July 3, 2024 DERIVATIVE OF THE RIEMANN-HILBERT MAP

VLADIMIR MARKOVIĆ AND OGNJEN TOŠIĆ

ABSTRACT. Given a pair (X, ∇) , consisting of a closed Riemann surface X and a holomorphic connection ∇ on the trivial principal bundle $X \times \operatorname{SL}_2(\mathbb{C}) \to X$, the Riemann–Hilbert map sends (X, ∇) to its monodromy representation. We compute the derivative of this map, and provide a simple description of the locus where it is injective, recovering in the process several previously obtained results.

1. INTRODUCTION

By Σ_g we denote a closed topological surface of genus g, and by \mathcal{T}_g the Teichmüller space of marked closed Riemann surfaces of genus g. Given $X \in \mathcal{T}_g$, we let $\Omega^1(X)$ denote the space of Abelian differentials on X. By $\mathfrak{sl}_2(\Omega^1(X))$ we denote the space of traceless 2×2 matrices of holomorphic 1-forms on X.

Fix $A \in \mathfrak{sl}_2(\Omega^1(X))$, and consider the trivial holomorphic principal bundle $\operatorname{SL}_2(\mathbb{C}) := X \times \operatorname{SL}_2(\mathbb{C}) \to X$ equipped with the connection $\nabla = d + A$. This is a flat holomorphic connection over a marked Riemann surface X inducing the monodromy representation

$$\rho_A: \pi_1(\Sigma_g) \to \mathrm{SL}_2(\mathbb{C}).$$

The space of \mathfrak{sl}_2 -systems over Σ_q is defined as

$$\operatorname{Syst}_{q} = \{(X, A) : X \in \mathcal{T}_{q}, A \in \mathfrak{sl}_{2}(\Omega^{1}(X)), \rho_{A} \text{ is irreducible}\} // \operatorname{SL}_{2}(\mathbb{C})$$

where we identify pairs (X, A) and (X, B) if A and B are conjugated by and element of $SL_2(\mathbb{C})$. The Riemann-Hilbert map

$$\mathbf{M}: \operatorname{Syst}_g \to \operatorname{Rep}_g$$

is defined by $\mathbf{M}(X, A) = \rho_A$. Here

$$\operatorname{Rep}_{q} = \{\rho \in \operatorname{Hom}(\pi_{1}(\Sigma_{q}) \to \operatorname{SL}_{2}(\mathbb{C})) : \rho \text{ is irreducible}\} /\!\!/ \operatorname{SL}_{2}(\mathbb{C})$$

is the character variety of irreducible representations of the surface group $\pi_1(\Sigma_q)$.

It is well known that **M** is a holomorphic map between connected complex manifold of complex dimension 6g - 6 (see [1] and [2]). Our main result is Theorem 2 below is the explicit computation of the derivative $D\mathbf{M}$. But first, we state its main corollary characterising the pairs (X, A) where the

This work was supported by the $Simons\ Investigator\ Award\ 409745$ from the Simons Foundation

²⁰¹⁰ Mathematics Subject Classification. Primary 34M03.

derivative of \mathbf{M} is injective (and hence bijective), answering a well known question (see [2], and also [4] for the broader picture).

Denote by QD(X) the space of holomorphic quadratic differentials on X. Given $\alpha, \beta, \gamma \in \Omega^1(X)$, we define the subspace $QD(\alpha, \beta, \gamma) \leq QD(X)$ by

$$QD(\alpha, \beta, \gamma) = \{ \alpha \varphi_1 + \beta \varphi_2 + \gamma \varphi_3 : \varphi_1, \varphi_2, \varphi_3 \in \Omega^1(X) \}.$$

Theorem 1. Let $(X, A) \in \text{Syst}_q$, and write

$$A = \begin{pmatrix} \alpha & \beta \\ \gamma & -\alpha \end{pmatrix}$$

for $\alpha, \beta, \gamma \in \Omega^1(X)$. The derivative $D_{(X,A)}\mathbf{M}$ is injective if and only if

(1)
$$QD(\alpha, \beta, \gamma) = QD(X).$$

Remark 1. This theorem has a number of applications which we prove in the last section. In particular, we show how it can be used to recover theorems by Biswas-Dumitrescu [1], Calsamiglia-Deroin-Heu-Loray [2]. In Proposition 3.1 in [1], Biswas-Dumitrescu give a sufficient condition on the pair (X, A) for the derivative $D_{(X,A)}\mathbf{M}$ to be injective. This condition can be viewed as a cohomological version of the equality (1).

Before stating Theorem 2 we describe our parameterisation of the tangent spaces to Syst_q and Rep_q .

