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ABSTRACT. We develop a version of discrete Morse theory for finite regular CW complexes
equipped with an auxiliary stratification. The key construction is the halo of a cell, which con-
tains all those faces in the boundary that enter closed sublevelsets precisely when the threshold
reaches that cell’s value. The complement of this halo in the boundary, called the shadow, is
always a subcomplex. A stratified discrete Morse function requires Forman’s conditions on
each stratum together with the requirement that closures of paired cells admit filtered col-
lapses onto their shadows. We establish fundamental Morse lemmas: filtered collapses across
regular intervals, and controlled attachments at critical values. For functions satisfying only
the stratum-wise Forman condition, we construct an upper envelope on the barycentric sub-
division whose local Morse data decomposes into horizontal and vertical components. This
yields a simplicial analogue of the standard tangential-normal splitting of local Morse data in
the sense of Goresky and MacPherson.

Introduction

Morse theory provides one of the finest and most successful mechanisms for translat-
ing local analytic information into global geometric insight. Beginning with Morse’s orig-
inal work on counting geodesics [21], the core insight — that the topology of sublevelsets
changes only at critical points, and does so in a controlled manner — has also found spec-
tacular applications when extended to equivariant [2], piecewise-linear [4], symplectic [11],
dynamical [7], and physical [31] contexts. In each case, the fundamental theorems survive:
regular intervals produce no topological change, while critical values yield handle attach-
ments whose nature can be determined by local data of the underlying function near critical
points. We are concerned here with two such extensions — the first of these is the combi-
natorial adaptation developed by Forman for finite CW complexes [12], and the second is
Goresky-MacPherson’s Morse theory for stratified spaces [14].

In Forman’s theory, a discrete Morse function f assigns real values to cells of a CW com-
plex X such that each cell o has at most one exceptional coface T > ¢ with f(7) < f(0), or
at most one exceptional face 7 < o with f(1) > f(c). Cells with no exceptional neighbours
are deemed critical, while the remaining cells assemble into free-face pairs that can be col-
lapsed away. This discrete avatar of Morse theory has also found substantial applications
across diverse fields, including topological combinatorics [3], commutative algebra [15], al-
gebraic topology [28, 10], and geometric group theory [1, 32]. It has also been modified in
several directions — there are filtered [20], equivariant [13, 32], sheafy [9], noncompact [17]
and even 2-categorical refinements [26, 24]. Our goal here is to develop a stratified discrete
Morse theory that combines insights from Goresky and MacPherson’s pioneering work [14]

while retaining the combinatorial essence and flexibility of Forman’s.
1



2 VIDIT NANDA AND FRANCESCA TOMBARI

Therefore, the setting throughout is that of a finite regular CW complex X equipped with
a filtration

X=X2X,-1D2:D2XpD2X 1=0

such that the successive differences X; — X;_;, whose connected components are called
strata, satisfy the frontier axiom (see Section 1.1). This induces a partial order on the strata.
Besides this order, we emphasise at the outset that we impose no manifold structure, no
regularity conditions a la Whitney or Thom-Mather, and no requirement that strata admit
conical neighbourhoods. We forsake these hypotheses deliberately, for two reasons: first, we
do not need them. And second, imposing them would prevent our theory from recovering
Forman's results for the trivial stratification X O @.

The Challenge. Our primary target in this work is the pair of fundamental Morse lem-
mas. The first of these asserts that nothing of topological importance changes across regular
intervals — sublevelsets are homotopy equivalent, and indeed, collapse onto one another in
a filtration-preserving manner. The second one quantifies the change across a critical value:
the sublevelset grows by a controlled handle attachment. Before we can establish (or even
formulate) discrete analogues of these results, we must confront two obstacles.

The first of these is conceptual: how should we even define a discrete stratified Morse function
f : X — R? One might naively require that the restriction f|s : S — R to every stratum
S C X satisfies the axioms of Forman. Such a strategy is antithetical to both the spirit and
the letter of Goresky-MacPherson’s setting, where a crucial additional normal nondegeneracy
requirement is imposed. The gradient of a stratified Morse function f at a critical point must
not annihilate any limiting tangent space of a higher stratum at that point. This nondegen-
eracy condition ensures that gradient flow does not become trapped at stratum boundaries.
What is the combinatorial equivalent of this condition? We have no tangent planes, no gradients
in the differential-geometric sense, and no obvious way to define or detect transversality.

The second obstacle is technical, and we call it the closure problem. In Goresky and
MacPherson’s setting, the sublevelset f<. is unambiguous — it is simply the preimage of the
half-infinite interval (—oo, c] under a continuous function. In sharp contrast, sublevelsets of
the form f<. need not form subcomplexes of the ambient CW complex X precisely because
we allow cells o < 7 to satisfy f(c) > f(7). Following Forman, we are therefore compelled
to work with closures: the relevant object is cl( f<.), the smallest subcomplex containing all
cells with f-value at most c. The problem is that passing to the closure can introduce cells
with arbitrarily large f-values — a cell o with f(o) = 10000 will appear in cl(f<;) if o has
a coface T > o with f(7) < 1 (see Figure 1). There is no parallel to this phenomenon in the
continuous setting, one might as well compare a volcano to a butterfly.

This Paper. Here we resolve both obstacles by introducing the halo h(c; f) of a given
cell ¢ € X along an injective map f : X — IR. This is defined as the collection of all
boundary cells #7 < o such that f(17) > f(¢) and ¢ is the f-minimal coface of 77. Informally,
the halo consists of those faces that appear in the closed sublevelset cl(f<.) precisely when
the threshold c reaches f(c). The complement of the halo in the boundary of ¢, which we
call the shadow of o and denote sh(c; f), forms a subcomplex of the closure cl(¢). The halo
allows us to formulate our combinatorial nondegeneracy condition as follows. In addition
to requiring our putative Morse function to be injective and satisfy the Forman axioms on
each stratum, we further ask that for each cell pair (¢ > 7) lying in the same stratum with
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FIGURE 1. A piece of a cell complex containing one vertex and four edges,
with f-values indicated on the cells. Note that the closure of f-; already con-
tains the central vertex, even though that vertex has f-value 3.

f(o) < f(7), the smaller cell T lies in h(c; f) and the closure cl(0) admits a filtered collapse
onto the shadow sh(c; f).

