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Abstract. A key object of study in stochastic topology is a random simplicial

complex. In this work we study a multi-parameter random simplicial complex

model, where the probability of including a k-simplex, given the lower dimen-
sional structure, is fixed. This leads to a conditionally independent probabilis-

tic structure. This model includes the Erdős–Rényi random graph, the random
clique complex as well as the Linial-Meshulam complex as special cases. The

model is studied from both probabilistic and statistical points of view. We

prove multivariate central limit theorems with bounds and known limiting
covariance structure for the subcomplex counts and the number of critical sim-

plices under a lexicographical acyclic partial matching. We use the CLTs to

develop a goodness-of-fit test for this random model and evaluate its empirical
performance. In order for the test to be applicable in practice, we also prove

that the MLE estimators are asymptotically unbiased, consistent, uncorrelated

and normally distributed.

1. Introduction. While complex data are often represented as graphs or networks
[43], there is a growing interest in modelling complex systems beyond pairwise inter-
actions between nodes [9]. Simplicial complexes, often used in topological data anal-
ysis (TDA), provide a rich mathematical representation of higher-order networks
[8]; other representations are detailed for example in [5]. As in network science,
the statistical analysis of simplicial complex data relies on random complexes as
null models. In this paper, statistical understanding is achieved through a central
limit theorem (CLT). Stochastic topology, which studies such random complexes,
is partly motivated by its use in TDA [11, 12]. Despite the growing popularity of
TDA, random simplicial complexes are rarely used in practice, partly because of
the lack of results in parameter estimation and asymptotic distribution of relevant
statistics. This work aims to fill in the gap by providing a probabilistic and statisti-
cal understanding of the so-called multiparameter random simplicial complex model
X(n,p), which is rather general and includes several important special cases such as
the Linial-Meshulam complex, the random clique complex X(n, p) and the Bernoulli
random graph G(n, p). Here p = (p1, p2, . . . , pn−1) is a vector of probabilities; p1
is the probability of an edge, p2 is the probability of a triangle to form a 2-simplex,
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and in general, pk is the probability of a k-vertex clique to form a (k− 1)−simplex.
In particular G(n, p) is a special case of X(n,p) with p = (p, 0, . . . , 0). A formal
definition is given in Section 2.1.

The motivation of this work is three-fold:

1. establishing results that allow the use of X(n,p) as a null-model in practical
TDA applications;

2. establishing an understanding of multivariate count statistics which have been
instrumental in the study of algebraic invariants (such as Euler characteris-
tic, homology groups, and the fundamental group) of random simplicial com-
plexes; and finally,

3. quantifying the extent to which discrete Morse theory can simplify homology
computation in a random setting.

We address these three points in the so-called dense regime, where the vector
p ∈ (0, 1)n−1 does not depend on n (although some relaxation of this assumption is
also discussed). A key observation which we establish in this paper is that asymp-
totically the covariance matrix of all subcomplex counts in X(n,p) has rank one,
which might be surprising. Even though the model has conditionally independent
randomness in higher dimensions, this gets lost in the limit and so the behaviour
of this random vector is analogous to a vector of subgraph counts in the G(n, p)
random graph model. Intuitively, this means that one subcomplex count asymp-
totically determines all the other ones. We shall also establish that the behaviour
of the second count statistic - critical simplex counts of a lexicographical acyclic
partial matching, as arising in discrete Morse theory - is slightly different. Next we
cover the three motivations for this paper in more detail.

1.1. Multiparameter complex as a null model. In order to further statistical
understanding of the model, we study maximum likelihood estimation in theX(n,p)
model as well as goodness-of-fit tests. We prove that the maximum likelihood
estimator (MLE) for p is asymptotically unbiased and consistent. Also, we provide
non-asymptotic bounds on the normal approximation error as well as the limiting
covariance structure of the estimator. To our knowledge, this is the first study of
the MLE for this random model. The classic abstract MLE results do not apply
here because the observed simplex indicator variables are neither independent nor
identically distributed; instead we employ results from [51] which are based on a
probabilistic technique called Stein’s method.

Unfortunately, the vector of subcomplex counts has limiting covariance matrix
of rank one, which makes it an unsuitable candidate for standard goodness-of-
fit tests. Instead, we propose critical simplex counts of a lexicographical acyclic
partial matching as test statistic, because this multivariate statistic has a nontrivial
correlation matrix also in the limit. We analyse its performance empirically in a
simulation study and show that it is able to distinguish between X(n,p) and a
selection of geometric simplicial complex models. This is the first work proposing
a goodness-of-fit test for the X(n,p) model.

1.2. Distributional approximation of count statistics. This work contains
several probabilistic results, which provide some understanding of the probabilistic
structure and which also motivate the choice of statistics for goodness-of-fit tests.
In the study of random graphs, distributional approximations of subgraph counts
play an important role [47, 4]. Surprisingly, general subcomplex counts in X(n,p),
have not been studied from a distributional approximation point of view before,
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only from a large deviations point of view [48]. In the literature only CLTs for
a special case of subcomplex counts - face counts - appear in X(n,p) and related
models [45, 19]. In this work we prove a multivariate CLT for subcomplex counts
with non-asymptotic bounds on convergence rates with respect to both smooth test
functions as well as convex set indicator functions. Non-asymptotic bounds can be
useful in applications since the observed data, however large, is never infinite. More-
over we prove a multivariate CLT with bounds on rates for critical simplex counts of
a lexicographical acyclic partial matching and derive a formula for the asymptotic
covariance matrix, which generically has full rank, in contrast to the subcomplex
counts. In order to prove a multivariate CLT for the subcomplex counts, we estab-
lish a multivariate CLT for generalised U -statistics under some assumptions, which
might be of independent interest.

Proving the existence of certain subcomplexes have been a crucial step in show-
ing results about homology, persistent homology, and the fundamental group in
the regimes when these algebraic invariants are non-trivial with high probability
[1, 46, 42]. Distributional approximation of certain subcomplexes have also been
used to deduce distributional approximation results for Betti number in the ran-
dom clique complex [32]. We hope that understanding the multivariate counts of
arbitrary subcomplexes in X(n,p) as well as critical simplex counts under a lexico-
graphical matching will pave a way to understand the multivariate distribution of
Betti numbers in the dense regime.

1.3. Effectiveness of discrete Morse theory. Discrete Morse theory [21] pro-
vides a powerful, flexible and widely-used mechanism for simplifying the machine
computation of simplicial homology and related algebraic invariants [22, 41, 17, 6,
52]. The basic idea is to construct a partial matching which pairs adjacent simplices
subject to a global acyclicity constraint; the homology of the original complex is
then entirely determined by (a chain complex constructed from) the unpaired sim-
plices, the so-called critical simplices. Several strategies have been proposed for
constructing acyclic partial matchings which admit relatively few number of critical
simplices, thus greatly easing the linear-algebraic burden of computing homology.
Simultaneously, considerable efforts have been invested in understanding the effi-
cacy of such reductions in terms of lowering the number of simplices to consider —
the complexity of finding optimal matchings is discussed in [27] while certain empir-
ical calculations have been described in [2]. In this paper we provide a multivariate
normal approximation for vectors of critical simplex counts of lexicographical dis-
crete Morse functions on X(n, p). This acyclic partial matching is a standard tool in
TDA which is used in some of the popular TDA software packages, for example [6].
The multivariate normal approximation in our paper thus furnishes a convenient
benchmark for testing the efficacy of homology-preserving reductions via discrete
Morse theory on random simplicial complexes.

1.4. Main results. When presenting our main results here, we assume that the
reader is familiar with random simplicial complexes and the multiparameter ran-
dom simplicial complex X(n,p). The subsequent Section 2 provides the necessary
background for the readers who are less familiar with these notions.

There are two central theoretical contributions of this work: one regarding the
properties of the MLE in X(n,p) and one regarding the distributional approxima-
tion of the mentioned count statistics. We first give a simplified version of our
MLE results; they are stated asymptotically for simplicity and clarity but we prove
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the results non-asymptotically with explicit constants. To see the results in full
generality and detail, we refer to Theorems 3.2 and 3.5 as well as Lemma 3.4.

Theorem 1.1. Consider the random simplicial complex X(n,p). Assume there
is a known and fixed integer d ≥ 1 such that p = (p1, p2, . . . , pn−1) is a vector
of probabilities where pi = 0 for i > d and pi ∈ (0, 1) for i ≤ d. Let p̂i be the

MLE of pi for some fixed i ≤ d. Let Wi =Wi(n) =
(
n
i+1

) 1
2 (p̂i − pi) and Zi ∼

N
(
0, (1− pi)

∏i
j=1 p

−(i+1
j+1)

j

)
. Then

1.

lim
n→∞

E {p̂i} = pi and lim
n→∞

Var(p̂i) = 0;

2. for any fixed 1 ≤ i < j ≤ d we have

lim
n→∞

Cov(Wi,Wj) = 0;

3. for any fixed 1 ≤ i ≤ d,

lim
n→∞

sup
x∈R

|P(Wi ≤ x)− P(Zi ≤ x)| = 0.

Here we recognize

sup
x∈R

|P(Wi ≤ x)− P(Zi ≤ x)| = sup
x∈R

|E{I(Wi ∈ (−∞, x])} − E{I(Zi ∈ (−∞, x])}|

as the Kolmogorov-distance between the distribution of Wi and the distribution of
Zi, which is based on indicator test functions I(z ∈ (−∞, x]), taking the value 1 if
z ∈ (−∞, x] and 0 otherwise. A natural multivariate generalisation of this distance
is to take the supremum over indicator functions of convex sets. Similarly, taking
instead the supremum over Lipschitz(1)-test functions yields Wasserstein distance.

Next we state a theorem that contains a simplified version of the multivariate
normal approximation results, for both, simplex counts and and critical simplex
counts. Even though the two random vectors are related from a topological point
of view, a CLT for one of them does not automatically translate into a CLT for
the other: the dependence structure in the two cases are quite different, requiring
slightly different proofs. We quantify the approximation error in terms of both
smooth test functions and convex set indicator functions. Even though an error
vanishing asymptotically implies convergence in distribution in both cases, for finite
n, the convex set indicator functions give us a stronger result that is also of interest
in practice when, for example, estimating confidence regions. For the non-simplified
version of the results we refer the reader to Theorems 5.2, 6.4, 6.6, Corollary 5.4,
and Lemma 6.4. For the statement we let k′ be the largest number such that for
all i ≤ k′ we have pi = 1; k′ = 0 if none of the probabilities equal 1.

Theorem 1.2. Consider the random simplicial complex X(n,p). Let W (1) ∈ Rd
be an appropriately scaled and centered vector of subcomplex counts. Let W (2) ∈ Rd
be an appropriately scaled and centered count vector of simplices that are critical
under a lexicographical acyclic partial matching. Let Z ∼ MVN(0, Idd×d) and Σi be
the covariance matrix of W (i) for each i. Let h : Rd → R be a three times partially
differentiable function whose third partial derivatives are Lipschitz continuous and
bounded. Let K be the class of convex sets in Rd.
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1. There is a constant B5.4 > 0, independent of n such that∣∣∣Eh(W (1))− Eh(Σ
1
2
1 Z)

∣∣∣ ≤ sup
i,j,k∈[d]

∥∥∥∥ ∂3h

∂xi∂xj∂xk

∥∥∥∥
∞
B5.4n

− k′+2
2

and

sup
A∈K

|P(W (1) ∈ A)− P(Σ
1
2
1 Z ∈ A)| ≤ 2

7
2 3−

3
4 d

3
16B

1
4
5.4n

− k′+2
8 .

Moreover, for any 1 ≤ i < j ≤ d we have

lim
n→∞

(Σ1)i,j = 1.

2. There is a constant B6.6.1 > 0 independent of n and a natural number N6.6.1

such that for any n ≥ N6.6.1 we have∣∣∣Eh(W (2))− Eh(Σ
1
2
2 Z)

∣∣∣ ≤ B6.6.1 sup
i,j,k∈[d]

∥∥∥∥ ∂3h

∂xi∂xj∂xk

∥∥∥∥
∞
n−

k′+2
2 .

Also, there is a constant B6.6.2 > 0 independent of n and a natural number
N6.6.2 such that for any n ≥ N6.6.2 we have

sup
A∈K

|P(W (2) ∈ A)− P(Σ
1
2
2 Z ∈ A)| ≤ B6.6.2n

− k′+2
8 .

Moreover, for any 1 ≤ i < j ≤ d there is a function σ∞(i, j) such that

lim
n→∞

(Σ2)i,j = σ∞(i, j).

If pk ∈ (0, 1) for all k > k′, then then 0 ≤ σ∞(i, j) < 1.

The constant B5.4 is given explictly in Corollary 5.4, and the explicit expression
of σ∞(i, j) is found in Lemma 6.4. We also propose a testing procedure based on
critical simplex counts and empirically evaluate its performance. The procedure is
described in Algorithm 1 and the results are presented in Section 3.2.

1.5. Related work. Although subcomplex counts in X(n,p) are natural objects
to consider, surprisingly, they have not yet been extensively studied. Nonetheless,
a recent paper studies large deviation bounds for subcomplex counts in the X(n,p)
model [48] and a CLT for face counts can be found in [45]. Another recent paper
[19] proves a CLT for a special kind of subcomplex counts in a special case of the
X(n,p) model, the number of isolated faces in the Linial-Meshulam random sim-
plicial complex. As subcomplex counts can be seen as an example of generalised
U -statistics, results from [26, Section 10.7] and [24, Chapter 11.3] could, with some
work, in principle be adapted to prove convergence in distribution for the multi-
variate subcomplex counts; in [18] the author extends the results from [26] to study
generalised U -statistics not only for graphs but also for hypergraphs and therefore
for simplicial complexes in particular, but no non-asymptotic bounds on the ap-
proximation error are available. Zhang [53] used the exchangeable pair approach
in Stein’s method to derive a univariate CLT for the graph version of generalised
U -statistics. These results only apply to graph statistics rather than the higher
order type of statistics that we are interested in here.

Counts of simplices that are critical under a lexicographical acyclic partial match-
ing have been studied for the random clique complex X(n, p) [51, Section 4]. For
the X(n,p) model, only the expected value has been studied so far [7, Section 8].

There has been some limited work on statistics for random simplicial complexes.
In [12, 54] the authors have noted a sufficient statistic for the X(n,p) model but the
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MLE had not been investigated. Goodness-of-fit tests using count statistics have
been proposed in the context of random graphs [33, 13, 39]. Topological goodness-
of-fit tests have been suggested for point processes [10], sliced spatial data [14], and
cylindrical networks [34], but not, to the best of our knowledge, for X(n,p).

1.6. Organisation and notation. In Section 2 we introduce topological defini-
tions and the random models of interest. In Section 3 we study the properties of
the MLE of the parameter p in X(n,p) and perform a simulation study to verify
the validity of the proposed goodness-of-fit test. In Section 4 we introduce and
prove probabilistic results that are needed to prove Theorem 1.2. It also contains a
multivariate CLT for generalised U -statistics that might be of independent interest.
In Section 5 we study multivariate subcomplex counts and prove a multivariate
CLT with an explicit bound; we also describe the limiting covariance. In Section 6
we study critical simplex counts under a lexicographical acyclic partial matching.
A multivariate CLT with an explicit bound is proved and the limiting covariance
described. Finally, the Appendix A contains some technical computations that are
needed for the proofs of Section 6.

Throughout this paper we use the following notation. Given positive integers
n,m we write [m,n] for the set {m,m+ 1, . . . , n} and [n] for the set [1, n]. Given a
set X we write |X| for its cardinality, P(X) for its powerset, and given a positive

integer k we write
(
X
k

)
= { t ∈ P(X) | |t| = k } for the collection of subsets of X

which are of size k. For a function f : Rd → R we write ∂ijf = ∂2f
∂xi∂xj

and

∂ijkf = ∂3f
∂xi∂xj∂xk

. Also, we write |f |k = supi1,i2,...,ik∈[d] ∥∂i1i2...ikf∥∞ for any

integer k ≥ 1, as long as the quantities exist. Here || · ||∞ denotes the supremum
norm. For a positive integer d we define a class of test functions h : Rd → R, as
follows. We say h ∈ Hd iff h is three times partially differentiable with third partial
derivatives being Lipschitz and |h|3 <∞. The class of convex sets in Rd is denoted
by Kd. When the dimension of the space is clear from the context we may suppress
the subscript d for these sets. The notation Idd×d denotes the d×d identity matrix.
The vertex set of all graphs and simplicial complexes is assumed to be [n], unless
stated otherwise. We also use Bachmann-Landau asymptotic notation: we say

f(n) = O(g(n)) iff lim supn→∞
|f(n)|
g(n) <∞, f(n) = Ω(g(n)) iff lim infn→∞

f(n)
g(n) > 0,

and f(n) = ω(g(n)) iff limn→∞
f(n)
g(n) = ∞. Given two real random variables X,Y

we write dKS (X,Y ) := supx∈R |P(X ≤ x)− P(Y ≤ x)| for the Kolmogorov-Smirnov
distance between their distributions. Moreover, we use the following bounds on
binomial coefficients (n

k

)k
≤
(
n

k

)
≤ nk

k!
<
(ne
k

)k
. (1)

2. Topological preliminaries. For completeness, we include some topological
preliminaries, see also [51].

2.1. First definitions. Firstly, we recall the notion of a simplicial complex [50,
Ch 3.1]; these are special kinds of hypergraphs that provide higher-dimensional
generalisations of a graph and constitute data structures of interest across algebraic,
applied, and computational topology.