1.1. Beltrami differentials and tamed matrix forms. Let Belt(X) denote the vector space of smooth Beltrami differentials on X. Two differentials $\mu, \nu \in Belt(X)$ are equivalent if

$$\int\limits_X \mu \phi = \int\limits_X \nu \phi$$

for every holomorphic quadratic differential $\phi \in \mathrm{QD}(X)$. This is a linear equivalence relation, that we denote \sim , and the quotient vector space $\mathrm{Belt}(X)/\sim$ is naturally isomorphic to the tangent space of the Teichmüller space $T_X \mathcal{T}_q$.

Next, we define the notion of a tame matrix valued form.

Definition 1. Let $A \in \mathfrak{sl}_2(\Omega^1(X))$, and $\mu \in \operatorname{Belt}(X)$. We say that \dot{A} is (μ, A) -tamed form if \dot{A} a closed $\mathfrak{sl}_2(\mathbb{C})$ -valued 1-form whose (0, 1) part satisfies the equality $\dot{A}^{0,1} = \mu A$.

The following lemma is elementary and its proof is left to the reader.

Lemma 1. Fix $A \in \mathfrak{sl}_2(\Omega^1(X))$. Let $\mu, \nu \in Belt(X)$, and suppose A and B are (μ, A) and (ν, A) tamed respectively. If $\mu \sim \nu$ then there exists a smooth function $T: X \to \mathfrak{sl}_2(\mathbb{C})$ such that

$$\dot{A} - \dot{B} - dT \in \mathfrak{sl}_2(\Omega^1(X)).$$

1.2. Parametrisation of the tangent space to Syst_g . Fix $(X, A) \in \text{Syst}_g$, and define the vector space

$$Z(X, A) = \{(\mu, \dot{A}) : \mu \in Belt(X), \dot{A} \text{ is } (\mu, A)\text{-tamed}\},\$$

That is, Z(X, A) is a set of pairs (μ, \dot{A}) where μ is a smooth Beltrami form on X, and \dot{A} a closed $\mathfrak{sl}_2(\mathbb{C})$ -valued 1-form satisfying the equality $\dot{A}^{0,1} = \mu A$. We define the linear equivalence relation on Z(X, A) by letting $(\mu, \dot{A}) \sim (\nu, \dot{B})$ if the following two conditions are satisfied

- (1) $\mu \sim \nu$,
- (2) $\dot{A}^{1,0} \dot{B}^{1,0} \partial T \in [A, \mathfrak{sl}_2(\mathbb{C})]$, where $T : X \to \mathfrak{sl}_2(\mathbb{C})$ is the function from Lemma 1.

Remark 2. Whenever $\mu \sim \nu$, we have $\dot{A}^{1,0} - \dot{B}^{1,0} - \partial T \in \mathfrak{sl}_2(\Omega^1(X))$. For the pairs (μ, \dot{A}) and (ν, \dot{B}) to be equivalent we require this element to live in $[A, \mathfrak{sl}_2(\mathbb{C})] \leq \mathfrak{sl}_2(\Omega^1(X))$.

It will be shown in Lemma 5 that the vector space $Z(X, A) / \sim$ is naturally isomorphic to $T_{(X,A)}$ Syst_q.

1.3. Derivative of the monodromy map M. The tangent space $T_{\rho} \operatorname{Rep}_g$ is well-known to coincide with $H^1(\operatorname{Ad}_{\rho})$, where Ad_{ρ} denotes the $\pi_1(\Sigma_g)$ module with underlying vector space $\mathfrak{sl}_2(\mathbb{C})$ and the action $(\gamma, T) \to \rho(\gamma)T\rho(\gamma)^{-1}$. Since Ad_{ρ} is precisely the monodromy of the flat connection

$$d_A := d + \operatorname{ad}(A)$$

on the bundle $\mathfrak{sl}_2(\mathbb{C}) := X \times \mathfrak{sl}_2(\mathbb{C}) \to X$, there is a de Rham isomorphism

(2)
$$\iota: H^1(X, \mathcal{E}) \to H^1(\mathrm{Ad}_{\rho}).$$

Here \mathcal{E} denotes the sheaf of d_A -flat sections of the bundle $\mathfrak{sl}_2(\mathbb{C})$. We are now ready to state our main result.

Theorem 2. Let $(X, A) \in \text{Syst}_g$ and $(\mu, \dot{A}) \in Z(X, A)$. Then \dot{A} is a d_A -closed $\mathfrak{sl}_2(\mathbb{C})$ -valued 1-form, and hence defines a cohomology class $\chi \in H^1(X, \mathcal{E})$. Moreover, $D\mathbf{M}([(\mu, \dot{A})]) = -\iota(\chi)$, where $[(\mu, \dot{A})] \in Z(X, A)/\sim$ denotes the corresponding tangent vector under the identification $T_{(X,A)}$ Syst $_g \approx Z(X, A)/\sim$.

1.4. **Organisation.** Theorem 1 is proved in Section 2. In Section 3 we describe the tangent space to Syst_g and prove that $T_{(X,A)}\text{Syst}_g$ is isomorphic to $Z(X,A)/\sim$. In Section 4 we recall the description of the tangent space of Rep_g and construct the de Rham isomorphism (2). In Section 5 we prove Theorem 2. Applications of Theorem 1 are derived in Section 6.

