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Abstract. We introduce HADES, an unsupervised algorithm to detect singularities in data. This algorithm
employs a kernel goodness-of-fit test, and as a consequence it is much faster and far more scalable
than the existing topology-based alternatives. Using tools from differential geometry and optimal
transport theory, we prove that HADES correctly detects singularities with high probability when
the data sample lives on a transverse intersection of equidimensional manifolds. In computational
experiments, HADES recovers singularities in synthetically generated data, branching points in road
network data, intersection rings in molecular conformation space, and anomalies in image data.
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1. Introduction. The manifold hypothesis asserts that high-dimensional datasets encoun-
tered in practice tend to concentrate near smooth manifolds of low intrinsic dimension. It is
often used to justify the effectiveness of machine learning algorithms in high-dimensional set-
tings, since the curse of dimensionality can be circumvented if the data concentrates on a
low-dimensional manifold. It is, however, evident that several low-dimensional (and hence,
visualizable) datasets do not satisfy the manifold hypothesis. Instead, such data can have
singularities—points at which the local geometry does not resemble n-dimensional Euclid-
ean space for any n. Prime examples of singular loci of datasets include branching points
in neurons and cosmic filaments. Furthermore, standard image datasets (such as MNIST
and CIFAR-10) are known to have nonconstant intrinsic dimension [16], whereas a connected
manifold must possess the same intrinsic dimension throughout.

Whenever such nonmanifold behavior within datasets is of interest, it becomes natural
to wonder whether it can be accurately and automatically identified. Particularly in large,
high-dimensional datasets where visual inspection is impossible, we seek tools to identify and
locate singularities within datasets. Our focus here is on unsupervised singularity detection,
where one has neither recourse to a plethora of training data nor the opportunity to regenerate
samples along an unknown probability measure.

This paper. Here we propose HADES, a hypothesis-testing algorithm for the detection and
exploration of singularities. The basic philosophy is rooted in two elementary observations.
First, by definition, an n-manifold locally resembles a standard Euclidean n-dimensional disk;
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and second, this resemblance can be precisely quantified by measuring the distance between
(the local restriction of) an empirical measure and the uniform measure on the n-disk. HADES
employs a goodness-of-fit test to measure this distance; we are therefore able to obtain a p-
value for rejecting the null hypothesis that a given data point lies in the nonsingular locus of
the underlying space.

Before proceeding to the details, we highlight three important features of the proposed

algorithm below.

(1) Efficiency: HADES uses an explicit formula for kernel MMD (maximum mean dis-
crepancy) to perform its goodness-of-fit test; this has a linear time complexity in the
dimension of data, which forms a substantial improvement on the exponential com-
plexity of the existing topological methods.

(2) Correctness: We show in Theorem 7 that HADES correctly identifies the singular set
arising from the union of two transversely intersecting equidimensional submanifolds
of Euclidean space. The proof uses tools from differential geometry, optimal transport
theory, and concentration inequalities.

(3) Validation: In section 5, we run HADES on several synthetic and real datasets. On
synthetic data, we observe that singularities are correctly detected (Figures 2, 3). And
in the real datasets where we have no access to ground truth, the singularities identified
by HADES exhibit interesting and observable anomalous behavior when compared to
their nonsingular counterparts.

HADES is publicly released on GitHub, accessible by the following link: https://github.

com/uzulim/hades.

Related work. Identifying nonmanifold points and studying their structure often goes
under the name of stratified learning, which attempts to model data using stratified spaces,
instead of manifolds. An early example of studying nonmanifold behavior in data is seen in
[24], where a Poisson mixture model was used to measure locally evaluated intrinsic dimension
that may vary across data. Follow-up works considered data sampled from a union of multiple
manifolds. In multimanifold clustering, one starts with a data sampled from a union of
intersecting manifolds and clusters data by separating them into the individual manifolds
[44, 51, 43, 4, 2, 3]. Evidence for real-world data containing multiple manifolds of mixed
dimension has been recently studied [16, 17, 34]. We remark that unions of manifolds only
constitute a small subset of all stratified spaces. While our algorithm doesn’t recover the
structural information of manifolds, it detects more diverse types of singularities not present
in a union of manifolds.

Stratification learning has received considerable attention from the topological data analy-
sis community. The flagship tool here is persistent homology, which extracts topological infor-
mation at multiple scales of data. In [8, 9, 10], persistent intersection homology was used to
discover stratified structure of data. In [33, 13, 14], algorithms for recovering low-dimensional
stratification structure and homotopy type of a stratified space have been studied. Discovering
a stratification structure of a given simplicial complex [37] and a complex projective variety [25]
has also been studied. In [45, 50], persistent homology was used to detect singularities in data,
and their algorithms have the same objective as our algorithm. Compared to their algorithms,
our algorithm has a significantly improved time complexity and theoretical foundation.
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Dimension estimation and reduction are key steps in our algorithm, for which we sim-
ply apply principal component analysis (PCA) locally. Nevertheless there are many more
advanced dimension estimation methods available, such as [29, 20, 19, 23, 27, 11, 50]. Dimen-
sion reduction methods in the literature include [7, 53, 46, 35, 47]. For a survey of dimension
estimation and dimension reduction algorithms, see [18, 48].

