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UNRAMIFIED CORRESPONDENCES AND VIRTUAL PROPERTIES OF

MAPPING CLASS GROUPS

VLADIMIR MARKOVIĆ

Abstract. We establish a connection between the conjecture of Bogomolov-Tschinkel
about unramified correspondences and the Ivanov conjecture about the virtual homology
of mapping class groups. Given g ≥ 2, we show that every genus g Riemann surface X
virtually dominates a fixed Riemann surface Y of genus at least two if and only if there
exists a finite index subgroup Γ < Mod1

g which allows a point pushing epimorphism onto a
free group of rank two. As a consequence of this result we show that the Putman-Wieland
conjecture about the Higher Prym representations does not hold when g = 2.

1. Introduction

Let Σn
g denote a surface of genus g with n marked points, and Modn

g the corresponding
(pure) mapping class group. The group Modn

g has been thoroughly studied and our
knowledge about it is extensive. But if one replaces it with one of its finite index
subgroups Γ < Modn

g (of which there are plenty) the situation changes dramatically.
One reason behind this stark difference is that Γ may not contain any torsion while Modn

g

is rich in torsion.
The natural next step is to understand virtual properties of Modn

g (i.e. properties of its
finite index subgroups). For example, it is was proved by Mumford [15] and Powell [16]
that H1(Modn

g,Q) = 0 when g ≥ 2 (another consequence of intricate relations that exist in
Modn

g). A well known conjecture in the field (Ivanov’s Conjecture [12]) is that the same
holds for every finite index subgroup Γ < Modn

g when g ≥ 3. A closely related question is
whether Modn

g is large. In other words, is there a finite index subgroup Γ < Modn
g which

admits an epimorphism onto F2 (the free group of rank two)?

Remark. It follows from the work of McCarthy [14] that each Modn
2 is large.

1.1. Point pushing epimorphism. Fix a marked point ∗ ∈ Σn+1
g . Forgetting ∗ yields the

Birman exact sequence (see Chapter 4 in the book by Farb-Margalit [11])

(1) 1→ π1(Σ
n
g) → Modn+1

g → Modn
g → 1.

The subgroup π1(Σ
n
g) < Modn+1

g is the point pushing subgroup of Modn+1
g corresponding

to ∗.

Definition 1.1. Suppose Γ < Modn+1
g and ρ : Γ → G an epimorphism onto some group

G. We say that ρ is a point pushing epimorphism if there exists a marked point ∗ such that
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ρ does not annihilate the group Γ ∩ π1(Σ
n
g), where π1(Σ

n
g) is the point pushing subgroup

corresponding to ∗.

1.2. Unramified correspondences. Bogomolov-Tschinkel [7] initiated the theory of un-
ramified correspondences between Riemann surfaces (algebraic curves). Recall that a
Riemann surface Z dominates a Riemann surface Y if there exists a holomorphic surjec-
tion from Z ontoY . Moreover, we say that Z f -dominatesY if this surjective holomorphic
map is homotopic to f .

Definition 1.2. Let X and Y be two closed Riemann surfaces. We say that X virtually
dominates Y , and write X =⇒ Y , if X has an unbranched cover Z which dominates Y .

The following is one of their main results (see [7] and Theorem 1.5 in [18]).

Theorem 1.1. Let Y0 be the closed Riemann surface of genus two given by the equation
y6 = x(x − 1). Then every closed hyperelliptic Riemann surface of genus at least two
virtually dominates Y0.

The focus of [7] is on algebraic curves defined over number fields. However, Theorem
1.1 holds for all hyperelliptic algebraic curves defined over C (in other words, for all
hyperelliptic Riemann surfaces). The reader can consult the paper by Poonen [18] where
this is clearly stated.

In fact, Bogomolov-Tschinkel show that every hyperelliptic Riemann surface X has an
unbranched cover Z of degree 648 which holomorphically surjects onto Y0. Based on
Theorem 1.1, Bogomolov-Tschinkel made several conjectures. The following is a version
of one of their conjectures.

Conjecture 1.1. Fix g ≥ 2. There exists a closed Riemann surface Y of genus at least two
which is virtually dominated by every closed Riemann surface of genus g.

