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EFFECTIVE WHITNEY STRATIFICATION OF REAL

ALGEBRAIC VARIETIES

MARTIN HELMER, ANTON LEYKIN, AND VIDIT NANDA

Abstract. We describe new algorithms to compute Whitney stratifications
of real algebraic varieties. Using either conormal or polar techniques, these
algorithms stratify a complexification of a given real variety. We then show
that the resulting stratification can be described by real polynomials. We also
extend these methods to stratification problems involving the so-called full
semialgebraic sets as well as real algebraic maps.

1. Introduction

Real varieties arise more naturally in applications than their complex counter-
parts. Unfortunately, the geometry of a real variety is not readily revealed by its
defining polynomials: for instance, every real variety is the vanishing locus of a
single polynomial, whereas the minimal number of defining polynomials forms an
important (and non-trivial) invariant for complex varieties. As such, one often
seeks methods to subdivide a given variety into simpler regions which fit together
coherently. And indeed, cylindrical algebraic decomposition [2,5,6,13,45] provides
precisely such a subdivision into contractible cells. One of our goals in this work
is to outline what we view as a key step in an alternative framework for studying
broad classes of applied and computational problems in real algebraic geometry.

Whitney stratifications. There are many advantages to obtaining a cell decom-
position of a variety—it becomes possible, for instance, to directly compute the
Euler characteristic, and (with a bit more work) the Betti numbers. On the other
hand, cells, being homeomorphic images of open balls, are rather rigid objects.
Cylindrical algebraic decomposition tends to be impractical on larger (or more
complicated) varieties precisely because one often has to perform many subdivi-
sions in order to obtain cells; similarly, the number of these cells can also be doubly
exponential relative to the number of variables [5]. A more general and flexible
paradigm is furnished by the stratifications introduced by Whitney [44], which play
an essential role in microlocal geometry and stratified Morse theory [17, 31].

Definition 1.1. A pair (M,N) of smooth submanifolds of Rn satisfies Whitney’s
Condition (B) if the following property holds at every point q ∈ N . Given any
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Figure 1. A depiction of the Whitney Umbrella, which is com-
monly used to illustrate equisingularity

pair of sequences {pk} ⊂ M and {qk} ⊂ N with lim pk = q = lim qk, if the limiting
tangent space and the limiting secant line

T := lim
k→∞

Tpk
M and � := lim

k→∞
[pk, qk]

both exist, then � ⊂ T .

A Whitney stratification of a subset X ⊂ Rn is any locally-finite decomposition

X =
∐
α

Mα

into smooth, connected nonempty manifolds Mα ⊂ X called strata, so that every
pair (Mα,Mβ) satisfies Condition (B). It is known that every (real or complex)
algebraic variety X admits a Whitney stratification such that for each dimension i
the union Xi of all strata of dimension ≤ i forms a subvariety (see e.g. [43, page 36–
38]). One may therefore identify any such stratification of a k-dimensional variety
X with a flag

(1) X• =
(
∅ ⊂ X0 ⊂ X1 ⊂ · · · ⊂ Xk−1 ⊂ Xk = X

)
of subvarieties, with the implicit understanding that its i-strata are connected com-
ponents of Xi −Xi−1.

One key consequence of imposing Condition (B) on strata pairs is equisingularity :
a sufficiently small tubular neighborhood around a given stratum forms a (locally
trivial) stratified fiber bundle over that stratum [34, Cor 10.6]. As a consequence,
small neighborhoods in X of two points lying in the same stratum Mα are stratified
homeomorphic1 to each other. Consider, for instance, the (real) Whitney Umbrella
from Figure 1. This is the variety X ⊂ R3 defined by x2 − y2z = 0, whose singular
locus is the (positive) Z-axis (depicted as a purple line in the figure). If we take a
small neighbourhood in X of a point (0, 0, z) lying on the Z-axis, then its topology
changes depending on whether z is positive, negative or zero. Thus, the origin must

1A homeomorphism φ : X → Y of stratified spaces is said to be stratified whenever it maps
each stratum S ⊂ X diffeomorphically onto a stratum φ(S) ⊂ Y .
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EFFECTIVE WHITNEY STRATIFICATION OF REAL VARIETIES 3

constitute a stratum separate from the rest of the Z-axis in any valid Whitney
stratification of X.

This paper. The main contribution of our work here is a suite of practical algo-
rithms for constructing Whitney stratifications of real algebraic varieties and re-
lated objects. Our prior work [24]2 describes an effective algorithm WhitStrat for
constructing Whitney stratifications of complex varieties; this algorithm relies on
primary decompositions of conormal fibers (and hence, on Gröbner basis computa-
tion). Here we introduce a new algorithm WhitneyPolar for computing complex
stratifications; it is based on the theory of polar varieties [14] and exhibits better
complexity and runtimes than WhitStrat.

In the introductory remarks to [24], we highlighted the lack of Gröbner basis
techniques over R as a primary obstacle to performing similar stratifications for
real algebraic varieties and semialgebraic sets. We overcome this obstacle here by
examining, for any real variety X ⊂ Rn, an associated complex variety X(C)—this
is obtained by treating (any set of) the real polynomials which define X as elements
of the ring C[x1, . . . , xn]. Having constructed X(C), we obtain an effective Whitney
stratification of X via the following two steps:

(1) we show in Theorem 4.3 that if X•(C) is any Whitney stratification of
X(C) for which each Xi(C) is generated by real polynomials, then the
corresponding real varieties Xi form a valid Whitney stratification of X;
and moreover,

(2) we show in Corollary 4.4 that if a complex variety Y ⊂ Cn is generated by
real polynomials, then running either WhitStrat or WhitneyPolar on Y
produces a Whitney stratification Y• for which each Yi is also generated by
real polynomials.

These two results open the door for stratifying real algebraic varieties via effective
complex techniques. Unlike other efforts in this direction (see for instance [1] which
stratifies hypersurfaces in R3), the algorithm described here works in general for all
dimensions. Moreover, the same techniques also readily adapt to the more general
setting of full semialgebraic sets (see Definition 5.1).

Here we also investigate stratifications of algebraic maps f : X → Y between
real varieties. This amounts to a pair of Whitney stratifications X• of X and
Y• of Y such that f sends each stratum of X• submersively to a stratum of Y•.
If f is a proper map (this always holds if X is compact, for instance), then it
forms a stratified fiber bundle with respect to X• and Y•. In other words, the
restriction f−1(N) � N is an ordinary fiber bundle for each stratum N ⊂ Y . As
a consequence, the homeomorphism type of the fiber f−1(y) depends only on the
stratum N and is independent of the choice of point y ∈ N . To compute such a
stratification of f , we once again proceed by first treating it as a complex algebraic
map fC : X(C) → Y (C) and then using algorithms from [24]. We then show in
Theorem 4.5 that the resulting stratifications of X(C) and Y (C) consist of varieties
defined by real polynomials, and that the corresponding real varieties furnish the
desired stratification of f .

Unfortunately, the requirement that f : X → Y be proper fails quite often in
cases of interest for general algebraic maps. One exception to this rule is when f

2The Arxiv version [24] cited here incorporates both the original paper [24] and its subsequent
correction [26] in one document.
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is a dominant morphism between varieties of the same dimension (see Definition
4.6). For such a morphism f , we are able to partially recreate the stratified fiber
bundle property in Theorem 4.9 by carefully analysing and decomposing the locus
of points at which f fails to be proper.

Roadmap. The rest of this paper is organised as follows. In Section 2 we sum-
marise relevant results and algorithms from [24] for stratifying complex varieties.
The only new material here lies in Section 2.3, where we are able to remove a gener-
icity hypothesis for map stratifications. Section 3 introduces a new WhitneyPolar
algorithm for complex Whitney stratifications which is based on polar varieties. In
Section 4 we show how both our old and new complex stratification algorithms may
be used to stratify real varieties and algebraic morphisms between them. Our task
in Section 5 is to similarly stratify basic closed semialgebraic sets whose inequality
loci are open subsets of the ambient space—these often arise in practical contexts
owing to boundedness or positivity constraints. Finally, in Section 6, we examine
the experimental performance of WhitneyPolar.

2. Whitney Stratifications from Conormal Ideals

In this section we begin with a brief review of the stratification algorithms for
complex varieties and their morphisms. Section 2.1 and Section 2.2 are a review of
the results of [24], restated in a form better suited to the current presentation. On
the other hand, Section 2.3 is mostly new and makes a key generalization of the
map stratification algorithm of [24, Section 6]; it allows us to drop the genericity
requirement from [24, Definition 6.3], so that the Thom-Boardman flag of the given
polynomial map f : X → Y need not intersectX transversely.3 Instead, we consider
arbitrary polynomial maps f : X → Y between complex affine varieties X ⊂ Cn

and Y ⊂ Cm, and derive (in Lemma 2.5) an expression for the locus of smooth
points of X where the rank of f ’s Jacobian drops below its generic value.

A central role in our generalisation is played by a new type of stratification,
which we have called Whitney-Thom-Boardman stratifications of X along f (see
Definition 2.6). Here the decomposition of X into strata is well behaved with
respect to the Thom-Boardman singularities of f .

2.1. Stratification of complex varieties. Consider a pure k-dimensional com-
plex variety, that is a variety all of whose irreducible components are of dimension
k, X = VC(IX) ⊂ Cn defined by a radical ideal IX = 〈f1, . . . , fr〉 in C[x1, . . . , xn].
Let Xreg denote the (open, dense) manifold of smooth points in X and let Xsing =
X − Xreg be the singular locus of X; recall Xsing is a closed proper subvariety of
X, see e.g. [41, Section 6.1] or [35, page 26–27]. The conormal variety of X is the
subvariety of X × Pn−1 given by

Con(X) = {(p, ξ) | p ∈ Xreg and TpXreg ⊂ ξ⊥}.(2)

In other words, Con(X) is obtained by closing the set of pairs (p, ξ) consisting of
points p ∈ Xreg and ξ ∈ Pn−1 such that the inner product 〈ξ, v〉 is zero for all
v ∈ TpXreg. We note the later coordinate is taken to be projective as we identify
all constant multiples of a particular unit direction vector defining the normal to
a plane. The conormal variety comes endowed with a canonical projection map

3See [16, Chapter VI] for a detailed treatment of Thom-Boardman flags.
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κX : Con(X) → X induced by the coordinate projection Cn × Pn−1 → Cn. Work
in the ring C[x1, . . . , xn][ξ1, . . . , ξn] and set

K =

⎡⎢⎢⎢⎣
ξ1 · · · ξn
∂f1
∂x1

· · · ∂f1
∂xn

...
. . .