2. Algorithm. The main idea of HADES is to perform the uniformity test at the neighbor-
hood of each data point. The uniformity test measures resemblance of each neighborhood to
a flat disk, and thus determines whether a data point is smooth or singular. Hyperparameters
are required for the uniformity test, which can be chosen either manually or automatically.
The output is then filtered and evaluated, and the best set of hyperparameters is chosen based
on the output evaluation.

2.1. Uniformity test. The uniformity test works in two steps.

Step 1: Dimensionality reduction. We use PCA projection to reduce dimension of each
local neighborhood, and this requires a threshold hyperparameter 7. Suppose the points
z C RP are plugged into the uniformity test. First its estimated dimension d is the number of
principal components required to explain 7 of the total variance. Then the local neighborhood
of data is projected to the d principal components, producing z.

Step 2: Goodness-of-fit test. We use a kernel method to perform a goodness-of-fit test
against the uniform distribution over a disk. We first compute the MMD and then compute
the p-value associated to a null hypothesis. Given z obtained from projection, define the
empirical measure fi, =n; Y _;8,, where 0, is the Dirac delta measure centered at x. Let
u; be the uniform measure over the unit d-dimensional disk. Let A be the kernel MMD
associated to a kernel k. Let S = A(X,,,uy) be the null statistic, where X,, is an independent
and identically distributed (i.i.d.) sample of size n drawn from uy. We define the singularity
score o(z) and the singularity p-value p,(z) as follows:

o(z) = A(fiz,uy),
pe(2)=P[S >0(2)].

The output of the uniformity test is the tuple (¢(z),p,(2)), and one of the main jobs done by
HADES is to compute these for z € {z1,...2,}.

Intuitive explanation. Suppose a data distribution x is a uniform distribution on M C RP.
Given x, consider p;, = the restriction of u to the ball of radius r centered at x. There are
two possible outcomes of the uniformity test:

Case 1: M s smooth at x. The support of g, is a slightly curved disk when r is
sufficiently small. The dimensionality reduction flattens the slightly curved disk into ,uir,
which is supported on a flat disk and has a small nonuniformity. Then /‘ir ~ u; and thus
the goodness-of-fit test fails to reject the null hypothesis. The point = is declared as highly
unlikely to be singular.

Case 2: M s singular at x. The support of y,, does not resemble a flat disk no matter
how small r is. The dimensionality reduction identifies a low-dimensional subspace containing
the fi,,, but fiz, only takes up a small portion of the Euclidean ball it spans. As such, the
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goodness-of-fit test will reject the null hypothesis. The point z is declared as highly likely to
be singular.

Therefore, a large singularity score o (resp., small singularity p-value p,) corresponds to
a high likelihood of the data point lying near the singular locus of the underlying stratifying
space, and vice versa for a small singularity score (resp., large p,) and nonsingular (smooth)
locus.

Technical details. The kernel we use is &(z,y) = (1 — a - (z,9)) "L = Yt ¥z, y)*. To
compute the MMD, we use the following formula, which is proven in Supplementary Material
SM2.

Theorem 1. Let fi, = (85, + -+ + 65,) be a discrete (nonrandom) measure and let uq be
the uniform distribution over the unit d-dimensional disk in R?. Let k be a kernel given by
Kk(m,y) = 5o ap{z,y)¥, and let A be the MMD associated to k. Then we have

A Mn,Ud 222 x’baxj +Za2kﬂdk <d+2k ZH 1H2k>

i=1 j=1

where 3 are the constants Bqj = ﬁfl/zf(% + Ik + 1k + g +1)7t

To evaluate the p-value arising from the MMD, we use its asymptotic distribution for large
sample size n. The MMD is a V-statistic, for which asymptotic convergence under scaling by
sample size holds true (section 5 in [42]).

Theorem 2. Let u be a Borel measure on X C R% and let fi, be the empirical measure of
size n drawn from p. Let k: X x X — R be a function satisfying k(z,y) = k(y,x), and let A
be the MMD associated to k. Then there is a convergence in distribution as n — oo:

e A (fin, ) —> cn+ Y Ni(Z7 = 1).
i=1
Here Zj, are independent standard normals and cx = E[r(X, X)]-E[x(X,Y)]. A\ are eigenval-
ues of the integral operator L[¢] = [ F(z,—)¢(x)d p(z), where &(z,y) = k(z,y) — E[k(X,y)] —
Elk(z,Y)] + E[k(X,Y)].

We obtain the asymptotic distributions by Monte Carlo, i.e., by directly sampling the
null statistics n - A2(ji,, ) and using this to construct an empirical cumulative distribution
function. To compute p-values for events that lie far outside the Monte Carlo simulation, we
use exponential decay to estimate the p-values (see [39]).

