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ABSTRACT. We introduce a new ligand-based virtual screening (LBVS) framework that uses
piecewise-linear (PL) Morse theory to predict ligand binding potential. We model ligands as
simplicial complexes via a pruned Delaunay triangulation and catalogue the critical points
across multiple directional height-functions. This produces a rich feature vector, consist-
ing of crucial topological features – peaks, troughs and saddles – that characterise ligand
surfaces relevant to binding interactions. Unlike contemporary LBVS methods that rely on
computationally intensive deep neural networks, we require only a lightweight classifier.
The Morse-theoretic approach achieves state-of-the-art performance on standard datasets
while offering an interpretable feature vector and scalable method for ligand prioritization
in early-stage drug discovery.

1. Introduction

Computational screening has transformed drug discovery from a predominantly phys-
ical endeavour to a digitally-augmented one, accelerating the quest for new medicines by
several orders of magnitude (Brogi, 2019).

1.1. Virtual Screening. Drugs typically modulate biological processes by interacting
with specific regions, called binding pockets, on certain target proteins. Candidate drug
molecules, known as ligands (Di Cera, 2020), may be identified through two primary vir-
tual screening approaches: structure-based and ligand-based. Structure based methods re-
quire detailed knowledge of the target and use this knowledge to identify those ligand
conformations that are likely to be active, i.e. to have a strong affinity for the known bind-
ing pocket (Maia et al., 2020). Ligand-based virtual screening (LBVS) methods, on the other
hand, only use prior knowledge of known active molecules – either existing drugs or natu-
ral compounds – to identify other molecules with similar properties within large databases
(Ripphausen et al., 2011). Structure-based virtual screening is more computationally inten-
sive, but has the advantage of providing direct insight into the properties that determine
active ligands. Conversely, LBVS is typically faster and may be used even in the absence of
structural information about the target protein, but may suffer from a lack of data for new
targets and early-stage projects.

Recent advances in LBVS have been dominated by sophisticated machine learning ar-
chitectures (Sabe et al., 2021). Deep neural networks, in particular, have demonstrated
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FIGURE 1. Two dimensional slices of a protein binding pocket along with
four candidate ligands, A, B, C and D. Here A binds tightly with the target
as drawn, while B binds after realignment. Both C and D are geometrically
incompatible with the target. Note that the boundary of the binding pocket,
drawn here as a W-shaped curve, must be (at least approximately) embod-
ied in the surfaces of A and B for tight binding to be possible. Although this
W-shaped region appears in the boundary of D, it is obstructed by the pro-
trusion occurring on the left side.

impressive performance in the prediction of successfully binding ligands (Wu et al., 2024).
There are two drawbacks ubiquitously encountered when using deep neural networks.
First, they require large amounts of training data and computational resources. For most
therapeutic targets and drug discovery projects, the number of experimentally validated
active ligands is extremely small. This scarcity of data severely constrains the effective-
ness of deep learning based approaches, particularly for novel or understudied protein
targets. The second downside of deep neural networks is their inscrutability: the output
they produce is the end-product of an enormous optimization procedure, and their reason-
ing remains difficult to decipher.

1.2. This Paper. Here we propose a new LBVS method which does not require prior
knowledge of a large number of active ligands, and has the added benefit of employing
an interpretable feature. The core idea is to map each ligand molecule to a vector of real
numbers whose entries capture salient geometric and chemical properties. We describe
the relevant geometry in Figure 1, which depicts a two-dimensional cartoon of a binding
pocket along with four candidate ligands, labelled A through D. The key insight here is
that the binding pocket must share an approximate (in the figure, W-shaped) boundary
with the two well-fitting ligands. Ligand A fits tightly into the binding pocket as drawn,
while ligand B also fits after a suitable rotation. On the other hand, ligands C and D do not
fit at all for different reasons. In particular, C’s boundary does not have the required W-
shape; and although D’s boundary does locally have the correct shape, this gets occluded
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due to the protrusion towards its lower left side. In all cases, once the active ligand has
been correctly aligned, its peaks and valleys will correspond to the peaks and valleys on
the surface of the binding pocket.

An immediate advantage of thinking about binding potentials in terms of boundary
compatibility is that it requires very few known active ligands to discover the correct bind-
ing shape for a given target. As long as the boundaries of A and B are sufficiently dissimilar
from each other (away from the common W-shaped binding regions), there is hope that the
knowledge of these two ligands alone may suffice when teaching a classifier to recognize
the desired W-shape in new candidates. A second benefit, from a computational perspec-
tive, is that the signal we pursue in the ligand molecule is not global – only a small part of
the boundary, probed to a (relatively) small depth, carries all of the desired information.

Conversely, there are three substantial difficulties that must be overcome before such
geometric intuition can be translated to a practical and efficient LBVS pipeline. First, we
must create a tractable geometric model of each ligand molecule, since ligands are typically
presented as lists of atom types and locations or molecular graphs rather than smooth
shapes. Having obtained such a model, the second challenge is to concoct a sufficiently
discriminative compressed representation of the boundary region. Finally, we must solve the
alignment problem – there is only a small part of the ligand boundary along which it may
bind with the target, and we must discover the correct rotation that guarantees a tight fit.
We address the first difficulty in a standard way, i.e. by modelling ligand molecules as
Delaunay meshes built around the set of atom centres. There are only two modifications to
keep in mind: we (a) weight each vertex with the van der Waal radius of the corresponding
atom, and (b) discard all the simplices which contain a chemically irrelevant edge. An
edge, for our purposes, is deemed irrelevant whenever its length exceeds the sum of van
der Waal radii of the boundary vertices.

1.3. PL Morse Theory. If one pretends for a moment that the alignment problem has
been solved, then piecewise-linear (PL) Morse theory (Kosiński, 1962; Brehm and Kühnel,
1987; Grunert et al., 2023) provides an excellent solution to our second difficulty. PL Morse
theory can be used to extract a wealth of topological and geometric information from arbi-
trary simplicial complexes embedded in Euclidean space. Let K ⊂ Rn be such a complex;
writing K0 for its set of vertices, our starting point is a function f : K0 → R. We call f a PL
Morse function on K if it is injective on edges: in other words, we must have f (v) ̸= f (w)
whenever the vertices v and w are connected by an edge of K. For each real number c, the
superlevel set K f≥c is the subcomplex of K consisting of all simplices whose vertices have
f -value exceeding c. As we decrease the threshold c, the topology of K f≥c evolves; the key
observation is that this topology (namely, the homeomorphism type) only changes when
we cross certain critical values of c. An analogous phenomenon occurs when dealing with
a Morse function g defined on some smooth manifold X, as described in Milnor (1963): if
we let C(g) be the set of critical points p ∈ X where the tangent space TxX lies in the orthog-
onal complement of the gradient vector ∇xg, then the superlevel set topology of X along
g may change only at the set of critical values {g(x) | x ∈ C(g)} (these are illustrated in
Figure 2).