This new condition ensures that when a cell ¢ is cancelled by its partner T within a stra-
tum, all the collateral faces in the halo can also be collapsed away without disrupting the
stratification. The filtered collapse respects the filtration X, in the sense that it restricts to
a homotopy equivalence at each level. As a result, critical cells now come in two flavours:
there is the standard notion, where a cell ¢ lying in a stratum S is critical if it is unpaired
within S. It is s-critical if it is critical and does not lie in the halo of any other cell. This dis-
tinction is genuinely new: a cell can be critical and contribute meaningfully to the topology
of its stratum, and yet be invisible to the filtered topology of X because it admits cofaces
with smaller f-values lying in higher strata. Only s-critical cells affect the filtered homotopy
type of sublevelsets.

Main Results. Fix a stratified discrete Morse function f : X < R and let ¢ be a cell of
X. Our first main result establishes that there is no material change in the sublevelsets of f
across intervals which contain no s-critical values. Here is an abridged version, see Theorem
4.1 for details.

THEOREM (A). Let [c,d] C R be an interval whose preimage f~' ([c,d)) is {c}. If o is not
s-critical, then cl(f<) admits a filtration-preserving collapse onto cl(f<).

Let us emphasise once again that the collapse promised by this result might occur even
if o is critical, for the reasons detailed above — if ¢ lies in the halo of another cell, then it will
already be present in cl( f<.) and make no material contribution as we increase the threhold
from c to d. Having confirmed that sublevelsets can only change when we cross an s-critical
value, it remains to produce local Morse data by describing the precise handle attachment
across such a value. This task becomes the purview of our next main result (see Theorem 4.2
below).

THEOREM (B). Let 0 € X be an s-critical cell of f with ¢ := f(o). For all sufficiently small
e > 0, the sublevelset c1( f<ce) is the union of cl(o) with cl( f<.—.) along their common intersection

sh(c; f).
In other words, the local Morse data at an s-critical cell ¢ is the pair sh(c; f) — cl(0).
We should specify that this data is manifestly different from Goresky and MacPherson’s tan-

gential X normal decomposition from [14]; their tangential data T occurs along the stratum
S containing the critical point p and is identical to the usual handle attachment data for the
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restriction f|g. Their normal data N is generated by the descending link of S, which resides
in the strata lying strictly above S. This disparity is both a feature — our attachment data
is combinatorially explicit and requires no link computations — and a limitation, in that we
obtain less disentangled geometric information than the smooth theory provides. Our third
and final main result is therefore a peace offering to the reader who would much prefer a
discrete theory that faithfully recreates the continuous one’s T x N product decomposition
of local Morse data.

In fact, here we consider a weaker setup. We still require f : X — R to be injective and
restrict to a discrete Morse function on each stratum, but no further halo-centric constraints
are imposed. We then pass to the barycentric subdivision of X; this is a simplicial complex
Sd(X) whose k-simplices are strictly ascending chains § = [0y < -+ < 0] of cells in X.
The subdivision canonically inherits its stratification from X, where each stratum S C X
induces a unique stratum Sd(S) C Sd(X). The map f extends to Sd(X) via its upper envelope
Uf :Sd(X) — R, given by

Uf(¢) = max{f(c;) |0 <i <k}
The upshot is that sublevelsets of Uf are honest subcomplexes and there is no need to take
closures. We establish that — for the sublevelsets of Uf — the local Morse data at a vertex [0]
in Sd(X) corresponding to each cell o € X admits a join decomposition of the form Hy x V,
where H = H, and V = V,; are subcomplexes called the horizontal and vertical parts of the
data. The terminology is justified by the following observations: if ¢ is critical and S is the

stratum containing it, then H lies in the union of strata < Sd(S) while V lies in the union of
strata > Sd(S).

THEOREM (C). Let o be a critical cell with ¢ := f (o). For all sufficiently small ¢ > 0, the local
Morse data for Uf .. — Uf_ . isa pair

(HxV) — (cone(H) V),
where H lies in the union of strata < SA(S) and V lies in the union of strata > Sd(S).
(This is Theorem 5.9 below).

FIGURE 2. A subdivided version of the Example from Figure 1, this time with
Uf-values on simplices; here the central vertex does contribute to the change
in topology because its lower link consists of two vertices. These lie at the
barycenters of the original edges, and hence have U f-values 1 and 2.

This decomposition is our simplicial analogue of the tangential-normal splitting. The
horizontal part H captures Morse data along the stratum, while the vertical part V records
the directions in which higher strata impinge on ¢. In Figure 2 we consider the barycentric
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subdivision and upper envelope of Figure 1. The central vertex, which had no contribution
in the original model of taking sublevelsets, now admits a lower link of the form H x V,
where H is empty but V has two connected components (these are barycenters of edges
with f-values 1 and 2). Since this link is not contractible, crossing Uf = 3 is guaranteed to
change sublevelset topology.

Related Work. This paper may be viewed as continuing three largely independent re-
search programmes, all of which seek to generalise Forman’s original theory from [12]. The
first of these is the filtered variant due to Mischaikow and Nanda [20]. The main difference
between that setting and ours is that in our work, we allow for the existence of cells o < 7
lying in different strata with f (o) > f(7) — this is expressly prohibited in [20, Def 4.1].

The second overlapping research direction is the more recent output of Knudson and
Wang [16], which also aims to build a stratified discrete Morse theory. Their functions are
only required to restrict to Forman-style discrete Morse functions on each stratum, with
no further requirements. As a consequence, they obtain weak Morse inequalities relating
critical cell counts to Betti numbers, but are unable to extract local Morse data. Our Theorem
(C) shows that even in their setting, one recovers a tangential-normal decomposition in the
barycentric subdivision as long as one has injectivity.