Remark. There are many alternative choices for dimension estimation, dimensionality
reduction, and the statistical distance used to perform the goodness-of-fit test. These parts
can be swapped out in a modular way, and the algorithm can be modified to match the user’s
needs. For example, a more sophisticated application might use a fractal dimension estimator,
use UMAP [35] to perform local dimensionality reduction, and use statistical distances such
as the Wasserstein distance. In practice, we found that the kernel MMD is more sensitive
to detecting nonuniformity compared to the Wasserstein distance or its regularized Sinkhorn
approximation [21]. Future improvements of the algorithm could be made by fine-tuning
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each of these steps while using the same conceptual framework. We also remark that the
uniformity test can be trivially parallelized since all computations are local. Thus running
HADES parallel on multiple cores directly speeds it up.

2.2. Filtering and evaluation. We now explain how to filter the singularity p-values into
a binary label and evaluate the quality of the labeling. The labeling quality is ascribed to the
hyperparameter set used to run the uniformity tests, and this gives us a way to choose the
best set of hyperparameters.

The singularity p-values are filtered by applying a knee detection algorithm to the empirical
probability density function of log(1/p,). Here, we apply the logarithm to separate very small
p-values. We use Gaussian kernel density estimation to produce an empirical probability
density function. We use the Kneed [40] algorithm to detect the knee of the probability
density, and declare all points appearing after the knee to be singular points. The knee
detection effectively identifies smooth points since their singularity p-values are relatively
large, so that their distribution of log(1/p,) forms a concentrated mass near 0.

The quality of the binary label produced by the filtering step is evaluated using a metric
we named dispersion score. The dispersion score is defined purely using data points and any
binary label on them. The dispersion score is defined using purity score and separation score.

Definition 3. Let x = (z1,...2n),y = (Y1,-.-Yn) be points and their binary labels, x; €
RP y; €{0,1}. For eachi=1,...n, let N(i) C{1,...n} be a set satisfying i € N'(i). Define a
partition o U Z; ={1,...n}, where T, = {i|ly; = a}.

The purity score u; is the proportion of indices j € N (i) with y; =1, and the separation
score s; is defined as an AUC (area-under-curve) score:

#WN(@)NT)
#N (i)

where tj; = (xj — x;, Hg—m and Ti =3 jen(iynz, (T — @i)-
The dispersion score is defined as

ui(y,N) = : Si(xa%N):AUC{(tij?yj)

jem},

1
D(x,y,N)=a-Di(ug)+ Y _ Da(q), where ¢=1- 5 (si+w),
€1y

where ug = #(Z1)/n is the global purity score, « is a reqularization constant, and D1,Ds are
damping functions, which are bijections D; : [0,1] — [0,1] satisfying D;i(z) < z.'

Separation score quantifies how well the binary labels are cleanly separated along locally
defined axes of direction, ;. Indeed ; is the sum of displacements x; — x; for which y; =1,
and ?;; is the projected length of the displacement x; — z; onto ;. Thus, s; measures how
well the numbers ¢;; can classify the binary labels y; when j € N(4).

Dispersion score detects points x; for which both s; and u; are simultaneously small, while
also penalizing the degenerate case ug =~ 1, when almost all points satisfy y; = 1. The points
x; satisfying ¢ € Z; and s; + u; ~ 0 are far away from other indices j € Z; and have poorly

n the code, the default choice of the damping functions is given by D1 = Fp,2 and Dy = Fy.5,5, where
Fop(t) = (4=2)".

1—a
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defined local boundaries for separating the label 1 from the label 0. By using the damping
functions Dy, Dy, we ensure that only the points x; for which ¢; is sufficiently large make a
meaningful contribution to ®, and also only the degenerate case for which ug ~ 1 makes a
meaningful contribution to .

Remark. HADES is an unsupervised learning algorithm, for which there is no training
dataset whose loss value can be minimized over many sets of hyperparameters. Instead, like
clustering algorithms, the best set of hyperparameters is chosen by optimizing a qualitatively
defined criterion—the dispersion score. The dispersion score differs from the classical cluster-
ing quality measures that reward concentration around centroids of clusters. The difference
is that it aggregates local clustering information gathered from the data points, and thus the
dispersion score can still be made small for complex shapes formed by the binary labels. This
is adequate since the set of singularities of a stratified space have no reason to be concentrated
around their centroid. (See Figure 2; the singular points marked in blue are not point-like
clusters sought by the classical clustering quality measures.)

2.3. Hyperparameter selection. HADES uses the following three hyperparameters:

(1) Local radius r. Used to isolate neighborhoods.

(2) PCA threshold 7. Used for dimension estimation.

(3) Kernel parameter a. Used in MMD of the uniformity test.

The hyperparameters have the following effects. The radius r and threshold 7 both need
to be at the right range to ignore noise and curvature. (For a thorough mathematical analysis,
see [31].) The effect of the kernel parameter o € (0,1) is less obvious. Choosing a different
kernel parameter causes a different local singular geometry to be penalized. However, we
found that the correctness of the output has a low sensitivity to the kernel parameter.

We explain how the sets of hyperparameters to run are automatically chosen by HADES.
As explained before, the basic idea is to optimize the dispersion score over multiple sets of
hyperparameters. These can be either supplied manually by the user or chosen automatically
by HADES. In the automatic hyperparameter selection, we use a grid r € [Fmin, "max], 1 €
[Mmins Tmax)s @ € [Qmin, Gmax), Where we use default values of n € [0.7,0.9] and « € [0.3,0.7] for
the PCA threshold and the kernel parameter.

