models for pattern formation have used zero-flux
boundary conditions mainly because the interest is in self-organization of pattern,
and zero flux implies no external input. However, it would be artificial to study
phase differences with either zero flux or Dirichlet boundary conditions, since
these impose a phase difference on any solution, at least near the boundaries. In
fact, in the context of developmental biology we are in most cases studying a
domain which is much larger than the size of the pattern, since the pattern is
localized to one part of the embryo. In such cases, we do not expect the
boundary conditions to have any significant bearing on the pattern formed. Hence
the pattern we are studying should be driven by the equations and not by the
boundary conditions. In some contexts it is appropriate to consider an infinite
domain, but in others the restrictions on pattern imposed by a finite domain size
are crucial, and in such cases periodic boundary conditions represent a convenient
way of studying patterning excluding effects from the boundary, except the
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constraint of discrete mode numbers. Periodic boundary conditions correspond to
closed domains and were in fact used by Turing (1952) in his original paper. The
conditions are

«(0) = u(l), «'(0) = u'(l), (5)

v(0) = v(l), W'(O) = !/'(!)• (6)

The ensuing analysis is equally valid for an infinite domain; the imposition of (5)
and (6) corresponds to mode selection, which will be discussed in detail later.

The homogeneous steady state (u0) v0) is the positive solution of

f(u,v) = 0, g(u,v) = O. (7)

We are looking for instability that is prompted by the spatial spread of the
morphogen, and hence we require the steady state to be linearly stable to
spatially homogeneous perturbations, for which the conditions are

fu+gv<0, (8)

(9)

(see e.g. Murray, 1989). These impose certain constraints on the kinetic
parameters. Now we consider the full reaction-diffusion-advection system and
linearize about the homogeneous steady state, giving

w, = yAw+ Bwx + Dw^, (10)
where

\a 01 Tl 0"|B"io A H o A
and w is the vector of perturbations from the steady state. We look for solutions
of the form

w = WcfiMW(x). (11)

Since we are considering either an infinite domain or a finite domain with periodic
boundary conditions, any solution of the linear equation (10) can be written as a
sum of sinusoidal solutions of the form

W(x) = c ^ + c2e- to. (12)

The linearized equation determines a growth rate A corresponding to each
admissible wavenumber k. The steady state will be unstable to suitable perturba-
tions if any of these growth rates are positive, while if all are negative the steady
state will be stable. The inherent stochasticity in all biological systems means that
in applications all wavenumbers will be present in perturbations. It is noteworthy
that other approaches have been used in the past for studying the stability
properties of solutions to reaction-diffusion equations. For example, Casten &
Holland (1977) have described a method to determine the local asymptotic
stability of a nonlinear reaction-diffusion system with zero Neumann boundary
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conditions based on the eigenvalues of a matrix arising from the linearization of
the system of equations.

3. Conditions for dispersion driven instability

Substituting (11) into (3) and (4) gives

\uo = -k2uo + aikuo + y(fuuo+fvvo), (13)

Av0 = -dkhjQ + bikv0 + y{guuQ + gvv0). (14)

This has a nontrivial solution if and only if

det\\I-yA~Bik + Dk2\=O. (15)

This equation is the dispersion relation, determining the growth rate A as a
function of the wavenumber k. Expanding it gives

A2 + A[*2(l + d)- \k(a + b)- y(Ju + gv)) + h{k) = 0, (16)
where
h(k) = dk< - \k\ad + b)- k2[y(dfu + gv) + ab] + iky(agv + bfu) + y 2 C U , -fvgu).

(17)

The roots of (16) are given by

2A± = - ( a + i/3) ± [(a + i0)2 - 4<o- + iw)]K (18)
where

a = k2(l + d)-y(Ju+gv),

a=dk<- k2[y(gv + dfu) + \{p2 - q2)] + y 2 ^ - fvgu),

w = -\k\p{d + 1) + q(d - 1)] + \ky[{p + q)gv + (p - q)fu\

We may rewrite the solutions (18) in the form

[][^W] (20)

where
i, (21)

2af} - 4<o
( 2 2 )

The steady state (u0, v0) is linearly stable if Re [A] < 0 for all wavenumbers k. The
conditions for the steady state to be stable in the absence of spatial effects, i.e.
Re [\(k = 0)] < 0, are given by (8) and (9). Given these conditions, the system
will become unstable to suitable spatially varying disturbances if
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d[ks