...
∂fm
∂x1

· · · ∂fm
∂xn

⎤⎥⎥⎥⎦ and J =

⎡⎢⎣
∂f1
∂x1

· · · ∂f1
∂xn

...
. . .

...
∂fm
∂x1

· · · ∂fm
∂xn

⎤⎥⎦ .

The conormal variety Con(X) = VC(ICon(X)) is defined by the radical ideal ob-
tained via the saturation ICon(X) = (IX +K) : J∞—here K is the ideal generated
by all (n−k+1)× (n−k+1) minors of the matrix K , while J is similarly defined
by the (n − k) × (n − k) minors of the matrix J . Note that the singular locus
Xsing is precisely VC(J) ∩X. A definition of ideal saturation and a discussion of
how it is computed may be found in books such as [9, §4.4]. The following result
[24, Theorem 3.1] forms the basis for efficient Whitney stratification of a given
variety X. Recall that given an ideal I its associated primes are the radicals of
the ideals appearing in a minimal primary decomposition of I, see books such as
[9, 35] for definitions and see [10] for a survey of methods for the computation of
associated primes of an ideal via Gröbner basis.

Theorem 2.1. Let X ⊂ Cn be a pure dimensional variety, let Y ⊂ Xsing =
(X −Xreg) be a nonempty irreducible subvariety defined by a radical ideal IY , and
set Iκ−1

X (Y ) := ICon(X) + IY . Let {P1, . . . , Ps} be the associated primes of Iκ−1
X (Y ),

let σ ⊂ {1, 2, . . . , s} be the set of indices i with dimκX(VC(Pi)) < dimY and let

A :=

[⋃
i∈σ

κX(VC(Pi))

]
∪ Ysing.

Then the pair (Xreg, Y −A) satisfies Condition (B).

We first describe a subroutine, called Decompose, which implements this the-
orem for a given subvariety Y ⊂ Xsing. In particular, it computes the dimension of
the elimination ideal arising from each primary component of Iκ−1

X (Y ), and records

those which have dimension less than Y . In effect, this subroutine explicitly con-
structs subvarieties of Y (not necessarily contained in Ysing) where Condition (B)
fails with respect to X.

Decompose(Y,X)

Input: Algebraic varieties Y ⊂ X in Cn, with d := dimY .
Output: A list of subvarieties Y• of Y .
1: Set Y• := (Yd, Yd−1, . . . , Y0) := (Y,∅, . . . ,∅)
2: Set J := ICon(X) + IY
3: For each primary component Q of a primary decomposition of J
4: Set K := Q ∩ C[x]
5: If dimVC(K) < dimY
6: Add VC(K) to Y≥dimVC(K)

7: Return Y•
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It is shown in [24] that the WhitStrat algorithm below correctly computes the
Whitney stratification of the variety X, and is guaranteed to terminate in finitely
many steps.

WhitStrat(X)

Input: A pure k-dimensional variety X ⊂ Cn

Output: A list of subvarieties X• of X.
1: Set X• := (Xk, Xk−1, . . . , X0) := (X,∅, . . . ,∅)
2: Compute Xsing and μ := dim(Xsing)
3: For each irreducible component Z of Xsing

4: Add Z to X≥dimZ

5: For each d in (μ, μ− 1, . . . , 1, 0)
6: Set X• := Merge(X•,Decompose(Pured(Xd), X))
7: Set X• := Merge(X•,WhitStrat(Pured(Xd)))
8: Return X•

The WhitStrat function makes use of two elementary subroutines besides De-
compose; these are invoked in Lines 6 and 7:

(1) Pured extracts the purely d-dimensional irreducible components of the input
variety; this is accomplished via prime decomposition [10, 12].

(2) Let V• andW• be nested sequences of subvarieties of a common variety, with
the length p of V• larger than the length q of W•. Then Merge(V•,W•)
creates a new sequence U• of length p via Ui := Vi ∪Wmax(i,q).

2.2. Flag-subordinate stratifications. By a flag F• on a variety X ⊂ Cn we
mean any finite nested set of subvarieties of the form

∅ = F−1X ⊂ F0X ⊂ F1X ⊂ · · · ⊂ F�−1X ⊂ F�X = X.

The integer � is called the length of F•. There are no additional restrictions on the
dimensions of the individual FiX and, in particular, we do not require successive
differences FiX − Fi−1X to be smooth manifolds or to satisfy Condition (B).

Definition 2.2. Let X ⊂ Cn be an affine variety and F• a flag on X of length �.
A Whitney stratification X• of X is subordinate to F• if for each stratum S ⊂ X
of X• there exists some j = j(S) in {0, . . . , �} satisfying S ⊂ (FjX − Fj−1X).

Our main motivation for considering flag subordinate stratification is to develop
algorithms to stratify algebraic maps between varieties. It is shown in [24, §5]
that a flag subordinate stratification of a complex algebraic variety can always be
computed using the WhitStratFlag algorithm described below. There are two
main subroutines, the first of which is called InducedFlag. This takes as input a
subvariety W ⊂ X and a flag F• on X, and outputs the restriction of F• to W .
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EFFECTIVE WHITNEY STRATIFICATION OF REAL VARIETIES 7

InducedFlag(W,F•)

Input: A subvariety W ⊂ X ⊂ Cn and a flag F• on X of length �.
Output: A flag F′

• on W of length �.
1: Set F′

•W := (F′
�W, . . . ,F′

0W ) := (∅, . . . ,∅)
2: For each irreducible component V of W
3: Add V to F′

iW for all F′
i where V ⊂ F′

i

4: For each j with dim(FjX ∩ V ) < dimV
5: Add Vj := (FjX ∩ V ) to F′

iW for all F′
i where Vj ⊂ F′

i

6: Return F′
•W

The second subroutine is called DecomposeFlag; this is a variant of the De-
compose subroutine described in the preceding subsection. The only difference is
that rather than merging the detected subvariety VC(K) with Y• directly, we first
use InducedFlag to restrict F• to VC(K) and then merge the output with Y•.

DecomposeFlag(Y,X,F•)

Input: Varieties Y ⊂ X ⊂ Cn with d := dimY and a flag F• on X.
Output: A list of subvarieties Y• ⊂ Y .
1: Set Y• := (Yd, Yd−1, . . . , Y0) := (∅, . . . ,∅)
2: Set J := ICon(X) + IY
3: For each primary component Q of a primary decomposition of J
4: Set K := Q ∩ C[x]
5: If dimVC(K) < dimY
6: Merge Y• with InducedFlag(VC(K),F•X)
7: Return Y•

Finally, here is the promised WhitStratFlag algorithm which makes use of
these two subroutines. This takes as input a variety X and a flag F• defined on X.
The output X• is guraranteed to be a Whitney stratification subordinate to F• in
the sense of Definition 2.2—see [24, Sec 5] for details.

WhitStratFlag(X,F•)

Input: A pure k-dimensional variety X ⊂ Cn and a flag F• on X.
Output: A list of subvarieties X• ⊂ X.
1: Set X• := (Xk, Xk−1, . . . , X0) := (X,∅, . . . ,∅)
2: Compute Xsing and μ := dim(Xsing)
3: Set Xd = Xsing for all d in {μ, μ+ 1, . . . , k − 1}
4: Merge X• with InducedFlag(Xsing,F•X)
5: For each d in (μ, μ− 1, . . . , 1, 0)
6: Merge X• with DecomposeFlag(Xd, X,F•)
7: Merge X• with WhitStratFlag(Xd,F•)
8: Return X•

2.3. Stratifying complex algebraic morphisms. Maps of Whitney stratified
spaces are typically required to satisfy additional criteria beyond smoothly sending
strata to strata—see [4, Def 3.5.1] or [17, Part I, Ch 1.7] for instance.
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Definition 2.3. Let X• and Y• be Whitney stratifications of topological spaces
X and Y . A continuous function φ : X → Y is stratified with respect to X•
and Y• if for each stratum M ⊂ X there exists a stratum N ⊂ Y satisfying two
requirements:

(1) the image φ(M) is wholly contained in N ; and moreover,
(2) the restricted map φ|M : M → N is a smooth submersion.4

The pair (X•,Y•) is called a stratification of φ.

Remark 2.4. The second requirement of Definition 2.3 ensures the following crucial
property via Thom’s first isotopy lemma [34, Prop 11.1]. If φ is a proper map—
namely, if the inverse image of every compact subset of Y is compact in X—then
for every stratum N ⊂ Y , the restriction of φ forms a locally trivial fiber bundle
from φ−1(N) to N .

Fix varieties X ⊂ Cn and Y ⊂ Cm along with a polynomial map f : Cn → Cm

that sends points of X to points of Y . In [24, Section 6], we described an effective
algorithm for stratifying any f : X → Y whose Thom-Boardman flag5 intersects
X transversely. Here we will describe a new modification which circumvents this
transversality requirement. The first step towards this goal is the following result.

Lemma 2.5. Let G := {g1, g2, . . . , gs} be any set of polynomials defining X ⊂ Cn

which generate a radical ideal. Consider, at each x ∈ X, the matrix of partial
derivatives

MG(x) :=

⎡⎢⎣∂g1/∂x1 · · · ∂gs/∂x1

...
. . .

...
∂g1/∂xn · · · ∂gs/∂xn

⎤⎥⎦
evaluated at x. For each j in {0, 1, . . . , dimX}, let Vj = Vj(X; f) be the sub-
variety of Cn generated by all j × j minors of the augmented matrix A(x) :=[
MG(x) Jf(x)T

]
. Writing f∗ : Xreg → Cm for the restriction of f to the smooth

points of X, we have

rankJf∗(x) ≤ i if and only if x ∈ V(n−dimX)+(i+1),

for all i in {0, 1, . . . ,min(dimX,m)}.

Proof. At each point x ∈ Xreg, the left block of A(x) equals MG(x), whose s
columns span the orthogonal complement of TxXreg in Cn. Since this complement
necessarily has dimension (n− dimX) regardless of the chosen x, we obtain

rankA(x) ≥ n− dimX.