Meanwhile, the range of radius hyperparameter r is chosen using a local scale detection
algorithm. The idea here is to slowly enlarge a local neighborhood until the intrinsic dimension
of the neighborhood stabilizes. This process is done for multiple data points, and curves of
intrinsic dimension estimates are averaged over them. The Kneed algorithm [40] is used
to detect the threshold at which intrinsic dimension stabilizes, by going backward from the
dimension estimate of the largest neighborhood and shrinking them, and detecting a knee of
the curve. The standard intrinsic dimension estimator by Levina and Bickel [29] was used to
calculate the intrinsic dimensions of the expanding neighborhoods. After obtaining the knee
7, we use the range r € [1.57,5.07].

When the optimal set of hyperparameters is found at the boundary of the grid search,
HADES expands the search range toward that direction of the hyperparameter grid. For
example, consider the grid search on (r,n,a) € [0.1,0.2] x [0.7,0.9] x [0.3,0.7], and suppose
the dispersion score was minimized for (r,n,«) = (0.2,0.8,0.5). Since the optimal choice of r
is found at the maximum of the range [0.1,0.2], HADES will do another grid search on the
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range [0.2,0.3] x [0.7,0.9] x [0.3,0.7] afterward.” This process is repeated until a prespecified
end of search bounds is reached.

2.4. Hypothesis tests. HADES performs two types of hypothesis test: local and global.
The local hypothesis test is performed at each data point to detect the location of singularities.
The global hypothesis test tests the manifold hypothesis, to determine whether the entire
dataset was sampled from a manifold or not.

Local hypothesis test. HADES performs the uniformity test at each data point (see
section 2.1). The uniformity test is the following (nonparametric) null hypothesis significance
test. Denote by B(x,r) C R” the unit ball of radius 7, centered at z. Let x, C B(x,r) be
a dataset. Let © be the set of all Borel probability measures on B(z,7). Let ©g be the set
of uniform measures over a (zero-curvature) d-dimensional disk of radius r containing z. Let
©1 =0\ be the set difference. Then the null hypothesis Hy and the alternative hypothesis
Hy are defined as follows:

Hy :x,, is an i.i.d. sample drawn from some p € O,

H,:x, is an i.i.d. sample drawn from some u € O;.

The following test statistic 7" is used to test the null hypothesis (see section 4 for the mathemat-
ical definition of the singularity score o, and see Theorem 2 for the reason for scaling by #y):

T .= T(Xn N B(IL’, T))?
where T (y) = (#y) 'Ug(dy)-

If T > t,, we reject the null hypothesis Hy in favor of H; at significance level a, and if T' < t,,
we fail to reject Hy. Here ¢t is the (1 — a)-quantile of the null distribution of 7', which is
computationally simulated in the current implementation of HADES.

While ©¢ only consists of uniform measures over a d-dimensional disk, a future work could
consider a nonuniform distribution over a submanifold of nonzero-curvature. Let c¢q,co > 0.
Define ©f to be the set of Borel probability measures p over a smoothly embedded disk
M < B(z,r), such that the density of p has Lipschitz constant < ¢; and the curvature
of geodesics over M is < co. Let ©) = ©\0). Then an analogous hypothesis test can
be formulated by replacing (©9,©;) with (©f,0)). To quantify the effect of curvature and
nonuniformity, one could use the main result from section 4 of [31], where a Wasserstein bound
is derived.

A caveat of this local hypothesis test is a false discovery of singularities. If we declare a
data point to be singular whenever its associated p-value is below pg, then we expect that
approximately npg data points out of the total n data points tested will be false positives
declared as singular. This is because p-value is uniformly distributed under the null hypothesis.
However, the false discovery is accounted for by the global hypothesis test, as explained below.

2In the implementation, we actually use a slightly more sophisticated method for expanding radius range.
Observe that the volume of a d-dimensional ball with radius r is wgr?. We expand the radius parameter range
such that this estimated local volume expands linearly.
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Global hypothesis test. HADES contains a partial implementation of testing the manifold
hypothesis on the whole dataset. This determines whether the whole dataset (as opposed to
individual data points) was sampled from a smooth manifold or not. While more work is
needed for a full implementation of the hypothesis test, experimental evidence in Figure 4
shows much promise. Let x,, C R” be a given dataset. Let © be the set of all Borel probability
measures on R”. Let @8; be the set of all uniform measures over a compact smooth manifold
M Cc RP. Let 6§ = @\@g’ . The null hypothesis Hy and the alternative hypothesis H; are
defined as follows:

Hy :x, is an i.i.d. sample drawn from some p € @53,

H, :x, is an i.i.d. sample drawn from some p € @?.

We propose using the test statistic 7 to test the null hypothesis, which is defined as

T = Sq({p1,---pn});
where p; = p-value obtained from the local hypothesis test at z; € x,,,

Sq({p1,...pn}) = max{(nq)"'#{p: < ¢}l € q}

It is difficult to access the null distribution of TG, because then we need a computational
simulation of all smoothly embedded compact manifolds. However, Figure 4 shows the boxplot
of TG for 160 datasets following the null hypothesis (blue) and 120 datasets not following the
null hypothesis (orange). While this is insufficient for a full statistical analysis, we attain an
AUC score = 1 and the boxplot shows a clear separation between the two types of datasets.
A comprehensive simulation of the null distribution of TC is left for future work.