Re [A(fc)] > 0 for some k > 0. These solutions will occur only if k represents an
admissible mode, and the implication of this will be discussed in full in a later
section. By manipulating (19) using a computer algebra package, it can be shown
that if instability does occur for a given (admissible) k then the bifurcation will
occur along the line Re (A) = 0, that is

d3[k8-yfuk
6] +

d2[2ke + y2k\2fl-fvgu + 3 /^) - yk'(4fu + 3gv)] +
f&irfl + 2fufvgu - 4flgv + lUugv - 3/^5) +

- 2fvgu + 8 / ^ + 3gl) - yk\+3fu + Agv +fuq
2) + k6q3] +

jVu + gv)
2(.\A\) + y3k2(fu + gv)(2fugu - 3 / ^ - gl) +

y 2 * 4 ^! + 2gv(fu + gv)] - y(gvk
6) + q2igvk

2y)(Juy - k2) = 0. (23)

This is independent of p and can be solved explicitly for q giving q2 = Q(d; k).
We have illustrated this curve in Fig. 1. This gives rise to the third condition for
dispersion driven instability, i.e.

q2>Q{d;k), (24)

for any admissible k. In (8) and (9) we have established the conditions for the
homogeneous steady state to be stable. If /„ + gv < 0 then either or both of fu and
gv is negative. If both fu and ^ are negative then (23) implies that Q(d; k)<0 for
all d,k2 > 0. Thus fu and gv must have different signs and we assume without loss
of generality that fu > 0.

There is a critical curve q2 = Q(d;k) dividing stability and instability. If

FIG. 1. An example of the curve Q(d;k) for which (BQ/dd)(0;k)>0. Here we are considering a
mode 2 solution. Here and in future numerical simulations we use the Schnakenberg (1979) system
which is a simple kinetic mechanism of the cross activator-inhibitor type. It can be nondimensional-
ized to two parameters and is hence convenient to study numerically. In this simulation we have used
the Schnakenberg kinetics as defined in (33) and (34) with A - 0-2 and B = 2-0. The scale factor y is
taken as 450.



2 4 A. i. PERUMPANANI ET AL.

k2> yfu, then direct substitution into (23) shows that Q(d\k)<0 for any d>0.
Hence Q(d;k) lies below the d axis whenever k2>yfu, and all unstable
wavenumbers satisfy k2 < yfu.

This then implies that the need for autocatalysis and the maximum wavenum-
ber are independent of the presence of advection. We can now use the
inequalities (8) and (9) to establish the configurational requirements on the
stability matrix. As in the standard case of reaction-diffusion equations without
advection there are only two configurations that can satisfy (8) and (9) with fu and
gi, having opposite signs, namely

has the sign structure I _ or I.

3.1 Diffusional requirements

The next issue relates to the ratio of the two diffusion coefficients d = Du/Dv. In
the absence of advection there is a critical diffusion coefficient ratio d = dc at
which the Turing bifurcation occurs. For all values of d below dc the system is
stable to small perturbations while for d > dc suitable perturbations grow in time.
Here dc is given as the unique root greater than 1 of the quadratic

dlfl + 2(2fvgu - fejdc + gl = 0 (25)

(see Murray, 1989). However, in the presence of advection, the corresponding
bifurcation occurs as q2 increases through q2 = Q(d;k). In some cases Q(d;k)
increases for small d before decreasing to zero for d = dc. This implies two
regions of instability with an intervening interval of stability as d is increased for
fixed q. The derivative of Q(d; k) at d = 0 is given by

ZA = ,J~ \*s W2 ~ yf"X2gl+fvgu) + yfvgugJ\. (26)

da d-0 gv(k -yfu)

Recalling that k2<yfu along with the kinetic constraints, this implies that:

(1) if 2g2
v +fvgu < 0, then dQ/dd is strictly positive;

(2) if 2gl +fvgu > 0, then the derivative is negative for small wavenumbers and
positive for large wavenumbers.

A positive derivative for Q{d) implies that for particular values of q, namely
q2 > Q(0; k), a monotonic increase in d will result in instability to perturbations
with that wavenumber for small and large d, with an interval of stability in
between. Thus there are two Turing-type bifurcations as d is varied with q fixed.
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FIG. 2. In the presence of advection for sufficiently large values of q, positive growth rates
(Re (A) > 0) occur for very small and very large values of d with an intervening area of negative
growth rates. In this figure we plot Re (A) against d as defined in equation (20). For the lower curve
q = 200 and there is only one region of positive growth rates for large values of d. The upper curve
has q = 280 and shows separated areas of positive growth. In this simulation we have used the
Schnakenberg kinetics as denned in (33) and (34) with A = 0-2 and B « 2-0. The scale factor y is taken
as 450.