The right block, consisting of Jf(x)T, has columns which span the coimage of Jf(x),
i.e., the orthogonal complement of kerJf(x) in Cn. Thus, the following criteria are
equivalent:

(1) rankJf∗(x) = 0,
(2) the coimage of Jf(x) is a subspace of the orthogonal complement TxX

⊥
reg,

(3) the columns of Jf(x)T are spanned by those of MG(x),
(4) A(x) assumes its minimum possible rank of n− dimX.

4Explicitly, its derivative d(φ|S)x : TxM → Tφ(x)N is surjective at each point x in M .
5See [16, Chapter VI].
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EFFECTIVE WHITNEY STRATIFICATION OF REAL VARIETIES 9

Similarly, rankJf∗(x) = i holds whenever rankA(x) = (n− dimX) + i; this rank
condition on A(x) corresponds to the vanishing of all minors of size (n− dimX) +
i+ 1, as claimed above. �

In light of the preceding result, we will work with the rank flags of f along
various subvarieties of X; given such a subvariety Z ⊂ X, the relevant flag is
defined by

RiZ := Z ∩ Vn−dimZ+i+1(Z; f).(3)

Here V•(Z; f) is given in the statement of Lemma 2.5, with 0 ≤ i ≤ min(dimZ,m).
By construction, the Jacobian of the restriction f∗ : Zreg → Cm has rank ≤ i at a
point z ∈ Zreg if and only if z lies in RiZ.

Definition 2.6. A Whitney-Thom-Boardman (WTB) stratification of X along
the map f : Cn → Cm is any pair (X•,S•X), where X• is a Whitney stratification
of X while S•X is a flag on X such that two conditions hold:

(1) X• is subordinate to S•X, and
(2) for each X•-stratum M ⊂ X, we have RiM ⊂ SiX whenever 0 ≤ i ≤

dimM .

The first requirement of this definition forces X• to depend on S•X whereas the
second requirement makes S•X dependant on X•. We are therefore compelled to
construct both X• and S•X simultaneously via the algorithm described below. It
will also be necessary in the sequel to produce WTB stratifications (X•,S•X) for
which X• is subordinate to an auxiliary flag F•X. Setting FiX = X for all i, we
obtain a WTB stratification as defined above. To simplify the presentation, we will
denote this important special case as WTBStrat(X, f).

WTBStratFlag(X, f,F•X)

Input: f : X → Cm algebraic map with k := dimX; F•X a flag on X.
Output: A pair of flags (X•,S•X) on X.
1: Set X• := (Xk, Xk−1, . . . , X0) := (X,∅, . . . ,∅)
2: Compute R•X using Lemma 2.5
3: Set S•X := R•X
4: Compute Xsing and μ := dim(Xsing)
5: Compute R•Xsing using Lemma 2.5
6: Set Xd := Xsing for all d in {μ, μ+ 1, . . . , k − 1}
7: Set S•X := Merge(F•X,R•Xsing)
8: Set X• := Merge(X•, InducedFlag(Xsing,S•X))
9: For each d in (μ, μ− 1, . . . , 1, 0)

10: Set X• := Merge(X•,DecomposeFlag(Xd, X,S•X))
11: Set X• := Merge(X•,WTBStratFlag(Xd, f,F•X))
12: Compute R•Xd using Lemma 2.5
13: Set S•X := Merge(S•X,R•Xd)
14: Return (X•,S•X)

Theorem 2.7. Let X ⊂ Cn be a pure dimensional complex algebraic variety, f :
Cn → Cm a polynomial map, and F•X a flag on X. Then,

(1) WTBStratFlag(X, f,F•X) terminates,
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(2) its output (X•,S•X) is a WTB stratification of X along f , and
(3) the Whitney stratification X• is subordinate to F•X.

Proof. The termination of WTBStratFlag follows from noting that the recursive
call in Line 9 involves the variety Xd of dimension at most d, with d strictly smaller
than k = dimX. And the fact that X• is a Whitney stratification of X follows
from the correctness of the original WhitStrat algorithm [24, Sec 4.4]. Moreover,
since F•X is merged into S•X via Line 7, verifying that X• is F•-subordinate can
be reduced to checking that it is S•-subordinate. Therefore, it suffices to confirm
that the output pair (X•,S•X) satisfies the two requirements of Definition 2.6. To
this end, consider an i-dimensional stratum M of X•.

To verify requirement (1), note that M may be uniquely written as Z − Xi−1,
where Z ⊂ Xi is an irreducible component—in particular, this Z will appear as a
V in Line 3 of InducedFlag when it is called with first input Xi. Let j be the
minimal index satisfying Z ⊂ SjX. Then dim(Z ∩ S�X) < i for every � < j, and
so Z� = Z ∩ S�X is merged with X• in Line 5 of the InducedFlag. Thus, Z� is
contained in Xm for some m < i. Since Xm ⊂ Xi, it follows that

M ∩ (SpX − Sp−1X) = ∅ whenever p < j.

But since M ⊂ SjX and Z is irreducible, we have Z ⊂ SjX, whence Z ⊂ SpX
for all p ≥ j. Thus, M also has empty intersections with SpX − Sp−1X for p > j,
as desired. Turning now to property (2) of Definition 2.6, we observe that S•X is
initialized to R•X in Line 3 of WTBStrat. Subsequently, R•Xd is merged into
S•X for each d ≤ dimXsing. Thus, for every i-stratum M ⊂ X, we have enforced

that RjM ⊂ RjXi ⊂ SjX whenever j ≤ i. �
Given a WTB stratification (X•,S•X) of X along f , we construct a pushforward

flag B• on the codomain variety Y as follows. Writing � for the length of S•, define

BiY :=

{
f(SiX) i ≤ �

Y i = �+ 1
.(4)

The map stratification algorithm described below first constructs a B•-subordinate
stratification Y ′

• of Y . It then constructs a WTB stratification (X ′′
• ,S

′
•X) of X

along f such that X ′′
• is subordinate to the flag FiX := f−1(Yi).

WhitStratMap(X,Y, f)

Input: Pure dimensional varieties X,Y and a any morphism f : X → Y .
Output: Lists of subvarieties X• ⊂ X and Y• ⊂ Y .
1: Set (X ′′

• ,S
′′
•X) := WTBStrat(X, f)

2: Set B′
•Y := (B′

k+2Y, . . . ,B
′
0Y ) := (Y,∅, . . . ,∅)

3: For each j in (0, 1, . . . , k)
4: Set B′

jY := f(S′′
jX)

5: Set B′
k+1Y := Y

6: Set Y ′
• := WhitStratFlag(Y,B′

•)
7: For each i in (0, 1, . . . , dimY )
8: Set FiX := f−1(Y ′

i )
9: Set (X ′

•,S
′
•X) := WTBStratFlag(X, f,F•)

10: Set (X•, Y•) := Refine(X ′
•, Y

′
• , f)

11: Return (X•, Y•)
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EFFECTIVE WHITNEY STRATIFICATION OF REAL VARIETIES 11

The final line invokes a Refine subroutine, which will be described later. We
first highlight a crucial property of the Whitney stratifications (X ′

•, Y
′
•) which are

invoked in Line 10.

Proposition 2.8. For every X ′
•-stratum M ⊂ X there exist a Y ′

•-stratum N ⊂ Y
satisfying f(M) ⊂ N . Moreover, at each point x ∈ M, the Jacobian Jf |M (x) :
TxM → Tf(x)N of the restricted map f |M has maximal rank:

rank(Jf |M (x)) = min(dimM, dimN).

Proof. Noting that X ′
• is subordinate to the flag F• by Line 9 of WhitStratMap,

we know that for each stratum M of X ′
• there is a number i := i(M) satisfying

M ⊂ (FiX − Fi−1X). Now by Line 8, for any such stratum we have f(M) ⊂
(Y ′

i −Y ′
i−1). By the definition of a Whitney stratum we know that M is connected,

and so its image under the continuous map f must also be connected; thus there is
a unique stratum N ⊂ (Y ′

i − Y ′
i−1) of Y ′

• satisfying f(M) ⊂ N , as claimed above.
It remains to establish that the Jacobian of f |M : M → N has maximal rank at
every point of x.

By Line 6 of WhitStratMap, the stratification Y ′
• is subordinate to the flag

B′
•Y ; thus, there exists a number j := j(N) satisfying N ⊂ (B′

jY −B′
j−1Y ). From

Line 9, we note that B′
• is the pushforward of S′′

• , so we obtain

f−1(N) ⊂ S′′
jX − S′′

j−1X.(5)

Recall that S′′
jX contains RjM by the second requirement of 2.6 (and similarly for

j − 1). Therefore, the restricted map f∗ : M reg → Cm has Jacobian of constant
rank ρj given by

ρj := min(dimM,m)− j.(6)

Since M is an open subset of M reg, for each x ∈ M we immediately have
rank

(
Jf∗(x)

)
= ρj . Let ι : N ↪→ Cm be the inclusion map, and recall that

f |M : M → N denotes the restriction of f to M , now viewed as a smooth map to
N rather than to Cm. Thus, f∗ = ι ◦ f |M , and the following diagram of derivatives
commutes by the chain rule:

TxM
Jf |M (x)

��

Jf∗(x)

����
���

���
���

���
���

� Tf(x)N

Jι(f(x))

��

Cm

Since ι is an embedding, its Jacobian is injective, so in particular the rank of
Jf |M (x) also equals ρj . Thus, we immediately have ρj ≤ min(dimM, dimN)
and it only remains to establish the opposite inequality. There are two cases to
consider—

(1) if dimM ≤ dimN : Note that dimN ≤ m holds by the fact that N is a
submanifold of Cm. Thus, we have dimM ≤ dimN ≤ m, and so (6) gives
ρj = dimM − j for some j ≥ 0, whence ρj ≥ dimM .

(2) if dimM > dimN : Since B′
• is the pushforward of S′′

• , we have BkY =
f(S′′

kX) for all k. And since S′′
•X is part of a WTB stratification of X along

f by Line 1, we know from Definition 2.6 that the Jacobian of f has constant
rank ρk on (the smooth part of) the difference Δk := S′′

kX − S′′
k−1X. By
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12 MARTIN HELMER, ANTON LEYKIN, AND VIDIT NANDA

the implicit function theorem, we therefore have ρk = dimBkY at every
k for which Δk �= ∅. Since the nonempty set f−1(N) lies in Δj by (5),
we therefore have dimB′

jY = ρj . Finally, since N is an open subset of
f(Δj) = B′

jY −B′
j−1Y , we obtain ρj = dimN .