We give a heuristic reasoning for why T'C is able to distinguish a manifold from a stratified
space. First, note that the number (ng)~'#{p; < ¢} represents the ratio of how many p-values
satisfy p; < ¢ compared to ng. In practice we choose shrinking values 0.5 =¢1 > -+ > ¢, =0.01
where q = {q1,...¢m}. Since Sy takes the maximum of these ratios, it detects a concentration
of small p-values. When the data is sampled from a manifold, Sq ~ 1 because a density
fluctuation happens rarely for a data sampled from a manifold, causing p-values to be roughly
uniformly distributed over (0,1). When the data is sampled from a stratified space, the
geometric singularity causes a clump of data points to return very small p-values, and thus
Sq > 1. Thus when Sq ~ 1, we interpret the small p-values to be false positives detected from
the local hypothesis tests, and declare the dataset to be sampled from a manifold. Conversely,
when Sq > 1, we declare the dataset to be sampled from a stratified space.

3. Comparison with topological methods. We demonstrate significantly improved time
complexity and statistical foundation of HADES in the singularity detection task, compared to
the previous topological methods. Topological methods of singularity detection are based on
persistent homology, a prominent tool from topological data analysis [50, 45, 10, 8,9, 33, 13, 14].
Persistent homology computes topological features at varying scales of data, and the main
idea behind topological methods for singularity detection is to compute persistent homology
on local neighborhoods of data. In particular, the recent algorithms in [50, 45] use the fact
that a small annular neighborhood of a point on a manifold has the topology of a sphere,
whose topology is well-understood.
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Time complexity. A major advantage of HADES over singularity detection algorithms
based on persistent homology is that HADES scales much better to high-dimensional data.
We first have the following.

Theorem 4. The time complexity of the uniformity test on n points in RP is O(n’D).

Proof. The dimensionality reduction step is an application of PCA. SVD is performed on
a rectangular matrix of dimension k x D, which has the time complexity of O(k%2D) [49]. With
the estimated dimension of Li, a matrix multiplication between a rectangular matrix of size
(k x d) and a diagonal matrix of size (d x d) is performed, for which the time complexity is
O(kd), which is less than O(k2D). This step thus amounts to the time complexity of

Ty = O(k*D).

The goodness-of-fit step computes the MMD of a d-dimensional point set of size k. Fol-
lowing the expression computed in Theorem 1, the time complexity for this step is

Ty = O(k*d + k + kd) = O(k*d). |

In comparison, the time complexity of persistent homology increases exponentially in the
intrinsic dimension of data. The computational complexity of Ripser [6], a highly optimized
Python package for computing persistent homology, is O(s®), where s is the number of sim-
plices constructed. However, a dataset of k points has a total of s = ( dil) = O(k*t1) simplices
of dimension d. A small annular local neighborhood of a d-dimensional manifold is topolog-
ically a (d — 1)-sphere and requires computationally constructing d-simplices. Therefore, the
computational complexity of the (d — 1)th persistent homology group is O(k3¢+3). Persistent
homology computation corresponds to the uniformity test, where in our algorithm we instead
use PCA and kernel MMD. Using the computational complexity of the uniformity test given
above, we have the following comparison of computational complexity incurred by local shape

analysis:

Uniformity test: ~ O(k*D),
Persistent homology: — O(k*3+3).

Thus we observe an exponential dependence of persistent homology computation on the intrin-
sic dimension d of data, whereas the uniformity test has a linear dependence on the ambient
dimension D. When D > d, preprocessing data by dimensionality reduction allows us to
circumvent the dependence of HADES on the ambient dimension D.

In Figure 1, we compare computation times of HADES (blue curve) and Ripser (orange
curve). Each of the four plots shows computation times for a fixed dimension,” but varying
sample size. We observe that while HADES shows poorer performance than Ripser in low-
dimensional data, the situation is quickly reversed in high-dimensional data.

3For d-dimensional data, we use samples of the unit d-dimensional ball for HADES and samples of the unit
(d — 1)-dimensional sphere for Ripser.
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Diminishing persistence. We observe from computational experiments that the topolog-
ical signature of a high-dimensional sphere has a small persistence. This appears to present
problems in applying the standard practice in topological data analysis, which declares a point
on the persistent diagram as a genuine signal only if the point has a high persistence. In the
case of the d-dimensional sphere, one seeks one highly persistent point on the d-dimensional
persistence diagram, since the d-dimensional sphere has a 1-dimensional dth homology group,
and all other kth homology groups are zero for £ > 0.

As such we define the STS at (d,n) to be the most persistent point of PD4(X,,), where
PDg4(X,,) is the dth persistence diagram of the Rips filtration on X,,, and X,, is an i.i.d. sample
of size n from the d-dimensional sphere. Figure 1 tabulates birth times and persistence (y-axis)
of the STS at (d,n) for varying sample size n (2-axis) and the dimension d (different curves,
color-coded). The STS is significant because it is the main signal sought by the standard
practice of topological data analysis.