We have no recourse to gradient vectors and tangent spaces in PL Morse theory, since
neither the underlying simplicial complex K ⊂ Rn nor the overlaid function f : K0 → R

can be assumed to have any smooth structure. Nevertheless, there is a beautiful local de-
scription of critical vertices. Since f is required to be injective on edges, the neighbouring



4 ALEXANDER M. TANAKA, ARAS T. ASAAD, RICHARD I. COOPER, AND VIDIT NANDA

FIGURE 2. The three critical values a1, a2 and a3 of the W-shaped boundary
region from Figure 1 for the vertical height-function. These occur precisely
at the heights of the critical points x1, x2 and x3 where the tangent space is
horizontal. Note that the boundaries of ligands A and B would Figure 1
would exhibit this critical value pattern along some direction. The ligand
C has completely different critical values from all directions, and ligand D
exhibits two additional critical values due to the obstructive protrusion in its
boundary.

vertices of any given vertex v ∈ K0 must have f -value either strictly greater or strictly
smaller than f (v). The upper link of v along f is the subcomplex of K spanned by all neigh-
bouring vertices u for which f (u) > f (v), as depicted in Figure 3. Now our vertex v is
critical for f if and only if its upper link has non-trivial reduced Betti numbers1. Thus,
given real numbers c > d, the superlevel sets K f≥c and K f≥d can have different Betti num-
bers only when there is at least one critical vertex with f-value in the interval [d, c].

Let K ⊂ Rn be an embedded simplicial complex, and select a vector ξ from the unit
sphere Sn−1 ⊂ Rn. We will denote the corresponding inner product height-function x 7→
⟨x, ξ⟩ by fξ : K0 → R. A rich summary of the boundary of K in the direction ξ may be
obtained by listing, for each critical vertex v of fξ , the vector of Morse data

µ(v, ξ) :=
[

fξ(v) β−1(v, ξ) β0(v, ξ) · · · βn−2(v, ξ)
]
. (1)

Here the first entry is the critical value fξ(v), while the remaining entries are the reduced
Betti numbers of v’s upper link along fξ . This data would be an excellent combinatorial rep-
resentation of K oriented along the direction ξ if all we cared to study were superlevelset
homology. Since we seek a representation that is more aware of metric structure, the Morse

1We defer the precise definition of Betti numbers (and more generally, of simplicial homology) to Ap-
pendix C; here we only remark that these numbers are efficiently computable (Kaczynski et al., 2004; Harker
et al., 2014; Otter et al., 2017; The GUDHI Project, 2024).
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FIGURE 3. The neighbourhood of the vertex v in the illustrated simpli-
cial complex has vertices {u1, . . . , u8}; its higher-dimensional simplices are
(u1u2u3v), (u1u7v), (u4u6v), (u5v), (u7u8v) plus all their faces. The upper link
of v with respect to the vertical height-function fξ is the subcomplex of this
neighbourhood generated by those neighbours which are higher than v – ex-
plicitly, this is the blue region containing the 2-simplex (u1u2u3) plus all its
faces along with the isolated vertex u4. The reduced Betti number of the up-
per link is non-trivial in dimension 0; therefore, v is a critical vertex for fξ .
If we consider the same figure rotated clockwise by 90 degrees so that only
{u1, u2, u7, u8} were above v, then the upper link would have trivial Betti
numbers and v would be non-critical for the corresponding height-function.

data leaves something to be desired. For instance, consider (a simplicial analogue of) the
W-shaped region in Figure 2. One could deform the horizontal axis arbitrarily while pre-
serving all critical points and their Morse data; and after such a deformation one could no
longer expect the resulting shape to fit with the target from Figure 1.

1.4. The PL Morse Transform. Fortunately, the solution to this loss of metric informa-
tion is the same as the solution to the alignment problem – consider more directions. Any
horizontal deformation in Figure 2 would be immediately detected if we also were to ex-
amine Morse data along a slightly different direction ξ ′ ̸= ξ. Moreover, by letting Ξ ⊂ Sn−1

be a sufficiently large collection of unit directions and collating the Morse data of height-
functions along all ξ ∈ Ξ, we are able to (at least partially) address the alignment problem.
The ideal case Ξ = Sn−1, where we examine all possible directions, leads to deep classical
results pertaining to the integral geometry of constructible sheaves and functions (Kashi-
wara and Schapira, 1990, Ch. IX). More recently, similar ideas have permeated topological
data analysis in the guise of the persistent homology transform and related techniques for
shape recognition (Turner et al., 2014; Munch, 2025).
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For an arbitrary Ξ ⊂ Sn−1 and integer d > 0, we build a function from Ξ to the set
of d × (n + 1) real matrices as follows. Given a ξ ∈ Ξ with associated height-function
fξ : K0 → R, we sort the critical vertices {v1, v2, . . . , vm} of K along fξ in descending order
of their critical values. Let us consider the matrix MK,d(ξ) whose i-th row is the Morse
data µ(vi, ξ) from (1). We call this matrix-valued function ξ 7→ MK,d(ξ) defined on Ξ the
PL Morse transform (of K, along Ξ, of depth d); it serves as the theoretical foundation upon
which our feature vector is constructed.

1.5. The Feature Vector. Let us now return to the concrete setting where K ⊂ R3 is a
pruned Delaunay complex corresponding to a ligand molecule. For computational reasons,
we are forced to keep the set of directions Ξ finite; nevertheless, it is in our interest to
distribute these directions uniformly across S2 so that we may capture the geometry of
K from several independent directions. To this end, in our experiments Ξ consists of the
32 directions corresponding to vertices of the pentakis dodecahedron, plus 68 directions
chosen uniformly at random from S2. For each direction ξ ∈ Ξ, we let mξ denote the total
number of critical vertices of the height-function fξ .