Thus, in both cases, ρj equals min(dimM, dimN), and Jf |M (x) has maximal rank.
�

The stratifications X ′
• and Y ′

• obtained after the conclusion of Line 9 of Whit-
StratMap do not generally satisfy the requirements of Definition 2.3. In particular,
the crucial Jacobian-surjectivity requirement fails whenever dimM < dimN . As
established above, in this case the Jacobian is injective rather than surjective. To
fix this defect, we consider the set of problematic strata pairs P = P(X ′

•, Y
′
•)

given by

P := {(M,N) | f(M) ⊂ N with dimM < dimN}.
The Refine subroutine (which is invoked in Line 10 of WhitStratMap) fixes this
defect. We note that a similar subroutine also appears in [24]; the main difference
between the two Refine subroutines is that the new one calls WTBStrat instead
of WhitStrat.

Refine(X ′
•, Y

′
• , f)

Input: Stratifications X ′
•, Y

′
• of pure dimensional varieties X and Y and a mor-

phism f : X → Y .
Output: Lists of subvarieties X• ⊂ X and Y• ⊂ Y .
1: For each (S,R) ∈ P(X ′

•, Y
′
•) with dimR maximal

2: Set Y +
• := Y ′

•
3: Set d := dim f(S)

4: Add f(S) to Y +
≥d

5: Merge Y +
• with WhitStrat(Pured(Y

′
d))

6: For each � = (d, d− 1, . . . , 1, 0)

7: For each irreducible W ⊂ Y +
� − Y ′

� and S′ ∈ S�(X
′
•)

8: If Z ∩ S′ �= ∅ for an irreducible Z ⊂ f−1(W )
9: Set r := dimZ

10: Add Z to X ′
≥r

11: Merge X ′
• with WTBStrat(Purer(X

′
r), f)

12: Set Y ′
• = Y +

•
13: Recompute P(X ′

•, Y
′
•)

14: Return (X ′
•, Y

′
•)

From Theorem 2.7 and Proposition 2.8, we obtain Proposition 2.9, which is
analogous to [24, Proposition 6.7]. The novelty here lies in the fact that the result
below applies to arbitrary polynomial maps between affine complex varieties, and
does not impose any genericity requirements. The proof, however, is essentially
identical to that of [24, Proposition 6.7].

Proposition 2.9. The Refine subroutine terminates, and its output (X•, Y•) con-
stitutes a valid stratification (as in Definition 2.3) of the polynomial map f : X →
Y .
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EFFECTIVE WHITNEY STRATIFICATION OF REAL VARIETIES 13

Proof. In [24, Proposition 6.7] this result is obtained for generic mappings f : X →
Y , as defined in [24, Definition 6.3], using the construction of the Refine subroutine
along with a result ([24, Proposition 6.6]) analogous to that of Proposition 2.8 in
the case of generic maps. The new Refine subroutine above is identical to that in
[24, Section 6] other than the new version uses WTBStrat at Line 11, rather than
WhitStrat. The argument is then identical to that of [24, Proposition 6.7], except
we employ the more general result of Proposition 2.8 in place of [24, Proposition
6.6]. �

3. Whitney Stratifications from Polar Varieties

Consider a complex affine variety X ⊂ Cn. In this section we present a new
algebraic condition to identify (a superset of) those points in a subvariety Y ⊂ Xsing

where Whitney’s Condition (B) fails with respect to X. This criterion replaces
Theorem 2.1 and leads to a new algorithm for computing Whitney stratifications.
This new algorithm is based on polar varieties [14, 38].

The polar approach has two key advantages: first, one can perform all computa-
tions in the ring C[x1, . . . , xn] rather than working with the additional n variables
ξ1, . . . , ξn. And second, one is no longer required to compute any primary de-
compositions. Both aspects confer significant practical benefits, as is illustrated in
practical tests in Section 6; the later point would also be expected to have signif-
icant implications for a worst case complexity analysis of the algorithm (though
this is not carried out here). On the other hand, the new polar algorithm has the
disadvantage of being probabilistic.6

3.1. Polar varieties and Condition (B). Let X ⊂ Cn be a pure d-dimensional
complex algebraic variety; we recall that the (Zariski open) subset of smooth points
is denoted Xreg, and at each smooth point p ∈ Xreg there is a well-defined d-
dimensional tangent space TpXreg, which we treat as a linear subspace of Cn. Con-
sider a flag L• of length d

L• = (L1 ⊃ · · · ⊃ Ld−1 ⊃ Ld) ,

where each Li ⊂ Cn is an (n− i)-dimensional linear subspace.

Definition 3.1. For each i in {1, . . . , d}, the codimension i polar variety of X
along the flag L• is defined as the closure

Pi(X;L•) := {p ∈ Xreg | dim(TpXreg ∩ Li) ≥ d− i+ 1}.

We define P0(X;L•) := X.

The fact that each Pi(X;L•) is an algebraic variety will be established in the
next subsection, where we describe explicit generating equations. For now, let us
note that if X is irreducible then Pi(X,L•) is irreducible for all i, and additionally
for a fixed flag of linear spaces L• we obtain a corresponding polar flag

(7) Pd(X,L•) ⊂ · · · ⊂ P0(X,L•) = X,

(see e.g. [14, Remark 3.14]).

6In the sense that its correctness depends on a choice of random constants being truly random,
as will be explained later.

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



14 MARTIN HELMER, ANTON LEYKIN, AND VIDIT NANDA

Remark 3.2. One often finds the adjective local preceding polar varieties in the
relevant literature, as for instance in [14]. To align this definition with ours, one
chooses a flag of generic linear spaces F• = (F0 ⊂ · · · ⊂ Fd) with dimFi = i through
a given point y ∈ X, and then defines Li as the orthogonal complement of Fi in
Cn.

Our interest in polar varieties stems from a classical result of Teissier relating
Condition (B) to polar multiplicities of points of X. In order to state this result,
let us recall that the Hilbert-Samuel multiplicity of an irreducible subvariety
V ⊂ X is the (integer) coefficient mV X > 0 of [X] in the Segre class s(X,V )—see
[15, Sec 4.3]. These multiplicities may be computed numerically using the algorithm
of [19, Theorem 5.3] and even inferred from local point samples as described in [25].
Here is Teissier’s polar multiplicity criterion [14, Theorem 4.13] for Condition (B).

Theorem 3.3. Let Y ⊂ X be a pure dimensional subvariety of a pure dimensional
variety X. The following properties are equivalent:

(1) The manifolds (Xreg, Yreg) satisfy Whitney’s Condition (B).
(2) Every point y ∈ Yreg admits an open neighbourhood U ⊂ Yreg such that for

every z ∈ U and generic flag L•, the sequence of Hilbert-Samuel multiplic-
ities

m•(X, z) :=
(
mzX,mz P1(X,L•), . . . ,mz Pd−1(X,L•)

)
is constant.

In particular, if we let Y ′ ⊂ Yreg be the (necessarily open) set of all points which
satisfy the second property, then (Xreg, Y

′) satisfies Condition (B).

3.2. Computing (equations of) polar varieties. As in the previous section, let
X ⊂ Cn be a purely d-dimensional complex algebraic variety. Its polar varieties
may be defined similarly to the conormal variety from (2), but—crucially, from an
algorithmic perspective—one only needs to work in the coordinate ring of Cn. In
particular, we define

Ki =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c
(0)
1 · · · c

(0)
n

...
. . .

...

c
(i)
1 · · · c

(i)
n

∂f1
∂x1

· · · ∂f1
∂xn

...
. . .

...
∂fm
∂x1

· · · ∂fm
∂xn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and J =

⎡⎢⎣
∂f1
∂x1

· · · ∂f1
∂xn

...
. . .

...
∂fm
∂x1

· · · ∂fm
∂xn

⎤⎥⎦ ,

where the c
(i)
j are general constants for i ∈ {0, . . . , d− 1}. Let Ki be the ideal

generated by all (n− d+ i+ 1)× (n− d+ i+ 1) minors of the matrix Ki, and let
J be the ideal defined by the (n− d)× (n− d) minors of the matrix J . Then

(8) Pd−i(X,L•) = VC((Ki + IX) : J∞),

where Li is the orthogonal complement of the linear space spanned by the first i
rows of Ki.

Remark 3.4. The following statements pertain to practical computation of polar
varieties.
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EFFECTIVE WHITNEY STRATIFICATION OF REAL VARIETIES 15

(1) The ideal saturation required in (8) may be performed via a single elimina-
tion calculation using (a probabilistic variation of) the Rabinowitsch trick.
Namely, if J = 〈g1, . . . , gν〉 and we working in the ring C[x1, . . . , xn, T ] and
consider the ideal

Ii := Ki + IX + 〈1− T

ν∑
j=1

λjgj〉

for general constants λi ∈ C. Then, we have

(Ki + IX) : J∞ = C[x1, . . . , xn] ∩ Ii.

For more details, see [21].
(2) In practice, the general constants are replaced by random ones and hence

the computation detailed above becomes inherently probabilistic. In our
setting this is no great loss, as our polar varieties already depend on (es-
sentially random) choices of linear polynomials.

(3) Alternatively, the polar variety Pi(X,L•) may be computed by a non-
probabilistic elimination in the following way:

• Consider any matrix D whose columns span Li.
• Let a = (a1, . . . , ai)

T be a vector of indeterminates.
• The projection of {(x, a) | x ∈ X, JDa = 0, a �= 0} to X is, by
definition,7 the polar variety Pi(X,L). .

• We compute the defining ideal of the projection above using saturation
and elimination:

(IX + (〈JDa〉 : 〈a〉∞)) ∩ C[x].

3.3. Polar varieties and equi-multiplicity. Our new algorithm to compute a
Whitney stratification will make use of the criterion of Teissier from Theorem 3.3.
This criterion in turn is phrased in terms of the constancy of the Hilbert-Samauel
multiplicity of points relative to a list of varieties; the property of having con-
stant multiplicity relative to a variety for all points in a Zariski open set is often
called equi-multiplicity [27]. Lemma 3.5 gives a simple sufficient condition for equi-
multiplicity; in spirit it follows many related results which have been summarized in
Theorems 2.2.2 and Theorem 2.2.5 of the Appendix of [27]. The main difference is
that here we use a multiplicity formula from [19], which lends itself to a particularly
elementary proof.