A simplicial complex L on a vertex set [n] is a set of nonempty subsets of [n] (i.e.
∅ /∈ L ⊆ P([n])) such that the following properties are satisfied:

1. for each v ∈ [n] the singleton {v} lies in L, and
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2. if t ∈ L and s ⊆ t then s ∈ L.
The dimension of a simplicial complex L is dim(L) := maxs∈L |s|−1. Elements

of a simplicial complex are called simplices. If s is a simplex, then its dimension
is dim(s) := |s| − 1. A simplex of dimension k can be called a k-simplex. The
k-skeleton of a simplicial complex L is the subcomplex L(k) = { s ∈ L | |s| ≤ k + 1 }
of dimension k as long as k < dim(L). Note that the notion of a one-dimensional
simplicial complex is equivalent to the notion of a graph, with the vertex set [n]
and edges as one-dimensional simplices.

Given k1, k2 ∈ N and two simplicial complexes L1 on [k1] and L2 on [k2], a
simplicial map from L1 to L2 is a function f : [k1] → [k2] such that for any s ∈ L1

we have that f(s) ∈ L2. If f is bijective, it is called a simplicial isomorphism.
For any finite simplicial complex L on [n] we denote the set of simplicial complexes
on [n] that are isomorphic to L by [L]. Note that [L] can be smaller than the number
of automorphisms on L. For example, if L = {{1}, {2}, {1, 2}} is just an edge then
[L] = {L}. Even though the edge has two automorphisms (the identity and the one
swapping the two vertices), both automorphisms give rise to the same simplicial
complex. Indeed the swapping automorphism gives {{2}, {1}, {2, 1}}, which is the
same set as L itself.

Assuming k1 ≤ k2 it is also meaningful to count the number of copies of L1 in
L2, which we define as the number of order-preserving injective simplicial maps
from any element of [L1] to L2. We call this the subcomplex count of L1 in L2.
Subcomplex counts are investigated in Section 5 and concrete examples are given
there.

Definition 2.1. The k-simplex is equal to the set P([k + 1]) \ {∅}, seen as a
simplicial complex. That is, the vertices are {1, 2, . . . , k + 1} and any subset of
the vertex set is a simplex. The hollow k-simplex is equal to the set P([k + 1]) \
{[k + 1],∅} seen as a simplicial complex. That is, a hollow k-simplex is the (k−1)-
skeleton of the k-simplex and so its dimension is k − 1.

Definition 2.2. Let [n] be the vertex set. Let p = (p1, p2, . . . , pn−1) ∈ [0, 1]n−1

be a finite sequence of parameters. We first build a random hypergraph H where
any subset s ⊆ [n] of size k is included independently of any other subsets with
probability pk−1. The multi-parameter random simplicial complex X(n,p)
is the largest simplicial complex contained in H. That is, for any subset s ⊆ [n],
we have s ∈ X(n,p) iff s ∈ H and for any t ⊆ s we have t ∈ H.

The model X(n,p) is a general random simplicial complex model, defined by
Kahle in [31] and extensively studied from a topological rather than combinatorial
point of view by, amongst others, Costa and Farber in [15, 16]; it includes many
families of random simplicial complexes as special cases. For example, if p =
(p, 0, . . . , 0), then we recover the G(n, p) random graph. If we set p = (p, 1, . . . , 1),
then we recover the random clique complex of G(n, p), that has been extensively
studied, for example, in [28, 30, 32]. If we set p = (1, . . . 1, pk, 0, . . . , 0), then we
recover the k-dimensional Linial-Meshulam random complex that has also been
extensively studied before [37, 38]. For a survey of stochastic topology, see [11, 12].

2.2. Discrete Morse theory. A partial matching on a simplicial complex L is
a collection

V = { (s, t) | s ⊆ t ∈ L and |t| − |s| = 1 }
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Figure 1. Lexicographical matching given by the red arrows.
Critical simplices are highlighted in blue.

such that every simplex appears in at most one pair of V . A V-path (of length
k ≥ 1) is a sequence of distinct simplices of L of the following form:

(s1 ⊆ t1 ⊇ s2 ⊆ t2 ⊇ . . . ⊇ sk ⊆ tk)

such that (si, ti) ∈ V and |ti| − |si+1| = 1 for all i ∈ [k]. A V -path is called a
gradient path if k = 1 or s1 is not a subset of tk. A partial matching V on L is
called acyclic iff every V -path is a gradient path. Given a partial matching V on
L, we say that a simplex t ∈ L is critical iff t does not appear in any pair of V .

For a one-dimensional simplicial complex, viewed as a graph, a partial matching
V is comprised of elements (v; {u, v}) with v a vertex and {u, v} an edge. A V−path
is then a sequence of distinct vertices and edges

v1, {v1, v2}, v2, {v2, v3}, . . . , vk, {vk, vk+1}
where each consecutive pair of the form (vi, {vi, vi+1}) is constrained to lie in V .

We refer the interested reader to [21] for an introduction to discrete Morse theory
and to [41] for an illustration of its use for simplifying computations of persistent
homology. This work addresses how much computational improvement one should
expect to gain on a random input when using a specific type of acyclic partial
matching, defined below.

Definition 2.3. Let L be a simplicial complex and assume that the vertices are
ordered by [n] = {1, . . . , n}. For each simplex s ∈ L define

IL(s) := {j ∈ [n] | j < min(s) and s ∪ {j} ∈ L}.
Now consider the pairings

s↔ s ∪ {i},
where i = min IL(s) is the smallest element in the set IL(s), defined whenever
IL(s) ̸= ∅. We call this the lexicographical matching.

Due to the min IL(s) construction in the lexicographical matching, the indices are
decreasing along any path and hence the simplices form a gradient path, showing
that the lexicographical matching is indeed an acyclic partial matching on L.

Example 2.4. Consider the simplicial complex L depicted in Figure 1. The complex
has 5 vertices, 6 edges and one two-dimensional simplex that is shaded in grey. The
red arrows show the lexicographical matching on this simplicial complex: there is
an arrow from a simplex s to t iff the pair (s, t) is part of the matching. More
explicitly, the lexicographical matching on L is

V = {({2}, {1, 2}), ({3}, {2, 3}), ({4}, {1, 4}), ({5}, {3, 5}), ({4, 5}, {3, 4, 5})}.
Note that {3, 4} cannot be matched because the set IL({3, 4}) is empty. Also, in
any lexicographical matching {1} is always critical as there are no vertices with a
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smaller label and hence the set IL({1}) is empty. So under this matching there are
two critical simplices: {1} and {3, 4}, highlighted in blue in the figure. Hence, if
we were computing the homology of this complex, considering only two simplices
would be sufficient instead of all 12 which are in L – a significant reduction in
computational effort.

3. Maximum likelihood estimation and goodness-of-fit.

3.1. Maximum likelihood estimation. Recall the random simplicial complex
model X(n,p) as given in Definition 2.2. Here we study a maximum likelihood
estimator under this random model assuming that there is some known d such that
pi ∈ (0, 1) if i ≤ d and pi = 0 if i > d. Therefore, we have d parameters in this
model to estimate, namely, (p1, p2, . . . , pd) ∈ (0, 1)d. With slight abuse of notation,
we write p = (p1, p2, . . . , pd). Let L be a fixed simplicial complex on the vertex set
[n], which we consider to be our observed data. Recall Definition 2.1, detailing the
notions of a simplex and a hollow simplex. For each i ∈ [n], let si be the number of
i-simplices and hi be the number of hollow i-simplices. Note that si ≤ hi because
every i-simplex contains a hollow i-simplex. Also note that h1 =

(
n
2

)
is just the

number of pairs of vertices and hence it is a deterministic value.
As noted in [12, 54], for any i ∈ [d] a sufficient statistic for pi is the pair (si, hi).

We therefore can estimate pi only for i ≤ I(L) := max { i ∈ [d] | hi ̸= 0 }. Note that
if hi = 0, then hj = 0 and sj = 0 for all j ≥ i and if hi ̸= 0, then hj ̸= 0 for
all j ≤ i. In the dense regime, if d is not too large, we can prove that I(L) = d
with high probability (see Lemma 3.1). Assuming p ∈ (0, 1)d, the log-likelihood is
well-defined and equal to

l(p;L) =
I(L)∑
i=1

{si ln(pi) + (hi − si) ln(1− pi)} .

For any i ∈ [I(L)] we have ∂l
∂pi

= si
pi

− hi−si
1−pi . Solving the partials equal to zero

and considering the boundary cases when si = 0 or si = hi, we get p̂i =
si
hi

for

i ≤ I(L). If i > I(L), then si = 0 and so the log-likelihood does not depend on pi.
In this case p̂i is not unique; we choose to set p̂i = 0. Summarising, we have

p̂i = 1 (hi ̸= 0, si ̸= hi)
si
hi
. (2)

For any i ̸= j ∈ [I(L)], if 0 ̸= hi < si we have

∂2l

∂pi∂pj
(p̂) = 0;

∂2l

∂p2i
(p̂) = −h2i

(
1

si
+

1

hi − si

)
< 0.

For i ̸= j ∈ [I(L) + 1, d] the corresponding second partial derivatives all vanish;
the I(L) × I(L) Hessian is negative-definite, and hence p̂ indeed is a local (and
global) maximum of the likelihood. Classical theorems from the theory of MLE do
not apply here because the simplex indicators are neither independent nor identi-
cally distributed. Hence we derive asymptotic results for the MLE in this paper.

For each i ∈ [d] let Hi be the random variable counting the number of hollow i-
simplices and let Si be the random variable counting the number of solid i-simplices.
Let hi be an integer such that 1 ≤ hi ≤

(
n
i+1

)
. Then by definition of X(n,p) for

any i ∈ [d] we have that Si|{Hi = hi} ∼ Binomial(hi, pi). Using this property of
Si being conditionally binomial we can prove that the estimator is asymptotically



10 TADAS TEMČINAS, VIDIT NANDA AND GESINE REINERT

unbiased and consistent. We start the investigation by proving concentration of Hi

for i ∈ [d] and hence that I(L) = d with high probability.

For the rest of the section we write p∗ := min { pj | j ∈ [d] } and Pi =
∏i−1
j=1 p

(i+1
j+1)
j ;

then Pi is the probability of a hollow i-simplex to be present in X(n,p).

Lemma 3.1. Fix i ∈ [2, d] with d ≤ log2 lnn + log2 log2 lnn − log2(− ln p∗) and
a ≥ 0, Then

P(Hi = 0) ≤ exp

(
−
(
n
i+1

)
(p∗)2

i−i−1

4(i2 − 1)n

)
;

P(|Hi − µi| ≥ a) ≤ 2 exp

(
− 2a2

(i+ 1)i+2
(
n
i−1

)(
n
i+1

)) .
In particular, in this regime, P(Hi = 0) ≤ exp

(
−nlog2 log2 lnn(1+o(1))

)
and

limn→∞ P(I(X(n,p)) = d) = 1 as long as p∗ is a positive constant. Here o(1)
relates to the limit n→ ∞.

Proof. Fix i ∈ [2, d] and ϵ > 0. For each s ∈
(
[n]
i+1

)
we define

Xs = 1 (s spans a hollow i-simplex). Then

Hi =
∑

s∈( [n]
i+1)

Xs and hence µi := E(Hi) =

(
n

i+ 1

)
Pi.

Write ∆i =
∑
s ̸=t∈( [n]

i+1)
1 (|s ∩ t| ≥ 2)E {XsXt}. As long as ∆i ≥ µi, we can

bound the denominator in Janson’s inequality [23, Theorem 1] by µi + ∆i ≤ 2∆i.
Hence we get

P(Hi = 0) ≤ exp

(
− µ2

i

4∆i

)

≤ exp

−
(
n
i+1

)2
P 2
i

4
∑i
m=2

(
n
i+1

)(
i+1
m

)(
n

i+1−m
)
P 2
i

∏m−1
j=1 p

−( m
j+1)

j


= exp

−
(
n
i+1

)
4
∑i
m=2

(
i+1
m

)(
n

i+1−m
)∏m−1

j=1 p
−( m

j+1)
j


≤ exp

(
−

(
n
i+1

)
4
∑i
m=2(p

∗)−2m+1+m
(
i+1
m

)(
n

i+1−m
)).

To bound this expression we note that

i∑
m=2

(p∗)−2m+1+m

(
i+ 1

m

)(
n

i+ 1−m

)

≤ (i− 1) max
2≤m≤i

(p∗)−2m+1+m

(
i+ 1

m

)(
n

i+ 1−m

)
= (i− 1)(p∗)−2i+1+in(i+ 1).
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For fixed p∗ this expression tends to 0 for i = log2 lnn+ log2 log2 lnn+ c. For such
i we get the bound

P(Hi = 0) ≤ exp

(
−
(
n
i+1

)
(p∗)2

i−i−1

4(i2 − 1)n

)
.

As long as c ≤ − log2(− ln p∗), the bound is at most exp
(
−nlog2 log2 lnn(1+o(1))

)
.

The first inequality follows by recalling that Hk = 0 implies Hj = 0 for all j ≥ k.
For concentration, we apply the large deviation result Corollary 2.2 in [25]. Fix

a particular s ∈
(
[n]
i+1

)
. Note that Xs and Xt are dependent iff |s ∩ t| ≥ 2. So the

number of variables in the sum of Hi that Xs depends on is
∑i+1
m=2

(
i+1
m

)(
n−i−1
i+1−m

)
≤

(i + 1)i+1(i − 1)
(
n
i−1

)
≤ (i + 1)i+2

(
n
i−1

)
. Now applying the large deviation result

gives the second inequality.

Theorem 3.2. Let i ∈ [2, d] with d ≤ log2 lnn + log2 log2 lnn − log2(− ln p∗) and
ϵ > 0. Then

1.

pi

(
1− exp

(
−nlog2 log2 lnn(1+o(1))

))
≤ E(p̂i) ≤ pi;

2.

Var(p̂i) ≤ 2pi(1− pi)

(
(i+ 1)i+1n−1+ϵ(p∗)−2i+1+i+3 + exp

(
−2n2ϵ(i− 1)i−1

(i+ 1)e2i

))
+ p2i exp

(
−nlog2 log2 lnn(1+o(1))

)
.

In particular, for all i ∈ [2, d], limn→∞ E(p̂i) = pi, and for i < log2 lnn+log2(1−
ϵ)− log2(− ln(p∗)) we have limn→∞ Var(p̂i) = 0 as long as p∗ is a positive constant.

Proof. To prove the first part of the theorem we use the law of total expectation
and fact that Si is conditionally binomial, to obtain

E(p̂i) =
( n
i+1)∑
hi=1

hipi
hi

P(Hi = hi) = piP(Hi ̸= 0).

Applying the bounds from Lemma 3.1 the result follows. Turning to the variance
of the estimator,

Var(p̂i) = E(p̂2i )− E(p̂i)2 =

( n
i+1)∑
hi=1

(
pi(1− pi)

hi
+ p2i

)
P(Hi = hi)− p2iP(Hi ̸= 0)2

=

( n
i+1)∑
hi=1

pi(1− pi)

hi
P(Hi = hi) + p2iP(Hi ̸= 0)(1− P(Hi ̸= 0)).

For the second term we can immediately use the first inequality in Lemma 3.1.
For the first term, we use the large deviation inequality from Lemma 3.1. Fix
ϵ ∈ (0, 1) and write a = ni+ϵ. Then we have

( n
i+1)∑
hi=1

pi(1− pi)

hi
P(Hi = hi)
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=

µi−a∑
hi=1

pi(1− pi)

hi
P(Hi = hi) +

µi+a−1∑
hi=µi−a+1

pi(1− pi)

hi
P(Hi = hi)

+

( n
i+1)∑

hi=µi+a

pi(1− pi)

hi
P(Hi = hi)

≤ pi(1− pi)

µi−a∑
hi=1

P(Hi = hi) +

( n
i+1)∑

hi=µi+a

P(Hi = hi)

+

µi+a−1∑
hi=µi−a+1

pi(1− pi)

µi − a

≤ 2pi(1− pi) exp

(
−2n2ϵ(i− 1)i−1

(i+ 1)e2i

)
+ 2ni+ϵ

pi(1− pi)

µi − 1
2µi

.

To finish the proof note that µ−1
i ni+ϵ ≤ (i+ 1)i+1n−1+ϵ(p∗)−2i+1+i+3.

Remark 3.3. Note that if i = 1 then p̂i is just the MLE of the parameter p in a
binomial distribution, which is very well studied and known to be unbiased and
consistent. Also, [20, Theorem 3.1] shows that there is some constant c such that
for i ≥ log2 lnn+ log2 log2 lnn− c we have no i-simplices with high probability as
long as the parameter p ∈ (0, 1)n−1 does not depend on n. In light of this fact
we can see that in Theorem 3.2 the upper bound on i is optimal up to an additive
constant in the case of the expectation. In the case of the variance, the bound is off
by a factor of log2 log2 lnn, which is likely because the large deviation inequality is
sub-optimal for large i.