Thirdly, we note the substantial literature on multivector fields, initiated by Mrozek and
collaborators [22, 23, 18], which provides a framework for discrete Conley index theory. A
multivector is a nonempty, convex, connected subset of the face poset; a multivector field is a
partition of a regular CW complex X into multivectors. Stratifications satisfying the frontier
axiom yield acyclic multivector fields, and the Conley-Morse spectral sequence assembles
the homology of X from the Conley indices of its strata. We discuss this connection briefly in
an appendix, but emphasise that multivector field theory imposes no analogue of our halo
collapsibility condition, and therefore does not yield Morse lemmas of the kind we establish
here.

Outline. In Section 1 we describe stratifications of regular CW complexes. Then Sec-
tion 2 introduces halos and shadows, proving their basic properties. In Section 3 we define
stratified discrete Morse functions and the two notions of criticality. Section 4 establishes
Theorems (A) and (B). Finally, Section 5 constructs the upper envelope on the barycentric
subdivision and proves Theorem C. Appendix A tersely summarises the relationship be-
tween our stratifications and acyclic multivector fields.

1. Stratified Cell Complexes

Let X be a regular CW complex. We denote by (X, <) the face poset of X, which contains

all the cells of X ordered by the face relation'. Given any nonempty subcollection S of cells
lying in X, the closure of S is the subcomplex defined as a down-set

cd(S):={reX|t<cforsomec € S};
and dually, the (open) star of S is the up-set

st(S):={rte€X|t>0cforsomec € S}.

1Explic:i’dy, the relation ¢ < 7 holds if and only if the boundary of T contains ¢.



6 VIDIT NANDA AND FRANCESCA TOMBARI

When S = {0} consists of a single cell, we write cl(c) and st(c) rather than cl({c}) and
st({c}). We say that S is connected if any two cells ¢, T in S form endpoints of a finite zigzag:

C>N <N > 21 <> T,

with all #; € S. Finally, we denote by dim S the maximal dimension encountered among the
constituent cells of S.

1.1. Stratifications. A filtration of a finite regular CW complex X is a finite sequence of

subcomplexes
X=X;20X;1D2--D2X1D2XgDX 1=02.

A stratification of X is a filtration such that the successive differences A; := (X; — X;_1)
satisfy the following frontier axiom — given connected S C A;and T C A, if c1(S) N T is
nonempty then T C cl(S). The connected components of A; are called i-strata of the strati-
tication X,. A standard example is the skeletal stratification, where the i-strata are precisely
the i-dimensional cells; this is the finest possible stratification of X. At the other end of the
spectrum, one has the coarsest (or canonical, or minimal) stratification of X into homology
manifolds — see [25].

Remark 1.1. As we have mentioned already in the Introduction, it is customary when defin-
ing stratified spaces to impose additional regularity conditions on the strata. For instance:
one often requires i-strata to be (smooth, piecewise-linear, or homology) manifolds of di-
mension i [30, 19, 29, 25]. We make no such assumptions here. Similarly, it is customary
to assume that strata admit conical neighbourhoods in X. Namely, for each stratum S there
exists a stratified space LS, called the link of S, such that any sufficiently small open neigh-
bourhood US C X of S admits a fiber bundle structure US — S with fiber Cone(LS). Our
stratifications are less rigid in the sense that the strata are not required to admit well-defined
links or homogeneous neighbourhoods.

Nevertheless, we impose the frontier axiom in order to avail of two direct benefits. The
tirst of these is the existence of a well-beloved and oft-used partial order on the strata.

Proposition 1.2. In any stratification X, of X, the relation
T < Sifandonlyif TN cl(S) # @
is a partial order on the set of strata.

PROOF. Reflexivity of the proposed relation is immediate. If T < S and S < R, by
definition of the relation and the frontier axiom, we have T C cl(S) and S C cl(R). This
implies T C cl(S) C cl(R), and hence T < R, showing transitivity. It remains to establish
antisimmetry. Proceeding by contradiction, assume there exist strata S # T such that both
SNcl(T) and T N cl(S) are nonempty. Let us assume that S C A;and T C A; where A; =
(Xi — X;—1) and similarly for A;. We now have containments

T C CI(S) C X;,

where the first inclusion follows from the frontier axiom while the second follows because X;
is a subcomplex, and hence closed in X. Thus, T lies in AN X, which forces i > j. The same
argument gives j > i if we exchange the roles of S and T, whence i = j. Thus, both S and
T must be connected components of the same A;. Finally, since T C cl(S), there exists cells
T € Tand ¢ € S with T < ¢. This forces S and T to lie in the same connected component of
A;, and hence S = T as desired. O
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For the skeletal stratification, the frontier partial order evidently reduces to the familiar
face relation between cells. The second benefit of the frontier axiom is that it guarantees
convexity of all strata, as described below.

Proposition 1.3. Given any triple of cells o < T < ¢’ in a reqular CW complex X, if both ¢ and ¢’
lie in the same stratum S of a stratification X, then so does T.

PROOF. The only nontrivial case occurs when both inequalities among cells are strict,
otherwise T € S is automatic. By construction, the strata of X, partition the cells of X; we
may therefore assume for the sake of contradiction that 7 lies in a different stratum T # S.
Now T intersects cl(S) because T < ¢’ whereas S instersects cl(T) because ¢ < 7. By the
frontier axiom, we therefore getboth S < T'and T < S, which immediately forces the desired
contradiction S = T. O

1.2. Filtered Collapses. We say that distinct cells (o, T) constitute a free-face pair in a
regular CW complex X whenever

st(1) = {o,7}.

In this case, the regularity of X forces dim 7 = dim ¢ — 1 and it is well-known (see eg [6]) that
removing both ¢ and 7 from X produces a subcomplex which remains homotopy equivalent
to X. This free-face pair removal operation is called an elementary collapse; we say that X
collapses to a subcomplex Y if there is a finite sequence of intermediate subcomplexes Z!

X=27'2572>...07k=v

where each Z' has been obtained from the preceding Z'~! by performing a single elementary
collapse. We denote this relationship between X and Y by X \, Y.