Lemma 3.5. Consider varieties Y ⊂ X ⊂ Cn, with X pure dimensional and Y
nonempty, irreducible, and different from Pi(X,L•) for all i. Let μ = mY X be the
Hilbert-Samuel multiplicity of Y in X, and let r be the codimension dimX−dimY .
Then for all points z ∈ Yreg − Pr(X,L•), we have mzX = μ.

Proof. First note that multiplicity is unchanged under projective closure, hence we
may replace the setup in the statement of the Lemma with Y ⊂ X ⊂ Pn. By [19, Sec
2.1.4] we may further suppose that Y = VC(f1, . . . , fs) where all the fi have the
same degree. Let λij be an r × s matrix of generic complex numbers, and for each

7Note that Da for a �= 0 is an element in Li; now the condition ∃a ∈ Ci such that JDa = 0

is satisfied exactly by those points x ∈ X for which the intersection κ−1
X (x) ∩ Li is nonempty.
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16 MARTIN HELMER, ANTON LEYKIN, AND VIDIT NANDA

i ∈ {1, . . . , r} define the polynomial Qi =
∑

j λijfj . Setting W = VC(Q1, . . . , Qr),

Theorem 5.3 of [19] gives

deg(Y )μ = deg(X) deg(W )− deg
(
(X ∩W )− Y

)
.(9)

Fix a point z ∈ Yreg, and let Az ⊂ Pn be a linear space of codimension dim(Y )
which contains z. We now examine how (9) changes when all varieties in sight are
intersected with Az. For generic choices of Az, it is known (by [15, Proposition 8.4]
for instance) that deg(V ∩Az) = deg(V ) holds for V ∈ {W,X, Y }. We remark that
a sufficient condition for Az to be generic in the sense required here is for Az to be
transverse to X in the punctured neighborhood of z.

Now, by [25, Proposition 3.3], for generic Az we also have

mzX = mY ∩Az
(X ∩Az).

Therefore,

mzX − μ =
deg

(
(X ∩W )− Y

)
− deg

(
(X ∩W ∩ Az)− (Y ∩ Az)

)
deg Y

.(10)

Next, we seek to establish that the numerator on the right side vanishes unless z
lies in Pr(X;L•). To this end, let us recall that the numbers {λij} which define W
are generic. Therefore we may safely assume that dimW = n−r, and that dim(X∩
W ) = dimY , with the latter equality holding due to transversality. Therefore—at
least when Az is generic—both X ∩W ∩Az and Y ∩Az are finite sets of cardinality
deg(X ∩W ) and deg Y respectively. Returning to (10), we conclude that mzX = μ
holds unless Az fails to intersect Xreg transversely near z. But since Az might well
equal LdimY in the flag L•, we conclude that mzX �= μ forces z ∈ Pr(X;L•). �

We now employ the preceding result to construct a new Whitney stratification
algorithm. It will be convenient to represent an Xi in the flag X• as a list of
irreducible varieties (or equivalently, as a list of prime ideals) whose union equalsXi.
In this way we will update intermediate values of Xi by appending new components
to this list. For clarity, we will use List(Xi) to denote the list of components whose
union equals Xi. We will also assume that a random flag L• (as required for
Definition 3.1) has been chosen in advance.

WhitneyPolar(X)

Input: An algebraic variety X.
Output: X•, the flag in (1) corresponding to the Whitney stratification of X.
1: Set d := dim(X);
2: Initialize X• to be a flag of length d+ 1 with each List(Xi) := ∅

3: For each equidimensional component Z ⊂ X, append Z to List(Xdim(Z))
4: For i from 0 to d− 1
5: For j from 1 to d− i append Pj(Xd−i, L•) to List(Xd−i−j)

6: Compute Y := (
⋃i

j=0 Xd−j)sing
7: For each equidimensional component of Z ⊂ Y , append Z to List

(
Xdim(Z)

)
8: For j from 0 to i− 1
9: V := Xd−i ∩ Pi−j(Xd−j , L•)

10: For each equidimensional componentW ⊂ V , appendW to List
(
Xdim(W )

)
11: Return X•
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EFFECTIVE WHITNEY STRATIFICATION OF REAL VARIETIES 17

Remark 3.6. A recent discussion of algorithms and software to perform equidimen-
sional decomposition (along with a new algorithm for this task) can be found, for
example, in [11]. Note that alternatively, depending on the implementation context,
one may choose to take irreducible components above everywhere (i.e. in Lines 3,
7, and 10) rather than equidimensional ones.

Remark 3.7. The WhitneyPolar algorithm presents the flag X• as a union of
parts, i.e., a list of components that have the same dimension but are not necessarily
irreducible. One may wish to pursue two further goals:

(1) design an algorithm to compute the actual connected components in the
Whitney stratification, or

(2) produce a refinement of the Whitney stratification which ensures that each
component is connected.

These tasks depend in practice on whether one works over the real or complex
numbers. The latter can be achieved (over C) by decomposing every component in
the output into irreducible components.

Corollary 3.8. The algorithm WhitneyPolar is correct.

Proof. The first three lines of the algorithm merely populate the flag X• with the
equidimensional components of X. To prove the correctness of the algorithm, it
suffices to show that during the i-th iteration of the For loop on Line 4, each

(d − i)-dimensional part of the stratification, X̃ ∈ List(Xd−i) has been correctly
processed. Specifically, we show that at step i the algorithm generates a (finite)

list of lower-dimensional subvarieties Y ⊂ X̃ such that the union of the generated
varieties Y contains all points y which are either not smooth in X, or for which
the following criterion holds: for every j > d − i and equidimensional component

Z ∈ List(Xj) that contains X̃, the multiplicity sequence m•(Z, y) differs from the

expected sequence m•(Z, x) for generic x ∈ X̃.

Line 5 records all points on all polar subvarieties of X̃; in regards to Lemma 3.5,
this deals separately with the case where Y in the Lemma is a polar subvariety (by
ensuring all of these are already removed). Lines 6 and 7 handle singular points of

X̃. Finally, Lines 8–10 excise the points that are not singular and do not lie on a
polar subvariety, but have to be removed to guarantee the conclusion of Lemma 3.5
(note that we identify a variety containing all points where Lemma 3.5 can fail for
some component of our pure dimensional variety Xj all at once, rather than one
irreducible component at a time). �

Remark 3.9. The reader is warned that the stratifications produced by Whitney-
Polar may not be minimal. There are two reasons for this lack of optimality—first,
the condition (from Lemma 3.5) which we use to ensure equi-multiplicity is suffi-
cient but not necessary condition. And second, since our polar varieties are defined
globally (rather than locally at a point), they inevitably include various random
points arising from the choice of L• which are not in fact necessary. We are aware
of two antidotes to this—one may either generate a suboptimal stratification and
then coarsen it using the algorithm of [23, Sec 3.3], or alternately, one may replace
each polar variety in WhitneyPolar with the intersections of several global polar
varieties (of the same codimension), each taken along different generic flags L•.
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4. Real Stratifications

Let R[x1, . . . , xn] be the ring of real polynomials in n indeterminates, and fix a
radical ideal I of this ring. By definition, the vanishing locus X := V(I) constitutes
a real algebraic subvariety of Rn. Let {f1, f2, . . . , fr} be any finite set of polynomials
which generate I. Since each fi is automatically a polynomial in C[x1, . . . , xn], there
is a complex varietyVC(f1, . . . , fr) ⊂ Cn generated by the fi. Although this variety
depends on {fi} rather than on X, we will denote it by X(C) in order to emphasise
that it is a complexified version of X. Let Xreg denote the manifold of smooth
points in X. In this section dimR(X) will denote the dimension of manifold Xreg

and dimC(X(C)) will denote the dimension of the manifold (X(C))reg.

4.1. Real varieties. Our immediate goal here is to show that certain Whitney
stratifications of X(C) induce Whitney stratifications of X. We let ι : Rn ↪→ Cn

be the embedding of real points in complex Euclidean space.

Lemma 4.1. Let X ⊂ Rn be a real algebraic variety.

(1) The embedding ι identifies X with the real points of X(C).
(2) Assume that dimR X equals dimC X(C). If ι(p) is a smooth point of X(C)

for some p ∈ X, then p is a smooth point of X.

Proof. The first assertion is a tautology. Turning to the second assertion, set
d := dimC X(C) = dimR X. Since the roots of real polynomials occur in com-
plex conjugate pairs, the variety X(C) is invariant under complex conjugation and
ι(X) equals the fixed point set of this conjugation. Noting that ι(p) is a smooth
point by assumption, the tangent space Tι(p)X(C) exists and has complex dimen-
sion d; this tangent space also inherits invariance under complex conjugation. Thus,
Tι(p)X(C) is the complexification of a real d-dimensional vector space V whose el-
ements consist of all real tangent vectors at ι(p); this V is evidently isomorphic to
TpX, as desired. �

Every finite descending chain I• of radical ideals in R[x1, . . . , xn]

I0 � I1 � · · · � Im = I

produces an ascending flag X• := V(I•) of subvarieties of X:

X0 ⊂ X1 ⊂ · · · ⊂ Xm = X.

The next result shows that successive differences of X• inherit a smooth manifold
structure from the successive differences of X•(C).

Proposition 4.2. Let W ⊂ Z be a pair of real algebraic varieties in Rn. If the dif-
ference Z(C)−W (C) is either empty or a smooth i-dimensional complex manifold,
then M := (Z −W ) is either empty or a smooth i-dimensional real manifold.

Proof. There are two cases to consider—either the image ι(Z) lies entirely within
the singular locus Z(C)sing, or there exists some p ∈ M with ι(p) ∈ Z(C)reg. In the
first case, since Z(C)−W (C) is smooth, we know that Z(C)sing lies entirely within
W (C) and hence that ι(Z) ⊂ ι(W ); but since we have assumed W ⊂ Z, we must
have W = Z, whence M is empty. On the other hand, let p be a point in (Z −W )
for which ι(p) is a smooth point of Z(C). We may safely assume that the generating
ideal of Z is prime in C[x1, . . . , xn] by passing to the irreducible component which
contains ι(p). It now follows from [33, Theorem 12.6.1] or [20, Theorem 2.3] that
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(Z −W ) has dimension i. Finally, Lemma 4.1 ensures that (Z −W ) is a smooth
real i-manifold. �

It follows from the above result that if X•(C) is a Whitney stratification of
X(C), then the successive differences of X• are either empty or smooth manifolds
of the expected dimension. We show below these successive differences also satisfy
Condition (B).