Lemma 3.4. For any 1 ≤ i < j ≤ d ≤ log2 lnn + log2 log2 lnn − log2(− ln p∗) we
have

− pj

(
n

i+ 1

) 1
2
(

n

j + 1

) 1
2

exp
(
−nlog2 log2 lnn(1+o(1))

)

≤ Cov(Wi,Wj) ≤ pipj

(
n

i+ 1

) 1
2
(

n

j + 1

) 1
2

exp
(
−nlog2 log2 lnn(1+o(1))

)
.

Moreover, we have limn→∞ Cov(Wi,Wj) = 0 as long as p∗ is a positive constant.

Proof. We will use a shorthand Fn =
(
n
i+1

) 1
2
(
n
j+1

) 1
2 . Then

Cov(Wi,Wj)

= FnCov(p̂j , p̂j)

= Fn

(
E
{
Si
Hi

Sj
Hj

1 (HiHj ̸= 0)

}
− E

{
Si
Hi

1 (Hi ̸= 0)

}
E
{
Sj
Hj

1 (Hj ̸= 0)

})
.

Assume i < j and let us focus on E
{
Si

Hi

Sj

Hj
1 (HiHj ̸= 0)

}
. The main idea is to

condition on the joint distribution of (S1, H2, S2, . . . ,Hj−1, Sj−1, Hj). Under this
conditioning, Sj and Hj are deterministic so we can take it out of the conditional
expectation and then use the fact that Sj |Hj ∼ Binomial(Hj , pj). The details are
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as follows:

E
{
Si
Hi

Sj
Hj

1 (HiHj ̸= 0)

}
= E

{
E
(
Si
Hi

Sj
Hj

1 (HiHj ̸= 0)
∣∣∣(S1, H2, S2, . . . ,Hj−1, Sj−1, Hj)

)}
= E

{
Si
Hi

1

Hj
1 (HiHj ̸= 0)E

(
Sj

∣∣∣(S1, H2, S2, . . . ,Hj−1, Sj−1, Hj)
)}

= E
{
Si
Hi

1

Hj
1 (HiHj ̸= 0)E

(
Sj

∣∣∣Hj

)}
= E

{
Si
Hi

1

Hj
1 (HiHj ̸= 0) pjHj

}
= pjE

{
Si
Hi

1 (Hi ̸= 0)1 (Hj ̸= 0)

}
.

Now we can bound this quantity from above and below. Let us start with an
upper bound:

pjE
{
Si
Hi

1 (Hi ̸= 0)1 (Hj ̸= 0)

}
≤ pjE

{
Si
Hi

1 (Hi ̸= 0)

}
= pipjP(Hi ̸= 0).

For the lower bound, we use the following argument:

pjE
{
Si
Hi

1 (Hi ̸= 0)1 (Hj ̸= 0)

}
= pjE

{
Si
Hi

1 (Hi ̸= 0) (1− 1 (Hj = 0))

}
≥ pipjP(Hi ̸= 0)− pjE

{
Si
Hi

1 (Hi ̸= 0 ∩Hj = 0)

}
≥ pipjP(Hi ̸= 0)− pjP(Hj = 0).

Here the last inequality follows from the fact that Si ≤ Hi.

Therefore, we get a bound on the covariance:

P(Hi ̸= 0)− 1

pi
P(Hj = 0)− P(Hi ̸= 0)P(Hj ̸= 0)

≤ Cov(Wi,Wj)

Fnpipj

≤ P(Hi ̸= 0)− P(Hi ̸= 0)P(Hj ̸= 0).

The bound can be rewritten as:

P(Hi ̸= 0)P(Hj = 0)− 1

pi
P(Hj = 0) ≤ Cov(Wi,Wj)

Fnpipj
≤ P(Hi ̸= 0)P(Hj = 0).

In fact, the following simpler bound suffices to prove the assertion:

− 1

pi
P(Hj = 0) ≤ Cov(Wi,Wj)

Fnpipj
≤ P(Hj = 0).
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Since 1 ≤ i < j, we have j ≥ 2 and so the following bound from Lemma 3.1 give
us the result

P(Hj = 0) ≤ exp
(
−nlog2 log2 lnn(1+o(1))

)
.

Theorem 3.5. Let i ∈ [2, d] with d ≤ log2 lnn+log2 log2 lnn− log2(− ln p∗). Also,

let Wi =
√(

n
i+1

)
Pi(p̂i − pi) and Zi ∼ N (0, pi(1− pi)). Then

dKS (Wi, Zi) ≤
√
10 + 3

3
√
π

(pi(1− pi)Pi)
− 1

2

(
n

i+ 1

)− 1
2

+ 2(n− i)−2P−1
i (i+ 1)

i+6
2 ln

1
2

(
n

i+ 1

)
+ 2

(
n

i+ 1

)−2

.

Remark 3.6. Theorem 3.5 gives in particular, for i < log2 lnn+1−log2(− ln(p∗)) we
have limn→∞ dKS (Wi, Zi) = 0 as long as p∗ is a positive constant. This assumption
can be relaxed; it suffices that Pi and pj , j ≤ d depend on n in such a way that the
expression in Theorem 3.5 tends to 0 with n→ ∞ while ensuring that pi(1− pi) is
bounded away from 0.

Proof. Let Z ∼ N (0, 1). Recall that Hi is the number of hollow i-simplices in
X(n,p). Define the interval Ii := (E {Hi} − a,E {Hi} + a), where a > 0 is to
be chosen later. Let h be an indicator function of an interval (−∞, b) for some

b ∈ R. Set c(x, i) = x
1
2

(
n
i+1

)− 1
2P

− 1
2

i (pi(1 − pi))
− 1

2 . Recall that given two real

random variables X,Y we write dKS (X,Y ) := supx∈R |P(X ≤ x)− P(Y ≤ x)| for
the Kolmogorov-Smirnov distance.

To prove the theorem we condition on Hi. We use large deviation bounds Lemma
3.1 and inside the high probability region use a classic CLT comparing a binomial
to a normal. For comparing a binomial variable to a normal we use [49, Theorem
1] and for comparing a normal to a normal we use [36, Section 6.2].

E {|h(Wi)− h(Zi)|}

=
∑
x∈Ii

E {|h(Wi)− h(Zi)| |Hi = x}P(Hi = x)

+ E {|h(Wi)− h(Zi)| |Hi /∈ Ii}P(Hi /∈ Ii)

≤
∑
x∈Ii

dKS (Wi|Hi = x, Zi)P(Hi = x) + 2 exp

(
− 2a2

(i+ 1)i+2
(
n
i−1

)(
n
i+1

))

≤
∑
x∈Ii

dKS (c(x, i)Wi|Hi = x, c(x, i)Zi)P(Hi = x) + 2 exp

(
− 2a2

(i+ 1)i+2
(
n
i−1

)(
n
i+1

))

≤
∑
x∈Ii

(dKS (c(x, i)Wi|Hi = x, Z) + dKS (c(x, i)Zi, Z))P(Hi = x)

+ 2 exp

(
− 2a2

(i+ 1)i+2
(
n
i−1

)(
n
i+1

))
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Note that c(x, i)Wi|Hi = x is a binomial random variable with n = x and p = pi,
which has been centered and scaled to have unit variance. Therefore, we can apply a
classic CLT to bound the Kolmogorov-Smirnov distance between a standard normal
and a centered and scaled binomial [49, Theorem 1]. This gives the bound∑

x∈Ii

dKS (c(x, i)Wi|Hi = x, Z)P(Hi = x)

≤
∑
x∈Ii

√
10 + 3

6
√
2π

· p
2
i + (1− pi)

2√
xpi(1− pi)

P(Hi = x)

≤
√
10 + 3

6
√
2π

· p2i + (1− pi)
2√

(E {Hi} − a)pi(1− pi)
P(Hi ∈ Ii).

Now to compare two normal variables, namely, c(x, i)Zi and Z, we note that
Var(c(x, i)Zi) = x

E{Hi} and Var(Z) = 1, and we use [36, Section 6.2] (with f1 =

f2 = 1) to obtain∑
x∈Ii

dKS (c(x, i)Zi, Z)P(Hi = x)

≤
∑
x∈Ii

∣∣∣∣ x

E {Hi}
− 1

∣∣∣∣
√

E {Hi}
x

P(Hi = x)

≤ max

{∣∣∣∣E {Hi}+ a

E {Hi}
− 1

∣∣∣∣ , ∣∣∣∣E {Hi} − a

E {Hi}
− 1

∣∣∣∣}
√

E {Hi}
E {Hi} − a

P(Hi ∈ Ii)

≤ a

E {Hi} − a
.

Putting everything together, we get

E {|h(Wi)− h(Zi)|}

≤
√
10 + 3

6
√
π

p2i + (1− pi)
2√

E {Hi} pi(1− pi)
+

a

E {Hi} − a
+ 2 exp

(
− 2a2

(i+ 1)i+2
(
n
i−1

)(
n
i+1

)) .
Now for a bound in Kolmogorov distance we take the supremum over all half-

open interval indicator functions h and recall that E {Hi} =
(
n
i+1

)
Pi. Picking a =((

n
i+1

)(
n
i−1

)
(i+ 1)i+2 ln

(
n
i+1

)) 1
2

to approximately balance the last two summands

gives the assertion.

3.2. A goodness of fit test. Theorem 6.6 provides a bound on the normal approx-
imation error of critical simplex counts with respect to the lexicographical matching.
In network analysis goodness of fit tests based on asymptotic distributions of random
graph statistics are available, see for example [35, 44]. Inspired by this approach,
we develop a goodness of fit test based on the asymptotic distribution of the critical
simplex counts. It is known that in certain geometric random simplicial complexes
the lexicographical matching behaves differently compared to the X(n,p) model,
see [29, proof of Theorem 5.1]. With this in mind, we investigate if the statistic can
distinguish between geometric models and X(n,p).
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The starting point for the testing procedure is an observed simplicial complex
L. The null hypothesis is that the observed data is a sample from the model
family X(n,p), which is tested against the general alternative in which the model
family is not specified. For this test let p̂0 be the observed value of the MLE
under the null hypothesis, given in (2). For T = (T1, . . . , Tn) the vector of critical
simplex counts in X(n,p), we calculate the standardised statistics Wi = W (Ti) =

Var(Ti)
− 1

2 (Ti − E {Ti}) for i ∈ [n]. Theorem 1.2 combined with Lemma 3.4 give
that W = (W1, . . . ,Wn) ≈ MVN(0,Σ), where Σ is the limiting, diagonal covariance
matrix of W . Hence, in the X(n,p) model, WTΣ−1W is approximately chi-square
distributed with n degrees of freedom. Based on this asymptotic result, as a proof
of concept we propose and empirically study the following simple testing procedure
that is described in Algorithm 1:

1. We observe a simplicial complex L and compute the corresponding value p̂0

of the estimator p̂ from (2).
2. We compute the observed value t = (t1, t2, . . . , tn) of the critical simplex

counts T = (T1, T2, . . . , Tn).
3. Based on p̂0 we estimate E {Ti} and Var(Ti) by replacing p by p̂0 in the

explicit formulas. We denote these estimators Ê {Ti} and V̂ar(Ti).

4. We calculate w = (w1, w2, . . . , wn) where wi = V̂ar(Ti)
− 1

2
(ti − Ê {Ti}) for all

i ∈ [n].
5. We reject the null at approximate significance level α ∈ (0, 1) iff wTΣ−1w >
χ2
n(1−α), where χ2

n(p) is the quantile function of the chi-squared distribution
with n degrees of freedom.

Algorithm 1 Goodness-of-fit test

1: procedure PerformTest(L, α, T , Σ) ▷ L is a finite observed
simplicial complex, α ∈ (0, 1) is significance level, T is a test statistic, Σ is the
limiting covariance of a centered and normalised version of T

2: p̂0 := ComputeMle(L) ▷ Computes the observed value p̂0 of the MLE p̂
3: (t1, t2, . . . , tk) := ComputeStatistic(L, T ) ▷ Computes the observed

value of a chosen T
4: for all i ∈ [k] do

5: Ê {Ti} := EstimateMean(p̂0) ▷ Estimates the mean by replacing p
with p̂0

6: V̂ar(Ti) := EstimateVariance(p̂0) ▷ Estimates the variance by
replacing p with p̂0

7: wi := V̂ar(Ti)
− 1

2
(ti − Ê {Ti}) ▷ Normalises the statistic

8: end for
9: w := (w1, w2, . . . , wk)

10: if wTΣ−1w > χ2
k(1− α) then ▷ χ2

k(p) is the quantile function of the χ2
k

distribution
11: return False ▷ The null is rejected
12: else
13: return True ▷ Insufficient evidence to reject the null
14: end if
15: end procedure
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Remark 3.7. This testing procedure can be improved in the following ways. First,
it ignores the parameter estimation error, second, it ignores the estimation error
of the mean and variances, and third, it ignores the normal approximation error.
By using Theorem 3.5, one could account for the parameter estimation error. It is
possible to account for estimation error when estimating the mean and the variance
of the test statistic as well. Moreover, Theorem 6.6 gives explicit bounds on the
quality of the normal approximation and hence it is also possible to account for this
error. These improvements are outside the scope of this paper and are deferred to
future work.

3.2.1. Empirical simulation study. Here we empirically study the goodness of fit test
to distinguish between X(n,p) and a random geometric simplicial complex model,
where geometry is present only in a particular dimension. We start by defining a
soft geometric random simplicial complex model.

Definition 3.8. Let Xn be a set of n points that are i.i.d. in the unit d-cube
[0, 1]d ⊆ Rd. For i ∈ [n − 1] let ϕi : ([0, 1]d)i+1 → [0, 1] be a symmetric func-
tion. We inductively define a soft random geometric simplicial complex
X(Xn, ϕ1, ϕ2, . . . ϕn−1) as the random simplicial complex with vertex set Xn such
that any i-simplex s = {s1, s2, . . . , si+1} ⊆ Xn is included with probability ϕi(s1, s2,
. . . , si+1) if every proper subset of s is already in the complex. Note that if we take
the functions ϕi to be constant functions that do not depend on the vertex locations
for all i ∈ [n− 1], then we recover the X(n,p) model.

In the simulation study we compare X(n,p) with three geometric models by
defining an interpolation process that starts with X(n,p) and finishes at each of
the models. We are interested to see at which point in the interpolation there is
enough geometry in the model for the statistical test to pick it up. We use the
following three models:

1. Let X150 be a set of 150 points that are i.i.d. in the unit 7-cube [0, 1]7 ⊆
R7. Given four points x1, x2, x3, x4 ∈ [0, 1]7 define A(x1, x2, x3, x4) to be
the volume of the tetrahedron defined by the four points. The model is
X(X150, ϕ1, ϕ2, . . . ϕ149) where ϕ1(x1, x2) = 0.5, ϕ2(x1, x2, x3) = 0.5, ϕ3(x1, x2,
x3, x4) = 1 (A(x1, x2, x3, x4) ≤ 0.09) and ϕi(x1, x2, . . . , xi+1) = 0 for all i ̸=
1, 2, 3. This is just a 3-dimensional X(n,p) model with the exception that
only tetrahedra of sufficiently small volume appear. We later refer to this
model as the tetrahedron model.

2. Let X75 be a set of 75 points that are i.i.d. in the unit 3-cube [0, 1]3 ⊆ R3.
Given three points x1, x2, x3 ∈ [0, 1]3 define A(x1, x2, x3) to be the area of
the triangle defined by the three points. The model is X(X75, ϕ1, ϕ2, . . . ϕ74)
where ϕ1(x1, x2) = 0.5, ϕ2(x1, x2, x3) = 1 (A(x1, x2, x3) ≤ 0.09) as well as
ϕi(x1, x2, . . . , xi+1) = 0 for all i ̸= 1, 2. This is just a 2-dimensional X(n,p)
model with the exception that only triangles of sufficiently small area appear.
We later refer to this model as the triangle model.

3. Let X75 be a set of 75 points that are i.i.d. in the unit 3-cube [0, 1]3 ⊆ R3. The
model here is X(X75, ϕ1, ϕ2, . . . ϕ74) where ϕ1(x1, x2) = 1 (∥x1 − x2∥2 ≤ 0.4924)
and ϕi(x1, x2, . . . , xi+1) = 0.5 for all i ̸= 1. The distance threshold is chosen so
that the edge density of the geometric graph is 0.5. This model is just a clas-
sical geometric random graph with higher simplices filled in combinatorially
just like in X(n,p). We later refer to this model as the edge model.
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In the case of the tetrahedron model, we define a sequence of models interpo-
lating between the geometric model and X(n,p) as follows. Given 0 ≤ ϵ1 ≤ ϵ2
we define the model X(X150, ϕ1, ϕ2, ϕ

(ϵ1,ϵ2)
3 , . . . , ϕ149) where we set ϕ1(x1, x2) = 0.5,

ϕ2(x1, x2, x3) = 0.5, ϕ3(x1, x2, x3, x4) = 1 (A(x1, x2, x3, x4) ≤ ϵ1) + 0.5×
1 (A(x1, x2, x3, x4) ∈ (ϵ1, ϵ2)) and ϕi(x1, x2, . . . , xi+1) = 0 for all i ̸= 1, 2, 3. That
is, we connect any two vertices independently with probability 0.5, and any tri-
angle becomes a 2-simplex, also independently, with probability 0.5. Finally, any
hollow 3-simplex is filled in with probability 1 if its volume is at most ϵ1 and, in-
dependently, with probability 0.5 if its volume is between ϵ1 and ϵ2. No hollow
3-simplex with volume at least ϵ2 gets filled in. Note that if we have ϵ1 = ϵ2 = 0.09,
then we recover the geometric model and if ϵ1 = 0, ϵ2 = 1, then we recover the
X(150, (0.5, 0.5, 0.5, 0)) model. We start the interpolation with ϵ1 = 0 and ϵ2 = 0.5,
which is very close to the X(150, (0.5, 0.5, 0.5, 0)) model. We increase ϵ1 and de-
crease ϵ2 at each step until we reach ϵ1 = ϵ2 = 0.09. We sample 100 simplicial
complexes at each step of the interpolation and report the number of times the null
hypothesis is not rejected at 0.95 significance level.