2. The kernel of $D\mathbf{M}$

Fix $(X, A) \in \text{Syst}_g$, and consider a tangent vector $(\mu, \dot{A}) \in Z(X, A)$. The following three lemmas easily follow from Theorem 2, and the isomorphism $T_{(X,A)}\text{Syst}_g \approx Z(X, A)/\sim$. We then use these lemmas to prove Theorem 1.

Lemma 2. Let $(\mu, \dot{A}) \in Z(X, A)$. The derivative $D\mathbf{M}(\mu, \dot{A})$ vanishes if and only if there exists a smooth function $\dot{F} : X \to \mathfrak{sl}_2(\mathbb{C})$ such that

(3)
$$\mu A = \partial F \quad and \quad A = \partial F + [A, F] + \mu A.$$

Proof. By Theorem 2 the derivative $D\mathbf{M}(\mu, \dot{A})$ vanishes if and only if $\chi = [\dot{A}] \in H^1(X, \mathcal{E})$ vanishes, that is, if \dot{A} is d_A -exact. This means that $\dot{A} = d_A \dot{F} = d\dot{F} + [A, \dot{F}]$, for some smooth function $\dot{F} : X \to \mathfrak{sl}_2(\mathbb{C})$. Splitting this equality into (0, 1) and (1, 0) parts, and using that $\dot{A}^{0,1} = \mu A$, we derive (3).

Lemma 3. Suppose μ is a Beltrami differential on X. Then there exists \dot{A} such that $D\mathbf{M}(\mu, \dot{A}) = 0$ if and only if the 1-forms $\mu\alpha, \mu\beta, \mu\gamma$ are all $\bar{\partial}$ -exact, where

$$A = \begin{pmatrix} \alpha & \beta \\ \gamma & -\alpha \end{pmatrix}$$

Proof. If such \dot{A} exists then by Lemma 2 there exists $\dot{F} : X \to \mathfrak{sl}_2(\mathbb{C})$ satisfying the system (3). In particular, the equality $\mu A = \bar{\partial}\dot{F}$ holds implying that the 1-forms $\mu\alpha, \mu\beta, \mu\gamma$ are all $\bar{\partial}$ -exact.

Suppose now that $\mu\alpha, \mu\beta, \mu\gamma$ are all ∂ -exact. Then we can construct $\dot{F}: X \to \mathfrak{sl}_2(\mathbb{C})$ such that $\mu A = \bar{\partial}\dot{F}$. Set $\dot{A} = \mu A + \partial\dot{F} + [A, \dot{F}]$. One can now verify that (μ, \dot{A}) solves the system (3).

Lemma 4. Suppose μ is zero in $T_X \mathcal{T}_g$. Then $D\mathbf{M}(\mu, \dot{A}) = 0$ if and only if the pair (μ, \dot{A}) represents the zero vector in $T_{(X,A)}Syst_g$.

Proof. Suppose that $D\mathbf{M}(\mu, \dot{A}) = 0$. We need to prove that (μ, \dot{A}) represents the zero vector in $T_{(X,A)}$ Syst_g. Since μ is zero in $T_X \mathcal{T}_g$, we may assume $\mu = 0$. Let $\dot{F} : X \to \mathfrak{sl}_2(\mathbb{C})$ be the function from Lemma 2. Then $\bar{\partial}\dot{F} = 0$, and hence $\dot{F} : X \to \mathfrak{sl}_2(\mathbb{C})$ is holomorphic. Therefore \dot{F} is constant, and by the second equality in (3) we obtain $\dot{A} = \dot{A}^{1,0} = [A, \dot{F}]$. But then $\dot{A} \in [A, \mathfrak{sl}_2(\mathbb{C})]$, and so $(0, \dot{A})$ vanishes in $T_{(X,A)}$ Syst_g.

2.1. **Proof of Theorem 1.** We are ready to complete the proof of Theorem 1. Let μ denote a Beltrami differential on X. Then by Lemma 3 and Lemma 4 there exists \dot{A} such that (μ, \dot{A}) is a non-zero vector with $D\mathbf{M}(\mu, \dot{A}) = 0$ if and only if μ is not equal to zero in $T_X \mathcal{T}_g$, and the 1-forms $\mu \alpha, \mu \beta, \mu \gamma$ are all $\bar{\partial}$ -exact. By Serre duality, the last condition is equivalent to

$$\int_{X} \mu \phi = 0$$

for every $\phi \in \alpha \Omega^1(X) + \beta \Omega^1(X) + \gamma \Omega^1(X) \leq \text{QD}(X)$. Thus, **DM** is injective if and only if the equality (1) holds.