Clearly, Theorem 1.1 implies Conjecture 1.1 when g = 2 (since every Riemann surface
of genus two is hyperelliptic).

1.3. The main results. Our main result is the equivalence between Conjecture 1.1 and
the existence of virtual point pushing epimorphism onto F2.

Theorem 1.2. Conjecture 1.1 holds for some g ≥ 2 if and only if there exists a finite index
subgroup Γ < Mod1

g which allows a point pushing epimorphism ρ : Γ→ F2.

In [20] Putman-Wieland introduced the Higher Prym Representation of the mapping
class group Modn+1

g . Suppose K < π1(Σ
n
g) is a characteristic finite index subgroup of

the point pushing group π1(Σ
n
g) < Modn+1

g . Let VK = H1(K,Q)/B, where B is the
boundary subspace of H1(K,Q) spanned by the homology classes of the loops freely
homotopic into the punctures of the surface which is the covering of Σn

g corresponding
to the subgroup K . Then Modn+1

g naturally acts on VK inducing the linear representation
Modn+1

g → Aut(VK) called the Higher Prym representation. They made the following
conjecture (see Conjecture 1.2. in [20]).
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Conjecture 1.2. Fix g ≥ 2, and n ≥ 0. Let K < π1(Σ
n
g) be a finite index characteristic

subgroup. Then for all nonzero vectors v ∈ VK , the Modn+1
g -orbit of v is infinite.

Combining Theorem 1.2 and Theorem 1.1 we show that this conjecture does not hold
when g = 2.

Theorem 1.3. For every n ≥ 0, there exist a finite index characteristic subgroup K <
π1(Σ

n
2), and a non-zero vector v ∈ VK , such that the Modn+1

2 -orbit of v is finite.

Remark. Actually, Putman-Wieland define theHigher PrymRepresentation of themapping
class group Modn+1

g,b of the surface Σn
g,b of genus g, with n marked points, and b discs

removed. The theorem extends to this case, that is, for each n, b ≥ 0 there exists K <
π1(Σ

n
2,b), and a non-zero vector v ∈ VK , such that the Modn+1

2,b -orbit is finite.

Proof. It suffices to prove the theorem for n = 0 (see [20]). From Theorem 1.2 and
Theorem 1.1 we conclude that there exists Γ < Mod1

2 which allows a point pushing
epimorphism ρ : Γ → F2. In turn this yields a point pushing epimorphism ρ1 : Γ → Z.
Replacing Γ by one of its subgroups if necessary, we may assume that K = Γ ∩ π1(Σ2)
is a characteristic subgroup of π1(Σ2). By σ : K → Z we denote the restriction of ρ1 to
K < Γ, and let u ∈ H1(K,Q) be the corresponding element induced by σ.
Denote by L : Mod1

2 → Aut(VK) the corresponding Higher Prym representation. We
first establish the following invariance of u with respect to L.

Claim 1.1. Let f ∈ Γ. Then u = u ◦ L( f ).

Proof. Let Γ′ < Mod2 be the image of Γ under the homomorphism Mod1
2 → Mod2 from

the Birman exact sequence (1). Consider the induced exact sequence
1→ π1(Σh) → Γ→ Γ

′→ 1,
where

K = π1(Σh) = Γ ∩ π(Σ2).

If we regard the marked point ∗ ∈ Σ1
2 as the base point, we obtain the action of the group

Mod1
2 on π1(Σ2, ∗). Since K < π1(Σ2, ∗) is a characteristic subgroup, it follows that Mod1

2
acts onK , andwe have the induced homomorphismMod1

2 → Mod1
h. Composing itwith the

homomorphism Mod1
h → Modh, we obtain the desired homomorphism Mod1

2 → Modh.
If f ∈ Mod1

2, we let f̃ denote the corresponding image in Modh (the reader can consult
[11] for the proofs of the above facts).