In the edge model, we define a very similar interpolation to the tetrahedron

model interpolation. Given 0 ≤ ϵ1 ≤ ϵ2 we define X(X75, ϕ1, ϕ
(ϵ1,ϵ2)
2 , . . . ϕ74) where

ϕ1(x1, x2) = 0.5, ϕ2(x1, x2, x3) = 1 (A(x1, x2, x3) ≤ ϵ1) + 0.5 × 1 (A(x1, x2, x3) ∈ (ϵ1, ϵ2))

and ϕi(x1, x2, . . . , xi+1) = 0 for all i ̸= 1, 2. We start the interpolation at ϵ1 = 0
and ϵ2 = 0.66, which is close to the X(75, (0.5, 0.5, 0)) model. We increase ϵ1 and
decrease ϵ2 at each step until we reach ϵ1 = ϵ2 = 0.09. We sample 100 simplicial
complexes at each step of the interpolation and report the number of times the null
hypothesis is not rejected at 0.95 approximate significance level.

Finally, in the edge model we perform an analogous interpolation again. Given
0 ≤ ϵ1 ≤ ϵ2 we define X(X75, ϕ1, ϕ

(ϵ1,ϵ2)
2 , . . . ϕ74) where ϕ1(x1, x2) = 1 (∥x1 − x2∥2 ≤ ϵ1)

+ 0.5 × 1 (∥x1 − x2∥2 ∈ (ϵ1, ϵ2)) as well as ϕi(x1, x2, . . . , xi+1) = 0.5 for all i ̸=
1. We start the interpolation at ϵ1 = 0 and ϵ2 =

√
3, which is exactly the

X(75, (0.5, 0.5, 0.5 . . . , 0.5)) model. We increase ϵ1 and decrease ϵ2 at each step
until we reach ϵ1 = ϵ2 = 0.4924.

For each of these three perturbation models we sample 100 simplicial complexes
at each step of the interpolation and report the number of times the null hypothesis
of an X(n,p) model is not rejected (the number of passes) at 0.95 approximate
significance level. Ideally the number of passes should be 0 when ∆ϵ = 0, corre-
sponding to the purely geometric model, and increase sharply with increasing ∆ϵ,
to 100 when ∆ϵ = 1, corresponding to the X(n,p) model.

We compare goodness of fit tests based on three statistics: triangle counts, cen-
tered triangle counts [33, 13], and the critical simplex counts. ∆ϵ. Because the tri-
angle counts and centered triangle counts only rely on 1-dimensional information,
we expect these statistics to detect the difference only when comparing X(n,p)
to the last model. The results for the tetrahedron, triangle, and edge models are
summarised in Figure 2, 3, and 4, respectively; while the results depend on the par-
ticular values for ϵ1 and ϵ2, for ease of presentation we plot the test results against
∆ϵ := ϵ2 − ϵ1. Table 1, 2, and 3 in Appendix D contain the full set of results for
different ϵ1 and ϵ2. For these tables we start with a regular grid and refine it when
the number of passes of the goodness of fit test based on critical simplex counts
drops below 99.
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Figure 2. Goodness of fit testing results of the tetrahedron model.
The x-axis corresponds to ∆ϵ := ϵ2 − ϵ1.

Figure 3. Goodness of fit testing results of the triangle model.
The x-axis corresponds to ∆ϵ := ϵ2 − ϵ1.

The simulation results. We find that critical simplex counts under the lexicograph-
ical matching can differentiate between the X(n,p) model, which is fully combi-
natorial, and models which depend on geometric information only in a particular
dimension. Even if the model is far from a fully geometric one (like a Vietoris-Rips
or Čech complex of a point process in Rd would be), we can still distinguish it from
the X(n,p) based on the critical simplex counts. In dimension 1 it is relatively easy
to distinguish between a low-dimensional geometric random graph and G(n, p) as it
has been noted by others [13, 39]. In this case, as seen in Figure 4, the centered tri-
angle counts can tolerate more combinatorial noise and it starts detecting geometry
earlier than the number of critical simplices. However, we have noticed based on
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Figure 4. Goodness of fit testing results of the edge model. The
x-axis corresponds to ∆ϵ := ϵ2 − ϵ1.

the test simulations that the centered triangle counts are less stable and affected by
parameter estimation errors. Quite often we would see less than 90% passes in the
cases where the null hypothesis is true at approximate 0.95 significance level. As
an aside, triangles in random geometric graphs behave very differently to triangles
in Bernoulli random graphs, and hence it is no surprise that for small ∆ϵ it is easily
detected that the simplicial complex is not a X(n,p) complex. In contrast, in the
X(n,p) models, the triangle statistic does not depend on higher-order simplices and
hence cannot detect the presence or absence of geometry.

Generalising centered subgraph counts to centered subcomplex counts and inves-
tigating their use in goodness-of-fit tests would be a fruitful research project. An
advantage of critical simplex counts, beyond their performance as a test statistic, is
that when performing persistent homology computations in practice one quite often
tries to reduce the computational cost by applying a lexicographical acyclic partial
matching and so a statistical test based on the number of critical simplices can be
performed at very little added cost.

4. Probabilistic tools. In this section we present the probabilistic tools that we
use to prove the multivariate CLTs for the subcomplex counts and the number of
critical simplices under the lexicographical matching.

4.1. Multivariate CLT for generalised U-statistics. To prove the results in
this section we rely on the theorems from [51], which are briefly introduced in
Appendix B for completeness.

Assume we have k not necessarily independent collections of independent random

elements, where the i-th collection is indexed by
(
[n]
i

)
, the set of all subsets of [n]

of size i. That is, the i-th collection is given by{
ξ(i)α

}
α∈([n]

i )
.
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Here i is any positive integer not bigger than n. For example, one can think of ξ
(i)
α

as an indicator of a hyper-edge α of size i in some random hypergraph model in
which the hyperedges occur independently.

Now we consider the sequence of collections{
ξ(1)α

}
α∈([n]

1 )
,
{
ξ(2)α

}
α∈([n]

2 )
, . . . ,

{
ξ(k)α

}
α∈([n]

k )
.

Assume that the random elements
{
ξ
(i)
α

}
α∈([n]

i )
take values in a measurable set

X(i) for all i ∈ [k] and that there is some measurable set X such that for all i ∈ [k]
we have X(i) ⊆ X.

Remark 4.1. Given a subset s ⊆ [n] of size m ≥ k let
(
s
i

)
be the set of i-subsets

of s. This set of subsets may be lexicographically ordered as follows. Consider
j := {j1, j2, . . . , ji} ⊂ s with j1 < j2 < · · · < ji and similarly j′ = {j′1, . . . , j′i}.
Then, j strictly precedes j′ in the lexicographical ordering if and only if there exists
some ν ∈ {0, 1, . . . , i− 1} such that jµ = j′µ for all µ ≤ ν and jν+1 < j′ν+1. It is
readily checked that this notion of precedence yields a total ordering on the elements
of
(
s
i

)
.

Define a sequence (with respect to the lexicographical ordering on
(
s
i

)
) of the

random elements

X (i)
s = (ξ(i)α )α∈(si)

. (3)

Definition 4.2. Given two integers 1 ≤ k,m ≤ n and a measurable function

f :

k∏
i=1

(X(i))(
m
i ) → R

define the associated generalised U-statistic of order k to be

S(k)
n,m(f) =

∑
s∈([n]

m)

f(X (1)
s ,X (2)

s , . . . ,X (k)
s ).

To clarify this definition, the aim is to be able to input all the variables corre-
sponding to subsets of size i of a base subset s, which we sum over. There are

(
m
i

)
such subsets and since there is a 1-1 correspondence between the subsets and the
random elements, this is how many of those random elements we want to be able to
input into our function. Finally we take a product over all i ∈ [k] because we want
the function to be capable of depending of subsets of different size (up to size k).

Example 4.3. Generalised U -statistics of order k > 2 covers many random variables
of interest in the context of random hypergraphs and random simplicial complexes.
Such statistics have been studied in [26, Section 10.7], [18], [24, Chapter 11.3]. For
example, consider a hypergraph on the vertex set [n] where a hyper-edge α ⊆ n is
present independently of all other hyper-edges with probability p. Here we assume
that |α| ≥ 2 so that the number of vertices is fixed. For any α ⊆ [n], such that

|α| > 1, let ξ
(|α|)
α be the hyper-edge indicator. Then the sequences{

ξ(2)α

}
α∈([n]

2 )
, . . . ,

{
ξ(k)α

}
α∈([n]

k )



22 TADAS TEMČINAS, VIDIT NANDA AND GESINE REINERT

are all i.i.d. Bernoulli(p) but they are of different size. Because all vertices are

present in this hypergraph model, we set ξ
(1)
α = 1 for all α ∈

(
[n]
1

)
, which makes the

first sequence of variables deterministic. Define a function f : R3 ×R3 ×R → R by

f(x1, x2, x3, y1,2, y1,3, y2,3, z1,2,3) = z1,2,3(1− y1,2)(1− y1,3)(1− y2,3).

Then the associated U -statistic of order 3, S
(3)
n,3, is the number of hyper-edges of size

3, which do not contain any hyper-edge of smaller size in this random hypergraph.

Fix positive integers {mi}i∈[d] and let {fi}i∈[d] be a collection of measurable

functions

fi :

k∏
t=1

(X(t))(
mi
t ) → R

and consider the collection of associated generalised U -statistics of order k{
S(k)
n,mi

(fi)
}
i∈[d]

.

For any i ∈ [d] let Ii :=
(
[n]
mi

)
×{i}. For s = (ϕ, i) ∈ Ii define Ys = fi(X (1)

ϕ ,X (2)
ϕ , . . . ,

X (k)
ϕ ) and

Xs = σ−1
i {Ys − µs} ,

where µs = E {Ys} and σi =

√
Var(S

(k)
n,mi(fi)), assuming the relevant expectations

are finite and variances are all non-zero and finite.
Let Wi =

∑
s∈Ii Xs and define a random vector W = (W1,W2, . . . ,Wd) ∈ Rd.

We are interested in the distribution of W . However, to apply Corollary B.3 we
need some assumptions.

Let k′ be the largest non-negative integer such that the random elements{
ξ(1)α

}
α∈([n]

1 )
,
{
ξ(2)α

}
α∈([n]

2 )
, . . . ,

{
ξ(k

′)
α

}
α∈([n]

k′ )

are deterministic. Such k′ always exists and if there are no deterministic variables,
we will say that k′ = 0. It is convenient to have such k′ as a parameter when
studying Linial-Meshulam random simplicial complexes; there we take a (k′ − 1)-
skeleton that is complete and put in higher simplices with different probabilities.
For other classical models like X(n, p) we usually have k′ = 1 since there is no
randomness at the level of vertices.

Assumption 4.4. We use the following two assumptions:

1. For any i ∈ [d] there is αi > 0 such that for all pairs s, u ∈ Ii for which Ys, Yu
are dependent, we have

Cov(Ys, Yu) ≥ αi.

2. There is β ≥ 0 such that for any i, j, l ∈ [d] and any s ∈ Ii, t ∈ Ij , u ∈ Il we
have

E |{Ys − µs} {Yt − µt} {Yu − µu}| ≤ β

as well as

E |{Ys − µs} {Yt − µt}|E |Yu − µu| ≤ β.

The assumptions used here are far from necessary for the normal approximation
to hold. However, they hold in the settings studied in this work and adopting them
makes the bounds quite convenient.
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Theorem 4.5. Let Z ∼ MVN(0, Idd×d) and Σ be the covariance matrix of W ,
where W satisfies Assumption 4.4.

1. Let h ∈ Hd. Then∣∣∣Eh(W )− Eh(Σ
1
2Z)

∣∣∣ ≤ |h|3B4.5n
− k′+1

2 .

2.

sup
A∈K

|P(W ∈ A)− P(Σ
1
2Z ∈ A)| ≤ 2

7
2 3−

3
4 d

3
16B

1
4
4.5n

− k′+1
8 ,

where

B4.5 =
4

3

β(k′ + 1)
3
2 (k

′+1)

((k′ + 1)!)2
(
√
2m)5m+2−3(k′+1)

d∑
(i,j,k)

1
√
αiαjαk

and m = maxi∈[d]mi.

Proof. Fix i, j ∈ [d] and s = (ϕ, i) ∈ Ii. Then using the definition of k′, we see that
one choice of dependency neighbourhoods is Dj(s) = { (ψ, j) ∈ Ij | |ϕ ∩ ψ| ≥ k′ + 1 }.
This follows because in our setup the sequences of random elements ξ

(l)
α are inde-

pendent and so the summands associated to two subsets can only be dependent if
they share a random element. By definition of k′, the smallest such random element
that is not deterministic will be associated to a subset of size k′ + 1. Now we see
that Corollary B.3 applies.

Looking at the size of Dj(s), with (1) we have

|Dj(s)| =
min(mi,mj)∑
m=k′+1

(
mi

m

)(
n−mi

mj −m

)
≤ nmj−1−k′ m

mi+1
i

(k′ + 1)!
. (4)

Let us now calculate a lower bound for the variance using the second part of As-
sumption 4.4, noting that |Ii| =

(
n
mi

)
:

σ2
i = Var(S(k)

n,mi
(fi))

=
∑
s∈Ii

∑
u∈Di(s)

Cov(Ys, Yu)

=
∑
s∈Ii

mi∑
m=k′+1

∑
u∈([n]

mi
)

|u∩s|=m

Cov(Ys, Yu)

≥
mi∑

m=k′+1

(
n

mi

)(
mi

m

)(
n−mi

mi −m

)
αi

=

mi∑
m=k′+1

(
n

2mi −m

)(
2mi −m

mi

)(
mi

m

)
αi

≥
(

n

2mi − 1− k′

)(
2mi − 1− k′

mi

)(
mi

k′ + 1

)
αi

≥ n2mi−1−k′

(2mi − 1− k′)2mi−1−k′
(2mi − 1− k′)mi

mmi
i

mk′+1
i

(k′ + 1)k′+1
αi

=
n2mi−1−k′mk′+1−mi

i

(2mi − 1− k′)mi−1−k′(k′ + 1)k′+1
αi.
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Taking the inequality to the power of − 1
2 we get

σ−1
i ≤ n−mi+

k′+1
2 (2m2

i −mi(1 + k′))
mi
2 − k′+1

2 (k′ + 1)
k′+1

2 α
− 1

2
i .

Using the language of Corollary B.3 and using the last part of Assumption 4.4
we can say that βijl ≤ β(σiσjσl). Moreover we can bound αij in Corollary B.3 by
(4). The bound on the quantity BB.3 from the corollary is

BB.3

=
1

3

∑
(i,j,k)

|Ii|αij
(
3αik
2

+ 2αjk

)
βijk

≤ 1

3

∑
(i,j,k)

nmi

mi!
nmj−1−k′ m

mi+1
i

(k′ + 1)!

(
3

2
nmk−1−k′ m

mi+1
i

(k′ + 1)!
+ 2nmk−1−k′ m

mj+1
j

(k′ + 1)!

)
βijk

≤ 2β(k′ + 1)
3
2 (k

′+1)

3((k′ + 1)!)2

∑
(i,j,k)

nmi+mj+mk−2(k′+1)

mmi+1
i

mi!
√
αiαjαk

(
mmi+1
i +m

mj+1
j

)
n−mi−mj−mk+

3
2 (k

′+1)Mi,j,k

=
2β(k′ + 1)

3
2 (k

′+1)

3((k′ + 1)!)2

∑
(i,j,k)

n−
k′+1

2

mmi+1
i (mmi+1

i +m
mj+1
j )

mi!
√
αiαjαk

Mi,j,k

=

2

3

β(k′ + 1)
3
2 (k

′+1)

((k′ + 1)!)2

∑
(i,j,k)

mmi+1
i (mmi+1

i +m
mj+1
j )

mi!
√
αiαjαk

Mi,j,k

n−
k′+1

2 ,

whereMi,j,k = (2m2
i −mi(1+k

′))
mi
2 − k′+1

2 (2m2
j−mj(1+k

′))
mj
2 − k′+1

2 (2m2
k−mk(1+

k′))
mk
2 − k′+1

2 .

Now setm = maxi∈[d]mi. Then we have (2m2
i−mi(1+k′))

mi
2

− k′+1
2 ≤ (2m2)

m
2
− k′+1

2

and so

BB.3 ≤

4

3

β(k′ + 1)
3
2 (k

′+1)

((k′ + 1)!)2
(
√
2m)5m+2−3(k′+1)

d∑
(i,j,k)

1
√
αiαjαk

n−
k′+1

2 .

5. Subcomplex counts. Let L be a fixed connected simplicial complex on a vertex
set [k + 1]. Let p = (p1, p2, . . . , pn−1) ∈ Rn−1 be a vector where for any i ∈ [n− 1]
we have pi ∈ [0, 1]. Let k′ ∈ N be such that for any i ∈ [k′] we have pi = 1. We are
interested in subcomplex counts of L in X(n,p) as defined in Section 2. This is a
natural generalisation of subgraph counts.