We begin by computing K’s Morse transform of depth d = 20 along Ξ – this amounts
to a mξ × 4 matrix assigned to each direction whose rows have the form of (1). Then, we
extract nine column-wise percentiles of these matrix entries across all ξ ∈ Ξ, resulting in a
thirty-six dimensional vector. Additionally, we record the lipophilicity, molar refractivity
and partial charge of each atom in the ligand inside the multisets L, R and Q, respectively.
Thirty-six further numbers are obtained by computing the same earlier percentiles of the
collection {mξ | ξ ∈ Ξ}, L, R and Q, resulting at last in our 72-dimensional Morse feature
vector of the ligand represented by K.

1.6. Classifier. We train a Light Gradient Boosting Machine (LGBM, Ke et al., 2017) for
binary classification on the Morse features and features from the literature. We tune and
evaluate the classifier using 5-fold cross-validation (for details, see Appendix I). The final
evaluation metric scores are the mean scores across all the 5-folds.

2. Results

We evaluate the Morse feature vectorisation on two widely used benchmark datasets
for virtual screening: the Directory of Useful Decoys, Enhanced (DUD-E, Mysinger et al.,
2012) and the Maximum Unbiased Validation (MUV, Rohrer and Baumann, 2009) dataset.
DUD-E consists of active ligands for 102 protein targets, accompanied by property-matched
decoy molecules that resemble the ligands physically but are dissimilar in 2-D chemical
fingerprint space to minimise the chance of binding. The DUD-E Diverse (D8) subset is
a subset of DUD-E consisting of 8 targets that are representative of the diverse protein
categories in DUD-E. Similarly, MUV consists of active ligands and decoys for 17 protein
targets. MUV was designed to not be affected by artificial enrichment or analogue bias by
ensuring that actives are close to decoys in simple chemical descriptor space.

We compare the performance of a LGBM classifier trained on different non-superpositio-
nal LBVS features to distinguish actives from decoys. We evaluate two versions of our fea-
tures: 36-dimensional Morse features at depth 20 and 100 directions without the chemical
percentiles (M); and the 72-dimensional chemistry-enhanced Morse features at depth 20
and 32 directions (M+C). We also test a 27-dimensional baseline feature consisting of nine
percentiles of each 3D ordinate of the atoms of the randomly rotated molecule (R3P). We
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compare against the following shape-based features: Ultrafast Shape Recognition (USR,
Ballester and Richards, 2007); and the unweighted subset of Weighted Holistic Invariant
Molecular descriptors (Wu, Todeschini and Gramatica, 1997). Additionally, we compare
against the following hybrid shape- and chemistry-based features: Ultrafast Shape Recog-
nition with CREDO Atom Types (UCT, Schreyer and Blundell, 2012); and the full set of
Weighted Holistic Invariant Molecular descriptors (W).

2.1. The DUD-E database. Table 1 displays the mean and per target performance of
tuned LGBM classifiers trained on a variety of different LBVS features generated from the
D8 subset. Morse features have the highest mean AUROC of 0.84 ± 0.08 of all shape-based
features, though for certain D8 targets (GCR and KIF11) Wu features have higher mean
AUROC scores. The second-best shape-based feature is Wu scoring a mean AUROC of
0.81 ± 0.10. Chemistry-enhanced Morse features achieve the highest mean AUROC score
of 0.97 ± 0.03 of all features. UCT is the second-best overall feature with a mean AUROC
of 0.92 ± 0.07.

TABLE 1. The mean AUROC per D8 subset target and the overall mean AU-
ROC of various LBVS methods. The method with the highest AUROC per
target is displayed in bold and the highest shape-based method is under-
lined.

Shape Shape & Chemistry

Target M R3P USR Wu M+C UCT W

AKT1 0.87 0.65 0.77 0.82 0.99 0.98 0.92
AMPC 0.80 0.56 0.74 0.79 0.94 0.88 0.84
CP3A4 0.66 0.52 0.53 0.60 0.92 0.79 0.72
CXCR4 0.85 0.61 0.81 0.78 0.99 0.93 0.87
GCR 0.86 0.65 0.83 0.87 0.99 0.94 0.95
HIVPR 0.93 0.71 0.83 0.90 0.99 0.96 0.96
HIVRT 0.82 0.63 0.75 0.78 0.96 0.90 0.85
KIF11 0.90 0.67 0.87 0.91 0.98 0.98 0.96

mean 0.84 0.62 0.76 0.81 0.97 0.92 0.88
SD 0.08 0.08 0.10 0.10 0.03 0.07 0.08

2.2. The MUV database. Table 2 displays the performance of tuned LGBM classifiers
trained on a variety of different LBVS features generated from the MUV dataset. The per
target performance is also shown for the whole dataset. Morse features have the highest
mean AUROC of 0.64 ± 0.11 of all shape-based features and the highest mean AUROC
across 12/17 targets. Wu features are the second-best shape-based feature with a mean
AUROC of 0.61 ± 0.13 and the highest mean AUROC across 7/17 targets (achieving the
highest score of all types of features for the 692 target). Chemistry-enhanced Morse features
achieve the highest mean AUROC score of 0.74 ± 0.12 of all features and the highest mean
AUROC across 14/17 targets. Notably, W features and Morse features are the joint second-
best method despite Morse features containing no explicit chemical information.
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TABLE 2. The mean AUROC per MUV target and the overall mean AUROC
of various LBVS methods. For each target the method with the highest AU-
ROC is displayed in bold and the highest shape-based method is underlined.