As observed by Putman-Wieland on page 3 in [20], the lift f → f̃ induces the Higher
Prym representation L : Mod1

2 → Aut(VK) by

(2) L( f )(ω) = f̃ (ω),

where ω ∈ H1(Σh,Q), and f ∈ Mod1
2. Since Z is an Abelian group, we have

(3) σ(g) = σ( f −1 ◦ g ◦ f ) ∀ f ∈ Γ, ∀g ∈ K

(note that f −1 ◦ g ◦ f ∈ K because K < Γ is a normal subgroup). The geometric
interpretation of this is as follows. Let γ ⊂ Σh be the closed curves representing the
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conjugacy class g ∈ K = π1(Σh). Let f̃ (γ) be the closed curve which is the image of
γ under f̃ (here we consider f̃ as the corresponding isotopy class of homeomorphisms
of Σh). Denote by [γ], [ f̃ (γ)] ∈ H1(Σh) the corresponding homology classes. Then (3)
implies the equality

u([γ]) = u( f̃ ([γ])),

(recall that u ∈ H1(K,Q) is induced by σ : K → Z). But this holds for every closed curve
γ because (3) holds for every g ∈ K = π1(Σh). We conclude that

u(ω) = u( f̃ (ω)), ∀ω ∈ H1(Σh,Q), ∀ f ∈ Γ.

From (2) we obtain the equality

u = u ◦ L( f ), ∀ f ∈ Γ

which proves the claim. �

Let v ∈ H1(K,Q) be the vector dual of u. From the claim we conclude that f̃ (v) = v
(in H1(Σh,Q)) for every f ∈ Γ. Since Γ has finite index in Mod1

2, it follows that the orbit
Mod1

2(v) is finite. �

1.4. Brief outline. Wesplit the proof of Theorem1.2 into two parts. In the next sectionwe
prove that if Conjecture 1.1 holds for some g ≥ 2 then there exists a finite index subgroup
Γ < Mod1

g which allows a point pushing epimorphism ρ : Γ → F2. The assumption that
Conjecture 1.1 holds enables us to construct a continuous map f : MΓ

g,1 → Y , where
MΓ

g,1 is a covering of the moduli spaceMg,1 corresponding to Γ, and Y a closed Riemann
surface of genus at least two. Then the induced homomorphism f∗ : Γ → π1(Y ) is point
pushing. Composing f∗ with any epimorphism π1(Y ) → F2 yields the claim.

We then prove the other direction in Theorem 1.2. Using the Siu-Beauville theorem
[3], [23], we show that the existence of a point pushing epimorphism ρ : Γ→ F2 yields a
holomorphic surjection f :MΓ

g,1 → Y which does not factor through the forgetful map FΓ.
On the other hand, the fibres of FΓ are biholomorphic to the unramified coverings X̃π → X
corresponding to the subgroup Γ ∩ π1(Σg), where π1(Σg) is the point pushing subgroup
of Mod1

g. Restricting f to these fibres produces the required holomorphic surjections
X̃π → Y .

1.5. Acknowledgment. I wish to thank Curt McMullen for pointing out to me the work
of Bogomolov-Tschinkel in connection with the so called Ramified Ehrenpreis Conjecture.
There are several candidates for what could be called the Ramified Ehrenpreis Conjecture.
Conjecture 1.1 is a good candidate. Moreover, I am grateful to the anonymous referee for
stating and proving Lemma 2.2, and many other comments and suggestions.
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2. Constructing a point pushing epimorphism onto F2

In this section we prove one direction of the equivalence stated in Theorem 1.2. This is
the content of Lemma 2.2 below. As usual, Tg denotes the Teichmüller space of Riemann
surfaces marked by Σg. We recall that Tg is the space of equivalence classes of pairs
(X, α), where X is a Riemann surface and α : Σg → Xα a homeomorphism. Two such
pairs (X1, α1) and (X2, α2) are equivalent (and thus give the same point in Tg) if the map
α2 ◦ α

−1
1 : X1 → X2 is homotopic to a biholomorphic map.

Remark. When we write X ∈ Tg, we mean that X is a marked Riemann surface equipped
with a marking α : Σg → X which is only well defined up to a post-composition with an
isomorphism of X onto itself.

Fix an unbranched covering π : Σh → Σg, and let X ∈ Tg be a marked Riemann
surface. Then there exists a unique X̃π ∈ Th, and a holomorphic unbranched covering
πX : X̃π → X , such that the following diagram commutes

X̃π Σh

X Σg

πX

β

π

α

where β : Σh → X̃π, and α : Σg → X , denote the corresponding markings. We call X̃π
the π-covering of X .