3. The space of \mathfrak{sl}_2 -systems

Recall that

$$\operatorname{Syst}_g = \{(X, A) : X \in \mathcal{T}_g, A \in \mathfrak{sl}_2(\Omega^1(X)), \rho_A \text{ is irreducible}\} // \operatorname{SL}_2(\mathbb{C}).$$

Note that the quotient here is by the conjugation action of $SL_2(\mathbb{C})$, in the sense of geometric invariant theory. Since we have restricted to the irreducible locus, this coincides with the quotient in the sense of topology. It is standard that $Syst_q$ is a smooth complex manifold.

Our aim in this section is to describe the tangent space $T_{(X,A)}$ Syst_g = $Z(X,A)/\sim$, as described in Section 1. Given a smooth Beltrami form $\mu \in Belt(X)$ with $\|\mu\|_{L^{\infty}(X)} < 1$, denote by $f^{\mu} : X \to X^{\mu}$ the smooth map to a Riemann surface X^{μ} such that

$$\bar{\partial}f^{\mu} = \mu \partial f^{\mu}.$$

Lemma 5. Let $(X, A) \in \text{Syst}_g$ and $(\mu, \dot{A}) \in Z(X, A)$. Then there exists a path of pairs $(X^{t\mu}, A_t)$ based at (X, A), such that

(4)
$$\frac{d}{dt}\Big|_{t=0} \left(f^{t\mu}\right)^* A_t = \dot{A}.$$

Moreover, the map $\tau : Z(X, A) \to T_{(X,A)}Syst_g$, defined by taking the tangent vector to this path at t = 0, is surjective and has kernel B(X, A) consisting of pairs $(\mu, \dot{A}) \in Z(X, A)$ such that

- μ vanishes in $T_X \mathcal{T}_q$, and
- $\dot{A} dT \in [A, \mathfrak{sl}_2(\mathbb{C})]$ for some function $T : X \to \mathfrak{sl}_2(\mathbb{C})$.

We split the proof of Lemma 5 into two parts. We construct the path with property (4) in §3.1, and then we describe the kernel of τ in §3.2.

3.1. Constructing the path. The path we construct will in fact be in

$$\{(X,A): X \in \mathcal{T}_g, A \in \mathfrak{sl}_2(\Omega^1(X))\}$$

rather than Syst_g . Note that this space is isomorphic to the total space of $\mathcal{H}_g \otimes \mathfrak{sl}_2(\mathbb{C})$, where $\mathcal{H}_g \to \mathcal{T}_g$ is the Hodge bundle of Abelian differentials over a varying Riemann surface, i.e. the fibre of \mathcal{H}_g over $X \in \mathcal{T}_g$ is $\Omega^1(X)$.

Let A_t be a path of $\mathfrak{sl}_2(\mathbb{C})$ valued holomorphic 1-forms on $X^{t\mu}$, chosen so that $[\operatorname{Re}(A_t)] \in H^1(\Sigma_g, \mathfrak{sl}_2(\mathbb{R}))$ depends smoothly on t, and has $\frac{d}{dt}\Big|_{t=0} [\operatorname{Re}(A_t)] = [\operatorname{Re}(\dot{A})]$. By the smoothness of the Gauss–Manin connection on \mathcal{H}_g , it follows that $(f^{t\mu})^* A_t$ depend smoothly on t, and hence we can define

$$B = \left. \frac{d}{dt} \right|_{t=0} \left(f^{t\mu} \right)^* A_t.$$

Since the 1-forms A_t are holomorphic, they are also closed, and hence so is B. Moreover, $\operatorname{Re}(\dot{A} - B)$ is exact by construction.

Claim 1. We have $B^{0,1} = \mu A$.

Proof. We work in a local coordinate z on X, and abuse notation slightly to denote the Beltrami form by $\mu \frac{d\bar{z}}{dz}$ in this coordinate. Then $\tilde{A}_t := (f^{t\mu})^* A_t$ is proportional to $f_z^{t\mu} (dz + t\mu d\bar{z})$. In particular,

$$\tilde{A}_t^{0,1} = t\mu \tilde{A}_t^{1,0}.$$

Differentiating at t = 0, we see that $B^{0,1} = \mu A$, as desired.

In particular, it follows that $B - \dot{A}$ is a closed form of type (1, 0), and is therefore holomorphic. Since $B - \dot{A}$ has exact real part, it follows by Hodge theory that $B - \dot{A} = 0$. We have thus constructed a path with (4).

3.2. Surjectivity and the kernel of τ . We first show the surjectivity of τ . Given any tangent vector $V \in T_{(X,A)}(\mathcal{H}_g \otimes \mathfrak{sl}_2(\mathbb{C}))$, let $(X^{t\mu}, A_t)$ be a path in $\mathcal{H}_g \otimes \mathfrak{sl}_2(\mathbb{C})$ tangent to V at (X, A). Note that each A_t is closed, so is $(f^{t\mu})^* A_t$. Thus $\dot{A} := \frac{d}{dt}\Big|_{t=0} (f^{t\mu})^* A_t$ is closed, and by Claim 1 has (0, 1)-part equal to μA . Thus \dot{A} is (μ, A) -tamed and hence $V = \tau(\mu, \dot{A})$. Thus τ is surjective.