Shape Shape & Chemistry

Target M R3P USR Wu M+C UCT W

466 0.58 0.54 0.56 0.56 0.60 0.64 0.61
548 0.72 0.57 0.62 0.65 0.85 0.74 0.69
600 0.58 0.59 0.58 0.62 0.59 0.59 0.64
644 0.70 0.57 0.59 0.70 0.83 0.83 0.75
652 0.63 0.57 0.57 0.43 0.71 0.57 0.60
689 0.62 0.62 0.46 0.45 0.75 0.57 0.44
692 0.64 0.49 0.62 0.74 0.64 0.59 0.72
712 0.69 0.51 0.61 0.62 0.74 0.63 0.71
713 0.67 0.66 0.65 0.57 0.74 0.70 0.72
733 0.64 0.45 0.44 0.53 0.66 0.45 0.59
737 0.71 0.50 0.63 0.65 0.83 0.65 0.67
810 0.64 0.43 0.46 0.62 0.77 0.48 0.61
832 0.58 0.43 0.52 0.59 0.79 0.81 0.53
846 0.78 0.47 0.45 0.73 0.89 0.70 0.81
852 0.64 0.55 0.67 0.70 0.81 0.73 0.67
858 0.52 0.49 0.57 0.73 0.76 0.60 0.69
859 0.54 0.52 0.53 0.54 0.62 0.41 0.50

mean 0.64 0.53 0.56 0.61 0.74 0.63 0.64
SD 0.11 0.10 0.12 0.13 0.12 0.14 0.14

3. Discussion

Performance. On both D8 and MUV, Morse features achieve the highest performance
among the shape-based features and chemistry-enhanced Morse features are the best per-
forming of all the evaluated features. Chemistry-enhanced Morse features score signifi-
cantly better than vanilla Morse features, demonstrating the importance of chemical infor-
mation for accurately identifying active ligands. Indeed, the average hybrid shape- and
chemistry-based feature outperforms the average pure shape-based feature with the best
shape-based feature being at best equal to the worst hybrid feature on MUV. Without ex-
ception, all features perform better on the D8 subset than the MUV dataset, confirming
that MUV is a more challenging dataset. Tellingly, the baseline R3P has almost random
performance on MUV (AUROC of 0.53± 0.10) whilst having some predictive power on D8
(AUROC of 0.62 ± 0.08), suggesting that MUV is also less biased in shape space.

Robustness. For Morse features, increasing both the depth and the number of direc-
tions improves the generalisation error with diminishing returns (Figure 4). On the D8
subset, the performance plateaus around a depth of 13 and 32 directions. The lack of any
significant local peaks in the performance indicates that the features are well-behaved with
respect to the depth and number of directions. Reassuringly, this means that these pa-
rameters do not have to be optimised or tuned to find a local maxima in performance –
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FIGURE 4. The mean AUROC score against depth of our LGBM classifier
trained on Morse feature vectors computed using 100 directions (a), 32 pen-
takis dodecahedral directions (b), 12 icosahedral directions (c), 8 cubic direc-
tions (d) and 1 direction (e) for the D8 subset. Error bars are 95% confidence
intervals.

just selecting a reasonably high value should be sufficient to extract most of the possible
performance. This behaviour is expected as probing a molecule from more directions in-
creases the chance of identifying salient geometric features, and after sufficiently many
directions the sample percentiles of the components of the Morse feature should tend to
the population percentiles of the Morse feature for an infinite number of directions.
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FIGURE 5. The mean AUROC score against depth of the LGBM classifier
trained on chemically-enhanced Morse feature vectors computed using 32
directions (a) and Morse feature vectors computed using 100 directions (c)
for the D8 subset. For comparison, the best-performing external shape- and
chemistry-based feature UCT (b) and the best performing external shape-
based feature Wu (d) are plotted with dotted lines. Error bars are 95% confi-
dence intervals.
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The performance of chemistry-enhanced Morse features is relatively unaffected by the
depth unlike vanilla Morse features (Figure 5). For all depths, chemistry-enhanced Morse
features dominate the performance of the second-best feature whilst Morse features only
surpass the performance of the second-best shape-based method at a depth of around 10.
This implies that the chemistry has a larger affect than the geometry on the performance
in virtual screening datasets as the chemical components of the chemistry-enhanced Morse
feature are the only components independent of depth.

Modifying the Morse transform to record the Morse data of the critical and non-critical
vertices or randomly selecting vertices degrades the performance of the feature (see Fig-
ures N3 and N4), which empirically justifies the Morse-theoretic approach of focusing on
critical vertices.
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Appendix A. Virtual screening

To a large extent, the biological activity of a ligand depends upon how well it binds
to a target protein Di Cera (2020); this binding affinity is a complicated function of the
geometric and chemical properties of both molecules. Ligand-based virtual screening (LBVS)
is a high throughput, in-silico method for selecting molecules with high binding affinity
from a dataset, using prior information about drugs which are known to bind successfully
with the target (Ripphausen et al., 2011). The effectiveness of virtual screening can have a
substantial contribution to the success of drug discovery projects (Brogi, 2019; Sabe et al.,
2021).

A crucial aspect of LBVS is the process used to measure the similarity of a candidate
ligand to known actives. Here we describe a new method for comparing molecular geom-
etry based on Morse theory. The chemical aspects considered here, on the other hand, are
more standard and well-known. Explicitly, besides knowledge of the atom locations in 3D
and their van der Waals radii, we only make use of the following chemical properties:

(1) the MMFF94 modified partial charge as implemented in MOE (Chemical Comput-
ing Group , CCG), which accounts for the asymmetric distribution of electrons in
the chemical bonds of a molecule;

(2) the atomic contribution to Wildman-Crippen molar refractivity (Wildman and Crip-
pen, 1999), which is a measure of the polarizability of the molecule; and

(3) the atomic contribution to the Wildman-Crippen lipophilicity (Wildman and Crip-
pen, 1999), which measures the equilibrium distribution of the molecule between
a non-polar and a polar solvent.

In particular, we do not assume any prior knowledge of the target protein binding site,
unlike in structure-based virtual screening.

Appendix B. Molecules as simplicial complexes

There are several reasonable discrete models for representing molecular data; among
the most viscerally geometric is the union of balls, where one constructs balls (of van der
Waals radius) around atom centres. This representation is visually appealing, but rather
awkward from a computational perspective – checking whether or not a point in this union
lies on the boundary is already a cumbersome task. It is therefore customary to represent a
given molecule as a simplicial complex (Spanier, 1966, Ch. 3.1) whose vertices correspond
to atom centres.

For the purposes of building such a simplicial model, we assume access to the finite
subset P of Euclidean space R3 consisting of atom-centres of a given molecule, and the
function w : P → R that sends each atom p to the corresponding van der Waals radius wp.
The weighted distance of a point x ∈ R3 \ P to p is the (possibly negative) real number
dw(x, p) := ∥p − x∥2 − w2

p, where ∥ • ∥ denotes the standard Euclidean norm. The weighted
Voronoi cell of p ∈ P is the subset V(p) ⊂ R3 given by

Vw(p) := {x /∈ P | dw(x, p) ≤ dw(x, q) for all p ̸= q ∈ P} .