Remark. Observe that the correspondence X → X̃π defines the standard holomorphic
embedding Tg → Th.

Definition 2.1. Suppose Y is a closed Riemann surface of genus at least two, and φ :
Σh → Y a continuous map. Let π : Σh → Σg denote an unbranched covering. For X ∈ Tg,

we write X
π,φ
=⇒ Y if X̃π (φ ◦ β−1)-dominates Y (see Definition 1.2) where β : Σh → X̃π

is a marking of X̃π. By S(π, φ) ⊂ Tg we denote the set of marked Riemann surfaces X such

that X
π,φ
=⇒ Y .

Remark. Let β1, β2 : Σh → X̃π be two equivalent markings. Then X̃π (φ◦ β−1
1 )-dominates

Y if an only if X̃π (φ ◦ β−1
2 )-dominates Y .

Note that S(π, φ) = S(π, ψ) if the maps φ, ψ : Σh → Y are homotopic to each other.

Proposition 2.1. Each S(π, φ) is a closed subset of Tg .

Proof. Since π is fixed, to simplify the notation in this proof we write X̃ = X̃π. Suppose
Xn → X in Tg. Then we can choose markings βn : Σh → X̃n, and β : Σh → X̃ , such that
the map βn ◦ β

−1 : X̃ → X̃n is Ln-bilipschitz, and Kn-quasiconformal, homeomorphism,
where Ln,Kn → 1 when n → ∞. Here we assume that X and Xn are equipped with the
respective hyperbolic metrics.
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Since Xn ∈ S(π, φ), there exists surjective holomorphic maps gn : X̃n → Y homotopic to
φ◦ β−1

n . Let hn = gn ◦ βn ◦ β
−1. Then each hn : X̃ → Y is homotopic to φ◦ β−1. Moreover,

each hn is Ln-lipschitz because βn ◦ β
−1 : X̃ → X̃n is Ln-bilipschitz, and gn : X̃n → Y

is 1-lipschitz (by the Schwartz lemma) considering the hyperbolic metric on Y . We also
note that hn is Kn-quasiregular.

Since the family of maps hn : X̃ → Y is uniformly lipschitz, and X̃ and Y are closed,
after passing onto a subsequence if necessary, it follows that hn converges to a continous
map h : X̃ → Y . Moreover, d(h(p), hn(p)) → 0, n → ∞, uniformly in p ∈ X̃ . This
implies that h is homotopic to φ ◦ β−1 (since each hn is homotopic to φ ◦ β−1). Also, h
is 1-quasiregular, which is the same as saying it is holomorphic. We have constructed a
holomorphic map h : X̃ → Y , homotopic to φ ◦ β−1. Thus, X ∈ S(π, φ).

Remark. The above argument crucially depends on the assumption that Y is hyperbolic.
The key point is the use of the Schwartz lemma which we used to conclude that the maps
hn : X̃ → Y are uniformly lipschitz. For example, if Y is a Riemann sphere instead, and
hn : X̃ → Y a sequence of surjective holomorphic maps, then we can not conclude that
d(h(p), hn(p)) → 0, n → ∞, uniformly in p ∈ X̃ with respect to any Riemann metric on
the sphere. In fact, it map happen that the limiting map h : X̃ → Y is constant.

�

Proposition 2.2. Suppose that Conjecture 1.1 holds for some g ≥ 2. Then there exists an
unbranched covering π : Σh → Σg, a closed Riemann surface Y of genus at least two, and
a continuous map φ : Σh → Y , such that S(π, φ) = Tg.

Proof. Since the assumption is that Conjecture 1.1 holds, there exists a fixed Riemann
surface Y of genus at least two, such that each X ∈ Tg has an unbranched cover which
dominates Y . We have

Tg =
⋃
π,φ

S(π, φ),

where the union goes over all possible unbranched coverings π : Σh → Σg, and all
continuous maps φ : Σh → Y . Up to homotopy, there are countably many such pairs
(π, φ). Since each S(π, φ) is closed the Baire’s Category Theorem implies that at least one
set S(π, φ) has a non-empty interior. Let S(π, φ) ⊂ Tg be such a set. In the rest of the proof
we show S(π, φ) = Tg.
For each W ∈ Th, we let ω : W → Y be the harmonic map homotopic to φ : W → Y