We now show that ker $\tau = B(X, A)$. Since the paths constructed in §3.1 lie in $\mathcal{H}_g \otimes \mathfrak{sl}_2(\mathbb{C}), \tau$ factors as

$$Z(X,A) \xrightarrow{\tau} T_{(X,A)}(\mathcal{H}_g \otimes \mathfrak{sl}_2(\mathbb{C})) \to T_{(X,A)} \mathrm{Syst}_g$$

Since ρ_A is irreducible, the point (X, A) is stable for the $\mathrm{SL}_2(\mathbb{C})$ -action on $\mathcal{H}_g \otimes \mathfrak{sl}_2(\mathbb{C})$. Thus ker $\tau = \tilde{\tau}^{-1} \left((0, [A, \mathfrak{sl}_2(\mathbb{C})]) \right) = (0, [A, \mathfrak{sl}_2(\mathbb{C})]) + \ker \tilde{\tau}$ by standard geometric invariant theory. In the rest of this subsection, we show that

 $\ker \tilde{\tau} = \{(\mu, \dot{A}) \in Z(X, A) : \mu \text{ vanishes in } T_X \mathcal{T}_g \text{ and } \dot{A} \text{ is exact}\},\$

which implies $B(X, A) = \ker \tau$ immediately.

Suppose first that $(\mu, \dot{A}) \in \ker \tilde{\tau}$. Then μ corresponds to the zero tangent vector in $T_X \mathcal{T}_g$. By the construction of the path in §3.1, it follows that $\operatorname{Re}(\dot{A})$ is exact. Since the period matrix of $X^{t\mu} = X$ remains constant up to terms of order o(t) (for μ is zero in the $T\mathcal{T}_g$), we see that $\operatorname{Im}(\dot{A})$ is exact as well.

Conversely, if μ vanishes in $T_X \mathcal{T}_g$ and $\dot{A} = dT$, then the cohomology class $[\dot{A}] \in H^1(\Sigma_g, \mathfrak{sl}_2(\mathbb{C}))$ vanishes. Thus the path in §3.1 represents a path of holomorphic 1-forms on a fixed Riemann surface, with the same cohomology. Thus the path is constant, and $(\mu, \dot{A}) \in \ker \tilde{\tau}$.

4. The representation variety and de Rham isomorphism

In this section, we explain the tangent space to the representation variety Rep_q and the de Rham isomorphism for local systems.

4.1. Tangent space to Rep_g . The description of $T\operatorname{Rep}_g$ is much more standard than $T\operatorname{Syst}_g$, and can be found for instance in [6]. We summarise the results here for the sake of completeness.

Given an irreducible representation $\rho : \pi_1(\Sigma_g) \to \mathrm{SL}_2(\mathbb{C})$, the tangent space $T_{\rho} \mathrm{Rep}_g$ can be described as $H^1(\mathrm{Ad}_{\rho}) := Z(\mathrm{Ad}_{\rho})/B(\mathrm{Ad}_{\rho})$, where

$$Z(\mathrm{Ad}_{\rho}) = \{\eta : \pi_1(\Sigma_g) \to \mathfrak{sl}_2(\mathbb{C}) \text{ with } \eta(\gamma_1\gamma_2) = \eta(\gamma_1) + \rho(\gamma_1)\eta(\gamma_2)\rho(\gamma_1)^{-1}\}$$

and

$$B(\mathrm{Ad}_{\rho}) = \{\rho T \rho^{-1} - T \text{ for } T \in \mathfrak{sl}_2(\mathbb{C})\}.$$

Given an element $\eta \in Z(\mathrm{Ad}_{\rho})$, there exists a smooth path $\rho_t : \pi_1(\Sigma_g) \to \mathrm{SL}_2(\mathbb{C})$ such that

$$\left. \frac{d}{dt} \right|_{t=0} \rho_t(\gamma) = \eta(\gamma)\rho(\gamma),$$

and this path is tangent to $\eta + B(\mathrm{Ad}_{\rho}) \in H^1(\mathrm{Ad}_{\rho})$.

4.2. De Rham isomorphism for local systems. There is a standard correspondence between flat vector bundles E of rank n over a manifold M, and representations $\rho : \pi_1(M) \to \operatorname{GL}_n(\mathbb{C})$ of its fundamental group. Taking the derivative of this correspondence gives an isomorphism $H^1(M, \mathcal{E}) \cong$ $H^1(\pi_1(M), \operatorname{Ad}_{\rho})$, where \mathcal{E} is the sheaf of parallel sections of E. In this section, we describe this isomorphism explicitly. We omit the proofs as they are standard application of homological algebra. A much more general result can be found in Proposition 6.3 in [7].