Explicitly, this consists of all points in R3 \ P which admit p as a nearest neighbour (in P,
with respect to dw). Each Vw(p) is a closed convex set, and the collection of {Vw(p) | p ∈ P}
forms a regular cell decomposition of R3 – see Aurenhammer and Klein (2005) for details.
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When P is in general position, the dual Voronoi cellulation forms a simplicial complex,
which is called the weighted Delaunay triangulation (Edelsbrunner, 2000) of P and denoted
Dw(P) ⊂ R3. More precisely: the vertex set of Dw(P) is P, and there is a k-simplex for
k ∈ {1, 2, 3} spanning {p0, p1, . . . , pk} whenever the corresponding weighted Voronoi cells
have nonempty intersection, i.e., when

⋂k
j=0 Vw(pj) ̸= ∅. It is possible for simplices in

Dw(P) to contain edges which are far too long to accurately reflect the underlying molec-
ular geometry. We therefore remove every simplex from Dw(P) which contains an edge
{p, q} whose length ∥p − q∥ exceeds the sum wp + wq of van der Waals radii. The resulting
simplicial subcomplex Kw(P) ⊂ Dw(P), which we call the pruned Delaunay triangulation
of P, serves as a convenient geometric representation of each given molecule.

Appendix C. Simplicial homology

To each finite n-dimensional simplicial complex K, one can associate a sequence of vec-
tor spaces called (reduced) homology groups as described below. We impose an arbitrary
ordering on the vertices, so that each k-simplex σ is uniquely expressible as a tuple of ver-
tices (v0, v1, . . . , vk) written in ascending order. The faces of σ inherit this ordering: for each
i in {0, . . . , dim σ}, we let σ−i denote the face of σ obtained by removing vi.

We write Ck for the real vector space obtained by treating the k-simplices of K as a basis.
The k-th boundary operator is the linear map ∂k : Ck → Ck−1 whose action on a basis k-
simplex σ ∈ K is given by ∂k(σ) = ∑k

i=0(−1)iσ−i. Let us also define ∂0 : C0 → R as the
map which sends each basis vertex to 1. Thus, we have a descending sequence of vector
spaces and linear maps:

· · · ∂k+2−→ Ck+1
∂k+1−→ Ck

∂k−→ Ck−1
∂k−1−→ · · · ∂2−→ C1

∂1−→ C0
∂0−→ R

∂−1−→ 0 .

A routine calculation confirms that the composite ∂k ◦ ∂k+1 is the zero map for all k ≥ −1;
or equivalently, the kernel of ∂k contains the image of ∂k+1. The quotient vector space
H̃k(K) := ker ∂k/img ∂k+1 is called the k-th reduced homology group of K; and its dimen-
sion, denoted β̃k(K), is called the k-th reduced Betti number of K. Homology groups satisfy
several remarkable properties, including homotopy-invariance, functoriality, and efficient
computability (Hatcher, 2002, Ch. 2). For our purposes here, it satisfies to note that the
reduced Betti numbers of the one-point space are all zero, and that β̃−1(X) vanishes if and
only if X is nonempty. We say that K is acyclic whenever β̃k(K) = 0 holds for all k.

Appendix D. Piecewise-linear Morse theory

K ⊂ Rn be a finite simplicial complex and denote the set of its vertices by K0. An
assignment f : K0 → R is called a piecewise-linear (or, PL) Morse function on K if it is injective
on every simplex (Brehm and Kühnel, 1987; Bestvina and Brady, 1997; Grunert et al., 2023)
– equivalently, if f (v) ̸= f (w) holds whenever {v, w} forms an edge of K. Let us fix a
PL Morse function f : K0 → R; for each real number c we define the superlevelset K≥c as
the subcomplex of K spanned by all simplices σ whose vertices v ∈ σ satisfy f (v) ≤ c.
PL Morse theory aims to explicitly describe how the homology groups of K≥c evolve as a
function of c.

The upper link of a vertex v with respect to f , denoted L+
f (v), is defined as the (possibly

empty) simplicial subcomplex of K generated by all vertices w ∈ K0 such that {v, w} is an
edge of K and f (w) > f (v). It is straightforward to check that L+

f (v) has dimension at most
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n − 1. Given a pair of real numbers c > d, note that we automatically have a containment
K≥c ⊂ K≥d. The link criterion of PL Morse theory is as follows: if every vertex v ∈ K0 with
c ≤ f (v) ≤ d has an acyclic L+

f (v), then the homology groups of K≥c coincide with those

of K≥d. Thus, the superlevelset homology can only change across those c ∈ R satisfying
f (v) = c for some vertex v whose upper link is not acyclic. These special vertices v are
called the critical points of f , and the corresponding real numbers c = f (v) are the critical
values of f .

Appendix E. The PL Morse transform

Consider a simplicial complex K ⊂ Rn. For each direction vector ξ lying on the unit
sphere Sn−1 ⊂ Rn, let fξ : K0 → R be the inner product map v 7→ ⟨v, ξ⟩. Under generic
conditions, the map fξ is a PL Morse function for which no two critical points have the
same critical value. Let Ξ ⊂ Sn−1 be any subset of generic unit vectors for K, and fix a
positive integer d which is smaller than the number of critical points of fξ for each ξ ∈ Ξ.
We may therefore order, the top d critical values of fξ as cξ

1 > · · · > cξ
d, and write vξ

i for
the unique critical point with value cξ

i . For brevity, the j-th reduced Betti number of the
upper link L+

fξ
(vξ

i ) will be denoted β̃(ξ)i
j. A routine calculation confirms that β̃(ξ)j is zero

whenever j ≥ n − 1.
The Morse transform of K (along Ξ, of depth d) is a function MK,d : Ξ → MatR(d, n+ 1)

that sends each unit vector of Ξ to a certain d× (n+ 1) matrix of real numbers. The i-th row
of this matrix catalogues relevant Morse data of fξ at the i-th critical point pξ

i ; explicitly, it
is given by

MK,d(ξ)i· :=
[

cξ
i β̃(ξ)i

−1 β̃(ξ)i
0 · · · β̃(ξ)i

n−2

]
.

Thus, the first column of MK,d(ξ) contains the top d critical values of fξ in descending order,
while the remaining columns, which are all integer-valued, record reduced Betti numbers
of the corresponding upper links.