Figure 1 indicates that the STS of a high-dimensional sphere has a small persistence and
a large birth time. The small persistence tells us that STS becomes increasingly unreliable in
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Figure 1. Top row: Comparison of computation time of local shape analysis in HADES (blue) versus Ripser
(orange), a highly optimized library for computing persistent homology. Bottom row: Persistence of the signif-
icant topological signature (STS) in high-dimensional spheres decays significantly across dimensions.
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high dimensions, due to it resembling “topological noise.” This appears to defy the current
paradigm of topological data analysis where highly persistent topological features are to be
seen as genuine signal and other topological features are to be seen as noise. The large birth
time tells us that one cannot use a small connectivity threshold to detect STS, and therefore
that it is difficult to reduce the number of high-dimensional simplices appearing in the full
filtration of a point cloud.

This situation may be improved by using low-dimensional topological signal of high-
dimensional spheres, which runs on smaller time complexity. In fact, even the 1-dimensional
sphere (circle) exhibits systematic high-dimensional topological signals in large connectivity
thresholds [30, 1], and high-dimensional spheres exhibit systematic low-dimensional topologi-
cal signals.

4. Theoretical guarantee. In this section, we will define a mathematically precise version
of the singularity detection algorithm, and state a theorem guaranteeing that the algorithm
detects singularities correctly. In the following, we fix the ambient dimension D and threshold
parameter 1 € (0,1). We first define the PCA dimension estimator and projector precisely.

Definition 5. Given p, a Borel probability measure on RP, its estimated dimension d(,u),
and linear regression L(u) are defined as

ci(#) :min{k“/\kJrl ot Ap §77}a

M+ +Ap
£L(p) =span <5 (1 Az, Ep, &zw))’

where (A1,...Ap) are eigenvalues of X[u], E(u, A) is the A-eigenspace of ¥u], and X[u] is the
covariance matriz of . The parameter n is implicit from the notation d(u), L(p).

Using d and L, we define the mathematically precise version of the singularity score. In
the following let A(yu,v) denote the kernel MMD associated to the Gaussian kernel x(z,y) =
exp(—7 - ||z — yl||?) for some fixed > 0. Also denote by ug the uniform measure over the unit
d-dimensional disk centered at the origin. We first define the abstract singularity score, and
use this for empirical measures to define the empirical singularity score.

Definition 6. The abstract singularity score is defined as
o) =A(pL,ug),

where d=d(p) and p, =TI(p, L) is the pushforward of p along the projection to L.
Let x={x1,...2,} CRP and let r > 0. Denote x(z) =xNB(z,7)\{z}, where B(z,r) CRP
is the open ball of radius r, centered at z*. The local empirical measure of x at z is

o 1
:u(z)—gz,r #X(Z) z 5y )

yEX(2)

4The point z is excluded for a technical reason concerning Wasserstein concentration inequalities, although
the proofs can be modified to be included if necessary.
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where g, ,(v) is the pushforward of a measure v by the affine map x — r~(x — z). The ith
empirical singularity score of x is defined as

Gi(x,m,m) = o (fu(x:)).

Note that all of cz, L, o depend on the choice of dimension estimation threshold . We now
state the setup and the main theorem.

Setup. Let M = M; U M, where My, My C RPL are smooth compact d-dimensional mani-
folds embedded in R”. Suppose there exist dg,¢ > 0 such that the following holds for every
x € My N Ms: the tangent spaces T, M7 and T,.M> intersect at a dp-dimensional subspace,
and all principal angles of the pair are > ¢. Let p be the uniform measure over M, and let
X, = (X1,...Xp) be an i.i.d. sample of size n drawn from u.

Theorem 7 (theoretical guarantee). There exist constants §,m—,n+,ca,cp,m0 > 0 depending
only on M such that the following holds. Given n € [n_,n4|, r < ro, and q € (0,1), the
following implications both hold for all i with probability at least q, when n is large enough:

(1) when the distance of X; from My N My is less than car, then &; > 2¢;

(2) when the distance of X; from My N Ms is greater than cpr, then &; <,
where 6; = 6;(X,1,1).

The proof of the theorem requires much work, and it is presented in Supplementary Ma-
terial SM3. One main tool for the theorem is the Wasserstein distance, instead of the kernel
MMD, which is possible since A(u,v) < /27 - W(u,v) for the Gaussian kernel k(z,y) =
e~ Mlz—yl? (Lemma SM20). The advantage of the Wasserstein distance is that it is intuitively
easy to prove geometric claims.

It has the following key ingredients:

(1) For a fixed z € M and as r — 0,n — oo, the empirical measure fi(z) converges to
the uniform distribution over 7, M° := T, M N B(0,1), where B(0,1) C R? is the unit
ball of radius 1. Convergence is quantified using the Wasserstein distance (Proposition
SM13).

(2) The singularity score function p+ o(u) is a Lipschitz continuous function in p, where
Lipschitz continuity is quantified using the Wasserstein distance (Proposition SM39).

(3) The singularity score of the limiting measure at each point as r — 0,n — 0o is zero at
smooth points and positive at singular points (Propositions SM41, SM42).