We first describe how $H^1(M, \mathcal{E})$ and $H^1(\mathrm{Ad}_{\rho})$ can be understood explicitly. Consider the de Rham resolution of \mathcal{E}

$$\mathcal{E} \to E \xrightarrow{d^{\nabla}} E \otimes T^*M \xrightarrow{d^{\nabla}} E \otimes \bigwedge^2 T^*M.$$

This is a soft resolution, and its sections can hence be used to compute the cohomology

$$H^1(\Sigma_g, \mathcal{E}) = \frac{\{A \in C^{\infty}(E \otimes T^*\Sigma_g) : d^{\nabla}A = 0\}}{\{d^{\nabla}B : B \in C^{\infty}(E)\}}.$$

Also recall that $H^1(Ad_{\rho}) = Z(Ad_{\rho})/B(Ad_{\rho})$, where

 $Z(\mathrm{Ad}_{\rho}) = \{\eta : \pi_1(\Sigma_g) \to \mathbb{C}^n \text{ such that } \eta(\gamma_1\gamma_2) = \eta(\gamma_1) + \rho(\gamma_1)\eta(\gamma_2)\rho(\gamma_1)^{-1}\},\$ and

$$B(\mathrm{Ad}_{\rho}) = \{\rho(\gamma)\eta\rho(\gamma)^{-1} - \eta : \eta \in \mathbb{C}^n\}.$$

We now describe the de Rham isomorphism $\iota : H^1(M, \mathcal{E}) \to H^1(\mathrm{Ad}_{\rho})$. Let $p : \tilde{M} \to M$ be the universal cover, and $\tilde{E} = p^*E$ be the pullback of E. Note that the deck group action of $\pi_1(M)$ on \tilde{M} naturally extends to an action on \tilde{E} . Fix an arbitrary basepoint $x \in \tilde{M}$.

Given a d^{∇} -closed *E*-valued 1-form *A*, the class $\iota([A])$ can be computed as follows. Since \tilde{E} is the trivial flat bundle, it admits a section *T* such that $dT = p^*A$. It is easily seen that $\gamma T - T$ is parallel for any $\gamma \in \pi_1(M)$, and hence

$$\gamma \longrightarrow (\gamma T - T)(x)$$

defines a cycle in $Z(\mathrm{Ad}_{\rho})$. The image of this cycle in $H^1(\mathrm{Ad}_{\rho})$ is $\iota([\chi])$.

5. Proof of Theorem 2

5.1. Trivializing the flat $SL_2(\mathbb{C})$ -bundle. We now describe the setup in which we will prove Theorem 2.

Let X be a Riemann surface and $A \in \mathfrak{sl}_2(\Omega^1(X))$. Let $\rho : \pi_1(X) \to$ SL₂(\mathbb{C}) be the monodromy of d + A. The following lemma shows how to trivialize (SL₂(\mathbb{C}), d + A). Denote by \tilde{X} the universal cover of X. This lemma is entirely contained in the literature (see e.g. the introduction to [2]), but we include a proof for completeness.

Lemma 6. There exists a map $F : \tilde{X} \to SL_2(\mathbb{C})$ such that

$$dF + AF = 0$$
 and $F(\gamma x) = F(x)\rho(\gamma)^{-1}$.

Then the map $\Phi: \tilde{X} \times \mathrm{SL}_2(\mathbb{C}) \to \tilde{X} \times \mathrm{SL}_2(\mathbb{C})$ defined by $\Phi(x, T) = (x, F(x)T)$ is an isomorphism of principal bundles with the following two properties

Φ conjugates the π₁(X)-action γ · (x, T) = (γx, ρ(γ)T) to the action γ · (x, T) = (γx, T), and
Φ*(d + A) = d.

Proof. Fix an arbitrary basepoint $\tilde{x}_0 \in \tilde{X}$, and let $F_0 \in \mathrm{SL}_2(\mathbb{C})$ be such that ρ is the monodromy of d + A with basepoint \tilde{x}_0 relative to the basis that consists of the columns of F_0 . Define F(x) as follows: for i = 1, 2, its *i*-th column is the d_A -parallel transport of the *i*-th column of F_0 along an arbitrary path from \tilde{x}_0 to x. It is immediate that dF + AF = 0, since F is obtained through parallel transport. Since the monodromy of d + A is precisely ρ , it follows that $F(x) = F(\gamma x)\rho(\gamma)$.

Moreover, if we let $\sigma : \tilde{X} \to \mathrm{SL}_2(\mathbb{C})$ be a section of the bundle $(\underline{\mathrm{SL}_2(\mathbb{C})}, d_A)$, then

$$\nabla(F^{-1}\sigma) = \sigma^{-1}Fd(F^{-1}\sigma)$$
$$= \sigma^{-1}F\left(-F^{-1}(dF)F^{-1}\sigma + F^{-1}d\sigma\right)$$
$$= \sigma^{-1}d\sigma + \sigma^{-1}A\sigma = d_A\sigma,$$

and the result is shown.