Appendix F. Dataset preparation

We use a pipeline based on RDKit to curate and prepare DUD-E and MUV molecules
for descriptor generation. Firstly, duplicate molecules are removed using comparison of
their canonical Simplified Molecular Input Line Entry System (SMILES, Weininger, 1988)
representation. The molecules are then standardised to ensure a consistent representation.
The datasets contain molecules with varying protonation states; therefore, a ‘wash’ step
is included so that each molecule is in a standard protonation state. We generate multi-
ple conformations using RDKit (Ebejer et al., 2012) and after energy-minimisation the con-
former with the lowest calculated force-field energy is retained and used for subsequent
analysis.

Appendix G. The feature vector

Let P′ ⊂ R3 be the collection of atom-centres of a candidate ligand molecule. We first
construct a set Ξ of 100 directions in the unit sphere as follows – 32 directions correspond
to vertices of the (origin-centred) pentakis dodecahedron; and the remaining 68 directions
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are chosen at random by uniformly sampling S2. Our feature vector is constructed in five
steps (MORSE):

(1) Modify the point cloud: we centre P′ about the origin and then apply a rotation
so that the coordinate axes coincide with the principal components; let us call the
resulting point cloud P ⊂ R3.

(2) Obtain the triangulation: we construct the pruned Delaunay triangulation K :=
Kw(P), where w : P → R associates to each vertex the van der Waals radius of the
corresponding atom.

(3) Realise the Morse transform: we compute the Morse transform MK,d of depth
d = 20. Let mξ ≤ d be the total number of critical vertices found along the direction
ξ up to depth d. Since n = 3 in our case, the Morse transform associates a mξ × 4
matrix M(ξ) to each direction ξ ∈ Ξ. We denote the i-th column of M(ξ) by Mi(ξ).

(4) Supplement with chemical data: for each atom in the ligand we insert the atom’s
contribution to the partial charge, molar refractivity and lipophilicity into three
multi-sets2 Q, R and L, respectively.

(5) Encapsulate in one vector: for each integer 1 ≤ i ≤ 4, let Ci be the union
⋃

ξ∈Ξ Mi(ξ)

of i-th columns, recorded as a multi-set. We compute the p-th percentile C p
i of Ci for

all p in {0, 10, 25, 40, 50, 60, 75, 90, 100}. We also compute the same p-th percentiles
of the multi-sets

⋃
ξ∈Ξ mξ , Q, R and L. Finally, we concatenate all the percentiles

of the multi-sets together to obtain a single vector living in R72.

This is precisely the feature vector that we associate to the ligand represented by P′ ⊂ R3.

Appendix H. Rotational invariance

The Morse transform MK,d(ξ) (of depth d) of a simplicial n-complex Kw(P′) along a
direction ξ ∈ Sn−1 is not intrinsically invariant under the action of the special orthogonal
group SO(n) on the underlying point cloud P′ ⊂ Rn unless P′ only consists of one point at
the origin. However, the Morse feature vector of P′ is invariant under the action of SO(n)
on P′ owing to the intermediate step of orienting P′, as described below.

Let C = cov(P′, P′) be the covariance matrix of P′ and its eigendecomposition be C =
EΛET, where Λ = diag(λ1, λ2, . . . , λn) is the matrix of eigenvalues (principal components)
of C and E =

[
e(1), e(2), . . . , e(n)

]
is the matrix of the associated eigenvectors (principal

component axes). Then the point cloud P′ is oriented by first aligning P′ with the principal
component axes and thus transforming it into a canonical pose Pc = P′E, which is invariant
under the action of SO(n) on P′. Due to the lack of uniqueness of the eigendecomposition,
there is more than one canonical pose as there are n! ways of ordering the eigenvectors in
E and reflections of the eigenvectors ±e(i) also satisfy the eigendecomposition leading to
n! · 2n canonical poses (Li et al., 2021). A primary pose P is chosen from the set of canonical
poses {Pc} by

(1) ordering the eigenvalues such that λ1 > λ2 > ... > λn, leaving 2n canonical poses
(assuming no repeated eigenvalues);

(2) selecting the signs of the eigenvectors such that |E| = 1 (making E a proper rota-
tion), leaving 2n−1 canonical poses; and

2Namely, we treat repeat occurrences of the same number as distinct elements.
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(3) keeping the eigenvectors with signs such that skew[P′e(i)] > 0 for all i < n, leaving
one canonical pose (assuming that P′ does not have zero skew along any principal
component axis).

In this way we can orient a point cloud P′ into the primary pose P in a manner that is
invariant under rotations of P′. In turn, the Morse feature vector that is derived from the
primary pose is also rotationally invariant.

Appendix I. Hyperparameter tuning

We tune the hyperparameters of the LGBM classifier using a random search of 200 sam-
ples of the hyperparameter search space given in Table I1. For each 5-fold cross-validation
split of the data, the best performing hyperparameters are selected by choosing the model
with the lowest mean log loss across an inner 5-fold cross validation of the training subset
of the data. Then the best hyperparameters are used to train the model using the whole
training subset of the data, which is then assessed on the held-out test set. This whole
process is repeated across each split of the 5-fold cross validation.

TABLE I1. LightGBM hyperparameters and their tuning search space. Given
a set of hyperparameters S , then uniform(S) denotes uniform random sam-
pling of S and similarly loguniform(S) denotes uniform logarithmic random
sampling of S .

Hyperparameter Search Space

bagging fraction uniform([0.3, 1.0])
feature fraction uniform([0.3, 1.0])

max depth uniform([2, 100] ∩ N)
min data in leaf loguniform([20, 2000] ∩ N)

min sum hessian in leaf loguniform([10−5, 20])
num leaves loguniform([2, 4095] ∩ N)

Appendix J. Evaluation metrics

The receiver operating characteristic (ROC) curve of a binary classifier is the plot of the
true positive rate (TPR) against the false positive rate (FPR) as the threshold of the binary
classifier varies. A common evaluation metric is the area under the ROC curve (AUROC)
given by

AUROC =
∫ −∞

∞
TPR

dFPR
dT

dT ∈ [0, 1] . (2)

It measures how likely it is for a randomly selected member of the positive class to be
ranked above a randomly selected member of the negative class. A score of 0.5 indicates
that the classifier has equivalent performance to a random classifier.