(the map ω is harmonic with respect to the hyperbolic metric on Y ). Since S(π, φ) is a
non-empty set, the map φ : Σh → Y is homotopic to a branched covering. This implies
that the harmonic map ω is surjective, and therefore unique in its homotopy class. Thus,
the energy function

Eφ : Th → R,

given by

Eφ(W) =
∫
W

|ωz |
2 dxdy,
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is well defined (here z = x + iy denotes a local complex parameter on W). Define the
energy function Fφ : Tg → R by Fφ(X) = Eφ(X̃π).
If X ∈ S(π, φ), then ω : X̃π → Y is the corresponding holomorphic map homotopic to

φ. This yields the equality

(4) Fφ(X) = deg(φ)Area(Y ), ∀X ∈ S(π, φ).

On the other hand, it was shown by Slegers (see Proposition 3.3 in [22]) that the function
Eφ (and thus Fφ) is real analytic. This implies that (4) holds for every X ∈ Tg because it
holds on an open subset of Tg. But this implies that total energy and the Jacobian of ω
are equal, which is only possible if the anti-holomorphic part of the energy density ∂ω
is identically zero (see Section 1 in the book [21] by Schoen-Yau). Thus, we have shown
that ω : X̃π → Y is holomorphic for each X ∈ Tg. So, every X belongs to S(π, φ). The
proposition is proved. �

Proposition 2.3. Suppose that Conjecture 1.1 holds for g ≥ 2, and let π : Σh → Σg, and
φ : Σh → Y , be such that S(π, φ) = Tg. Then there exist a finite index subgroup Γ < Mod1

g

so that the maps φ and φ ◦ f̃ are homotopic to each other for every f ∈ Γ, where f̃ is the
lift of f to Σh.

Proof. Recall that de Franchis-Severi theorem (originally proved by de Franchis in [10])
says that for two closed Riemann surfacesC1 andC2 of genus at least two, there are at most
finitely many holomorphic surjections C1 → C2. Let Φ be the set of homotopy classes
of all continuous maps ψ : Σh → Y such that S(π, ψ) = Tg. From de Franchis-Severi
theorem we conclude that the set Φ is finite.

Furthermore, we may assume π is a characteristic covering (we can always replace π by
a larger covering). Thus, the lift f → f̃ , where f ∈ Mod1

g, and f̃ ∈ Modh, is well defined
(see the proof of Theorem 1.3 above). We observe the equality

(5) S(π, φ ◦ f̃ ) = f −1 (S(π, φ)) , ∀ f ∈ Mod1
g .

But S(π, φ) = Tg, which together with (5) implies that S(π, φ ◦ f̃ ) = Tg as well. This
means that the homotopy class of φ ◦ f̃ belongs to the set Φ for every f ∈ Mod1

g. Let
Γ ⊂ Mod1

g denote the subset consisting of elements for which φ ◦ f̃ is homotopic to φ.
Firstly, Γ is a subgroup. Secondly, Φ is a finite set which implies that Γ has finite index.
The proposition is proved.

�

Proposition 2.4. Suppose that Conjecture 1.1 holds for g ≥ 2, and let π : Σh → Σg, and
φ : Σh → Y , be such that S(π, φ) = Tg. Then there exist a finite index subgroup Γ < Mod1

g

with the following properties:
(1) The maps φ and φ ◦ f̃ are homotopic to each other for every f ∈ Γ, where f̃ is the

lift of f to Σh.

(2) Γ ∩ π1(Σg) = π1(Σh).
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Proof. By Proposition 2.3, there exists a finite index subgroup Γ1 < Mod1
g which satisfies

the condition (1) for some covering π1 : Σh1 → Σg, and a continuous map φ1 : Σh1 → Y .
On the other hand, in Lemma 2.1 (proved in the next subsection) we show that there exists
a finite index subgroup Γ2 < Mod1

g, such that Γ2 ∩ π1(Σg) ⊂ π1(Σh1). Let Γ = Γ1 ∩ Γ2,
and Σh = Γ2 ∩ π1(Σg). Then Γ satisfies (1) for the induced covering π : Σh → Σg, and the
induced map φ : Σh → Y . Moreover, by definition Γ ∩ π1(Σg) = Σh, and thus Γ satisfies
the property (2) as well. The proposition is proved.