Remark 1.4. The reader unfamiliar with this machinery is warned that collapsing X onto Y
is not simply a matter of finding a collection of disjoint free-face pairs in X. When a free-face
pair (¢, T) is removed from X to produce the first subcomplex Z!, the excision of ¢ might
create a new free-face pair (¢/, ') in Z! for some v < 1. Crucially, this new (¢/,7’) is not a
free-face pair in X because st(t’) D {¢’, 0, 7'} has more than two elements.

Let us assume now that X is equipped with a stratification X,; every subcomplex Y C X
inherits this stratification via Y; := Y N X; for all i. We now seek a more refined collapsing
mechanism from X to Y which produces a filtered homotopy equivalence. Thus, the goal is
to not only obtain a homotopy equivalence ¢; : X; — Y; at each level i, but also to require
compatibility with the natural inclusion maps which relate adjacent levels. Explicitly, the
diagram

Xi — Xi+1

‘Pll““ Nl‘PiH

Y —— Yiq

should commute for all i. This task is accomplished by allowing the stratification data to
constrain the class of acceptable elementary collapses — we only permit the removal of
a free-face pair (0, T) when both ¢ and 7 lie in the same stratum S. We will denote the
existence of such a filtered collapse as X Y in order to distinguish it from the ordinary
unfiltered collapses described above.
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Remark 1.5. Assume that the regular CW subcomplex Y C X has been obtained via a filtered
elementary collapse. Denote by (¢, T) the excised pair, let S C (X; — X;_1) be the stratum
containing both cells. For each dimension i, we seek to relate the induced stratification
Y; := YN X; of Y to the original stratification of X in order to make clear why a filtered
homotopy equivalence ¢; : X; — Y; exists. For this purpose, note first that Y; = X; holds
whenever i < j simply because neither ¢ nor 7 are present in any such X;, so we let ¢; be
the identity for such i. Next, we note that (o, 7) is a free-face pair in X; for all i > j — we
have st(7) = {0, T} in X, and since both ¢ and 7 lie in X; this pair remains free in X; for all
i > j. It follows that one can choose the global homotopy equivalence ¢ : X — Y to restrict
to homotopy equivalences X; — Y; as expected, and hence the natural square commutes.

2. Halos and Shadows

Let X be a finite regular CW-complex. Throughout this section, we consider a function
f: X — R that sends each cell o of X to a real number f (o). The lower star of ¢ along f is

st (o;f)={teX|Tt>cand f(1) < f(0)}; (1)

this is evidently a subset of st(c), but — unlike the usual star — it never contains ¢ itself. We
will be particularly interested here in the case where f is injective. For each collection of cells
S C X, letargmin[f/S] denote the subset of all cells T € S which attain the minimal f-value
in the image f(S) C R, with the explicit understanding that argmin|[f /@] = @. For injective
f and nonempty S, the set argmin[f/S] is guaranteed to be a singleton.

Definition 2.1. The halo of a cell ¢ € X along f is defined as
h(o; f) := {1 € X |0 cargmin [f/st™(T;f)]},
while the augmented halo h(c; f) is the (necessarily disjoint) union of h(c; f) with {c}.

Note that if 7 lies in h(c; f) then we must have o € st™(7; f). Thus, both h(c; f) and
h(c; f) are always subsets (but generally not subcomplexes) of the closure cl(¢). For injec-
tive f, a cell T lies in h(c; f) if and only if ¢ is the unique cell in st™ (7; f) with minimal
f-value. This forces the halos of distinct cells along injective f to be disjoint.

Proposition 2.2. Let f : X < R be an injective function. If ¢ # o’ are two distinct cells of X, then
we have h(o; f) Nh(c'; f) = @.
PROOF. If a cell 7 is contained in the intersection h(c; f) Nh(¢’; f), then by definition

both ¢ and ¢’ must lie in st (7; f) and attain the minimal value of f over this lower star.
This violates the injectivity of f. O

The halo of a cell ¢ along an injective f is also well-behaved as a subposet of cl(c

Proposition 2.3. Assume f : X < R is injective. For each cell o of X, the augmented halo h(c; f)
is an up-set of cl(0).

PROOF. We seek to show that given two cells § > a in cl(c) with a contained in E(O',' 1),
we also have B € fl(a; f). If any of the inequalities in ¢ > B > a is an equality, then the result
is immediate. Therefore, we may safely assume o > B > a. We now claim that () > f(0);
to see why, note by injectivity of f that we either have

e f(B) > f(a),in which case f(B) > f(c) holds because o € st™ («; f); or,
e f(B) < f(a), whence B € st («; f) and so f(B) > f(¢) by definition of argmin.
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Thus, in both cases we obtain o € st™(B; f). Assume, for the sake of contradiction, that
B ¢ h(c; f); then there must exist another cell ¢/ # o in st~ (B; f) satisfying f(¢’) < f(0).
But any such ¢’ would automatically lie in the lower star of « and contradict the fact that
has the smallest f-value amongst lower-star cofaces of a. This gives the desired containment
B € h(c; f) and establishes upward closure of the augmented halo. O

Since the removal of any up-set of cells from a regular CW complex leaves behind a
subcomplex, the preceding result guarantees that

sh(c; f) := cl(0) — R(c3 ), @

is a (possibly empty) subcomplex of cl(c), and hence, of X whenever f is injective. We will
call this subcomplex the shadow of ¢ along f. Define, for each real number c, the sub- and
super-levelset of f at c as

feer={oeX|f(o) <c},

frei={ceX|f(o) >c}.
Our interest in the halo stems from the fact that it completely determines the differences
between closures of certain sublevelsets.

Lemma 2.4. Let f : X — R be an injective function, and let [c,d] C R be an interval such that
f>c N f<g consists of a single cell o € X. For any such interval, the difference

A= cl(f<y) — c(f<c)

of sublevelsets has the following structure:
(1) ifo € cl(f<c), then A = &;
(2) ifo & cl(f<c), then A = h(c; f).