Theorem 4.3. Let I• be a descending chain of radical ideals in R[x1, . . . , xn]. If
the flag X•(C) := VC(I•) constitutes a Whitney stratification of X(C), then the
corresponding flag X• := V(I•) yields a Whitney stratification of X.

Proof. Consider a connected component M ⊂ (Xi − Xi−1), and let V ⊂ Xi be
the irreducible component which contains M . Similarly, let W ⊂ Xi(C) be the
irreducible component which contains ι(M) and define MC := W −Xi−1(C). We
note that ι(M) forms an open subset of MC, which must in turn be an i-stratum
of X(C). Similarly, consider a nonempty connected N ⊂ (Xj −Xj−1) with i > j
and analogously define NC ⊂ Xj(C). We will show that the pair (M,N) satisfies
Condition (B). To this end, consider a point q ∈ N along with sequences {pk} ⊂ M
and {qk} ⊂ N which converge to q. Letting �k denote the secant line [pk, qk] and
Tk the tangent plane Tpk

M , we assume further that the limits � = lim �k and
T = limTk both exist.

Let �k(C) be the secant line [ι(pk), ι(qk)] in Cn and let Tk(C) be the tangent
space Tι(pk)MC. Since ι(pk) and ι(qk) are real points for all k, the linear equations
defining both �k(C) and Tk(C) as varieties are exactly the same as those defining
�k and Tk, respectively. Thus, the limits �(C) and T (C) both exist because the
corresponding real limits exist—one may view these as limits of real sequences inside
a complex Grassmannian—and they are defined by the same algebraic equations
as their counterparts � and T . By definition of secant lines, the image ι(w) of any
w ∈ � is a real point of �(C). Since the pair (MC, NC) satisfies Condition (B) by
assumption, we know that �(C) ⊂ T (C), whence ι(w) must be a real point of T (C).
Since ι(M) is an open subset of MC, we have Tι(pk)MC = Tι(pk)ι(M) for all k; and
by the proof of Lemma 4.1, the real points of Tι(pk)ι(M) are identified with TqkN .
Thus, ι(T ) contains all the real points of T (C), including ι(w). Since ι is injective,
we have w ∈ T as desired. �
Corollary 4.4. Let X be a real algebraic variety. If either the WhitStrat algo-
rithm from Section 2.1 or the WhitneyPolar algorithm from Section 3 is applied
to X(C), then the output produces a Whitney stratification of X.

Proof. From an algebraic point of view our input to both the WhitStrat and the
WhitneyPolar algorithm is a list of polynomials in the ring R[x1, . . . , xn]

8 which
define the real variety X ⊂ Rn and the corresponding complex variety X(C) ⊂ Cn;
in the algorithms we then perform algebraic operations starting with the polynomi-
als in this list. We need only show that the concrete algebraic operations performed
in both the WhitStrat algorithm and the WhitneyPolar algorithm leave the co-
efficient field of all intermediate polynomials unchanged. To see this we list the
algebraic operations performed, the conclusion then follows from an analysis of the
underlying algorithms in standard references such as [9].

8Note, in a realistic computational setting the input is likely to actually be a list of polynomials
in Q[x1, . . . , xn], and all subsequent algebraic operations will occur in this ring.
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First we list the geometric operations which occur in the WhitStrat algorithm
along with their algebraic counterparts in the usual algebraic-geometric dictionary,
see e.g. [9].

(1) Intersection of varieties, which corresponds to addition of polynomial ideals.
(2) Computation of the singular locus of a variety, from Section 2.1 (on page 5)

this corresponds to computing the radical of the polynomial ideal given by
taking the appropriately sized minors of the Jacobian matrix of the defining
equations.

(3) Computing the conormal variety, from Section 2.1 (on page 5) this cor-
responds the computation of minors of a matrix of polynomials (most of
which arise from partial derivatives), and the addition and saturation of
polynomial ideals.

(4) Computing the irreducible components of a variety, which corresponds to
prime decomposition of ideals.

(5) Computing the primary decomposition of ideals.

Addition of ideals is in effect appending polynomials to a list, which leaves the
coefficient field unchanged. Polynomial differentiation and the taking of minors
of polynomial matrices clearly leave the coefficient field unchanged as well. Ideal
saturation as well as the computation of the radical and the prime and primary
decomposition can be accomplished via Gröbner basis computation, see [9] for the
saturation computation and [12] for the radical, prime and primary decomposition
computations. From a standard presentation of Buchberger’s algorithm to com-
pute Gröbner basis, e.g. [9, Chapter 2, §8], we see this leaves the coefficient field
unchanged. Hence all algebraic operations in items (1)–(5) leave the coefficient field
unchanged and the conclusion follows.

We note that the list of algebraic options above includes computing the radical
of an ideal, so for the purposes of this argument it does not matter if the input list
of polynomials defines a radical ideal or not.

Similarly, the WhitneyPolar algorithm performs items (1), (2). The additional
operations are:

(6) Equidimensional decomposition of a variety (or we could use irreducible
decomposition in the relevant lines, in which case this is covered by (5)).

(7) The computation of polar varieties; by equation (8) in Section 3.2 this
corresponds the computation of minors of a matrix of polynomials (most
of which arise from partial derivatives), and the addition and saturation of
polynomial ideals.

It can be seen from [12] that equidimensional decomposition leaves the coefficient
field unchanged and, as discussed above, this is also true of the polynomial differ-
entiation, the computation of minors of matrices of polynomials, and saturation of
polynomial ideals. The conclusion follows. �

4.2. Real algebraic morphisms. Consider algebraic varieties X ⊂ Rn and Y ⊂
Rm, and let f : X → Y be an algebraic morphism. We recall that this amounts to
an m-tuple of real polynomials(

f1(x1, . . . , xn), f2(x1, . . . , xn), . . . , fm(x1, . . . , xn)
)

whose evaluation at a point of X yields a point of Y . Since each fi is automat-
ically a complex polynomial, there is an evident morphism fC : X(C) → Y (C)
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of complex algebraic varieties. Let I• and J• be descending chains of radical
ideals in R[x1, . . . , xn] and R[y1, . . . , ym] respectively so that X•(C) := VC(I•)
and Y•(C) := VC(J•) constitute Whitney stratifications of X(C) and Y (C) respec-
tively. It follows from Theorem 4.3 that X• := V(I•) is a Whitney stratification of
X while Y• := V(J•) is a Whitney stratification of Y .

Theorem 4.5. If fC is stratified with respect to X•(C) and Y•(C), then f is strat-
ified with respect to X• and Y•.

Proof. LetM ⊂ X be a nonempty connected component of the i-stratumXi−Xi−1,
and letMC be the i-stratum ofX•(C) which contains ι(M). By definition, the image
fC(MC) contains f(M) in its locus of real points. Since fC is stratified with respect
to X•(C) and Y•(C), the first requirement of Definition 2.3 guarantees the existence
of a single stratum NC ⊂ Y which contains fC(MC). Thus, f(M) lies in the locus
of real points of NC. Letting N denote the stratum of Y• corresponding to NC,
we know that the real locus of NC equals N , whence we obtain f(M) ⊂ N and
it remains to show that the restriction of f to M yields a submersion. Let x be
any point of M , and note that ι(x) lies in MC. Since fC|MC

is a submersion, its
Jacobian at ι(x) is a surjective linear map from the tangent space to MC at ι(x) to
the tangent space to NC at fC ◦ ι(x). But by construction, fC ◦ ι equals f . Thus,
we have

rankC (JfC|MC
(ι(x))) = dimC NC.

To conclude the argument, we note that the derivative arising on the left side of
the above equality may be represented by the Jacobian matrix of f at x, and the
rank of this matrix is preserved under field extension to C. On the other hand,
by Proposition 4.2 we know that the complex dimension of NC equals the real
dimension of N . Thus, our equality becomes

rankR (Jf |M (x)) = dimR N,

as desired. �

Assume that a morphism f : X → Y has been stratified as described in Theorem
4.5. It is readily checked that the image f(M) of the closure of a stratum M ⊂ X
is not an algebraic subvariety of Y in general—the best that one can expect is that
f(M) will be semialgebraic. It is important to note, in the context of the above
theorem, that we do not obtain semialgebraic descriptions of such images.

4.3. Dominant morphisms between equidimensional varieties. LetX ⊂ Kn

and Y ⊂ Km be algebraic varieties defined by ideals IX and IY over a field K ∈
{R,C}. Let K[X] denote the coordinate ring K[x1, . . . , xn]/IX and similarly for
Y ; any morphism of varieties f : X → Y canonically induces a contravariant ring
homomorphism f∗ : K[Y ] → K[X].

Definition 4.6. Let f : X → Y be a morphism of algebraic varieties over K ∈
{R,C}.

(1) We say that f is dominant if f∗ is a monomorphism (or equivalently, if
the image f(X) is dense in Y ).

(2) We say that f is finite if it is dominant, and moreover, if f∗ gives K[X]
the structure of an integral extension of K[Y ].
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It is a classical result, see e.g. [37, Chapter II, Corollary 6.7], that if f : X → Y
is finite in the above sense, then it is also a proper map for any field (see Remark
2.4 for the significance of this result in our context). Over K = C, a dominant
morphism is finite if and only if it is proper.

Throughout this section, f : X → Y will denote a morphism between real
algebraic varieties of the same dimension d; we will further require that the map
fC : X(C) → Y (C) is dominant and that dimC X(C) = dimC Y (C) = d.

Definition 4.7. The Jelonek set of f is the subset Jel(f) ⊂ Y (C) consisting of
all points y for which there exists a sequence {xk} ⊂ X(C) satisfying both

lim
k→∞

|xk| = ∞ and lim
k→∞

fC(xk) = y.