�

2.1. The point-pushing subgroup lemma. In this subsection we prove that one can find
a finite index subgroup of Mod1

g whose point pushing part is contained in a given finite
index subgroup of the point pushing group π1(Σg) < Mod1

g.

Lemma 2.1. Let G < π1(Σg) be a finite index subgroup. Then there exists a finite index
subgroup Γ < Mod1

g, such that Γ ∩ π1(Σg) ⊂ G.

Proof. ReplacingG with a deeper finite index subgroup, we can assume it is characteristic,
and thus is a normal subgroup of Mod1

g. Let F = π1(Σg)/G, and Mod
1
g = Mod1

g/G. Thus
F is a finite group, and we have a short exact sequence

1→ F → Mod
1
g → Modg → 1.

The lemma is equivalent to the assertion that we can find a finite index subgroup Γ < Mod
1
g,

such that Γ ∩ F = 1. Since F is finite, it is enough to prove that Mod
1
g is residually finite.

In the remainder of the proof we do this by showing that Mod
1
g is a subgroup of a different

mapping class group.
Let (Σh, ∗) → (Σg, ∗) be the based cover corresponding to the subgroup G < π1(Σg, ∗).

Regard ∗ as the marked point of Mod1
g, and ∗ as the marked point of Mod1

h. Since G is
a characteristic subgroup, it is preserved by the action of Mod1

g, so we can lift elements
of Mod1

g to elements of Mod1
h. This gives a homomorphism f : Mod1

g → Mod1
h. The

homomorphism f is injective. Indeed, elements of its kernel act trivially on G and thus
(since elements of π1(Σg, ∗) have unique roots) trivially on π1(Σg, ∗), and hence are isotopic
to the identity by the Dehn-Nielsen-Baer theorem.

We have Birman exact sequences

1→ π1(Σg) → Mod1
g → Modg → 1,

and
1→ G→ Mod1

h → Modh → 1.
We have G < π1(Σg), and from our constructions it is clear that f (G) = G, where G <

Mod1
h is as in our Birman exact sequence. It follows that we can identify Mod

1
g = Mod1

g/G
with a subgroup ofMh, as desired.

�
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2.2. TheModuli space. Themoduli space of Riemann surfaces of genus gwith n marked
points is denoted byMg,n. The (orbifold) fundamental group ofMg,n is Modn

g. ByMΓg,n
we denote the finite covering ofMg,n corresponding to the subgroup Γ < Modn

g. That is,

(6) π1

(
MΓg,n

)
= Γ.

The Birman sequence (1) induces the “forgetful" map

F :Mg,1 →Mg

between the corresponding moduli spaces.
Assume now that Conjecture 1.1 holds, and let Γ < Mod1

g be the finite index subgroup
from Proposition 2.4. Set Γ′ = F(Γ). Then F lifts to the forgetful map

FΓ :MΓg,1 →M
Γ′

g .

The map F is a holomorphic fibration. We let Fib(X) denote the fiber of F above X ∈ Mg.
Then Fib(X) is a closed Riemann orbi-surface biholomorphic to X (meaning that the
closed Riemann surface underlying the fiber Fib(X) is biholomorphic to X). Likewise,
the fiber FibΓ(X) of FΓ is biholomorphic to X̃π ∈ Mh, where X̃π is the π-covering of X .
Moreover,

(7) π1 (FibΓ(X)) = Γ ∩ π1(Σg).

2.3. Constructing the epimorphism. We state and prove the lemma which proves one
direction in Theorem 1.2.

Lemma 2.2. Suppose that Conjecture 1.1 holds for some g ≥ 2. Then there exists a finite
index subgroup Γ < Mod1

g which allows a point pushing epimorphism ρ : Γ→ F2.

Proof. By Proposition 2.2 there exist π and φ such that S(π, φ) = Tg. Let Γ be the
group from Proposition 2.3. We define the map f : MΓ

g,1 → Y as follows. On the
fiber FibΓ(X) ⊂ MΓg,1, we let f be equal to the holomorphic map ω : X̃π → Y which is
homotopic to φ. Proposition 2.3 implies that f is a well defined continuous map onMΓ

g,1.
The induced homomorphism

f∗ : π1

(
MΓg,1

)
→ π1(Y ),

together with (6), yields the homomorphism f∗ : Γ → π1(Y ). Since the restriction of
f to each fiber FibΓ(X) is a holomorphic surjection it follows from (7) that f∗ is point
pushing homomorphism. Composing f∗ with some epimorphism π1(Y ) → F2 produces
the required point pushing homomorphism ρ : Γ→ F2.