The Boltzmann-enhanced discrimination of the receiver operating characteristic at α
(BEDROCα, Truchon and Bayly, 2007) is given by

BEDROCα =
wAUAC − wAUACmin

wAUACmax − wAUACmin
, (3)
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where the weighted area under the accumulation curve (wAUAC) is given by

wAUAC =

∫ 1
0 F(x)w(x)dx∫ 1

0 w(x)dx
with w(x) = e−αx (4)

and F(x) is the empirical cumulative distribution function (CDF) of the positive class.
BEDROCα is similar to the AUROC, except the contribution of the earlier part of the ROC
curve is exponentially weighted to have a higher contribution. BEDROCα is equal to 0.5 if
the observed empirical CDF has the shape of the CDF produced by a probability density
function proportional to the earlier exponential weight function with parameter α.

The enrichment factor at a fraction χ ∈ [0, 1] (EFχ) is given by

EFχ =

∫ 1
0 F(x)w(x)dx∫ 1

0 w(x)dx
with w(x) =

{
1 if x ≤ χ

0 if x > χ
. (5)

It is a popular metric in virtual screening and measures how much more likely it is to find
a member of the positive class in the first portion of a ranked sample than in the whole
sample.

The relative enrichment factor at a fraction χ ∈ [0, 1] (REFχ) is given by

REFχ =
EFχ

EFχ, max
, (6)

where EFχ, max is the maximum possible enrichment factor in the first χ of a ranked sample,
which depends on the ratio of the positive to negative class.

Appendix K. Feature comparison criteria

There is a smorgasbord of virtual screening methods in the literature and an almost
commensurate number of testing methodologies. Therefore, to ensure a fair comparison
in the main paper we only evaluate our features against those that satisfy the following
criteria:

• LBVS feature. We exclude features that use any information about the protein
binding site.

• Non-superpositional feature. We exclude superpositional features that can only
rank molecules using a similarity metric as these generally perform worse than
classifiers trained on non-superpositional features (see Tables M1 and M2).

• Classified with the same machine learning model. We classify all the features in
the main paper with a tuned LGBM classifier trained and evaluated in the same
manner (see Section I).

Appendix L. Results for additional metrics

In Table L1 we record the mean scores of various metrics and their standard deviations
of our tuned LGBM classifier trained on Morse features at depth 20 and 100 directions
(M); chemistry-enhanced Morse features at depth 20 and 32 directions (M+C); R3P; USR;
USRCAT; WHIM; and WHIMu descriptors. Morse features outperform all other shape-
based features across all four metrics for the DUD-E Diverse dataset and are either best or
joint-best across all metrics for the MUV dataset. Morse features augmented with chemical
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data outperform all other shape and chemistry-based features across all metrics for both
datasets.

TABLE L1. The mean metric scores and their standard deviations of various
ligand-based virtual screening methods for the D8 and MUV datasets. For
each target the method with the best metric score is displayed in bold and
the best shape-based method is underlined.

Shape Shape & Chemistry

Dataset Metric M R3P USR WHIMu M+C USRCAT WHIM

D8

AUROC 0.84 ± 0.08 0.62 ± 0.08 0.76 ± 0.10 0.81 ± 0.10 0.97 ± 0.03 0.92 ± 0.07 0.88 ± 0.08
BEDROC20 0.43 ± 0.14 0.12 ± 0.05 0.30 ± 0.13 0.38 ± 0.15 0.86 ± 0.12 0.70 ± 0.17 0.56 ± 0.17
EF1% 18 ± 9 3 ± 3 11 ± 8 16 ± 9 56 ± 14 44 ± 16 30 ± 12
REF1% 0.29 ± 0.15 0.04 ± 0.05 0.18 ± 0.13 0.26 ± 0.14 0.87 ± 0.16 0.68 ± 0.22 0.48 ± 0.20

MUV

AUROC 0.64 ± 0.11 0.53 ± 0.10 0.56 ± 0.12 0.61 ± 0.13 0.74 ± 0.12 0.63 ± 0.14 0.64 ± 0.14
BEDROC20 0.10 ± 0.08 0.06 ± 0.07 0.07 ± 0.08 0.10 ± 0.09 0.24 ± 0.15 0.13 ± 0.13 0.12 ± 0.11
EF1% 3 ± 6 1 ± 4 2 ± 6 3 ± 6 10 ± 13 4 ± 8 3 ± 7
REF1% 0.005 ± 0.012 0.002 ± 0.008 0.004 ± 0.012 0.005 ± 0.013 0.019 ± 0.026 0.007 ± 0.015 0.006 ± 0.014

Appendix M. Comparison with similarity methods

Similarity (or superpositional) methods rank molecules by their similarity to a reference
or template molecule using a custom similarity scoring function. In Table M1 we record
the mean AUROC of similarity ligand-based virtual screening methods for DUD-E. We
reproduce the results for eSim from Cleves et al. (2019); USR, USRCAT, ROCS (shape),
ROCS (colour) and VAMS from Koes and Camacho (2014); CDK-D Moments, Shape-IT
and Spectral Geometry Covariance 100 evaluations from Seddon et al. (2019); Interlig from
Mirabello and Wallner (2020); and Optipharm-Robust and WEGA from Puertas-Martı́n
et al. (2019).

In Table M2 we record the mean AUROC of similarity ligand-based virtual screening
methods for MUV. We reproduce the results for VSFlow (shape COMBO) from Jung et al.
(2023); Interlig from Mirabello and Wallner (2020); and BRUTUS and ROCS (colour) from
Tiikkainen et al. (2009).

Generally, similarity methods perform worse than machine learning models trained on
non-superpositional features, which can be seen by comparing Tables M1 and M2 with
Tables 1 and 2 and in the main text.

TABLE M1. The mean AUROC per DUD-E Diverse (D8) subset target and
the overall mean AUROC of the full set of 102 DUD-E (D102) targets for of
various similarity methods. For each target the method with the highest AU-
ROC is displayed in bold and the highest shape-based method is underlined.