PROOF. A cell «y lies outside cl( f<.) if and only if f(7) > ¢ holds for every coface T > 7.
Conversely, 7 lies inside cl(f<;) if and only if there exists some coface T > y with f(7,) < d.
Thus, in order for 7 to lie in A, two properties must hold simultaneously. First, there must
exist some 7. > 7 with f(7.) € (¢, d]. And second, for every other T # T, in st(y) we
must have f(7) > c. The hypothesis requiring f>, N f<4 to equal {c} affects both of these
properties and yields the desired conclusions. Explicitly,

(1) The first property simplifies to the requirement that o = 7, lies in st(y) and satisfies
f(o) # c. Nowifo € cl(f<.) thenall of its faces also lie in cl( f<.) by the subcomplex
property. But since A can only contain faces of ¢, it must be empty in this case.

(2) The second property strengthens to f(t) > d for all T # ¢ in st(vy). Thus, a cell ¢
lies in A if and only if {c} = argmin[f/st(-y)]. There are now two cases to consider.
Either v = 0, or v < o and f(y) > d > f(0). In the latter case, note that ¢ lies in
st (y; f) and is the argmin of f over this lower star.

To conclude the proof, we note from the strengthened version of the second property above
that v € A holds if and only if «y lies in {c'} L h(c; f), as desired. O

3. Stratified Discrete Morse Functions

Fix a finite regular CW complex X and a function f : X — R. The upper closure of each
cell o along f is defined as:

cdd(o;f):={reX|t<cand f(1) > f(0)}. (3)
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Upper closures are dual to lower stars from (1) in the sense that T € c1*(c; f) holds if and
only if o € st (7; f) holds. We call f a discrete Morse function on X in the sense of Forman
whenever the inequality
[t (o f)| + st (o f)| <1

holds for every cell o € X, with | - | denoting cardinality — see Definition 2.2 and Lemma
2.5 of [12] for details. Since X is finite, we can always perturb f slightly so that it becomes
injective while preserving all relevant cardinalities. Let us now impose a stratification X, on
X, as in Section 1.1.

Definition 3.1. A stratified discrete Morse function on X is any injective map f : X — R
such that for every cell ¢ lying in a stratum S C X, we have

1) |el™(o;f)NS|+ |st~(5;f)NS| < 1,and

2) if clt(0; f) NS = {7}, then T € h(c; f) and cl(¢) = sh(c; f).

The first condition of this definition requires the restriction f|s : S — R to be a standard
(albeit injective) discrete Morse function on each stratum S in the sense of [12]. The second
condition is new to the best of our knowledge. Whenever a cell ¢ € S admits a unique T in
c1+((7,' f ) NS, this condition requires the closure of ¢ to collapse onto the shadow subcom-
plex from (2). In other words, all cells in the augmented halo h(c; f) must disappear along
a sequence of elementary collapses”. Another novel feature engendered by our definition is
that critical cells come in two flavours.

Definition 3.2. Let f : X — R be an injective function satisfying Definition 3.1.1. A cell
lying in a stratum S C X is called

e critical for f if both c1*(c; f) N S and st~ (; f) N S are empty; and,
e s-critical for f if it is critical in the sense above and st™ (c; f) is empty.

(The requirement that st~ (o; f) = @ is equivalent to o ¢ h(t; f) for any cell T € X).

From [12, Definition 2.2] it follows that ¢ is critical if and only if it is critical in Forman’s
sense for the restriction f|s : S — R. If the stratification is trivial, then the only stratum in
sightis S = X; in this case, s-criticality coincides with criticality because the first requirement
of the above definition already forces st™ (c; f) to be empty.

4. Local Morse Data

We now turn towards the task of establishing the fundamental results pertaining to sub-
levelsets of a stratified discrete Morse function f : X < IR. The first of these pertains to the
case where an interval [c,d] C R contains no s-critical values. The goal, as mentioned in the
preamble to Lemma 2.4, is to relate cl(f<.) and cl(f<y).

THEOREM 4.1. Let f : X — R be a stratified discrete Morse function and consider an interval
[c,d] C R for which f>.N f<, consists of a single cell o, which is not s-critical. Then there exists a

filtered collapse c1(f<;) ~ cl(f<c).

PROOF. If f(0) = c then by the uniqueness of o we get f<. = f; and there is nothing to
prove; thus we assume f(0) € (c,d|. The argument now decomposes into two cases: either
the lower star st™ (c; f) is empty, or it is not. Of these, the nonempty case is far simpler.

2Moreover, the first pair in any such sequence is necessarily (7, ), because ¢ lies in the open star of every
cell in cl(c) and the only other cell in S that it can possibly be paired with ¢ is 7.
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Case 1: If st (0; f) contains some cell 7, then by (1) we have both o < Tand f(c) > f(7).
By the injectivity of f and the uniqueness of ¢ in f>. N f<;, we get f(T) < ¢, which forces
o € cl(f<c). Lemma 2.4(1) now gives cl(f<4) = cl(f<c), so the trivial collapse suffices.

Case 2: If st~ (0; f) is empty, then since f(0) > c we have o ¢ cl(f<.). Therefore Lemma
2.4(2) yields

cl(f<q) = cl(f<c) = h(e; f).
Since ¢ is not s-critical and st (o; f) is empty, Definition 3.1(2) forces cl(c) - sh(c; f). We
now claim that the same sequence of elementary collapses which reduces cl(c) to sh(c; f)
also reduces cl(f<;) to cl(f<c). First, note from (2) that

cl(c) —sh(c; f) = h(c; f),
so in both scenarios one must excise only those cells which lie in the augmented halo of ¢.
It remains to confirm that the free-face pairs removed from cl(c) are also free-face pairs in
cl(f<4). This amounts to checking open stars, as described in Section 1.2. Explicitly, for each
cell ¥ € h(o; f), we must establish

[st(y) Nel(o)] D [st(y) Nel(f<a)],

since the reverse containment is guaranteed by the fact that f(c) < d. We will proceed by
contradiction, assuming the existence of some p > v lying in cl(f<;) — cl(c). By definition
of cl(f<;) there exists a coface p’ > p with f(p’) < d. Now p ¢ cl(0) implies p’ # 0; and
since ¢ is the only cell valued in [c,d], we get f(p’) < ¢ < f(c). This violates the argmin
property required by y € h(c; f) and hence concludes the proof. O

One strange consequence of the above result is that critical cells of f can only affect the
filtered topology of sublevelsets if they also happen to be s-critical. We now quantify the
change in topology from cl(f<.) to cl(f<;) whenever the interior (c,d) contains a single s-
critical value. This is the purview of the second fundamental theorem of Morse theory. Since
our f is injective, we may safely restrict attention to the case where f>. N f; is a singleton.