�
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3. Admissible subgroups

It remains to prove the other direction of the equivalence in Theorem 1.2. The Deligne-
Mumford compactification ofMg,n by noded Riemann surfaces (with marked points) is
denoted byMg,n. Recall thatMΓg,n is the finite covering ofMg,n which corresponds to Γ.
ByMΓg,n we denote the normalization ofMΓg,n with respect toMg,n.

The forgetful maps F and FΓ defined in the previous section extend to the Deligne-
Mumford compactifications

F :Mg,1 →Mg, FΓ :MΓ
g,1 →M

Γ′

g .

Definition 3.1. Let Y be any set. We say that a map f : MΓ
g,1 → Y (or f : MΓ

g,1 → Y )

factors through the forgetful map FΓ if there exists a map g :MΓ′g → Y (or g :MΓ′g → Y )
such that f = g ◦ FΓ.

Combining results of Pikaart-de Jong [19], Boggi-Pikaart [6], Bridson [8], and Putman
[17], with the classical Siu-Beauville theorem [3], [23], we prove the following.

Lemma 3.1. Suppose g ≥ 2, and let Γ < Mod1
g be a finite index subgroup which admits

a point pushing epimorphism ρ : Γ → F2. Then there exists a finite index subgroup
Θ < Mod1

g with the following properties:
(1) Θ < Γ,
(2) there exists a Riemann surfaceY of genus at least two, and a surjective holomorphic

map f :MΘ
g,1 → Y which does not factor through the forgetful map FΘ.

We prove this lemma in the remainder of this section. But before that we prove the
other direction in Theorem 1.2 using Lemma 3.1.

3.1. Constructing unramified correspondences. We have the following lemma.

Lemma 3.2. Suppose that for some g ≥ 2 there exists a finite index subgroup Γ < Mod1
g

which allows a point pushing epimorphism ρ : Γ → F2. Then Conjecture 1.1 holds for
such g.

Proof. Let Θ < Mod1
g be the subgroup from Lemma 3.1. After passing onto a subgroup,

we may assume that Θ is a characteristic subgroup (clearly, the conclusions of Lemma 3.1
hold for every finite index subgroup of Θ). Set K = Θ ∩ π1(Σg), and let π : Σh → Σg
be the corresponding covering such that K = π1(Σh) (see above). The fiber FibΘ(X) of
the forgetful map FΘ is biholomorphic to X̃π ∈ Mh, where X̃π is the π-covering of X .
Let f :MΘ

g,1 → Y be the holomorphic surjection from Lemma 3.1 which does not factor

through the forgetful map. Since MΘ
g,1 is an open and dense subset of MΘ

g,1, it follows
that for at least on X ∈ Mg the restriction of f : FibΘ(X) → Y is surjective. This shows
that the restriction f :MΘ

g,1 → Y does not factor either. However, to prove the lemma we
need to show that the restriction of f to every fiber FibΘ(X), X ∈ Mg, is surjective.
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Let U ⊂ Mg be such that X ∈ U if the restriction f : FibΘ(X) → Y is surjective. We
have already observed thatU is not empty. Note that if a holomorphic map between closed
surfaces is not surjective then it is constant. This implies that U is an open subset ofMg.
Moreover, by Proposition 2.1 U is also closed. Thus, U is both open and closed subset of
Mg, and therefore U =Mg. This shows that Conjecture 1.1 holds.

�

3.2. Twists are dead. We now state the result of Bridson [8], and Putman [17]. Recall
that a multicurve γ is a collection of mutually disjoint simple closed curves γ1, ..., γk . A
multi-twist about γ is the product of powers of Dehn twists about the γi’s.

Lemma 3.3. Let g ≥ 3, and let ρ : Γ→ Z be an epimorphism, where Γ < Modn
g. Suppose

γ ⊂ Σn
g is a multicurve and let t ∈ Modn

g denote a multi-twist about γ. If t ∈ Γ, then
ρ(t) = 0.