Let us discuss this variable from a probabilistic perspective. Consider the random

hypergraph model from Definition 2.2. For any k ∈ [n−1] and α ∈
(

[n]
k+1

)
let ξ

(k+1)
α ∼

Bernoulli(pk) be the hyperedge indicators in the random hypergraph model. Hence
the random variables in this collection are independent by construction. Then the
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indicator of the k-simplex α in the random simplicial complex model can be written
as a product of the hyperedge indicators:

1 (α ∈ X(n,p)) =

k∏
i=k′+1

∏
β⊆α

|β|=i+1

ξ
(i+1)
β . (5)

Note that by independence we have

E {1 (α ∈ X(n,p))} =

k∏
i=k′+1

p
(k+1
i+1)
i .

Let [L] be the isomorphism class of L in the set of all simplicial complexes on
the vertex set [k + 1]. That is, [L] is the set of all simplicial complexes on the

vertex set [k+1] that are simplicially isomorphic to L. For any s ∈
(

[n]
k+1

)
, we write

s = {s1, s2, . . . , sk+1} such that s1 < s2 < . . . < sk+1. Then we define L[s] to be
the complex on the vertex set s such that any α = {si1 , si2 , . . . sil} ⊆ s is a simplex
in L[s] iff {i1, i2, . . . , il} ∈ L. We are interested in the following variable:

TL :=
∑

s∈( [n]
k+1)

∑
L′∈[L]

k∏
i=k′+1

∏
α∈L′[s]
|α|=i+1

ξ(i+1)
α . (6)

Note that this random variable, which counts the number of copies of L in
X(n,p), can be studied in the framework of generalised U -statistics. In partic-
ular, if the complex L is of dimension d, then TL is a U -statistic of order d+ 1.

To fit the random variable TL in the framework of generalised U -statistics, we
say that the collections of sequences{

ξ(1)α

}
α∈([n]

1 )
,
{
ξ(2)α

}
α∈([n]

2 )
, . . . ,

{
ξ(d+1)
α

}
α∈( [n]

d+1)

are the underlying variables from which we can build simplex indicators as it is

done in (5). That is, we have ξ
(1)
α = 1 for any α ∈

(
[n]
1

)
. For any 1 < k ≤ d + 1

and α ∈
(

[n]
k+1

)
we have ξ

(k+1)
α ∼ Bernoulli(pk). All the sequences are independent

and within each sequence the variables are i.i.d. Recall that X (i+1)
s from (3) is a

sequence of the random elements, corresponding to the (i+1)-subsets of s, ordered

lexicographically as described in Remark 4.1. We write X (i+1)
s [j] for the j-th element

of the sequence. Let o(α) be the position of α ∈
(
s
i+1

)
in this lexicographical

ordering. Now let us define the associated function f :
∏d+1
k=2({0, 1})(

d+1
k ) → R by

f(X (1)
s ,X (2)

s , . . . ,X (d+1)
s ) =

∑
L′∈[L]

d∏
i=k′+1

∏
α∈L′[s]
|α|=i+1

X (i+1)
s [o(α)]. (7)

Now it is easy to see that for TL given in (6),

TL =
∑

s∈( [n]
k+1)

f(X (1)
s ,X (2)

s , . . . ,X (d+1)
s )

and hence the random variable in question is a generalised U -statistic of order d+1.
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5.1. Moments and the limiting covariance. Let ei(L) be the number of i-
simplices in L. Then by independence we have

E {TL} =

(
n

k + 1

)
|[L]|

k∏
i=1

p
ei(L)
i .

Consider, for example, the simplicial complex on four vertices given by

L = {1, 2, 3, 4, {1, 2}, {1, 3}, {2, 3}, {2, 4}, {3, 4}, {1, 2, 3}, {2, 3, 4}}.

This consists of two 2-simplices {1, 2, 3} and {2, 3, 4} which share the edge {2, 3}.
For this simplicial complex, E {TL} = 3

(
n
4

)
p51p

2
2. Here 1 and 4 can be exchanged,

2 and 3 can be exchanged, and there are no further simplicial isomorphisms and
hence |[L]| = 3. The following lemma is used in our limiting covariance calculations.

Lemma 5.1. Let l,m, a be positive integers independent of n ∈ N such that l,m >
a
2 . Also, let N(n) be a sequence of integers such that N(n) = Θ(n). We write N
instead of N(n). Then

lim
n→∞

(
N

l +m− a

)(
l +m− a

l

)(
l

a

)
{(

N

2l − a

)(
2l − a

l

)(
l

a

)(
N

2m− a

)(
2m− a

m

)(
m

a

)}− 1
2

= 1.

Proof.

lim
n→∞

(
N

l +m− a

)(
l +m− a

l

)(
l

a

)
{(

N

2l − a

)(
2l − a

l

)(
l

a

)(
N

2m− a

)(
2m− a

m

)(
m

a

)}− 1
2

= lim
n→∞

N !

(N − (l +m− a))!

1

(l!)
1
2 (m− a)!

(
1

a!(l − a)!

) 1
2

{
N !

(N − (2l − a))!

1

l!(l − a)!

N !

(N − (2m− a))!

1

((m− a)!)2
1

a!

}− 1
2

= lim
n→∞

((N − (2m− a))!(N − (2l − a))!)
1
2

(N − (l +m− a))!
= 1.

Theorem 5.2 shows that, asymptotically, similarly to the subgraph counts in
G(n, p) for a constant p ∈ (0, 1), subcomplex counts are perfectly correlated.

Theorem 5.2. Let L,M be two simplicial complexes of dimension at least k′ + 1
on the vertex sets [l] and [m] respectively. Let σ2

L = Var(TL) and σ2
M = Var(TM).

Then assuming that for all i the parameters pi stay constant, for any fixed m, l ∈ N
we have

lim
n→∞

σ−1
L σ−1

MCov(TL, TM) = 1.
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Proof. Assume w.l.o.g. that m ≤ l. For s ∈
(
[n]
l

)
set the variable

XL
s =

∑
L′∈[L]

k∏
i=k′+1

∏
α∈L′[s]
|α|=i+1

ξ(i+1)
α ,

so that TL =
∑
s∈([n]

l )
XL
s , and analogously XM

u for u ∈
(
[n]
m

)
. Note that XL

s does

not depend on n. If one would like to relate this expression back to the U -statistics
framework, one needs to note that if f is a function that gives us TL as a U -statistic,

then for any s ∈
(
[n]
l

)
we have XL

s = f(X (1)
s ,X (2)

s , . . . ,X (l)
s ).

Note that for any s ∈
(
[n]
l

)
, u ∈

(
[n]
m

)
if |s∩u| < k′+2, then the variables XL

s and

XM
u are independent, since the intersection of the underlying subsets is not large

enough to contain a random element of the form ξ
(i+1)
α for i + 1 ≥ k′ + 2, which

would create dependence. For s of size l, u of size m, with intersection of size k,
ck(l,m) := Cov(XL

s , X
M
u ) does not depend on n. Hence we see that

Cov(TL, TM) =
∑

s∈([n]
l )

m∑
k=k′+2

∑
u∈([n]

m)
|s∩u|=k

Cov(XL
s , X

M
u ) =

∑
s∈([n]

l )

m∑
k=k′+2

∑
u∈([n]

m)
|s∩u|=k

ck(l,m).

The leading term of Cov(TL, TM)2 and of σ2
Lσ

2
M, as polynomials in n, is n2(l+m−(k′+2)).

This follows because the number of pairs s ∈
(
[n]
l

)
, u ∈

(
[n]
m

)
where |s ∩ u| = k is(

n
l

)(
l
k

)(
n−l
m−k

)
=
(

n
l+m−k

)(
l+m−k

l

)(
l
k

)
, which is of the order nl+m−k. As the highest

power of the nominator and the denominator in σ−1
L σ−1

MCov(TL, TM) are the same,
the limit of the ratio is determined by the ratio of the highest order term from the
numerator and the highest order term from the denominator. We write Lk′+1 for
the number of elements of [L] that contain a particularly chosen (k′ + 1)−simplex
and Mk′+1 for the analogous quantity corresponding to M.

We use Lemma 5.1 with N = n and a = k′ + 2 to get:

lim
n→∞

σ−1
L σ−1

MCov(TL, TM)

= lim
n→∞

(
n

l +m− 2− k′

)(
l +m− 2− k′

l

)(
l

k′ + 2

)
Lk′+1Mk′+1

(
p−1
k′+1 − 1

) l−1∏
i=k′+1

p
ei(L)+ei(M)
i


(

n

2l − k′ − 2

)(
2l − k′ − 2

l

)(
l

k′ + 2

)
L2

k′+1

(
p−1
k′+1 − 1

) l−1∏
i=k′+1

p
2ei(L)
i


− 1

2


(

n

2m− k′ − 2

)(
2m− k′ − 2

m

)(
m

k′ + 2

)
M2

k′+1

(
p−1
k′+1 − 1

) m−1∏
i=k′+1

p
2ei(M)
i


− 1

2

= lim
n→∞

Lk′+1Mk′+1

(
p−1
k′+1 − 1

) l−1∏
i=k′+1

p
ei(L)+ei(M)
i

L2
k′+1

(
p−1
k′+1 − 1

) l−1∏
i=k′+1

p
2ei(L)
i

m−1∏
i=k′+1

M2
k′+1

(
p−1
k′+1 − 1

) m−1∏
i=k′+1

p
2ei(M)
i


− 1

2

= 1.
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5.2. Approximation theorem. Let {Li}i∈[d] be a collection of finite connected

simplicial complexes. Let [mi] be the vertex set of Li and let ki ≥ k′ + 1 be its
dimension. Let fi be the function associated to Li as set out in (7). For any i ∈ [d],

let Ii =
(
[n]
mi

)
× {i}. For s = (ϕ, i) ∈ Ii define Ys = fi(X (1)

ϕ ,X (2)
ϕ , . . . ,X (ki+1)

ϕ ) and

Xs = σ−1
i {Ys − µs} ,

where µs = E {Ys} and σi =
√
Var(TLi).

Let Wi =
∑
s∈Ii Xs and define a random vector W = (W1,W2, . . . ,Wd) ∈ Rd.

We are interested in the distribution of W . To apply the approximation Theorem
4.5, we need to show that Assumption 4.4 holds and find the quantities αi and β
from the assumption. The following proposition, the proof of which is trivial and
therefore does not appear here, lets us do that.

Proposition 5.3. Let L be a connected simplicial complex of dimension d ≥ m on

the vertex set [k]. Consider s, u ∈
(
[n]
k

)
such that |s∩ u| ≥ m+1. Then there exists

L′,L′′ ∈ [L] such that L′[s] and L′′[u] share at least one m-dimensional simplex.

Now we can give a normal approximation for subcomplex counts, based on Theo-
rem 4.5. Note that using the definition of k′ in this section means that the variables{

ξ(1)α

}
α∈([n]

1 )
,
{
ξ(2)α

}
α∈([n]

2 )
, . . . ,

{
ξ(k

′+1)
α

}
α∈( [n]

k′+1)

are deterministic and equal to 1, which means that when we apply Theorem 4.5,
we should use k′ + 1 instead of k′.

Corollary 5.4. Let Z ∼ MVN(0, Idd×d) and Σ be the covariance matrix of W .

1. Let h ∈ H. Then∣∣∣Eh(W )− Eh(Σ
1
2Z)

∣∣∣ ≤ |h|3B5.4n
− k′+2

2 .

2. Let m = maxi∈[d]mi. Then

sup
A∈K

|P(W ∈ A)− P(Σ
1
2Z ∈ A)| ≤ 2

7
2 3−

3
4 d

3
16B

1
4
5.4n

− k′+2
8 ,

where

B5.4 =
4

3

(k′ + 2)
3
2 (k

′+2)

((k′ + 2)!)2
(
√
2m)5m+2−3(k′+2)d3γ

and

γ =

(mini∈[d](ki)∏
k=k′+1

p
mini∈[d](ek(Li))

k

)− 1
2
(
1−

maxi∈[d](ki)∏
k=k′+1

p
maxi∈[d](ek(Li))

k

)(
p−1
k′+1 − 1

)− 3
2 .

Before embarking on the proof we would like to point out that Corollary 5.4
allows for the case that pk = n−αk ; in this case we bound

γ ≤

(mini∈[d](ki)∏
k=k′+1

n
1
2αk mini∈[d](ek(Li))

)
n

2
3αk′+1 .

The bounds in Corollary 5.4 then tend to 0 with n → ∞ as long as k′ + 2 ≥∑mini∈[d](ki)

k=k′+1 αkmini∈[d](ek(Li))+ 4
3αk′+1. However when pk decreases to 0 fast, then

instead of a normal approximation, a multivariate Poisson approximation would be
more appropriate. Deriving bounds on such an approximation would be a consid-
erable endeavour; a starting point could be Theorem 10.A in [3].
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Proof. Take s = (ϕ, i), u = (ψ, i) ∈ Ii such that |ϕ ∩ ψ| ≥ k′ + 2. We have

Cov(Ys, Yu) =
∑

L′∈[Li]

∑
L′′∈[Li]

E
k∏

i=k′+1

k∏
j=k′+1

∏
α∈L′[s]
|α|=i+1

∏
β∈L′′[u]
|β|=u+1

ξ(i+1)
α ξ

(j+1)
β

− |[Li]|2
ki∏

j=k′+1

p
2ej(Li)
j .

Using Proposition 5.3, there is at least one pair L′[s],L′′[u] that share at least one

k′+1-simplex. This pair has a contribution of at least p
2ek′+1(Li)−1

k′+1

∏ki
j=k′+2 p

2ej(Li)
j

to the sum. The contribution of any other pair is bounded below by
∏ki
j=k′+1 p

2ej(Li)
j .

Hence,

Cov(Ys, Yu) ≥ p
2ek′+1(Li)−1

k′+1

ki∏
j=k′+2

p
2ej(Li)
j

+ (|[Li]|2 − 1)

ki∏
j=k′+1

p
2ej(Li)
j − |[Li]|2

ki∏
j=k′+1

p
2ej(Li)
j

=

ki∏
j=k′+1

p
2ej(Li)
j

{
p−1
k′+1 − 1

}
> 0.

Hence, we see that αi =
∏ki
j=k′+1 p

2ej(Li)
j

{
p−1
k′+1 − 1

}
, using the notation of

Assumption 4.4.

Recall that ek(Li) is the number of k-simplices in L. For any i, j, l ∈ [d] and any

s ∈ Ii, t ∈ Ij , u ∈ Il we have using Lemma B.4 with µi =
∏ki
k=k′+1 p

ek(Li)
k ,

E |{Ys − µs} {Yt − µt} {Yu − µu}|

≤
{ ki∏
k=k′+1

p
ek(Li)
k

kj∏
k=k′+1

p
ek(Lj)
k

(
1−

ki∏
k=k′+1

p
ek(Li)
k

)(
1−

kj∏
k=k′+1

p
ek(Lj)
k

)} 1
2

≤
mini∈[d](ki)∏
k=k′+1

p
mini∈[d](ek(Li))

k

(
1−

maxi∈[d](ki)∏
k=k′+1

p
maxi∈[d](ek(Li))

k

)
.

So β =
∏mini∈[d](ki)

k=k′+1 p
mini∈[d](ek(Li))

k

(
1−

∏maxi∈[d](ki)

k=k′+1 p
maxi∈[d](ek(Li))

k

)
.

Now we can apply Theorem 4.5 and bound the quantity B4.5:

B4.5 ≤ 4

3

(k′ + 2)
3
2 (k

′+2)

((k′ + 2)!)2
(
√
2m)5m+2−3(k′+2)d3β

{
(p−1
k′+1 − 1)

mini∈[d](ki)∏
k=k′+1

p
mini∈[d](ek(Li))

k

}− 3
2



30 TADAS TEMČINAS, VIDIT NANDA AND GESINE REINERT

≤ 4

3

(k′ + 2)
3
2 (k

′+2)

((k′ + 2)!)2
(
√
2m)5m+2−3(k′+2)d3γ.

Remark 5.5. Note that from Corollary 5.2 it follows that the limiting covariance
matrix ofW , assuming the parameters pi and the number of verticesmi are constant
for all i, is equal to the d×d matrix with every entry equal to 1. Hence the limiting
distribution in that setting is a degenerate multivariate normal with covariance
matrix having rank 1.

Also note that if we pick d, pi ∈ (0, 1) for i > k′, ki for all i as well as ek(Li) for
all k and all i to to be constant, then the bound still goes to zero asymptotically
as long as m = maxi∈[d]mi is of the order o(ln1−ϵ(n)) for a fixed ϵ ∈ (0, 1). By
inspecting the inequalities it is possible to vary the parameter setting further since
the theorem allows the quantities in the inequalities to depend on each other.

6. Critical simplex counts in lexicographical matchings. The following lemma
is an immediate consequence of Definition 2.3; it is Lemma 4.1 from [51].

Lemma 6.1. Let L be a simplicial complex endowed with the lexicographical acyclic
partial matching, and consider a simplex t ∈ L with minimal vertex i ∈ [n]. Then,
t is matched with

1. one of its co-faces if and only if there exists some j < i for which t∪{j} ∈ L;
and,

2. one of its faces if and only if for all j < i we have (t \ {i}) ∪ {j} /∈ L.