THEOREM 4.2. Let f : K — R be a stratified discrete Morse function and o € X an s-critical
cell with ¢ := f(c). For all sufficiently small € > 0, the subcomplex cl(f<c) is the union of cl(c)
with cl(f<c—¢) along the intersection sh(c; f).

PROOF. By finiteness of X and injectivity of f, we are free to choose ¢ > 0 such that ¢ is
the only cell of X lying in f>.—¢ N f<c1¢. And since ¢ is s-critical, we know from Definition
3.2 that st (o; f) is empty. Consequently, ¢ is not in cl(f<.—.), so Lemma 2.4(2) implies that
l(f<cie) equals the union cl(f<._¢) Uh(c; f). Since h(c; f) C cl(¢) holds by Definition 2.1,
we get the containment

cl(fecre) C [el(feme) Uel(a)].

Conversely, cl(0) C cl(f<c4e) since f(0) = ¢ < ¢ + ¢, so the reverse containment also holds.
This proves that cl(f<ct¢) equals the union displayed above. It remains to establish the
pushout property by showing that

sh(c; f) = cl(f<c—e) Nel(0).
Below we will show that the left side is contained in the right side and vice-versa.
* left C right : By (2) and Definition 2.1, if a cell v lies in sh(c; f) then v < ¢ and

o # argmin([f/st™ (7; f)].
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We claim that this inequality forces v € cl(f<c—¢). If st™(1y; f) is empty, then f(y) < f(0)
and hence f(y) < ¢ — € and we get the desired ¥ € f<.— C cl(f<c—¢). Alternately, if some
p € st (; f) satisfies f(p) < f(0), then f(p) < ¢ — e and hence ¢ € cl(f<c—).

* right C left: We show that any cell y in cl(¢') N ¢l (f<._¢) must lie outside h(c; f). If this
v lies in f<._, then we have o ¢ st™(7; f) since ¢ has a higher f-value. Thus, ¢ can not be
the argmin of f over the lower star of v, which means that -y lies outside the augmented halo
of 0. On the other hand, if 7y lies in cl(f<._¢) because some cell p > 7 satisfies f(p) < ¢ —¢,
then the presence of this p once again rules out the possibility that ¢ = argmin[f/st™ (c; f)]
because we have

flp) < c—e<c=flo).
Consequently, we see that y must lie in cl(¢’) — h(c; f) and hence in sh(c; f) by (2). O

5. Local Morse Data via the Upper Envelope

The barycentric subdivision of a finite regular CW complex X is the simplicial complex
Sd(X) whose k-simplices, for all k > 0, are all strictly ascending chains of the form

(:::[00<0'1<"'<0'k]

in the face poset (X, <). The faces 7 < ¢ are obtained by deleting one or more cells from
the underlying chain 0y < --- < 0y. There is a natural order-preserving last cell map w :
Sd(X) — X that sends each such ¢ to its terminal cell oy. It is relatively straightforward
to check that Sd(X) canonically inherits a stratification from X via w — namely, for each
stratum S C X there exists a unique stratum S’ C Sd(X) such that the simplex ¢ lies in
S" if and only if its last cell w(&) lies in S. It is readily seen that S’ consists exclusively of
barycentrically subdivided S-cells, so we will denote it by Sd(S) rather than S’. We assume
throughout this section that X — and hence, Sd(X) - is stratified.

Definition 5.1. The upper envelope of an injective function f : X — R is the function
Uf :Sd(X) — R given by

Uf (foo < -+ <ar]) :=max{f(c;) | 0 <i <k}.
(One may safely define upper envelopes for arbitrary X — IR, but the only case of interest

to us here occurs when f is injective).

The reader is warned that Uf is almost never injective even though the original f is
injective. Consequently, upper envelopes of stratified discrete Morse functions on X rarely
yield stratified discrete Morse functions on Sd(X). The advantage of passing to the upper
envelope is that Uf is order-preserving — given ¢ < 7 in Sd(X), we always have Uf (&) <
Uf(n7) in R. This monotonicity fuels the following elementary result.

Proposition 5.2. Given any function f : X — R and value c € R, the sublevelset
Uf .= {¢ €5d(X) [ Uf(¢) < ¢}
is a subcomplex of SA(X).

PROOF. Assume a simplex { € Sd(X) lies in Uf__ and consider a face 7 < ¢. We see

from Definition 5.1 that Uf(7) is the maximum of f over a smaller set, and therefore we
obtain Uf () < Uf(¢) < c. Therefore, we have 7 € Uf_ as desired. O
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We now seek to explicitly describe the local Morse data of a stratified Morse function
f: X = Ratacell c € X in terms of the sublevesets of Uf in Sd(X) rather than (closures
of) sublevelsets of f in X. For this purpose, it is convenient to better understand the neigh-
bourhood of the corresponding vertex [0] € Sd(X). The open star of [¢] is evidently the
collection of all barycentric simplices whose underlying chains contain ¢ in some position:

stjo] = {[op < --- < 0x) € Sd(X) | 0; = o for some 0 < i < k}.
It follows that the link of [¢], given by
Ik[o] := cl(st]o]) — st[o],

is the subcomplex of Sd(X) comprising all { whose underlying chain 0y < - -- < 0} can be
augmented by o.

Remark 5.3. Specifically, given any ¢ = [0y < - - - < 0] in 1k[o], we must have either
(1) o < 09y, so o fits at the beginning of the chain; or,
(2) 0 < o, s0 0 fits at the end of the chain; or,
(3) 0; <o < 0j41 forsomeiin {0,1,...,k—1}.