It is shown in [29] that Jel(f) is either empty or an algebraic hypersurface of
Y (C); a Gröbner basis algorithm for computing the Jelonek set is given in [42]. It
follows from this algorithm that if the Jelonek set is nonempty, then it is defined
by a polynomial with real coefficients. Finally, it is shown in [29] that Jel(f) is
precisely the locus of points at which f fails to be finite. Thus, if we define

V (C) := Jel(f) and W (C) := f−1(V ),

then the restriction of f forms a proper map (X(C)−W (C)) → (Y (C)− V (C))—
see [30, Proposition 6.1] for details. Note that the polynomials defining V (C) and
W (C) are real; take V to be the real zero set of the polynomials defining V (C), and
similarly let W be the real zero set of the polynomials defining W (C). It follows
immediately that the restriction of f to the difference (X−W ) constitutes a proper
map to the difference (Y − V ).

Definition 4.8. The Jelonek flag of f : X → Y is a pair (W•, V•) of flags, both
of length d = dimX = dimY :

∅ = W−1 ⊂ W0 ⊂ · · · ⊂ Wd = X

∅ = V−1 ⊂ V0 ⊂ · · · ⊂ Vd = Y,

defined via reverse-induction on i ∈ {d− 1, d− 2, . . . , 1, 0} as follows. Starting with
Vd−1 as the real points of Jel(f), we

(1) let Wi be f−1(Vi), and
(2) let Vi−1 be the real points in Jel(f |Wi

: Wi → Vi).

By construction of the Jelonek flag, at each i we have the following alternative:

(1) if Vi(C) is nonempty, then dimVi(C) = Wi(C) = i and the restriction of
f forms a proper map (Vi − Vi−1) → (Wi −Wi−1); otherwise,

(2) if Vi(C) is empty, then f |Wi
: Wi → Vi is not dominant; on the other

hand, f |Wi−1
is dominant, but with dimWi−1(C) > dimVi−1(C).

Theorem 4.9. Let (W•, V•) be the Jelonek flag of f : X → Y . Assume that X• is a
Whitney stratification of X subordinate W• and that Y• is a Whitney stratification
of Y subordinate to V• such that f is stratified with respect to X• and Y• (in the
sense of Definition 2.3). Whenever dimVi = dimWi holds, we have that for every
Y•-stratum R ⊂ Y with R ⊂ Vi − Vi−1, the map f |f−1(R) : f

−1(R) → R is a locally
trivial fiber bundle.
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Proof. Since the stratification Y• of Y is subordinate to V•, for each stratum R ⊂ Y
we have that R ⊂ Vi − Vi−1 for some i, and also since X• is subordinate to W•
we also have f−1(R) ⊂ Wi − Wi−1. If dim(Vi) = dim(Wi) holds, then the map
f : (Wi −Wi−1) → (Vi − Vi−1) is proper. An appeal to the semialgebraic version
of Thom’s first isotopy lemma [8, Theorem 1] achieves the desired result. �

5. Full Semialgebraic Stratifications

A (basic, closed) semialgebraic set is any subset B ⊂ Rn which can be expressed
as an intersection of the form B := X ∩ C where X is a real algebraic subvariety
of Rn, while the set C, called an inequality locus, is given as follows:

C := {x ∈ Rn | gi(x) ≥ 0 for 0 ≤ i ≤ k}.(11)

Here the gi’s are a finite collection of polynomials in R[x1, . . . , xn]. By convention,
when the number of inequalities k equals zero, we have C = Rn. Thus, every
algebraic variety is automatically a semialgebraic set in the above sense. The sets
X and C are not uniquely determined for a givenB in general—we may, for instance,
safely remove any polynomial generator f : Rn → R from the defining ideal of X
while adding f ≥ 0 and −f ≥ 0 to the inequality locus. It is therefore customary to
omit X entirely and simply define B as the set of points which satisfy a collection
of polynomial inequalities. We find it convenient to write B = X ∩C here because
this allows us to isolate a relevant sub-class of semialgebraic sets.

Definition 5.1. A semialgebraic set B ⊂ Rn is called full if it admits an inequality
locus C of the form (11), with the additional requirement that its subset

C◦ := {x ∈ Rn | gi(x) > 0 for 0 ≤ i ≤ k}

is an n-dimensional smooth manifold whose closure equals C.

Example 5.2 highlights an important class of full semialgebraic sets which arise
in the Morse theoretic study of complex analytic varieties—see [17, II.2].

Example 5.2. Whitney showed in [44] that every complex analytic variety W ⊂
Cn admits a Whitney stratification W• where each intermediate Wi is a complex
analytic subvariety. Associated to each i-stratum M ⊂ Wi − Wi−1 is a stratified
space L = LM , which is called the complex link of M and defined as follows.
Consider a point p ∈ M and let A ⊂ Cn be a generic (n − i)-dimensional affine
subspace which intersects W transversely at a point p ∈ M . Let Bε(p) denote the
disk containing all points within a sufficiently small radius ε > 0 around p with
respect to the standard euclidean distance in Cn. Finally, let π : A → C be a
generic linear form sending p to zero. For some positive δ � ε, one defines

LM := W ∩Bε(p) ∩ {π = δ}.

The stratified homeomorphism type of LM depends only on the stratum M , and
not on the auxiliary choices of p,A, ε, π and δ. Complex links provide normal Morse
data for critical points of stratified Morse functions f : W → R. Although such
a LM will not be a complex (or even real) variety in general, it is always a full
semialgebraic subset of the affine space {π = δ}. In particular, its inequality locus
is the disk Bε(p) ∩ {π = δ}.
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Given such an inequality locus C of a full semialgebraic set, we call C◦ its interior
and define its boundary as the difference

∂C := C − C◦.

This boundary is a semialgebraic subset of the real algebraic variety

(12) YC := V

(
k∏
1

gi

)
.

We adopt the usual convention that the product over the empty set equals 1, which
forces ∂C = YC = ∅ when k = 0.

Example 5.3. Below is a toy example of a full semialgebraic set B = X ∩C inside
R2. Here X is the union of red parabolas P1 and P2 while C is the region bounded
by the black lines L1, L2, L3 and the black parabola P3:

The interior C◦ has been shaded gray, so B consists of that part of P1 ∪ P2 which
lies within the closure of the gray region. The variety YC is the union of curves
L1, L2, L3 and P3. The boundary ∂C consists of the four highlighted points which
lie on this union of curves.

Our next result establishes that every full semialgebraic set B = X ∩C inherits
a Whitney stratification from Whitney stratifications of the real algebraic vari-
eties X and X ∩ YC . (We recall for the reader’s convenience that flag-subordinate
stratifications have been described in Section 2.2).

Theorem 5.4. Let B = X ∩C be a full semialgebraic set, with YC as in (12), and
let X• be a Whitney stratification of X. If Y• is a Whitney stratification of X ∩YC

which is subordinate to the flag X• ∩ YC , then setting

Bi := (Xi ∪ Yi) ∩ C

produces a Whitney stratification of B.
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Proof. Since B is full, we know that the interior C◦ of its inequality locus is a smooth
open n-dimensional submanifold of Rn. This means any open neighborhood of X,
which is contained in C◦, inside Rn is identical to the same neighborhood of X
inside C◦ and therefore, the intersections Xi∩C◦ form a Whitney stratification X ′

•
of X ∩ C◦. Alternatively the fact that Xi ∩ C◦ forms a Whitney stratification X ′

•
of X ∩ C◦ follows since C◦ is full dimensional, meaning the intersection X ∩ C◦ is
transverse and hence the conclusion follows because the Whitney stratification of
two spaces which intersect transversely is given by their intersection, [7], see also
[17, Chapter 1, §1.2, (5)].

Let Y ′
• be the subset of Y•-strata which intersect ∂C. Since C is the disjoint

union of C◦ and ∂C, it follows that the union of X ′
•-strata and Y ′

•-strata partitions
B. It remains to check that Condition (B) holds for those strata pairs (M,N) of
this union for which N intersects the closure of M . There are now three cases to
consider, of which the two easy ones are handled as follows:

(1) If both M and N are strata of X ′
•, then Condition (B) holds because both

are full-dimensional open subsets of X•-strata by construction, and X• is
assumed to be a Whitney stratification.

(2) If M is a Y ′
•-stratum, then the fact that N intersects the closure of M forces

N to be contained in X ∩ ∂C, since both X and ∂C are closed subsets of
Rn. Thus, N must also be a Y ′

•-stratum in which case Condition (B) holds
because Y ′

• is Whitney.

Turning now to the third case, assume that M is an X ′
•-stratum and N is a Y ′

•-
stratum. By construction, M must be (a connected component of) the intersection
M∗ ∩ C◦ for some X•-stratum M∗. Since C◦ is n-dimensional, the tangent spaces
TxM and TxM∗ coincide for every x in M . Fix a point p ∈ N , and let N∗ be the
unique X•-stratum containing p in its interior. Since Y• is chosen subordinate to
X• ∩ YC , the Y•-strata are refinements of X•-strata, so N must be obtained by
removing some (possibly empty) set from N∗ ∩ ∂C. It follows that N is a subset
of N∗ in a small ball around p. Finally, (M,N) must satisfy Condition (B) at p
because (M∗, N∗) satisfy Condition (B) at p. �

The stratifications obtained in Theorem 5.4 provide a complete description of the
flag Bi. Using the techniques of [20, 32, 40], one can perform various fundamental
algorithmic tasks involving such strata. These include testing whether the i-stratum
Bi −Bi−1 is empty for each i, and sampling points from the nonempty strata.

Remark 5.5. Using Theorem 5.4 in practice on a full semialgebraic set B = X ∩C
requires constructing a stratification of the real variety X ∩ YC ; this is somewhat
unsatisfactory from an efficiency perspective, since X and YC may intersect far
away from B—returning to Example 5.3, note that P1 and P2 might intersect L2

at points far from B. We are not aware of any existing technique which can easily
overcome such suboptimality.

6. Performance Analysis and Comparison

In this section we illustrate the performance of the WhitneyPolar algorithm
of Section 3. The results have been collected in Table 1.

6.1. Other methods. We have compared WhitneyPolar to all known methods
for computing practical Whitney stratifications in practice; all of these are based
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on the conormal stratification procedure reviewed in Section 2.1. This comparison
occupies the first three columns of Table 1. For reference, we also give the run
time for computing a Cylindrical Algebraic Decomposition (CAD) for each given
variety. Conversely, we do not include the method of [28] in our results because
it was unable to stratify the Whitney umbrella—which is the simplest non-trivial
input—after running for 24 hours. We also implemented the algorithm of [36, 39]
for the Whitney umbrella, using the standard QuantifierElimination package in
Maple. This code ran for slightly longer than 24 hours, using over 50 GB of RAM
(on a workstation with an Intel Xeon W-3365 processor and 1000 GB of RAM). It
ultimately crashed with a “Stack Limit Reached” error, even if we allowed unlimited
stack size.