Let p = (p1, p2, . . . , pn−1) ∈ [0, 1]n−1 and k′ ∈ N be such that for any i ∈ [k′]
we have pi = 1. Consider the multi-parameter random simplicial complex X(n,p)

as defined in [12, Section 2.2]. For any k ∈ [n − 1] and α ∈
(

[n]
k+1

)
let ξ

(k+1)
α ∼

Bernoulli(pk).

Fix s ∈
(
[n]
k

)
. Define the random variables

X+
s = 1−

min(s)−1∏
i=1

(
1−

k∏
j=k′+1

∏
α⊆s
|α|=j

ξ
(j+1)

α∪{i}

)
and X−

s =

min(s)−1∏
i=1

(
1−

k−1∏
j=k′+1

∏
α⊆s−
|α|=j

ξ
(j+1)

α∪{i}

)
,

where s− := s \ {min(s)}. By Lemma 6.1, we can interpret X+
s as the event that

s matches with its coface, given it is a simplex, and similarly X−
s is the event that

s matches with its face given it is a simplex. The events that the two variables
indicate are disjoint. Hence,

1 (s is a critical simplex) = 1 (s ∈ X(n,p)) (1− (X+
s +X−

s ))

=

k−1∏
j=k′+1

∏
α⊆s

|α|=j+1

ξ(j+1)
α

[
min(s)−1∏
i=1

(
1−

k∏
j=k′+1

∏
β⊆s
|β|=j

ξ
(j+1)
β∪{i}

)

−
min(s)−1∏
i=1

(
1−

k−1∏
j=k′+1

∏
β⊆s−
|β|=j

ξ
(j+1)
β∪{i}

)]
.
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Thus, the random variable of interest is the number of k-simplices that are critical
under the lexicographical matching,

Tk =
∑

s∈([n]
k )

k−1∏
j=k′+1

∏
α⊆s

|α|=j+1

ξ(j+1)
α

[
min(s)−1∏
i=1

(
1−

k∏
j=k′+1

∏
β⊆s
|β|=j

ξ
(j+1)
β∪{i}

)

−
min(s)−1∏
i=1

(
1−

k−1∏
j=k′+1

∏
β⊆s−
|β|=j

ξ
(j+1)
β∪{i}

)]
.

(8)

Note that this random variable does not fit into the framework of generalised U -
statistics as in Definition 4.2 because the summands depend not only on the vari-
ables that are indexed by the subset s. In the complex counts we have min(s) in
the expression, which means that the function depends on the index s itself.

6.1. Moments and the limiting covariance.

Lemma 6.2. For k′ + 1 ≤ k ≤ n− 1 we have(
n− 2

k

) k∏
i=k′+1

p
(k+1
i+1)+(

k
i)

i

(
1−

k+1∏
i=k′+1

p
( k
i−1)
i

)
≤ E {Tk+1}

≤
(
n− 1

k

) k+1∏
i=k′+1

p
(k+1
i+1)−(

k+1
i )

i

(
1−

k∏
i=k′+1

p
( k
i−1)
i

)
.

Proof. We have

E {Tk+1}

=

n−k∑
l=1

∑
s∈( [n]

k+1)
min(s)=l

k∏
i=k′+1

p
(k+1
i+1)
i

[(
1−

k+1∏
i=k′+1

p
(k+1

i )
i

)l−1

−

(
1−

k∏
i=k′+1

p
(ki)
i

)l−1 ]

=

n−k∑
l=1

(
n− l

k

) k∏
i=k′+1

p
(k+1
i+1)
i

[(
1−

k+1∏
i=k′+1

p
(k+1

i )
i

)l−1

−

(
1−

k∏
i=k′+1

p
(ki)
i

)l−1 ]

≤
(
n− 1

k

) k∏
i=k′+1

p
(k+1
i+1)
i

∞∑
l=0

[(
1−

k+1∏
i=k′+1

p
(k+1

i )
i

)l
−

(
1−

k∏
i=k′+1

p
(ki)
i

)l ]

=

(
n− 1

k

) k+1∏
i=k′+1

p
(k+1
i+1)−(

k+1
i )

i

(
1−

k∏
i=k′+1

p
( k
i−1)
i

)
.
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For the lower bound, since all the summands are non-negative, we bound the
expectation by the l = 2 term:

E {Tk+1} ≥
(
n− 2

k

) k∏
i=k′+1

p
(k+1
i+1)
i

[(
1−

k+1∏
i=k′+1

p
(k+1

i )
i

)
−

(
1−

k∏
i=k′+1

p
(ki)
i

)]

=

(
n− 2

k

) k∏
i=k′+1

p
(k+1
i+1)+(

k
i)

i

(
1−

k+1∏
i=k′+1

p
( k
i−1)
i

)
.

The following two lemmas follow similar arguments as in Lemma 6.2 but are more
involved. The proofs are long calculations which are not particularly insightful and
so they are deferred to the Appendix A.

Lemma 6.3. For a fixed integer k′ + 1 ≤ k ≤ n − 1 and a fixed sequence of
probabilities pi ∈ [0, 1] there is a constant C > 0 independent of n and a natural
number Np,k such that for any n ≥ Np,k:

Var(Tk+1) ≥ Cn2k−k
′
.

Lemma 6.4. Let σ2
i+k′ = Var(Ti+k′+1) for any i ≥ 1. Let Σ be a d× d symmetric

matrix such that Σi,j = σ−1
i+k′σ

−1
j+k′Cov(Ti+k′+1, Tj+k′+1). Then assuming that for

all l the parameters pl do not depend on n, for any fixed i < j we have
lim

n→∞
Σi,j

=
ρ(k + 1)ρ(r + 1)

√
(2 − ρ(k + 1))(2 − ρ(r + 1))(2 − ρ(k + 1)ρ(k′ + 1)−1)(2 − ρ(r + 1)ρ(k′ + 1)−1)

(ρ(k + 1) + ρ(r + 1) − ρ(k + 1)ρ(r + 1)ρ(k′ + 1)−1)(ρ(k + 1) + ρ(r + 1) − ρ(k + 1)ρ(r + 1))
,

where k′ + i = k, k′ + j = r, and

ρ(a) :=

a∏
i=k′+1

p
(ai)
i .

Remark 6.5. The square root in Lemma 6.4 is understood to be the positive square
root. As 0 ≤ ρ(a) ≤ 1 the limiting expression in Lemma 6.4 is always non-negative.

Moreover we can bound the limiting covariance from above by 4ρ(k+1)ρ(r+1)
(ρ(k+1)+ρ(r+1))2 .

Note that 4ρ(k+1)ρ(r+1)
(ρ(k+1)+ρ(r+1))2 < 1 as long as ρ(k + 1) ̸= ρ(r + 1). In particular, if

pk ∈ (0, 1) for all k > k′, then ρ(k + 1) ̸= ρ(r + 1) and so the limiting covariance is
strictly smaller than 1.

6.2. Approximation theorem. For i ∈ [d], recall a random variable counting i-
simplices in X(n,p) that are critical under the lexicographical matching, as given

in (8). We write for the i-th index set Ii :=
(
[n]
i+1

)
× {i}. For s = (ϕ, i) ∈ Ii we have

µs =

k∏
j=k′+1

p
(k+1
j+1)
j

[(
1−

k+1∏
i=k′+1

p
(k+1

i )
i

)min(ϕ)−1

−

(
1−

k∏
i=k′+1

p
(ki)
i

)min(ϕ)−1]
and σi =

√
Var(Ti+1). Note that E {Ti+1} =

∑
s∈Ii µs. Let

Xs = σ−1
i

{
k−1∏

j=k′+1

∏
α⊆ϕ

|α|=j+1

ξ(j+1)
α

[
min(ϕ)−1∏

i=1

(
1−

k∏
j=k′+1

∏
α⊆ϕ
|α|=j

ξ
(j+1)
α∪{i}

)
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−
min(ϕ)−1∏

i=1

(
1−

k−1∏
j=k′+1

∏
α⊆ϕ−
|α|=j

ξ
(j+1)
α∪{i}

)]
− µs

}
.

Let Wi =
∑
s∈Ii Xs and W = (Wk′+1,Wk′+2, . . . ,Wk′+d) ∈ Rd. For bounds

that asymptotically go to zero for this example, we use Theorem B.2 directly: the
uniform bounds from Corollary B.3 are not fine enough.

Theorem 6.6. Let Z ∼ MVN(0, Idd×d) and Σ be the covariance matrix of W .

1. Let h ∈ H. Then there is a constant B6.6.1 > 0 independent of n and a natural
number N6.6.1 such that for any n ≥ N6.6.1 we have∣∣∣Eh(W )− Eh(Σ

1
2Z)

∣∣∣ ≤ B6.6.1 |h|3 n
−1− k′

2 .

2. There is a constant B6.6.2 > 0 independent of n and a natural number N6.6.2

such that for any n ≥ N6.6.2 we have

sup
A∈K

|P(W ∈ A)− P(Σ
1
2Z ∈ A)| ≤ B6.6.2n

− 1
4−− k′

8 .

Proof. It is clear thatW satisfies the conditions of Theorem B.2 for any s = (ϕ, i) ∈
Ii setting

Dj(s) = { (ψ, j) ∈ Ij | |ϕ ∩ ψ| ≥ k′ + 1 } .
We apply Theorem B.2. The existence of B6.6.1 and B6.6.2 is proved by apply-
ing Theorem B.2 and bounding the quantity BB.2 from the theorem. We use the
notation µ(a) = µs for s = (ϕ, i) with a = min(ϕ). Then

BB.2 ≤1

3

d∑
i,j,ℓ=1

n−i∑
a=1

∑
ϕ∈( [n]

i+1)
min(ϕ)=a

n−j∑
b=1

∑
(ψ,j)∈Dj((ϕ,i))

min(ψ)=b{ ∑
r∈Dℓ((ϕ,i))

3

2
(σiσjσℓ)

−1 {µ(a)µ(b)(1− µ(a))(1− µ(b))}
1
2

+
∑

r∈Dℓ((ψ,j))

(σiσjσℓ)
−1
{
µ(a)µ(b)(1− µ(a))(1− µ(b))

} 1
2
}
.

We write C for an unspecified positive constant that does not depend on n. We
set pmax = maxk′+1≤j≤d pj , so that by construction we have 0 < pmax < 1, and

µ(b) ≤ p
∑b

i=k′+1 (
b
i)

max ≤ pbmax. Moreover, the number of ways of choosing a set ψ of
size j + 1, with smallest element b and sharing at least k′ + 1 given elements with
ϕ, is

(
n−b

j+1−(k′+1)−1

)
. Then with Claim A.2 from Appendix A,

n−j∑
b=1

∑
(ψ,j)∈Dj((ϕ,i))

min(ψ)=b

√
µ(b) ≤

n−j∑
b=1

(
n− b

j + 1− (k′ + 1)− 1

)
(
√
pmax)

b ≤ Cnj−k
′−1.

Similarly,

n−i∑
a=1

∑
(ϕ,i)∈Ii

min(ϕ)=a

√
µ(a) ≤

n−i∑
a=1

(
n− a

i

)
(
√
pmax)

b ≤ Cni.
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Next we use that |Dℓ(s)| ≤ Cnℓ−k
′
. Also, we assume here that n is large enough

for the bound in Lemma 6.3 to apply; this yields the bound σi ≥ ni−
k′
2 . Collecting

these bounds gives

BB.2 ≤
d∑

i,j,ℓ=1

Cni+j+ℓ−2k′−1n
3
2k

′−i−j−ℓ ≤ Cn−1− k′
2 d3.
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Appendix A. Proof of Lemmas 6.3 and 6.4.

Lemma A.1. For any integer k′ + 1 ≤ k ≤ n− 1 we have

Var{Tk+1} = V1 + V2 + V3 + V4,

where

V1

=2

n−k∑
l<m

k∑
j=k′+1

min(k+1,m−l)∑
q=1

(
n−m

2k + 1− j − q

)(
2k + 1− j − q

k

)(
k

j − 1

)(
m− l + 1

q − 1

)
{
ρ+(k + 1)2ρ+(j)−1τ(l,m, q, k, j − 1)[(
1− 2ρ(k) + ρ(k)2ρ(j − 1)−1)l−1 −

(
1− ρ(k + 1)− ρ(k) + ρ(k + 1)ρ(k)ρ(j − 1)−1)l−1

]
+ ρ+(k + 1)2ρ+(j)−1τ(l,m, q, k + 1, j)[(
1− 2ρ(k + 1) + ρ(k + 1)2ρ(j)−1)l−1 −

(
1− ρ(k + 1)− ρ(k) + ρ(k)ρ(k + 1)ρ(j)−1)l−1

]
− µ(l)µ(m)

}
;

V2

=2

n−k∑
l<m

k∑
j=k′+1

min(k+1,m−l)∑
q=1

(
n−m

2k + 1− j − q

)(
2k + 1− j − q

k

)(
k

j

)(
m− l + 1

q − 1

)
{
ρ+(k + 1)2ρ+(j)−1τ(l,m, q, k, j)[(
1− 2ρ(k) + ρ(k)2ρ(j)−1)l−1 −

(
1− ρ(k + 1)− ρ(k) + ρ(k + 1)ρ(k)ρ(j)−1)l−1

]
+ ρ+(k + 1)2ρ+(j)−1τ(l,m, q, k + 1, j)[(
1− 2ρ(k + 1) + ρ(k + 1)2ρ(j)−1)l−1 −

(
1− ρ(k + 1)− ρ(k) + ρ(k)ρ(k + 1)ρ(j)−1)l−1

]
− µ(l)µ(m)

}
;
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V3 =

n−k∑
l=1

k∑
j=k′+1

(
n− l

2k + 1− j

)(
2k + 1− j

k

)(
k

j − 1

){
ρ+(k + 1)2ρ+(j)−1

[ (
1− 2ρ(k + 1) + ρ(k + 1)2ρ(j)−1

)l−1
+
(
1− 2ρ(k) + ρ(k)2ρ(j − 1)−1

)l−1

− 2
(
1− ρ(k)− ρ(k + 1) + ρ(k)ρ(k + 1)ρ(j − 1)−1

)l−1
]
− µ(l)2

}
;

V4 =

n−k∑
l=1

(
n− l

k

){
µ(l)− µ(l)2

}
.

Here we have used the following abbreviations:

ρ(a) :=

a∏
i=k′+1

p
(ai)
i ; τ(l,m, q, a, b) := (1− ρ(a))

m−l−q (
1− ρ(a)ρ(b)−1

)q
;

ρ+(a) :=

a∏
i=k′+1

p
( a
i+1)
i ; µ(a) := ρ+(k + 1)

(
(1− ρ(k + 1))

a−1 − (1− ρ(k))
a−1
)
.

Also, the notation
∑n−k
l<m stands for

∑n−k−1
l=1

∑n−k
m=l+1.

Proof of Lemma A.1. Here, we adapt and generalise the proof of [51, Lemma 34].

For s ∈
(

[n]
k+1

)
recall that s− = s \ {min(s)}. We write:

Y +
s =

min(s)−1∏
i=1

(
1−

k+1∏
j=k′+1

∏
α⊆s
|α|=j

ξ
(j+1)
α∪{i}

)
,

Y −
s =

min(s)−1∏
i=1

(
1−

k∏
j=k′+1

∏
α⊆s−
|α|=j

ξ
(j+1)
α∪{i}

)
,

Zs =

k∏
j=k′+1

∏
α⊆s

|α|=j+1

ξ(j+1)
α , Ys = Y +

s − Y −
s .

Then Zs and Ys are independent and Tk+1 =
∑
s∈( [n]

k+1)
ZsYs. Consider the variance

Var(Tk+1) =
∑

s∈( [n]
k+1)

Var(ZsYs) +
∑

s̸=t∈( [n]
k+1)

min(s) ̸=min(t)

Cov(ZsYs, ZtYt)

+
∑

s̸=t∈( [n]
k+1)

min(s)=min(t)

Cov(ZsYs, ZtYt). (9)

For the first term in (9), writing min(s) = l, we get

P(ZsYs = 1) = µ(l) =

k∏
i=k′+1

p
(k+1
i+1)
i

[(
1−

k+1∏
i=k′+1

p
(k+1

i )
i

)
−

(
1−

k∏
i=k′+1

p
(ki)
i

)l−1]
.
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Now we see

∑
s∈( [n]

k+1)

Var(ZsYs) =

n∑
l=1

∑
s∈( [n]

k+1)
min(s)=l

(
E
{
(ZsYs)

2
}
− E {ZsYs}2

)

=

n−k∑
l=1

(
n− l

k

)(
P(ZsYs = 1)− P(ZsYs = 1)2

)
=

n−k∑
l=1

(
n− l

k

){
µ(l)− µ(l)2

}
= V4.

Now consider the covariance terms in (9), the expansion of the variance. Note

that for any s, t ∈
(

[n]
k+1

)
if |s ∩ t| < k′ + 1, then the variables ZsYs and ZtYt can

be written as functions of two disjoint sets of independent random variables for the

form ξ
(l)
α for α ∈

(
[n]
l

)
and hence have zero covariance.