5.2. Computing the derivative. We now let $(X^{t\mu}, A_t)$ be the path at $(X, A) \in \text{Syst}_g$ tangent to the vector (μ, \dot{A}) with $\dot{A}^{0,1} = \mu A$, as in Lemma 5. Let $F_t : \tilde{X}^{t\mu} \to \text{SL}_2(\mathbb{C})$ be as in Lemma 6, and suppose that the monodromy of $d + A_t$ is $\rho_t : \pi_1(X^{t\mu}) \to \text{SL}_2(\mathbb{C})$.

We use $f^{t\mu}$ to transport A_t, F_t and ρ_t to X. Recall that $\left. \frac{d}{dt} \right|_{t=0} A_t = \dot{A}$. We have

$$dF_t + A_tF_t = 0$$
 and $F_t(\gamma x) = F_t(x) \cdot \rho_t(\gamma)^{-1}$.

Let $F_t = (\mathrm{id} + t\dot{F} + o(t)) \cdot F$ for some map $\dot{F} : \tilde{X} \to \mathfrak{sl}_2(\mathbb{C})$. Then

$$d_A \dot{F} + \dot{A} = d\dot{F} + \dot{A} + [A, \dot{F}] = 0.$$

We thus have $d_A \dot{F} = -\dot{A}$. Similarly, if we set $\rho_t(\gamma) = (\mathrm{id} + t\dot{\rho}(\gamma) + o(t)) \cdot \rho(\gamma)$, we have

$$\dot{\rho}(\gamma) = F(\gamma x)^{-1} \left(\dot{F}(x) - \dot{F}(\gamma x) \right) F(\gamma x).$$

Set $B = F^{-1}\dot{F}F$. Then $\dot{\rho}(\gamma) = \rho(\gamma)B(x)\rho(\gamma)^{-1} - B(\gamma x)$. It is easy to see that $\rho(\gamma)B(x)\rho(\gamma)^{-1} - B(\gamma x)$ does not depend on $x \in \tilde{X}$, so we have

$$\dot{\rho}(\gamma) = \rho(\gamma)B(\gamma^{-1}x)\rho(\gamma)^{-1} - B(x).$$

From the description of the de Rham isomorphism $H^1(X, \mathcal{E}) \to H^1(\mathrm{Ad}_{\rho})$ in §4.2, we see that $[\dot{\rho}] = -\iota[\dot{A}]$.

6. Applications

Recall that Theorem 1 states that the derivative $D\mathbf{M}$ is injective on the tangent space $T_{(X,A)}$ Syst_g if and only if $QD(\alpha, \beta, \gamma) = QD(X)$, where

$$A = \begin{pmatrix} \alpha & \beta \\ \gamma & -\alpha . \end{pmatrix}$$

In this section we derive several applications of this theorem.

6.1. **Preliminaries.** Let X be a Riemann surface of genus at least two, and let $\xi_i \in \Omega^1(X)$, i = 1, ..., k. Let $QD(\xi_1, ..., \xi_k) \leq QD(X)$ be the vector subspace generated by the products $\xi_i \varphi$, i = 1, ..., k, and $\varphi \in \Omega^1(X)$. The following was proved by Rauch (see statement C in [10]).

Theorem 3. Let X be a hyperelliptic Riemann surface of genus at least two, and suppose $\xi_1, ..., \xi_g$ is a basis of $\Omega^1(X)$. Then $\dim(\operatorname{QD}(\xi_1, ..., \xi_g)) = 2g-1$.

The next theorem is a classical result.

Theorem 4. Suppose $g \geq 3$. There exists a dense open subset $U \subset \mathcal{H}_g^{\oplus 3}$ such that the equality $\mathrm{QD}(\alpha, \beta, \gamma) = \mathrm{QD}(X)$ holds for each $(\alpha, \beta, \gamma) \in U$.

Remark 3. Let $p : \mathcal{H}_g^{\oplus 3} \to \mathcal{T}_g$ be the natural projection. According to the result of [5], the set U from Theorem 4 can in fact be taken such that $U \cap p^{-1}(X)$ is dense in $p^{-1}(X)$ for any non-hyperelliptic $X \in \mathcal{T}_g$. The same result can be recovered from the well known Max Noether theorem (see III.11.20 in [3]).

Proof. Let X be a non-hyperelliptic Riemann surface. By Theorem 1.1 in [5], the set of triples $(\alpha, \beta, \gamma) \in (\Omega^1(X))^3$ such that $\text{QD}(\alpha, \beta, \gamma) = \text{QD}(X)$ is an open and dense subset of $(\Omega^1(X))^3$. Taking the union of these dense open subsets over all non-hyperelliptic Riemann surface in \mathcal{T}_g yields the required open and dense subset of $\mathcal{H}_q^{\oplus 3}$.