In Fig. 2, Re [A] is plotted against d for two different values of q with a particular
set of kinetics, and for the larger value of q it is clear that there are two separate
Turing bifurcations. Note that the maximum of Q{d\ k) can easily be determined
analytically as the positive root of the quadratic dQ/dd = 0.

4. The form of spatial patterns

4.1 The dispersion relation

We are considering solutions of the linearized system with

(u,v)*eHk)t+lkx (27)

and these will grow in time if and only if Re (A) > 0. On an infinite domain, the
condition A(A:)>0 for some k is sufficient for the existence of pattern; however,
on finite domains, the boundary conditions impose further restrictions. Only
certain modes which satisfy the boundary conditions can be accommodated, and if
A (A:) is not positive for such a wavenumber then no pattern emerges. Our
notation henceforth is that a mode n solution has wavenumber k = 2iui.

4.2 Initial mode selected

The curve q2 = Q(d; k), illustrated in Fig. 1, divides the q-d plane into stable and
unstable regions for perturbations of a particular wavenumber k. In applications,
however, our interest is in whether the steady state (u0, v0) is stable or unstable
to a perturbation of any admissible wavenumber, on a given domain. The curve
corresponding to this in the q-d plane is q2 = Q*(d) = minn Q(d; k =2nn). A
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FIG. 3. A typical case illustrates that, for sufficiently large values of the space parameter y, the initial
mode of bifurcation is not uniform. Here the domain size is much larger than that in Fig. 1 and we
have chosen the scale parameter y = 107. The three curves drawn from (23) represent the line of
bifurcation into patterns with mode numbers mentioned alongside the curves. In this case the primary
bifurcation is into different modes in different regions of the q-d plane.

key issue is whether Q*{d) consists simply of a single Q(d\ 2roi) curve or whether
it is composed of segments of different Q(d\ 2nn) curves for different values of n.
Numerical investigation shows that both cases occur and suggests that for small
domains the primary bifurcation curve has a single mode, but for large domains
the initial bifurcation is into patterns with different mode numbers at different
points in the q-d plane; we will confirm this analytically by considering the q = 0
and d = 0 cases. Thus the primary bifurcation curve q2= Q*(d) is in general
composed of portions of the curves q2= Q{d;lTin) for different values of n. In
Fig. 3 we show a numerical demonstration of a case in which this initial
bifurcation curve is composed of three different modes.

A convenient way to study the nonuniformity of the initial mode of bifurcation
in large domains is by looking at the end points of the curve described in Fig. 1,
that is, the case q = 0 and d = 0.

(a) Bifurcation when q = 0 The point at which the curve intersects the d axis is
the point at which the advective terms are the same or are absent. The system
then reduces to a standard reaction-diffusion system and the initial bifurcation
into instability is through the wavenumber satisfying the quadratic

dk4 - yk\dfu + gv) + y2 \A | = 0 (28)

and the initial mode selected at the primary bifurcation is given by the maximum
of the above curve, which is

k2 =
dfu+gv

Id
(29)

We have illustrated this mode selection for different domain sizes in Fig. 4.
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FIG. 4. An illustration of the curve described in (28) for different values of the space parameter y.
This represents the prediction made by the linear theory for kllK, where k is the wavenumber of the
pattern when the advection terms are either absent or equal for the two morphogens. The kinetics
used here are the Schnakenberg kinetics with A = 0-2 and B = 2-0.

{b) Bifurcation when d = 0 Another point of interest on the curve given in
Fig. 1 is the point at which it intersects the q2 axis, d = 0. Physically this
implies a situation where the inhibitor does not diffuse or the activator has
a very large (effectively infinite) diffusion coefficient compared to the inhibitor.
In the absence of advection the inhibitor needs to diffuse faster than the
activator (short-range activation, long-range inhibition) for diffusion-driven
instability to occur. However, in the presence of advection, Turing-type bifurca-
tions can occur even when d = 0, and from (23) the bifurcation at d = 0 is given
by

+ gv)H\A\) + y3k2(Ju + gv)(2fvgu - 3/Lg, - gl)

+ y2k\\A\ + 2gv(Ju + gv)) ~ = 0. (30)

Numerical investigation shows that for small domains the primary bifurcation on
the d = 0 and q2 = 0 curves occur for wavenumbers which, though different, are
sufficiently close that the nearest admissible wavenumber is the same. However,
as the domains become larger, the two wavenumbers move apart. Since we are
dealing with a finite domain and the boundary conditions are periodic, the
wavenumbers have to be discrete multiples of 2n. At a certain domain size they
are more than 2JI apart and then the mode numbers of the initial bifurcation on
the two areas are no longer the same. We illustrate this mode selection for
different domain sizes in Figs 4 and 5.
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FIG. 5. An illustration of the prediction made by the linear theory of Jfc/2jt, where k is the
wavenumber, when the inhibitor does not diffuse, i.e. d = 0. We plot the equation (30) for different
domain sizes. Depending on the choice of the domain size reflected in varying values of y, the initial
mode selected varies. The kinetics are the Schnakenberg kinetics with A = 0-2 and B = 2-0.