Fix s, t ∈
(

[n]
k+1

)
and assume k′+1 ≤ |s∩ t| ≤ k. Note that because |s∩ t| ≠ k+1,

we have s ̸= t. There are 2
(
k+1
i

)
−
(|s∩t|

i

)
distinct simplices of size i in s and t

combined and hence P(ZsZt = 1) =
∏k
i=k′+1 p

2(k+1
i+1)−(

|s∩t|
i )

i . Also, YsYt = Y +
s Y

+
t +

Y −
s Y

−
t − Y +

s Y
−
t − Y −

s Y
+
t . For the rest of the proof when calculating probabilities

we assume w.l.o.g. that min(s) ≤ min(t). Then we have for Y +
s Y

+
t :

Y +
s Y

+
t =

min(t)−1∏
i=1

(
1−

k+1∏
j=k′+1

∏
α⊆t
|α|=j

ξ
(j+1)
α∪{i}

)
min(s)−1∏
i=1

(
1−

k+1∏
j=k′+1

∏
α⊆s
|α|=j

ξ
(j+1)
α∪{i}

)

=

min(s)−1∏
i=1

{(
1−

k+1∏
j=k′+1

∏
α⊆s
|α|=j

ξ
(j+1)
α∪{i}

)(
1−

k+1∏
j=k′+1

∏
α⊆t
|α|=j

ξ
(j+1)
α∪{i}

)}

min(t)−1∏
i=min(s)
i∈s

(
1−

k+1∏
j=k′+1

∏
α⊆t
|α|=j

ξ
(j+1)
α∪{i}

)
min(t)−1∏
i=min(s)
i/∈s

(
1−

k+1∏
j=k′+1

∏
α⊆t
|α|=j

ξ
(j+1)
α∪{i}

)
.

Fix i ∈ [min(s)− 1]. Then with ¬ denoting the complement

P

[(
1−

k+1∏
j=k′+1

∏
α⊆s
|α|=j

ξ
(j+1)
α∪{i}

)(
1−

k+1∏
j=k′+1

∏
α⊆t
|α|=j

ξ
(j+1)
α∪{i}

)
= 1

]

= P

[
¬

(
k+1∏

j=k′+1

∏
α⊆s
|α|=j

ξ
(j+1)
α∪{i} = 1 ∪

k+1∏
j=k′+1

∏
α⊆t
|α|=j

ξ
(j+1)
α∪{i} = 1

)]

= 1− 2

k+1∏
i=k′+1

p
(k+1

i )
i +

k+1∏
i=k′+1

p
2(k+1

i )−(|s∩t|
i )

i .

Here ∪ indicates that either or both of these events may happen.



GOODNESS-OF-FIT IN RANDOM SIMPLICIAL COMPLEXES 39

Moreover, the variable∏min(s)−1
i=1

(
1−

∏k+1
j=k′+1

∏
α⊆s
|α|=j

ξ
(j+1)
α∪{i}

)(
1−

∏k+1
j=k′+1

∏
α⊆t
|α|=j

ξ
(j+1)
α∪{i}

)
and the vari-

able
∏min(t)−1
i=min(s)
i/∈s

(
1−

∏k+1
j=k′+1

∏
α⊆t
|α|=j

ξ
(j+1)
α∪{i}

)
are independent of ZsZt. Recall the

notation [a, b] = {a, a+ 1, . . . , b} for two positive integers a ≤ b. Setting q :=
|s ∩ [min(s),min(t)− 1]|,

P
(
Y +
s Y

+
t = 1|ZsZt = 1

)
=P

(
min(s)−1∏
i=1

(
1−

k+1∏
j=k′+1

∏
α⊆s
|α|=j

ξ
(j+1)
α∪{i}

)(
1−

k+1∏
j=k′+1

∏
α⊆t
|α|=j

ξ
(j+1)
α∪{i}

)
= 1

)

P

(
min(t)−1∏
i=min(s)
i/∈s

(
1−

k+1∏
j=k′+1

∏
α⊆t
|α|=j

ξ
(j+1)
α∪{i}

)
= 1

)

P

(
min(t)−1∏
i=min(s)
i∈s

(
1−

k+1∏
j=k′+1

∏
α⊆t
|α|=j

ξ
(j+1)
α∪{i}

)
= 1

∣∣∣∣∣ZsZt = 1

)

=
(
1− 2

k+1∏
i=k′+1

p
(k+1

i )
i +

k+1∏
i=k′+1

p
2(k+1

i )−(|s∩t|
i )

i

)min(s)−1

(
1−

k+1∏
i=k′+1

p
(k+1

i )
i

)min(t)−min(s)−q(
1−

k+1∏
i=k′+1

p
(k+1

i )−(|s∩t|
i )

i

)q
.

This strategy of splitting the product Y +
s Y

+
t into three products of independent

variables, only one of which is dependent on ZsZt works exactly in the same way
for the variables Y −

s Y
+
t , Y +

s Y
−
t , Y −

s Y
−
t . We write l = min(s), m = min(t). Also,

we set

π(l,m, a, b, d1, d2, q) :=
(
1−

a∏
i=k′+1

p
(ai)
i −

b∏
i=k′+1

p
(bi)
i +

max(a,b)∏
i=k′+1

p
(ai)+(

b
i)−(

d1
i )

i

)l−1

(
1−

a∏
i=k′+1

p
(ai)
i

)m−l−q(
1−

a∏
i=k′+1

p
(ai)−(

d2
i )

i

)q
.

Using the described strategy we get

P
(
Y +
s Y

+
t = 1|ZsZt = 1

)
= π(l,m, k + 1, k + 1, |s ∩ t|, |s ∩ t|, q)

P
(
Y −
s Y

−
t = 1|ZsZt = 1

)
= π(l,m, k, k, |s− ∩ t−|, |s ∩ t−|, q)

P
(
Y +
s Y

−
t = 1|ZsZt = 1

)
= π(l,m, k, k + 1, |s ∩ t−|, |s ∩ t−|, q)

P
(
Y −
s Y

+
t = 1|ZsZt = 1

)
= π(l,m, k + 1, k, |s− ∩ t|, |s ∩ t|, q).
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Now we are ready to calculate the covariance:

Cov(ZsYs, ZtYt)

= E
{
ZsZtY

+
s Y

+
t

}
+ E

{
ZsZtY

−
s Y

−
t

}
− E

{
ZsZtY

+
s Y

−
t

}
− E

{
ZsZtY

−
s Y

+
t

}
− E {ZsYs}E {ZtYt}

= P(ZsZt = 1)
{
P
(
Y +
s Y

+
t = 1|ZsZt = 1

)
+ P

(
Y −
s Y

−
t = 1|ZsZt = 1

)
− P

(
Y +
s Y

−
t = 1|ZsZt = 1

)
− P

(
Y −
s Y

+
t = 1|ZsZt = 1

)}
− P(ZsYs = 1)P(ZtYt = 1)

=

k∏
i=k′+1

p
2(k+1

i+1)−(
|s∩t|
i+1 )

i (π(l,m, k + 1, k + 1, |s ∩ t|, |s ∩ t|, q)

+ π(l,m, k, k, |s− ∩ t−|, |s ∩ t−|, q)

− π(l,m, k, k + 1, |s ∩ t−|, |s ∩ t−|, q)

− π(l,m, k + 1, k, |s− ∩ t|, |s ∩ t|, q))− µ(l)µ(m).

Next we consider the two covariance sums in (9) separately. First assume that
min(s) ̸= min(t). Given l,m ∈ [n− k], j ∈ [k], and q ∈ [min(k + 1, |m− l|)] define
the set

Γk+1(l,m, j, q)

=

{
(s, t) | s, t ∈

(
[n]

k + 1

)
,min(s) = l,min(t) = m, |s ∩ t| = j,max(qs,t, qt,s) = q

}
as well as

Γ+
k+1(l,m, j, q) = { (s, t) ∈ Γk+1(l,m, j, q) | min(t) ∈ s }

and

Γ−
k+1(l,m, j, q) = { (s, t) ∈ Γk+1(l,m, j, q) | min(t) /∈ s } .

Here qs,t = |s∩ [min(s),min(t)− 1]|, qt,s = |t∩ [min(t),min(s)− 1]|. From the proof
of Lemma 4.3 in [51] we know that

|Γ+
k+1(l,m, j, q)| =

(
n−m

2k + 1− j − q

)(
2k + 1− j − q

k

)(
k

j − 1

)(
m− l + 1

q − 1

)
;

and

|Γ−
k+1(l,m, j, q)| =

(
n−m

2k + 1− j − q

)(
2k + 1− j − q

k

)(
k

j

)(
m− l + 1

q − 1

)
.

Now using the covariance expression we have just derived, we get∑
s̸=t∈( [n]

k+1)
min(s) ̸=min(t)

Cov(ZsYs, ZtYt)
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=

n−k∑
l=1

n−k∑
m=i+1

k∑
j=k′+1

min(k+1,m−l)∑
q=1

∑
(s,t)∈Γ+

k+1(l,m,j,q)

Cov(ZsYs, ZtYt)

+

n−k∑
l=1

n−k∑
m=i+1

k∑
j=k′+1

min(k+1,m−l)∑
q=1

∑
(s,t)∈Γ−

k+1(l,m,j,q)

Cov(ZsYs, ZtYt)

+

n−k∑
m=1

n−k∑
l=j+1

k∑
j=k′+1

min(k+1,l−m)∑
q=1

∑
(s,t)∈Γ+

k+1(m,l,j,q)

Cov(ZsYs, ZtYt)

+

n−k∑
m=1

n−k∑
l=j+1

k∑
j=k′+1

min(k+1,l−m)∑
q=1

∑
(s,t)∈Γ−

k+1(m,l,j,q)

Cov(ZsYs, ZtYt)

=

n−k∑
l=1

n−k∑
m=i+1

k∑
j=k′+1

min(k+1,m−l)∑
q=1

|Γ+
k+1(l,m, j, q)|

{ k∏
i=k′+1

p
2(k+1

i+1)−(
j

i+1)
i (π(l,m, k + 1, k + 1, j, j, q)

+ π(l,m, k, k, j − 1, j − 1, q)− π(l,m, k, k + 1, j − 1, j − 1, q)

− π(l,m, k + 1, k, j, j, q))− µ(l)µ(m)
}

+

n−k∑
l=1

n−k∑
m=i+1

k∑
j=k′+1

min(k+1,m−l)∑
q=1

|Γ−
k+1(l,m, j, q)|

{ k∏
i=k′+1

p
2(k+1

i+1)−(
j

i+1)
i (π(l,m, k + 1, k + 1, j, j, q)

+ π(l,m, k, k, j, j, q)− π(l,m, k, k + 1, j, j, q)

− π(l,m, k + 1, k, j, j, q))− µ(l)µ(m)
}

+

n−k∑
m=1

n−k∑
l=j+1

k∑
j=k′+1

min(k+1,l−m)∑
q=1

|Γ+
k+1(m, l, j, q)|

{ k∏
i=k′+1

p
2(k+1

i+1)−(
j

i+1)
i (π(m, l, k + 1, k + 1, j, j, q)

+ π(m, l, k, k, j − 1, j − 1, q)− π(m, l, k, k + 1, j − 1, j − 1, q)

− π(m, l, k + 1, k, j, j, q))− µ(l)µ(m)
}
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+

n−k∑
m=1

n−k∑
l=j+1

k∑
j=k′+1

min(k+1,l−m)∑
q=1

|Γ−
k+1(m, l, j, q)|

{ k∏
i=k′+1

p
2(k+1

i+1)−(
j

i+1)
i (π(m, l, k + 1, k + 1, j, j, q)

+ π(m, l, k, k, j, j, q)− π(m, l, k, k + 1, j, j, q)

− π(m, l, k + 1, k, j, j, q))− µ(l)µ(m)
}
= V1 + V2.

Similarly, we calculate the remaining term in the expansion of the variance (9).
We notice that if l = m, then q = 0 and we have Γk+1(l, l, j, 0) = Γ+

k+1(l, l, j, 0).

Hence, |Γk+1(l, l, j, 0)| =
(

n−l
2k+1−j

)(
2k+1−j

k

)(
k
j−1

)
, and

∑
s ̸=t∈( [n]

k+1)
min(s)=min(t)

Cov(ZsYs, ZtYt) =

n−k∑
l=1

k∑
j=k′+1

∑
(s,t)∈Γk+1(l,l,j,0)

Cov(ZsYs, ZtYt)

=

n−k∑
l=1

k∑
j=k′+1

(
n− l

2k + 1− j

)(
2k + 1− j

k

)(
k

j − 1

){ k∏
i=k′+1

p
2(k+1

i+1)−(
j

i+1)
i

[π(l, l, k + 1, k + 1, j, 0, 0) + π(l, l, k, k, j − 1, 0, 0)− 2π(l, l, k + 1, k, j − 1, 0, 0)]

− µ(l)2
}

=V3.

Proof for Lemma 6.3. Fix k′ + 1 ≤ k ≤ n − 1 and p ∈ (0, 1), and consider the
variance. From Lemma A.1 we have Var{Tk+1} = V1+V2+V3+V4. First we lower
bound V1 and V2 by just the negative part of the sum:

V1 ≥− 2ρ+(k + 1)2
n−k∑
l<m

k∑
j=k′+1

min(k+1,m−l)∑
q=1(

n−m

2k + 1− j − q

)(
2k + 1− j − q

k

)(
k

j − 1

)(
m− l + 1

q − 1

)
{
ρ+(j)−1τ(l,m, q, k, j − 1)

(
1− ρ(k + 1)− ρ(k) + ρ(k + 1)ρ(k)ρ(j − 1)−1

)l−1

+ ρ+(j)−1τ(l,m, q, k + 1, j)
(
1− ρ(k + 1)− ρ(k) + ρ(k + 1)ρ(k)ρ(j)−1

)l−1

+ (1− ρ(k + 1))l+m−2 + (1− ρ(k))l+m−2
}
;

V2 ≥− 2ρ+(k + 1)2
n−k∑
l<m

k∑
j=k′+1

min(k+1,m−l)∑
q=1
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n−m

2k + 1− j − q

)(
2k + 1− j − q

k

)(
k

j

)(
m− l + 1

q − 1

)
{
ρ+(j)−1τ(l,m, q, k, j)

(
1− ρ(k + 1)− ρ(k) + ρ(k + 1)ρ(k)ρ(j)−1

)l−1

+ ρ+(j)−1τ(l,m, q, k + 1, j)
(
1− ρ(k + 1)− ρ(k) + ρ(k + 1)ρ(k)ρ(j)−1

)l−1

+ (1− ρ(k + 1))l+m−2 + (1− ρ(k))l+m−2
}
.

Now using that
(
k
j

)
+
(
k
j−1

)
=
(
k+1
j

)
and ρ(a) ≤ ρ(b) for any two integers b < a,

it is easy to see that V1 + V2 ≥ −8ρ+(k + 1)2R1 − 8ρ+(k + 1)2R2, where

R1 :=

n−k∑
l<m

k∑
j=k′+1

min(k+1,m−l)∑
q=1

(
n−m

2k + 1− j − q

)(
2k + 1− j − q

k

)
(
k + 1

j

)(
m− l + 1

q − 1

)
(1− ρ(k + 1))l+m−2;

R2 :=

n−k∑
l<m

k∑
j=k′+1

min(k+1,m−l)∑
q=1

(
n−m

2k + 1− j − q

)
(
2k + 1− j − q

k

)(
k + 1

j

)(
m− l + 1

q − 1

)
ρ+(j)−1(1− ρ(k + 1))m−l (1− ρ(k + 1)− ρ(k) + ρ(k + 1)ρ(k)ρ(j)−1

)l−1
.

For V3 we lower bound by terms with m = k′ + 1 and the negative parts of the
other terms. Note that ρ+(k′ + 1) = 1 = ρ(k′) and ρ(k′ + 1) < 1. Now we can
proceed:

V3 ≥ρ+(k + 1)2
n−k∑
l=1

(
n− l

2k − k′

)(
2k − k′

k

)(
k

k′

)
{
(1− 2ρ(k + 1) + ρ(k + 1)2ρ(k′ + 1)−1)l−1 − (1− ρ(k + 1))2l−2

}
− 2ρ+(k + 1)2

n−k∑
l=1

k∑
j=k′+2

(
n− l

2k + 1− j

)(
2k + 1− j

k

)(
k

j − 1

)
{
ρ+(j)−1

(
1− ρ(k)− ρ(k + 1) + ρ(k)ρ(k + 1)ρ(j − 1)−1

)l−1

+ (1− ρ(k + 1))2l−2
}

=ρ+(k + 1)2R4 − 2ρ+(k + 1)2R3;

here we call the first sum of the lower bound R4 and the second sum R3. For V4
we use the trivial lower bound V4 ≥ 0. Hence, we have

Var(Tk+1) ≥ ρ+(k + 1)2(R4 − 8R1 − 8R2 − 2R3).
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Let us now upper bound R1:

R1 ≤
n−k∑
l<m

k∑
j=k′+1

min(k+1,m−l)∑
q=1

(n−m)2k+1−j−q

(2k + 1− j − q)!

(2k + 1− j − q)k

k!

(k + 1)j

j!

(m− l + 1)q−1

(q − 1)!
(1− ρ(k + 1))l+m−2

≤
n−k∑
l<m

min(k+1,m−l)∑
q=1

(k − k′)
n2k−k

′−q

1

(2k − k′ − 1)k

k!

(k + 1)k

(k′ + 1)!

nq−1

1
(1− ρ(k + 1))l+m−2

≤ n2k−k
′−1(k − k′)

(2k − k′ − 1)k

k!