In every case these inequalities are strict, so ¢ # o; for any i and therefore ¢ ¢ st|o].

To confirm that lk[c] is a subcomplex of Sd(X) as asserted above, one can either use
the fact that st[c] is an up-set in its closure, or simply note that the removal of any o; from
09 < --- < 0y preserves c-augmentability. Set ¢ := f(¢), and define the lower link of ||
along Uf as

Ik [o] := Ik[o] NUf_,, (4)

where Uf __ is defined analogously to Uf__. Since X is finite, there exists ¢ > 0 such that
Uf _. coincides with Uf _.__, and hence forms a subcomplex of Sd(X) by Proposition 5.2. It
follows that the lower link is an intersection of subcomplexes, and hence a subcomplex of
Sd(X). Lower links play a crucial role in the study of sublevelsets of injective real-valued
maps defined on the vertices of a simplicial complex. By far most prominent instance of this
phenomenon is found in the piecewise linear Morse theory of Bestvina and Brady [4].

Definition 5.4. Let us denote by K; the set of i-dimensional simplices in a simplicial complex
K. Given another simplicial complex L, we recall that the join K x L is the new complex
whose n-simplices are given by

(KxL)y=K,UL,Uu J] KixLj
i+j=n-1

The cone over L is the special case of this construction where K consists of a single vertex.

The cone [o] * I, [o] is evidently a subcomplex of Sd(X); combined with the lower link

itself, it completely characterises the inclusion of sublevelsets Uf .., < Uf__. when fis
injective on X.

Proposition 5.5. Let Uf : Sd(X) — R be the upper envelope of an injective map f : X — R. For
every cell o € X with ¢ := f(0), there exists sufficiently small e > 0 such that Uf _ _,  is the union

of Uf .. with [o] % Ik, [o] along their intersection I, [o].
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PROOF. Since f is injective and X is finite, we may safely choose an ¢ > 0 such that ¢
is the unique cell of X lying in the intersection f>._. N f<.4¢. By Definition 5.1, the upper
envelope Uf attains the same values as f in R. Therefore, any cell

n=lop<--- <oy lyingin (Ufgc+£ —Ufgc_€>

satisfies Uf(17) = c. It now follows from Definition 5.1 and the injectivity of f that o = o;
for some 0 < i < kand f(¢;) < c for all the other j # i. Therefore, using the uniqueness of
o guaranteed by our choice of ¢, we know that the face ¢ < # obtained by removing ¢; from
the underlying chain satisfies (&) < ¢ — ¢, and hence ¢ € lic, [7]. Thus, our 7 has the form

¢ U [o] for some & € 1k [o], as desired. O

The preceding result may disappoint the reader who seeks a more faithful discretisation
of f’slocal Morse data at [0] a la Goresky and MacPherson [14]. The central discrepancy here
is that the lower link L of [¢] along f does not admit an obvious factorisation of the form
TL x NL, where TL is a tangential component which lies entirely within the unique stratum
Sd(S) C X containing [¢], while NL is the normal component that resides in strictly higher
strata SA(T) > Sd(S). There are two immediate obstacles — first, simplicial complexes are
not closed under products, so it is unreasonable to expect the desired TL and NL to form
subcomplexes of Sd(X). Secondly, the simplicial setting frustrates all naive attempts to take
arbitrarily small neighbourhoods around [¢] — the smallest available option is cl(st[c]),
which will necessarily intersect lower strata Sd(T) < Sd(S) whenever there exists a face
T < 0 which liesin T.

Nevertheless, we persist. Consider a (not necessarily critical) cell o of X and fix an injec-
tive function f : X — RR. For brevity, we write L for the lower link lij [o] from (4). The first

step is to isolate two relevant subcomplexes of L, which correspond to the first two cases of
Remark 5.3.

Definition 5.6. A simplex ¢ = [0y < --- < 0i] in L is said to lie in

(1) the horizontal part H of L whenever 0 < ¢, and in
(2) the vertical part V of L whenever o < 0y.

(Both defining properties are preserved when passing to faces of {, whence H and V form
subcomplexes of L).

We catalogue the following elementary and helpful properties of H and V.

Proposition 5.7. Let H and V be the horizontal and vertical parts of the lower link L of o along f.
Then,

(1) the intersection H NV is empty;
(2) the join HxV is L.

PROOF. For (1), note that if a simplex ¢ = [0y < - -+ < 0y] lies in H NV then we arrive at
the absurdity ¢ < 0y < 0} < 0, where the first inequality comes from the definition of V and
the last inequality comes from the definition of H. Moving to (2), assume that ¢ lies in the
difference L — (H U V). By Remark 5.3 there is some i in {0,1, ...,k — 1} with 0; < 0 < 0;41.
But now, the front face [0y < -+ < ;] of € lies in H while the back face (0;11 < -+ < 0%)
lies in V, so ¢ is indeed the disjoint union of simplex of H and a simplex of V' as required by
Definition 5.4. O
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Combining the preceding result with Proposition 5.5, we see that the local Morse data
for Uf atois (H* V) < ([o] * (H % V)). Since the join operation is manifestly associative
on simplicial complexes, we may safely rewrite this as

(HxV) < (([c] xH)x V). (5)

Our next task is to examine how H and V interact with the stratification of Sd(X) inherited
from X. From here onwards, we will assume that f : X < R satisfies Definition 3.1 and that
o is a critical cell of f, but do not insist on s-criticality.

Proposition 5.8. Let H and V be the horizontal and vertical part of the link L of [o] € Sd(X). If
S C X is the stratum containing o, then

(1) H lies in the union Jr<s SA(T) of (subdivided) strata lying at or below the level of S in the
frontier partial order, while

(2) V lies in the union Jr~ g SA(T) of (subdivided) strata lying strictly above S with respect to
the frontier partial order.

(In fact the first assertion holds for all o, whereas the second assertion requires o to be critical).