Remark. Originally this result was proved when γ is a single curve. It was extended to
multicurves by Putman in (see Corollary 2.10 in [20]).

3.3. Admissible groups. We begin by defining admissible subgroups.

Definition 3.2. We say that Γ < Modn
g is admissible if it is a subgroup of finite index, and

ifMΓg,n is a complex projective manifold.

Thefirst examples of admissible subgroupswere found byLooijenga [13]. The following
was shownbyBoggi-Pikaart (Corollary 2.10 in [6]). We sketch the proof of this proposition
in the appendix for the sake of completeness.

Proposition 3.1. Suppose g ≥ 2, and let Γ < Modn
g be a finite index subgroup. Then there

exists an admissible group Θ < Γ.

In order to prove Lemma 3.1, we show that if an admissible group Γ admits a point-
pushing epimorphism onto F2 then there exists a non-constant holomorphic map from
MΓ

g,1 to a closed Riemann surface Y of genus at least two which does not factor through
the forgetful map FΓ. To carry out this plan we must compute the fundamental group of
MΓ

g,1. The following proposition follows from Lemma 16 in the paper [2] by Aramayona-
Funar (we recall the proof in the appendix).

Proposition 3.2. Let Γ < Modn
g denote an admissible group. Then

π1
(
MΓg,n

)
�
Γ

Q(Γ)
,

where Q(Γ) < T(Γ), and T(Γ) < Γ is the group generated by multitwists contained in Γ.

Remark. This proposition holds for any finite index subgroup Γ (not necessarily an ad-
missible one).
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3.4. Holomorphic fibrations ofMΓg,n. The following proposition suggests that it is con-
venient to study epimorphism of admissible groups onto free groups because they lead to
non-constant holomorphic maps ofMΓg,n.

Proposition 3.3. Suppose g ≥ 2, and let Γ < Mod1
g be admissible. Suppose there exists

a point pushing epimorphism ρ : Γ→ F2. Then there exist a surjective holomorphic map
f :MΓ

g,1 → Y which does not factor through FΓ, where Y is a closed Riemann surface of
genus at least two.

Proof. It follows from Lemma 3.3 that Q(Γ) < Ker(ρ). Thus, ρ factors through Γ/Q(Γ)
and induces the epimorphism of Γ/Q(Γ) to F2. Putting this together with Proposition 3.2
yields a point pushing epimorphism σ : π1

(
MΓ

g,1
)
→ F2. On the other hand, MΓ

g,1 is
a projective complex manifold, thus it is Kähler. The proposition now follows from the
classical Siu-Beauville theorem (see [3], [23]), which say that if the fundamental group of
a compact Kähler manifold surjects onto F2, then the Kähler manifold fibers over a closed
Riemann surface of genus at least 2.

It remains to explain why the map f does not factor through the forgetful map. Consider
the induced map σ∗ : H1 (F2

)
→ H1 (MΓ

g,1
)
. The image σ∗

(
H1 (F2

) )
is an isotropic

subspace. The Castelnuovo-de Franchis Theorem (see the book [1]; also the same was
proved by Catanese in Theorem 1.10 in [9]) shows that

(8) σ∗
(
H1 (F2

) )
⊂ f ∗

(
H1 (Y ) )

.

Since σ is point pushing, it follows that

σ∗
(
H1 (F2

) )
∩ ι

(
H1(FibΘ(X))

)
, ∅,

where ι : FibΘ(X) → MΓg,1 is the inclusion map. From (8) we find that f does not factor
through FΓ.

�

3.5. Proof of Lemma 3.1. Suppose Γ < Mod1
g is a finite index subgroup equipped with

a point pushing epimorphism ρ : Γ → F2. By Proposition 3.1 there exists an admissible
groupΘ < Γ. Although the restriction ρ : Θ→ F2 may not be an epimorphism, the image
ρ(Θ) is a finite index subgroup of F2. Thus, we can find an epimorphism ρ1 : Θ → F2.
Then by Proposition 3.3 there exists a non-constant holomorphic map f : MΘ

g,1 → Y
which does not factor through the forgetful map. Lemma 3.1 is proved.
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