(k + 1)k+1

(k′ + 1)!

∞∑
l<m

(1− ρ(k + 1))l+m−2

= n2k−k
′−1(k − k′)

(2k − k′ − 1)k

k!

(k + 1)k+1

(k′ + 1)!

1− ρ(k + 1)

(2− ρ(k + 1))ρ(k + 1)2
.

Noting that (1 − ρ(k + 1))m−l (1− ρ(k + 1)− ρ(k) + ρ(k + 1)ρ(k)ρ(j)−1
)l−1 ≤

(1− ρ(k+ 1))m−1 (since ρ(k+ 1)ρ(j)−1 ≤ 1 for all j ∈ [k]), we can bound R2 in an
identical way:

R2 ≤ n2k−k
′−1(k − k′)

(2k − k′ − 1)k

k!

(k + 1)k+1

(k′ + 1)!
ρ+(k)−1

∞∑
l<m

(1− ρ(k + 1))m−1

= n2k−k
′−1(k − k′)

(2k − k′ − 1)k

k!

(k + 1)k+1

(k′ + 1)!

1− ρ(k + 1)

ρ+(k)ρ(k + 1)2
.

Noting that
(
1− ρ(k)− ρ(k + 1) + ρ(k)ρ(k + 1)ρ(j − 1)−1

)l−1 ≤ (1−ρ(k+1))l−1

and (1− ρ(k + 1))2l−2 ≤ (1− ρ(k + 1))l−1 we proceed to bound R3:

R3 ≤
n−k∑
l=1

k∑
j=k′+2

(
n− l

2k + 1− j

)(
2k + 1− j

k

)(
k

j − 1

)
(ρ+(j)−1 + 1)(1− ρ(k + 1))l−1

≤
n−k∑
l=1

k∑
j=k′+2

n2k+1−j

(2k + 1− j)!

(2k + 1− j)k

k!

kj−1

(j − 1)!
(ρ+(k)−1 + 1)(1− ρ(k + 1))l−1

≤ (k − k′ − 1)
n2k−k′−1

(k + 1)!

(2k − k′ − 1)k

k!

kk

(k′ + 1)!
(ρ+(k)−1 + 1)

∞∑
l=1

(1− ρ(k + 1))l−1

= n2k−k′−1 k − k′ − 1

(k + 1)!

(2k − k′ − 1)k

k!

kk

(k′ + 1)!
(ρ+(k)−1 + 1)ρ(k + 1)−1.

To lower bound R4 we just take the l = 2 term as all summands are non-negative:

R4 ≥
(
n− 2

2k − k′

)(
2k − k′

k

)(
k

k′

){
ρ(k + 1)2ρ(k′ + 1)−1 − ρ(k + 1)2

}
≥ (n− 2)2k−k

′

(2k − k′)2k−k′

(
2k − k′

k

)(
k

k′

)
ρ(k + 1)2(ρ(k′ + 1)−1 − 1).
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Since R1, R2, R3 are all at most of the order n2k−k
′−1 and R4 is at least of the

order n2k−k
′
, we have that for any fixed k ≥ k′ + 1 and a sequence of probabilities

pi ∈ (0, 1) there exists a constant C > 0 independent of n and a natural number N
such that for any n ≥ N ,

Var(Tk+1) ≥ ρ+(k + 1)2(R4 − 8R1 − 8R2 − 2R3) ≥ Cn2k−k
′
.

Proof of Lemma 6.4. For i < j, write k′ + i = k and k′ + j = r. Note that σ2
k and

σ2
r are sums and so is Cov(Tk+1, Tr+1). Hence, to get the limit of the ratio we can

just look at the ratio of the highest order terms from each sum. From the proof of
Lemma 6.3 it is clear that the highest order term for σ2

k is the sum of the terms in
V3, where the index of the sum j has the value k′ + 1. That is,

σ2
k =

n−k∑
l=1

(
n− l

2k − k′

)(
2k − k′

k

)(
k

k′

)
ρ+(k + 1)2

[
(1− 2ρ(k + 1) + ρ(k + 1)2ρ(k′ + 1)−1)l−1 − (1− 2ρ(k + 1) + ρ(k + 1)2)l−1

]
+ o(n2k−k

′
).

Analogously to the calculations in Lemmas A.1 and 6.3, one can perform cal-
culations to find the highest order term of Cov(Tk+1, Tr+1). Similarly, like in

the variance case, it will correspond to subsets s ∈
(

[n]
k+1

)
, t ∈

(
[n]
r+1

)
such that

min(s) = min(t) and |s∩ t| = k′+1. That is, borrowing the notation from the proof
of Lemma A.1, we have

Cov(Tk+1, Tr+1)

=
∑

s∈( [n]
k+1),t∈(

[n]
r+1)

min(s)=min(t)
|s∩t|=k′+1

Cov(ZsYs, ZtYt) + o(nk+r−k
′
)

= o(nk+r−k
′
) +

n−r∑
l=1

(
n− l

k + r − k′

)(
k + r − k′

k

)(
k

k′

)
ρ+(k + 1)ρ+(r + 1)

[
(1− ρ(k + 1)− ρ(r + 1) + ρ(k + 1)ρ(r + 1)ρ(k′ + 1)−1)l−1 − (1− ρ(k + 1)

− ρ(r + 1) + ρ(k + 1)ρ(r + 1))l−1
]
.

To deal with those sums, we will use this auxiliary claim.

Claim A.2. For any fixed positive integer k and x ∈ (0, 1) we have
n∑
l=1

(
n− l

k

)
xl−1 =

nk

k!
(1− x)−1 + o(nk).

A proof of this claim may be obtained by first noting that(
n− l

k

)
≤
(
n

k

)
≤ nk

k!
,

and then using the fact that
∑∞

0 xk = (1− x)−1 holds because |x| < 1.
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Now we can proceed with the limit, cancelling the binomial coefficients in a
similar way to Lemma 5.1 and then using Claim A.2.

lim
n→∞

Σi,j

= lim
n→∞

n−r∑
l=1

(
n − l

k + r − k′

)
(k + r − k

′
)!
[
(1 − ρ(k + 1) − ρ(r + 1)

+ ρ(k + 1)ρ(r + 1)ρ(k
′
+ 1)

−1
)
l−1 − (1 − ρ(k + 1) − ρ(r + 1) + ρ(k + 1)ρ(r + 1))

l−1]


n−k∑
l=1

(
n − l

2k − k′

)
(2k − k

′
)!

[
(1 − 2ρ(k + 1) + ρ(k + 1)

2
ρ(k

′
+ 1)

−1
)
l−1 − (1 − 2ρ(k + 1) + ρ(k + 1)

2
)
l−1

]
− 1

2


n−r∑
l=1

(
n − l

2r − k′

)
(2r − k

′
)!

[
(1 − 2ρ(r + 1) + ρ(r + 1)

2
ρ(k

′
+ 1)

−1
)
l−1 − (1 − 2ρ(r + 1) + ρ(r + 1)

2
)
l−1

]
− 1

2

= lim
n→∞

n
k+r−k′ [

(ρ(k + 1) + ρ(r + 1) − ρ(k + 1)ρ(r + 1)ρ(k
′
+ 1)

−1
)
−1

− (ρ(k + 1) + ρ(r + 1) − ρ(k + 1)ρ(r + 1))
−1]

{
n
2k−k′ [

(2ρ(k + 1) − ρ(k + 1)
2
ρ(k

′
+ 1)

−1
)
−1 − (2ρ(k + 1) − ρ(k + 1)

2
)
−1

]}− 1
2

{
n
2r−k′ [

(2ρ(r + 1) − ρ(r + 1)
2
ρ(k

′
+ 1)

−1
)
−1 − (2ρ(r + 1) − ρ(r + 1)

2
)
−1

]}− 1
2

=
ρ(k + 1)ρ(r + 1)

√
(2 − ρ(k + 1))(2 − ρ(r + 1))(2 − ρ(k + 1)ρ(k′ + 1)−1)(2 − ρ(r + 1)ρ(k′ + 1)−1)

(ρ(k + 1) + ρ(r + 1) − ρ(k + 1)ρ(r + 1)ρ(k′ + 1)−1)(ρ(k + 1) + ρ(r + 1) − ρ(k + 1)ρ(r + 1))
.

Appendix B. A multivariate CLT for dissociated sums. Let n and d be
positive integers. For each i ∈ [d] =: {1, 2, . . . , d}, we fix an index set Ii ⊂ [n] ×
{i} and consider the union of disjoint sets I =:

⋃
i∈[d] Ii. Let Xs, s = (k, i) ∈ I

be a collection of real centered random variables which are defined on the same
probability space. For each i ∈ [d] form the sum

Wi :=
∑
s∈Ii

Xs.

Our interest here is in the resulting random vector W = (W1, . . . ,Wd) ∈ Rd. The
following notion is a natural multivariate generalisation of the dissociated sum that
has been studied in [51, 4, 40].

Definition B.1. We call W a vector of dissociated sums if for each s ∈ I and
j ∈ [d] there exists a dependency neighbourhood Dj(s) ⊂ Ij satisfying three
criteria:

1. the difference
(
Wj −

∑
u∈Dj(s)

Xu

)
is independent of Xs;

2. for each t ∈ I, the quantity
(
Wj −

∑
u∈Dj(s)

Xu −
∑
v∈Dj(t)\Dj(s)

Xv

)
is inde-

pendent of the pair (Xs, Xt);
3. Xs and Xt are independent if t ̸∈

⋃
j Dj(s).

Let W be a vector of dissociated sums as defined above. For each s ∈ I, as
Ij ∩ Iℓ = ∅ for j ̸= ℓ by construction, the sets Dj(s), j ∈ [d] are disjoint (although
for s ̸= t, the sets Dj(s) and Dj(t) may not be disjoint). Dj(s) is the dependency
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neighbourhood of Xs in the j-th component of the vector W . We write D(s) =⋃
j∈[d] Dj(s) for the disjoint union of these of dependency neighbourhoods.

Theorem B.2 (Theorems 2 and 9 in [51]). Let h : Rd → R be any three times con-
tinuously differentiable function whose third partial derivatives are Lipschitz con-
tinuous and bounded. Consider a standard d-dimensional Gaussian vector Z ∼
MVN(0, Idd×d). Assume that for all s ∈ I, we have E {Xs} = 0 and E

∣∣X3
s

∣∣ < ∞.

Then, for any vector of dissociated sums W ∈ Rd with a positive semi-definite
covariance matrix Σ:

1. ∣∣∣Eh(W )− Eh(Σ
1
2Z)

∣∣∣ ≤ BB.2 |h|3 ,
2.

sup
A∈K

|P(W ∈ A)− P(Σ
1
2Z ∈ A)| ≤ 2

7
2 3−

3
4 d

3
16B

1
4

B.2,

where BB.2 = BB.2.1 +BB.2.2 is the sum given by

BB.2.1 :=
1

3

∑
s∈I

∑
t,u∈D(s)

(
1

2
E |XsXtXu|+ E |XsXt|E |Xu|

)

BB.2.2 :=
1

3

∑
s∈I

∑
t∈D(s)

∑
v∈D(t)\D(s)

(E |XsXtXv|+ E |XsXt|E |Xv|) .

Corollary B.3 (Corollaries 8 and 11 in [51]). Let the assumptions of Theorem B.2
hold. If we further require that the random variables Xs and Xt are independent
whenever t lies in I \ D(s), then for any vector of dissociated sums W ∈ Rd with a
positive semi-definite covariance matrix Σ,

1. ∣∣∣Eh(W )− Eh(Σ
1
2Z)

∣∣∣ ≤ BB.3 |h|3 ;
2.

sup
A∈K

|P(W ∈ A)− P(Σ
1
2Z ∈ A)| ≤ 2

7
2 3−

3
4 d

3
16B

1
4

B.3,

where BB.3 is a sum over (i, j, k) ∈ [d]3 of the form:

BB.3 :=
1

3

∑
(i,j,k)

|Ii|αij
(
3αik
2

+ 2αjk

)
βijk.

Here αij is the largest value attained by |Dj(s)| over s ∈ Ii, and

βijk = max
s,t,u

(
E |XsXtXu| ,E |XsXt|E |Xu|

)
as (s, t, u) range over Ii × Ij × Ik.

The following lemma is useful when we deal with Bernoulli variables.

Lemma B.4 (Lemma 9 in [51]). Let ξ1, ξ2, ξ3 be Bernoulli random variables with
expected values µ1, µ2, µ3 respectively. Let c1, c2, c3 > 0 be any deterministic quan-
tities. Consider variables Xi := ci(ξi − µi) for i = 1, 2, 3. Then we have

E |X1X2X3| ≤ c1c2c3 {µ1µ2(1− µ1)(1− µ2)}
1
2 ;

E |X1X2|E |X3| ≤ c1c2c3 {µ1µ2(1− µ1)(1− µ2)}
1
2 .
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Appendix C. Testing calibration procedure on single maturities.

ϵ1 ϵ2 centered triangles triangles critical
0.00818181818181818 0.462727272727272 96 100 99
0.0163636363636363 0.425454545454545 94 100 100
0.0245454545454545 0.388181818181818 88 100 100
0.0327272727272727 0.35090909090909 93 100 99
0.0409090909090909 0.313636363636363 94 100 100
0.049090909090909 0.276363636363636 96 100 99
0.0572727272727272 0.239090909090909 93 100 99
0.0654545454545454 0.201818181818181 95 100 100
0.0736363636363636 0.164545454545454 91 100 100
0.0818181818181818 0.127272727272727 95 100 81
0.0825619834710743 0.123884297520661 93 100 69
0.0833057851239669 0.120495867768595 91 100 67
0.0840495867768594 0.117107438016528 93 100 50
0.084793388429752 0.113719008264462 94 100 40
0.0855371900826446 0.110330578512396 93 100 29
0.0862809917355371 0.10694214876033 96 100 23
0.0870247933884297 0.103553719008264 92 100 18
0.0877685950413223 0.100165289256198 97 100 12
0.0885123966942148 0.0967768595041322 97 100 14
0.0892561983471074 0.0933884297520661 89 100 5

0.09 0.09 98 100 2

Table 1. Goodness of fit testing results of the tetrahedron model.

ϵ1 ϵ2 centered triangles triangles critical
0.00818181818181818 0.608181818181818 96 100 99
0.0163636363636363 0.556363636363636 95 100 98
0.0245454545454545 0.504545454545454 95 100 95
0.0327272727272727 0.452727272727272 92 100 100
0.0409090909090909 0.40090909090909 90 100 98
0.049090909090909 0.349090909090909 96 100 100
0.0572727272727272 0.297272727272727 97 100 98
0.0654545454545454 0.245454545454545 93 100 93

0.06681818182 0.2368181819 91 100 86
0.06818181818 0.2281818182 94 100 89
0.069545454545 0.21954545455 95 100 81
0.07090909091 0.2109090909 96 100 72
0.072272727275 0.20227272725 92 100 65

0.0736363636363636 0.193636363636363 98 100 67
0.0751239669421487 0.184214876033057 96 100 63
0.0766115702479338 0.174793388429752 95 100 55
0.078099173553719 0.165371900826446 98 100 53
0.0795867768595041 0.15595041322314 97 100 45
0.0810743801652892 0.146528925619834 94 100 38
0.0825619834710743 0.137107438016528 96 100 28
0.0840495867768594 0.127685950413223 95 100 15
0.0855371900826446 0.118264462809917 96 100 12
0.0870247933884297 0.108842975206611 87 100 11

0.09 0.0994214876033057 97 100 9

Table 2. Goodness of fit testing results of the triangle model.
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ϵ1 ϵ2 centered triangles triangles critical
0 1.732050808 100 100 100

0.02344631004 1.673018508 99 100 99
0.04689262009 1.613986208 90 100 100
0.07033893013 1.554953908 97 100 99
0.09378524018 1.495921608 96 100 99
0.1172315502 1.436889308 97 100 99
0.1406778603 1.377857009 94 100 100
0.1641241703 1.318824709 96 100 100
0.1875704804 1.259792409 99 100 100
0.2110167904 1.200760109 91 100 100
0.2344631004 1.141727809 95 100 99
0.2579094105 1.082695509 77 100 97
0.2813557205 1.023663209 43 100 98
0.2857519 1.01259465 39 100 99
0.29014809 1.0015261 26 100 97
0.29454427 0.99045754 17 100 93
0.29894045 0.97938898 12 100 88
0.30333664 0.96832043 5 100 75

0.3048020306 0.9646309096 0 100 73
0.30773282 0.95725187 1 100 81
0.312129 0.94618332 0 98 62
0.31652519 0.93511476 0 96 51
0.32092137 0.9240462 0 90 33
0.32531755 0.91297765 0 75 29

0.3282483406 0.9055986098 3 74 12
0.32971373 0.90190909 0 53 9
0.33410992 0.89084053 0 33 4
0.3385061 0.87977198 0 16 3
0.34290228 0.86870342 0 4 1
0.34729847 0.85763487 0 3 1

0.3516946507 0.84656631 0 3 0
0.3751409607 0.7875340101 0 0 0
0.3985872707 0.7285017103 0 0 0
0.4220335808 0.6694694104 0 0 0
0.4454798908 0.6104371106 0 0 0
0.4689262009 0.5514048108 0 0 0
0.4923725109 0.4923725109 0 0 0

Table 3. Goodness of fit testing results of the edge model.
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