PROOF. To establish (1), we note from Definition 5.6 that a simplex { = [0p < - -+ < 0%]
of L lies in H if and only if the last cell w({) = oy is a strict face of ¢ in X. Thusif T C X
is the stratum containing oy, we get a nonempty cl(S) N T and hence T < S. Passing to
the subdivision, ¢ must lie in SAd(T) as desired. For (2), given ¢ € V, we know that o is a
strict face of the first cell oy by definition of V, and that f(0p) < f(¢) holds because ¢ lies in
the lower link L of 0. Therefore, we have 0y € st (c; f), and the fact that ¢ is critical now
forces 0y ¢ S (as per Definition 3.2). Thus, oy lies in some Ty > S along the frontier order.
Proceeding similarly from left to right along the chain oy < - - - < 0} = w({), we see that the
stratum T; containing 0; must satisfy T; > T;_; for all i > 0. In particular, it follows that the
stratum T} whose subdivision contains ¢ satisfies T, > Ty > S, as desired. d

Finally, we combine (5) with Propositions 5.5 and 5.8 to arrive at the main result of this
Section.

THEOREM 5.9. Let o be a critical cell for an injective function f : X — IR which satisfies the
first requirement of Definition 3.1. Set ¢ := f(c) and choose any ¢ > 0 so that o is the unique cell
of X with f(o) € [c —¢,c+¢|. Let H and V be the horizontal and vertical parts of the lower link of
(o] along Uf. Then,

(1) Uf .., is the union of Uf _._ with ([o] x H) x V along their intersection H x V; and,
(2) if S C X is the stratum containing o, then [o] x H lies in the union of strata < SA(S) while
V lies in the union of strata > Sd(S).

PROOF. The only assertion which has not been explicitly addressed in previous results
is the claim that [¢0] * H lies in the union U of strata < Sd(S). We already know that every
simplex ¢ € H lies in U from Proposition 5.8, so it suffices to check that [¢] U ¢ is also in
U. By Definition 5.6, we see that ¢ must be the last cell in the underlying chain of [o] U g,
whence [0] U ¢ always lies in S and hence in U, as desired. O
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Appendix A. Multivector Fields and the Conley Index

Let X be a finite regular CW complex. A multivector of X is any nonempty, convex
and connected subset M of the poset (X, <). A partition X = []; M; into multivectors is a
multivector field; these have found substantial use in the combinatorial study of dynamical
systems [22, 23, 18]. Here are four examples of multivector fields, in approximately ascend-
ing order of generality:

(1) The most trivial case occurs whenever each multivector is a single cell of X, so the
multivector field is simply the given partition of X into its constituent cells.

(2) Given a discrete Morse function f : X — R in the sense of Forman, each multivector
is either a single f-critical cell or a pair {0, T} of cells where ¢ < 7, dim T = dim o +
land f(c) > f(7). The resulting multivector field, called an acyclic partial matching,
is fundamental in discrete Morse theory [5].

(3) In[13, Sec 3.2], Freij considers a partition of X into intervals; each interval I} consists
of all cells v € X of the form ¢ < ¢ < 7 for some fixed ¢ < 7 in X, not necessarily
of codimension < 1. Such interval partitions are also multivector fields.

(4) Let X, be a stratification of X as described in Section 1.1 above. The collection of
strata constitutes a multivector field on X — connectedness holds by definition and
convexity follows from Proposition 1.3.

Conversely, not every multivector field produces a stratification in our sense because the
frontier axiom may not hold.

The exit set of a multivector M C X is ex(M) := cl(M) — M; since M is convex, it forms
an up-set in its closure, whence ex(M) is always a (possibly empty) subcomplex of cl(M).
The following definition forms the starting point in a discrete version of Conley’s celebrated
topological study [7] of isolated invariant sets — see for instance [23, Eq (7.4)].

Definition A.1. The homological Conley index of a multivector M C X is defined as the
relative homology group

Coni (M) := Hy(cl(M),ex(M); Z)
for each dimension k > 0. We say that M is critical whenever Cony(M) # 0 for some k.

It is readily checked (by writing out the relevant chain complexes) that when M = {c} is

a single cell, then Cony (M) is nontrivial iff k = dimoc. On the other hand, if M = {o, 7}

contains two cells with ¢ < T and dim 7 = dim ¢ + 1, then Cony (M) is trivial for all k > 0.
Consider the binary relation » on a multivector field .# = {M; C X} given by

M; » M, if there exist 0; € M; and 0; € M; with 0; > 0,

(This is clearly reflexive.) We say that .# is acyclic whenever the transitive closure > of »
forms a partial order on the set of multivectors. Acyclic multivector fields therefore gener-
alise the acyclic partial matchings induced by discrete Morse functions [5]. In fact, it is easily
checked that acyclic multivector fields also subsume the stratifications from Section 1.1.

Proposition A.2. The strata in any stratification of X form an acyclic multivector field, and >
coincides with the frontier partial order on strata.

PROOF. By definition, S » T holds for a pair of strata S # T if and only if there exist cells
o € Sand T € T with ¢ > 7, which in turn occurs if and only if c1(S) N T is nonempty. The
desired conclusion now follows from Proposition 1.2. O
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The reader is warned that the preceding result does not imply that the frontier axiom
holds amongst the multivectors of an acyclic multivector field; we only recover the partial
order implied by the frontier axiom via Proposition 1.2. On the other hand, acyclicity does
allow us to recover the global homology of X from the Conley indices of its multivectors.
Explicitly, since > is a partial order, we may enumerate the multivectors {Msy, ..., My} such
that M, > Mj torces i > j. Therefore,

Pq = U Ml'
i<q
constitutes a filtration of X by subcomplexes. We may now examine the associated Conley-
Morse spectral sequence of this filtration [27, 8], which is populated by relative homology
groups

1 . .
Ep,q . — Hp+q(Fq, Fq_l, Z),

and converges to Ep’, ~ H,4(X). Crucially, it follows from excision that E%,’q is isomor-
phic to the Conley index Cony, ;(M,). Proposition A.2 guarantees a similar mechanism for
assembling the global homology of X from the Conley indices of its strata.
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