(4) By moving sufficiently far away from the singularities, the local neighborhood of a
point only isolates one manifold M; at a time, instead of cutting through both M; and
M, (Proposition SM19).

To understand the proof, the reader is advised to start from the last part, subsection SM3.5,
and work backward to identify the components used in the proof.

We remark that the constants c4,cp appearing in the theorem are unfortunately intrinsic
features of the singularity detection. Suppose that x € M, the ball of radius r is used to isolate
local neighborhood of x, and the distance of = to the singularities of M is ¢ -7 where c € RT.
Then there is an inherent ambiguity in choosing cg such that whenever ¢ > ¢y, x is declared
nonsingular, and whenever ¢ < ¢y, x is declared singular.
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5. Experiments. We implemented HADES in Python and performed various computa-
tional experiments. Singularity detection lacks a ground truth for most real-world datasets
and is an unsupervised learning algorithm. We follow the standard two-step approach to assess
the performance of a singularity detection algorithm:

(i) Synthetic data. We plot singularities detected from 2- and 3-dimensional datasets
and visually inspect that the singularities are detected correctly. Then we detect
singularities from families of high-dimensional synthetic datasets whose singularities
are completely understood by construction, and use a receiver-operating-characteristic
(ROC) curve to quantitatively assess accuracy of the algorithm.

(ii) Real data. We study datasets of road networks, cyclo-octane conformation, im-
ages of handwritten digits, and images of clothing items. For the road network and
cyclo-octane conformation datasets, we recover the already-known locations of the sin-
gularities. For the image datasets whose geometry is not well-understood, we observe
that images with a high singularity score are anomalous from visual inspection.

For details of the experiments, see Supplementary Material SM1.

5.1. Synthetic data: Visualization and ROC curves. We first apply HADES to the 2- and
3-dimensional point clouds in Figure 2, where singular points detected by the algorithm are
marked blue. These synthetic datasets are generated from known data distributions of various
geometric shapes, and uniform noise has been added to the datasets. They demonstrate that
the algorithm is robust to noise and curvature. The algorithm simultaneously detects multiple
types of singularities such as intersections, branching points, sharp corners, and cones. We also
observe that no singularities are detected for the first row, which consist entirely of manifolds.
This is enabled by a heuristic test of the manifold described in subsection 2.4. The sizes of
datasets range from 5,000 to 10,000. The time taken to extract singularities was about 3
minutes per dataset.

Going beyond visual inspection, we quantify accuracy of HADES on three families of
spaces:

(1) One solid d-dimensional ball (singularity at boundary).

(2) Two d-dimensional spheres intersecting at a (d — 1)-dimensional sphere (singularity at

intersection).

(3) Two 2d-dimensional disks intersecting orthogonally at a d-dimensional disk (singularity

at intersection and boundary).
Visual inspection is inadequate for inspecting high-dimensional singularities, so we use a ROC
curve and its AUC to assess the performance. The AUC scores were all > 0.89. The ROC
curves and the AUC are shown in Figure 3.

5.2. Synthetic data: Manifold hypothesis. We perform heuristic tests of the manifold
hypothesis with HADES using the methods described in the second half of subsection 2.4.
Unlike the local tests of detecting singularities, we perform a global test, on one dataset at a
time. For this, datasets consisting of synthetically generated point clouds were created, with
a binary label on whether each point cloud was a stratified space (with singularities) or a
manifold (without singularities). Figure 4 shows the results.

In the figure, we use three different scores to test the manifold hypothesis. The default op-
tion explained in subsection 2.4 is termed SUPC (small uniformity p-value concentration), and
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Figure 2. Singularities discovered by HADES marked blue in synthetic datasets.

we also use two alternative scores: UPUP and KS. Both UPUP and KS compare the empirical
distribution of p-values to the uniform distribution over [0, 1]; here UPUP (uniformity p-value
uniformity p-value) is a kernel MMD test, and KS is a one-sample Kolmogorov—Smirnov test.

As sample sizes increase from 1000 to 8000, AUC values for all of SUPC, UPUP, KS
increase, with UPUP and KS reaching just about 0.7 and SUPC reaching the AUC score
1.00. The boxplot on the right shows the distribution of SUPC scores for the manifolds and
stratified spaces at sample size 8000, demonstrating a clean separation between the two types
of data. This indicates that the manifold hypothesis can be effectively tested with SUPC.

5.3. Real data: Road network. We apply HADES to the Massachusetts Roads Dataset
[36], a dataset consisting of pixelized images of road networks in Massachusetts. Each road
network is mathematically a planar embedding of a graph. Intersections and sharp corners of
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Figure 3. ROC curve and AUC scores of singularities discovered by HADES in synthetic datasets.
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Figure 4. Testing the manifold hypothesis with HADES. Left: AUC of manifold hypothesis performed with

three different scores: SUPC, UPUP, KS with synthetic datasets.

versus stratified spaces at sample size 8000.