Shape Shape & Chemistry

Target USR CDK-D Optipharm-Robust ROCS (shape) SGC Shape-IT VAMS WEGA eSim Interlig ROCS (colour) USRCAT

AKT1 0.36 0.58 0.26 0.28 0.62 0.64 0.41 0.26 0.58 0.67 0.37 0.40
AMPC 0.53 0.63 0.63 0.58 0.58 0.59 0.64 0.64 0.62 0.76 0.76 0.73
CP3A4 0.53 0.52 0.53 0.55 0.51 0.54 0.54 0.53 0.58 0.70 0.51 0.51
CXCR4 0.62 0.67 0.71 0.78 0.66 0.65 0.72 0.73 0.79 0.92 0.78 0.65
GCR 0.50 0.63 0.52 0.49 0.66 0.77 0.49 0.50 0.64 0.76 0.59 0.63
HIVPR 0.74 0.62 0.70 0.72 0.63 0.62 0.78 0.71 0.84 0.84 0.69 0.73
HIVRT 0.62 0.50 0.52 0.63 0.50 0.46 0.69 0.52 0.71 0.67 0.61 0.67
KIF11 0.61 0.67 0.83 0.76 0.65 0.77 0.68 0.83 0.73 0.80 0.76 0.69

mean (D8) 0.56 0.60 0.59 0.60 0.60 0.63 0.62 0.59 0.69 0.77 0.63 0.62
mean (D102) 0.52 0.58 0.56 0.60 − 0.61 0.56 0.56 0.76 0.78 0.66 0.55
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TABLE M2. The mean AUROC per MUV target of various similarity meth-
ods. An asterisk * indicates that the AUROC values were estimated from a
figure. For each target the method with the highest AUROC is displayed in
bold.

Shape Shape & Chemistry

Target VSFlow (shape COMBO) Interlig BRUTUS ROCS (colour)

466 *0.62 0.57 0.51 0.56
548 *0.70 0.65 0.61 0.69
600 *0.59 0.59 0.50 0.58
644 *0.62 0.58 0.57 0.59
652 *0.57 0.61 0.42 0.57
689 *0.53 0.58 0.46 0.49
692 *0.63 0.56 0.63 0.65
712 *0.56 0.64 0.45 0.58
713 *0.51 0.51 0.41 0.48
733 *0.54 0.50 0.48 0.53
737 *0.65 0.59 0.46 0.53
810 *0.54 0.65 0.42 0.46
832 *0.70 0.65 0.55 0.62
846 *0.70 0.69 0.65 0.71
852 *0.78 0.67 0.63 0.73
858 *0.54 0.60 0.46 0.52
859 *0.49 0.59 0.51 0.51

mean *0.60 0.64 0.51 0.58

Appendix N. Further ablation studies

We ablate the components of the Morse feature vector, then re-train and test our clas-
sifier on the ablated features to determine the relative effects of the components on the
generalisation error. In Figures N1 and N2 we compare the per target performance of the
chemistry-enhanced Morse features, Morse features and chemical percentile features. For
nearly every target chemical information has stronger predictive power than shape infor-
mation.

In Figures N3 and N4 we see that for both D8 and MUV the Morse-theoretic approach of
focusing on critical vertices yields better performance than considering critical and regular
vertices together, or randomly selecting vertices without replacement.

In Figure N5 we show the performance of various Morse features using different num-
bers of directions for MUV. Similar to the D8 results, the performance saturates around 32
directions and depth 15 (slightly higher than for D8) though the curves are less smooth
with more uncertainty. In Figure N6 we compare chemistry-enhanced and vanilla Morse
features against the best performing external methods in their category for MUV. Similar to
D8, chemistry-enhanced Morse features are much less affected by depth with only a minor
peak around depth 3.
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FIGURE N1. The mean AUROC score per DUD-E Diverse target of our clas-
sifier trained on Morse features at depth 3 and 32 directions enhanced with
the chemical property percentiles (a), chemical property percentiles alone (b),
and Morse features at depth 20 and 32 directions (c). Error bars are 95% con-
fidence intervals.
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FIGURE N2. The mean AUROC score per MUV target of our classifier
trained on Morse features at depth 3 and 32 directions enhanced with the
chemical property percentiles (a), chemical property percentiles alone (b),
and Morse features at depth 20 and 32 directions (c). Error bars are 95%
confidence intervals.
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FIGURE N3. The mean AUROC score against depth of variants of the Morse
feature vector (32 directions) for the DUD-E Diverse dataset. Here depth
refers to the top number (by descending height) of critical vertices in the stan-
dard Morse transform (a), the top number (by descending height) of critical
and regular vertices retained in a variant of the Morse transform (b), the num-
ber of randomly selected (without replacement) vertices in another variant of
the Morse transform (c). Error bars are 95% confidence intervals.
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FIGURE N4. The mean AUROC score against depth of variants of the Morse
feature vector (32 directions) for the MUV dataset. Here depth refers to the
top number (by descending height) of critical vertices in the standard Morse
transform (a), the top number (by descending height) of critical and regu-
lar vertices retained in a variant of the Morse transform (b), the number of
randomly selected (without replacement) vertices in another variant of the
Morse transform (c). Error bars are 95% confidence intervals.
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FIGURE N5. The mean AUROC score against depth of our LGBM classifier
trained on Morse feature vectors computed using 100 directions (a), 32 pen-
takis dodecahedral directions (b), 12 icosahedral directions (c), 8 cubic direc-
tions (d) and 1 direction (e) for the MUV dataset. Error bars are 95% confi-
dence intervals.
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FIGURE N6. The mean AUROC score against depth of the LGBM classi-
fier trained on the Morse feature vector computed using 32 directions (b)
and Morse chemically enhanced feature vector computed using 32 direc-
tions (a) for the MUV dataset. For comparison, the best performing shape-
based method unweighted WHIM (d) and best-performing external shape
and chemistry-based method WHIM (c) are plotted with dotted lines. Error
bars are 95% confidence intervals.

Appendix O. Implementation

Our pipeline is coded in PYTHON 3. We compute the WDTs and Betti numbers using
the GUDHI library (The GUDHI Project, 2024); chemical properties with RDKit (Rational
Discovery LLC et al., 2024); machine learning with SCIKIT-LEARN (Pedregosa et al., 2011)
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and LightGBM (Ke et al., 2017); hyperparameter tuning with RAY TUNE (Liaw et al., 2018);
and throughout we use MATPLOTLIB (Hunter, 2007), NumPy (Harris et al., 2020), PANDAS
(The Pandas Development Team, 2020), and PLOTLY (Plotly Technologies Inc., 2015).

Appendix P. Computational resources

Morse features and all their variants were computed on a cluster node consisting of two
Intel Platinum 8628 CPUs (a 24 core 2.90 GHz Cascade Lake CPU) and 384 GB of memory.
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