6.2. **Two corollaries.** The following is a corollary of Theorem 1 and Theorem 3.

Theorem 5. Suppose $X \in \mathcal{T}_g$ is hyperelliptic and let $(X, A) \in \text{Syst}_g$. Then DM is injective on the tangent space $T_{(X,A)}\text{Syst}_g$ if and only if g = 2.

Remark 4. That $D\mathbf{M}$ is injective on the tangent space $T_{(X,A)}$ Syst_g if g = 2 is a well known theorem by Calsamiglia-Deroin-Heu-Loray [2].

Proof. Assume at first that g > 2. Then by Theorem 3 the following inequality holds

$$\dim(\operatorname{QD}(\alpha,\beta,\gamma)) \le 2g - 1 < 3g - 3 = \dim(\operatorname{QD}(X)).$$

Thus, the equality (1) can never hold on such X regardless of the choice of Abelian differentials α, β, γ .

We now consider the case g = 2. Since $(X, A) \in \text{Syst}_g$, we know that the monodromy $\rho_A : \pi_1(\Sigma_g) \to \text{SL}_2(\mathbb{C})$ is irreducible. Then the three Abelian differentials α, β , and γ , span $\Omega^1(X)$. This was observed by Biswas-Dumitrescu (see the proof of Proposition 4.1 in [1]). Since dim(QD(X)) = 2, without loss of generality we may assume that α and β span $\Omega^1(X)$. But then by Theorem 3 we know that the three quadratic differentials $\alpha^2, \alpha\beta, \beta^2$ represent a basis for QD(X). By Theorem 1 the derivative DM is injective on $T_{(X,A)}\text{Syst}_g$.

In the remainder of this section we let

$$I: \mathcal{H}_q^{\oplus 3} o \mathcal{H}_g \otimes \mathfrak{sl}_2(\mathbb{C})$$

denote the identification

$$(\alpha, \beta, \gamma) \mapsto A = \begin{pmatrix} \alpha & \beta \\ \gamma & -\alpha \end{pmatrix}.$$

Theorem 6. The derivative DM is locally injective on an open and dense subset of $Syst_a$.

Remark 5. This is a recent theorem by Biswas-Dumitrescu [1].

Proof. Let $U \subset \mathcal{H}_g^{\oplus 3}$ be the open dense set from Theorem 4. Moreover, let V be the open dense subset of $\mathcal{H}_g \otimes \mathfrak{sl}_2(\mathbb{C})$ that corresponds to irreducible flat connections. Then $I(U) \cap V$ is a dense open subset of $\mathcal{H}_g \otimes \mathfrak{sl}_2(\mathbb{C})$. Since the quotient map $q: V \to V /\!\!/ \operatorname{SL}_2(\mathbb{C})$ is open, it follows that $q(I(U) \cap V)$ is the desired dense open set by Theorem 1.

References

- I. Biswas and S. Dumitrescu, The monodromy map from differential systems to character variety is generically immersive. Publ. Res. Inst. Math. Sci. 59 (2023), 821-842.
- [2] G. Calsamiglia, B. Deroin, V. Heu and F. Loray, The Riemann-Hilbert mapping for sl₂ systems over genus two curves. Bull. Soc. Math. France 147 (2019), 159-195.
- [3] H. Farkas, I. Kra, *Riemann surfaces*. Graduate Texts in Mathematics, 71. Springer-Verlag, New York-Berlin (1980).
- [4] E. Ghys. Déformations des structures complexes sur les espaces homogènes de SL(2, C). J. Reine Angew. Math. 468 (1995) 113-138.
- [5] D. Gieseker, A lattice version of the KP equation. Acta Math. 168 (1992), 219-248.
- [6] W. Goldman, The symplectic nature of fundamental groups of surfaces. Advances in Mathematics 54 (1984), 200-225.
- [7] W. Goldman, J. Millson, The deformation theory of representations of fundamental groups of compact Kähler manifolds. Publications Mathématiques de l'IHÉS 67 (1988), 43-96.
- [8] V. Marković, Unramified correspondences and virtual properties of mapping class groups. Bull. Lond. Math. Soc. 54, no. 6 (2022) 2324-2337.
- [9] V. Marković, O. Tošić, The second variation of the Hodge norm and higher Prym representations. Journal of Topology 17 (2024).
- [10] E. Rauch, On the transcendental moduli of algebraic Riemann surfaces. Proc. Nat. Acad. Sci. U.S.A. 41 (1955), 42-49.

MATHEMATICAL INSTITUTE UNIVERSITY OF OXFORD UNITED KINGDOM Email address: ognjen.tosic@gmail.com

ALL SOULS COLLEGE UNIVERSITY OF OXFORD UNITED KINGDOM Email address: markovic@maths.ox.ac.uk