Right: Boxplots of SUPC for manifolds

the road are singular points, and everything else is locally a straight line, and thus are smooth
points. From Figure 5, visual inspection reveals that singularities are accurately detected.
Each image had 1500 x 1500 resolution, containing 45,000 to 200,000 pixels with nonzero
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Figure 5. Singularities discovered by HADES marked blue in the Massachusetts Roads Dataset.

Figure 6. Singularities discovered by HADES marked blue in a cyclo-octane conformation dataset, which
are union of two circles. Each row shows rotations of the same 3-dimensional Isomap projection of the 24-
dimensional dataset. The first row shows the whole dataset and the second row shows singularities.
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Figure 7. Images with the lowest singularity scores (left half) and the highest singularity scores (right half),
upon applying HADES to the MNIST handwritten digits dataset.

brightness values. The time taken to run each dataset ranges from 6 to 31 s. Expanding this
analysis, the same computational experiment can be performed to other datasets that can be
modeled as (1-dimensional) graphs, including images of neurons, and filamentary structures
formed by galaxies.

5.4. Real data: Cyclo-octane conformation. We apply HADES to the dataset of cyclo-
octane conformations. This dataset, introduced in [34], consists of 6040 points on the 24-
dimensional space R?* that parametrizes 3-dimensional positions of 8 carbon molecules in the
cyclo-octane CgHyg. The space of cyclo-octane was previously identified to be the union of a
Klein bottle and a sphere, intersecting at two circles [34]. These two circles are singularities
of the space of conformations, and indeed they are correctly detected by HADES, as seen
in Figure 6. The 3-dimensional projections of the conformation dataset, obtained using the
dimensionality reduction algorithm Isomap [46], is displayed in Figure 6; we emphasize that
the computation wasn’t done on the 3-dimensional projection, and instead was done directly
on the original 24-dimensional data.
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Figure 8. Images with the lowest singularity scores (left half) and the highest singularity scores (right half),
upon applying HADES to the Fashion-MNIST dataset.

Running HADES on the entire conformation dataset took 5 s on a standard laptop. This
shows great improvement from the previous benchmark for this dataset, in [45], in which their
singularity detection algorithm Geometric Anomaly Detection took at least several hours on
parallel processing, as informed by the first author in a private communication.

5.5. Real data: Images of handwritten digits and clothing. We apply HADES to image
datasets, of handwritten digits (MNIST) and clothing items (Fashion-MNIST), and find that
images with high singularity scores are visibly more anomalous. MNIST is a standard dataset
of images of handwritten digits [28] consisting of 60,000 data points, where there are 6,000
data points for each digit from 0,1,...9. Each data point is a 28 x 28 = 784-dimensional vector
of brightness values between 0 and 1, where each entry of the vector indicates the brightness
value of each pixel in the image. Similarly, the Fashion-MNIST dataset consists of 28 x 28

images of 10 classes of clothing items,” where there are 6,000 data points per class.

5T-shirt, Trouser, Pullover, Dress, Coat, Sandal, Shirt, Sneaker, Bag, Ankle boot.
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Figure 9. HADES is different from the anomaly detection algorithms; points marked as highly anomalous
are marked in yellow.

We applied HADES on MNIST and Fashion-MNIST datasets on each class of 6,000 images®
and sorted the images according to their singularity scores. Prior to applying HADES, each
784-dimensional image vector was reduced to a 100-dimensional vector by applying discrete
cosine transform. Figure 7 (MNIST) and Figure 8 (Fashion-MNIST) show the results, where
the left half of each figure displays images with the lowest singularity scores and the right half
displays images with the highest singularity scores.

Images on the right half have irregular characteristics when compared to images on the left.
This is explained by the fact that HADES assesses local uniformity. Indeed, images on the left
look similar to each other, indicating that there are a lot more similar images of small, subtle
variations, thus locally constituting a more uniform distribution with a well-behaved variation.
On the other hand, images on the right arise from irregular handwriting and clothing items.
This means that there wouldn’t be a uniform distribution of similar variations of the images,
and thus picked up by HADES as highly singular. The computation time for running HADES
on 6,000 images corresponding to each digit spanned 30 s to 45 s.

5.6. Anomaly detection. We remark that HADES has a different objective to existing
anomaly detection algorithms. Whereas HADES detects anomalies in local geometry, existing
anomaly detection algorithms detect outliers. Along with HADES, three anomaly detection
algorithms were tested in Figure 9 (One-Class SVM [41], Isolation Forest [32], Local Outlier
Factor [15]). The points with a high anomaly score are marked in yellow (viridis colormap).

6. Conclusion. We introduced and studied HADES, an unsupervised learning algorithm
that assigns a singularity score to data points. This is done by measuring how much the local
geometry deviates from a manifold using a goodness-of-fit. The strengths of the algorithm are
first its speed, in particular compared with recent topological approaches, and second that it
can be seen as a first step toward learning the full stratified space. The main disadvantage
is that the goodness-of-fit algorithm simply detects what is not like a disk, and doesn’t give
further details about the local geometry. This is where future research may blossom by using
the richer information of local geometry provided by topological methods; for example, one
may compute persistent homology only at points declared to be singular by HADES. These
research works together aim to create a computational toolbox for modeling general data using
stratified spaces.

5Similar results were obtained from running HADES on the entire dataset of 60,000 images.
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