5. The nature of the advection terms

It emerges from the analysis that the parameters p and q (p = a + b, q = a — b)
represent a convenient way to study the nature of the advective influence on the
features of the model. Both the phase difference and the growth rate (Re (A)) are
independent of the parameter p and depend only on q. However, Im (A) depends
on both p and q. In other words, the phase difference and growth of modes
depend only on the difference of the advective terms, but the temporal movement
of the solution when a mode is unstable depends on both their sum and
difference.

The physical meaning of Im (A) 7s 0 is that the solutions are not stationary in
time. The whole pattern of morphogens moves with a uniform 'phase velocity'.
Since the boundary conditions are periodic, a convenient way to visualize the
solution is as wrapped around a rotating cylinder. The period of rotation of the
cylinder is given by 27t/Im [A]. Now the parameter p simply corresponds to a
rotation in the observer's frame of reference, and if this frame of reference is
moving with the same velocity as the angular velocity of the cylinder then the
solutions will appear to be stationary. As discussed earlier the phase difference <P
and the growth rate Re (A) are independent of p but Im (A) depends on p. So, by
an appropriate choice of p, we can induce a solution with any particular <t> and
Re (A) to be stationary. Using (20) we can derive an analytical expression for a
/'critical such that when p ^Paitiai the solutions are stationary in time. This is given
by

1
1 - - (31)

where r and <j> are given in (21) and (22). Note that this critical value is different
for different modes.
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6. Phase differences

The fundamental new phenomenon resulting from the inclusion of advection is
that the patterns of the two morphogens are spatially out of phase. Since u and v
are sinusoidal functions, we can write them in the form ^e'9! and r2e

i9j.
respectively, and calculate the phase difference as 4> = d± — 62. <P can be
determined analytically from (13) and (14) as

= arctan
f - a
lk2-

(32)

However, we are using analysis on the linear system to make predictions about
the full nonlinear system. These predictions will be valid only close to the primary
bifurcations where the effects of the nonlinearities are small. Using expression
(23) we can determine q\d) = Q(d; k) along the line Re (A) = 0, and it is along
this line in the q-d plane that we study the phase difference. It is straightforward
to determine an analytical expression, albeit algebraically complicated, for the
phase difference, and a typical case is illustrated in Fig. 6.

We have been unable to use the equation for the phase difference along the
line Re (A) = 0 so as to determine the maximum phase difference that occurs.
However, our numerical investigations suggest that the maximum phase
difference seems to occur at d = 0 and it is straightforward to determine an
analytical expression for this. This maximum phase difference depends on the
kinetics and with the Schnakenberg kinetics the maximum is about 60° for A = 0-2
and B = 2-0. Another point of interest is that Fig. 6 suggests that the derivative at

l.O
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FIG. 6. A plot of the phase difference along the line of bifurcation, i.e. Re (A) = 0. We have
substituted for g from (23) in (32) to obtain this plot. The parameter values used are y = 450 and the
kinetics are the Schnakenberg kinetics with A = 0-2 and B = 2-0. Here we are considering a mode 2
solution.
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the zero of <f(d) is large (though finite). This is significant in applications,
meaning that for small values of q appreciable phase differences are obtained.

7. Numerical simulations

We numerically investigated equations (3) and (4) with kinetics proposed by
Schnakenberg (1979). With appropriate nondimensionalization in one space
dimension, the equations are

u, = y{A - u + u2v) + aux + u^, (33)

v, = y(B + uh)) + bvx + dv^, (34)

on 0 « x =£ 1. Here y is the scale factor proportional to the squared length of the
domain and A,B,a,b,d are constants. We investigated the equations with
boundary conditions (5) and (6) and with initial conditions being small perturba-
tions about the steady state of the kinetics. We solved (33) and (34) using both an
explicit finite-difference scheme and an implicit theta scheme. For the explicit
scheme we used the stability criteria for the diffusion equation, i.e. v =
dAt/(Ax)2 =£ 0-5 (see Smith, 1985, for details), where Ax is the spatial grid size and
At the time step. When diffusion is predominant, values of v close to 0-5 were
adequate. But as advection becomes predominant, smaller values of v are
required, typically reaching 0-1 for d = 0. In Fig. 7 we demonstrate the spatial
distribution of u and v at different points along the tine of bifurcation in the q-d
plane described in (23). A comparison of the analytically predicted phase
difference with that computed numerically showed a very close agreement. We
were able to confirm that by choosing p =/Jcriticai as described in (31) the solutions
are stationary in time. Moreover, we were able to demonstrate numerically the
occurrence of a Turing-type bifurcation with d = 0 in (30) and the occurrence of
two Turing-type bifurcations as described in the section on diffusional
requirements.

8. Applications in morphogenesis

Russell (1985) proposed a model to explain the segmentation pattern seen in
Drosophila larvae. In his formulation of this model Russell has not attempted to
simulate the behaviour of any specific set of reaction-diffusion equations; rather
his discussion is abstract and he assumes chemical waves can be generated in the
organism. Thus he supposes that the concentration of the two morphogens w and
v vary independently along the embryonic axis in a sinusoidal manner. Specifi-
cally he takes w = mi+ n^ sinx and v = m2 + n2 sin (x + <f>), where \m\ - m2\ is
the difference in equilibrium and <}> the phase difference between the chemical
waves of the two morphogens. The relative concentration of the two morphogens
may be thought of as defining a quantity a that varies periodically as a function of
x:

i^T7jF- (35)
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FIG. 7. The behaviour of the nonlinear system described in equations (3) and (4) along the line of
bifurcation in the q-d plane, (a) The analytical prediction from the linear system of the bifurcation
curve as described in (23). We are looking for a mode 2 solution here which is the sole initial mode of
bifurcation when the space parameter y •= 450. In (b-f) we show the numerical solutions for the five
sets of values marked in (a). In (b) the diffusion coefficient d = 40-3 and the difference of the
advection coefficients q = 0; in (c) d = 32-4, q = 232; in (d) d = 20-4, q = 322; in (e) d = 8-4, q = 320;
and in (f) d •= 0-0, q = 270. As is evident from (f) oscillatory solutions occur even when the inhibitor
does not diffuse. Throughout we have used the Schnakenberg kinetics with A = 0-2 and B = 2-0.

This idea is illustrated in Fig. 8. In the wild type (i.e. normal larvae) the phase
difference is set to JI/2 and m} = m2 = 0, n^ = n2 = 1. Morphological variations in
the Drosophila larva are very well documented (see Nusslein-Volhard &
Wieschaus, 1980, for a review). Segment polarity mutations and growth
contraction/expansion are common variations. In the segment polarity mutants in
each segment a defined fraction of the normal pattern is deleted and the
remainder is present as a mirror image duplication. Russell (1985) proposes that
these variations can be explained on the basis of the patterning variable a, given
changes in the equilibrium and phase differences of the morphogen patterns (see
Fig. 8).

We suggest that with w = du/dx and (a, b) = (0, 0) (33) and (34) can be used to
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FIG. 8. The distribution of the relative concentration of the two morphogens as a function of space
described in (35) with u and w as given in the text. In all cases n\ =n2= 1. (a) The occurrence of
reiterated linear gradients of a; here 4> " t /2 , ml = m2 = 0. (b) The simulation for growth contraction
and expansion arising from a change in the phase difference; here <t> = n/6. (c) The simulation for
segment polarity mutants; here 4> a t/2, ">i c 0 , and m2 = -1-0.

model the wild type of the Drosophila larva. In Table 1 we list some parameter
values which give the appropriate phase and equilibrium differences to model
segment polarity mutants and growth contraction and expansion. However, it is
important to stress that there is currently no experimental evidence for advection
being a significant phenomenon in the Drosophila larva. The key implications of
this work are that advection does represent a natural way in which phase
differences and other novel phenomena could arise in diffusion-driven patterns.



PHASE DIFFERENCES IN MORPHOGENESIS 33

TABLE 1
A sampling of the values which can give rise to the differences in
equilibrium and phase of the two chemical waves to simulate some of the
morphological patterns seen in the Drosophila larva. A and B are the
parameters from the kinetics of the Schnakenberg system described in (33)
and (34), d is the diffusion coefficient of the inhibitor and q=a-b is the

difference of the advection coefficients. The scale parameter y = 450

Morphological
pattern

Normal Drosophila larvae
Growth contraction & expansion
Segment polarity mutants

Kinetics

A

0-2
0-2
01

B

20
2-0
0-9

Diffusion
d

39-9
8-4
8-56

Advection
<7

00
320-0

0-0
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