6.2. Sample code. An example of the snippet of code which is run in Macaulay2
[18] applied to example X1 from Table 1 is given below9:

needsPackage "WhitneyStratifications "

R=QQ[x_1..x_4]

I=ideal(x_1 ^6+ x_2 ^6+ x_1 ^4* x_3*x_4+x_3 ^3)

elapsedTime V=whitneyStratify (I)

elapsedTime W=whitneyStratify (I,AssocPrimes =>false)

elapsedTime Vpol=whitneyStratifyPol (I,Algorithm =>"msolve ")

In the code snippet above the stratification V is computed using the method of [24],
the stratification W is computed using the method of [23], and the stratification
Vpol is computed using the WhitneyPolar algorithm introduced above in Section
3.

6.3. Gröbner basis computation. For all Whitney stratification algorithms
demonstrated in Table 1, we have provided the run time both over F32749, a finite
field of characteristic 32749, and over the rationals. In practice, efficient imple-
mentations of Gröbner basis algorithms over Q often first compute over different
large finite fields, and then employ rational reconstruction (this is used in [3] for
instance). A similar multi-modular philosophy could be applied to Whitney strati-
fication computation as a whole. On larger examples, the timings in the table seem
to indicate there could be a significant benefit to doing so.

6.4. Hardware. All computations in the first three columns of Table 1 were run
using Version 2.23 of the WhitneyStratifications [22] package in Macaulay2 [18]
version 1.25.06. The last column used the CylindricalDecomposition command
in Mathematica and was run with Wolfram 14.2.1. All computations were carried
out on a laptop with an Intel Ultra 7 processor (258V) and 32 GB of RAM. The
WhitneyPolar algorithm uses the msolve [3] Gröbner basis library (version 0.9.0)
via the Msolve Macaulay2 package. Computations which used greater than 32 GB
were also run again on a desktop with 64 GB of RAM available; in all cases these
computations again exhausted all available RAM before the end of the 11 hour run.
On all runs, WhitneyPolar used no more that 400 MB of memory.

9Note that running this code successfully requires Macaulay2 version 1.25.06 or higher and
version 2.23 or higher of the WhitneyStratifications [22] package.
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6.5. The input varieties. Below we give the equations for the examples pre-
sented in Table 1. The Whitney Cusp and Umbrella are the simplest examples of
singular varieties whose Whitney stratification cannot be obtained by computing
iterated singular loci. Examples X1 through X4 are taken from [23]; these are more
complicated and also have non-trivial Whitney stratifications.

X1 = V
(
x6
1 + x6

2 + x4
1x3x4 + x3

3

)
⊂ C4(13)

X2 = V
(
x2
1x3 − x2

2, x
4
2 − x1x

2
2 − x3x

2
4, x

2
1x

2
2 − x3

1 − x2
4

)
⊂ C4(14)

X3 = V
(
(x3

1 − 2x2
1x4 + x3

1 + x2
5x4 + x2

2x1 − x2x1x3 + x3
5

)
⊂ C5(15)

X4 = V
(
x2
1x

2
2x3 − 2x2

1x2x3x4 − 2x2
1x2x3x5 + x2

1x3x
2
4 + 2x2

1x3x4x5 + x2
1x3x

2
5 − 2x1x

3
2x3+

4x1x
2
2x3x4 + 4x1x

2
2x3x5 − x1x

2
2x4 − 2x1x2x3x

2
4 − 6x1x2x3x4x5 − 2x1x2x3x

2
5+

x1x2x
2
4 + x1x2x4x5 + 2x1x3x

2
4x5 + 2x1x3x4x

2
5 − x1x

2
4x5 + x4

2x3 − 2x3
2x3x4−

2x3
2x3x5 + x3

2x4 + x2
2x3x

2
4 + 4x2

2x3x4x5 + x2
2x3x

2
5 − 2x2

2x
2
4 − x2

2x4x5−

2x2x3x
2
4x5 − 2x2x3x4x

2
5 + x2x

3
4 + 2x2x

2
4x5 + x3x

2
4x

2
5 − x3

4x5

)
⊂ C

5.

(16)

Examples X5 and X6 are also constructed to have non-trivial Whitney stratifi-
cations.
(17)
X5 = V

(
x6x

2
7 + x3

7 + x2
6 − x1x7 − x2

7 + x2, x
2
1x

2
2 − x3

1 + x1x
2
7 − x3x

2
7 − x2

5

)
⊂ C7

X6 = V
(
3 x2x3x5 + 2x1x4x5 − x2x4x5 − x3x4x5 − 2x1x5x6 − 5x3x5x6 + 2 x4x5x6,

x2x
2
4 − x1x4x5 − 3x2x3x6 + x1x5x6 + 3 x3x5x6 − x4x5x6,

x2
2x4 − x1x2x5 + 2 x1x2x6 − x2x3x6 − 2x2x4x6 + x3x5x6,

3x2
2x3 + 2 x1x2x4 − x2x3x4 − x1x2x5 − 6 x2x3x6 + x3x5x6

)
⊂ C

6.

(18)

These examples exhibit varying levels of complexity in terms of degree of gen-
erators, number of variables, density of polynomials, etc. Our next example X7 is
the determinantal variety defined by the 3× 3 minors of the matrix⎡⎣x1 x4 x7 x6

x2 x5 x5 x7

x3 x3 x4 x1

⎤⎦ .

Explicitly, we have

X7 = V(x1x4x5 − x3x5x6 + x4x5x6 − x2
4x7 − x1x5x7 + x3x

2
7,

x2
1x5 + x2x4x6 − x3x5x6 − x1x2x7 − x1x4x7 + x3x

2
7,

x2x
2
4 + x1x3x5 − x3x4x5 − x3x5x6 + x4x5x6 − x2x3x7 − x2

4x7 − x1x5x7+

x3x5x7 + x3x
2
7,

x1x2x4 − x2x3x6 + x2x4x6 − x1x2x7 + x1x3x7 − x1x4x7 − x3x4x7 + x3x
2
7) ⊂ C

7.

(19)
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Table 1. The first three columns show run times of various practi-
cal Whitney stratification algorithms on several example varieties;
the run time for Cylindrical Algebraic Decomposition (CAD) com-
putation is also included in the last column. Computations which
failed to terminate after 11 hours are denoted t. Computations
which exhausted 64 GB of memory and terminated are denoted
m. For each run we highlight the fastest algorithm in bold.

Input Assoc. Primes [24] Block Order [23] WhitneyPolar CAD

F32749 Q F32749 Q F32749 Q

Whitney Umbrella 0.07s 0.07s 0.05s 0.05s 0.06s 0.06s 0.4s
Whitney Cusp 0.09s 0.09s 0.07s 0.07s 0.06s 0.06s 0.4s
X1, see (13) 4.8s 2.9s 4.5s 2.7s 0.15s 2.5s 0.4s
X2, see (14) 9.5s 58.9s 9.2s 58.3s 0.1s 0.2s 0.4s
X3, see (15) 1.1s 1.6s 0.6s 0.9s 0.2s 0.3s 0.9s
X4, see (16) m m 20.7s 747.2s 1.9s 3.4s m
X5, see (17) m m m m 1.6s 77.2s t
X6, see (18) t t t t 1.4s 3.9s m
X7, see (19) t t t t 52.5s 208.8s m
Smooth 0.08s 0.4s 0.08s 0.4s 0.08s 0.4s t
Barth Sextic 0.6s 0.6s 0.6s 0.6s 0.6s 0.6s 12717.7s

The last two varieties in Table 1 have Whitney stratifications given by iterated
singular loci; these have been included as control examples. The first of these is
smooth and has been obtained by intersecting 2 random quadrics in 10 variables.
The second one, called the Barth Sextic, is naturally written in 3 variables, however

we require an additional variable to represent the golden ratio
√
5+1
2 algebraically.

Thus, our version of the sextic is represented by an ideal of degree 12 in 4 variables.

6.6. The results. Regarding the experiments in Table 1, we note that the practical
benefits of the new WhitneyPolar algorithm become particularly apparent on
larger examples with denser polynomials, e.g. X4, X5, X6 and X7. This is true
both in comparison to the other Whitney stratification methods from [23, 24], as
well as when compared to alternative methods to study systems of real polynomials
such as Mathematica’s highly refined CAD implementation.
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Paris Sér. A-B 275 (1972), A915–A916. MR318514
[8] M. Coste and M. Shiota, Thom’s first isotopy lemma: a semialgebraic version, with uni-

form bound, Real Analytic and Algebraic Geometry (Trento, 1992), de Gruyter, Berlin, 1995,
pp. 83–101. MR1320312

[9] D. A. Cox, J. Little, and D. O’Shea, Ideals, Varieties, and Algorithms, 4th ed., Undergraduate
Texts in Mathematics, Springer, Cham, 2015. An introduction to computational algebraic
geometry and commutative algebra, DOI 10.1007/978-3-319-16721-3. MR3330490

[10] W. Decker, G.-M. Greuel, and G. Pfister, Primary decomposition: algorithms and compar-
isons, Algorithmic Algebra and Number Theory (Heidelberg, 1997), Springer, Berlin, 1999,
pp. 187–220. MR1672046

[11] C. Eder, P. Lairez, R. Mohr, and M. Safey El Din, A Direttissimo algorithm for equidi-
mensional decomposition, Proceedings of the International Symposium on Symbolic & Al-
gebraic Computation (ISSAC 2023), ACM, New York, [2023] c©2023, pp. 260–269, DOI
10.1145/3597066.3597069. MR4618435

[12] D. Eisenbud, C. Huneke, and W. Vasconcelos, Direct methods for primary decomposition,
Invent. Math. 110 (1992), no. 2, 207–235, DOI 10.1007/BF01231331. MR1185582

[13] M. England and J. H. Davenport, Experience with heuristics, benchmarks & standards for
cylindrical algebraic decomposition, In CEUR Workshop Proceedings, vol. 1804, CEUR-WS,
2016, pp. 24–31.

[14] A. G. Flores and B. Teissier, Local polar varieties in the geometric study of singularities
(English, with English and French summaries), Ann. Fac. Sci. Toulouse Math. (6) 27 (2018),

no. 4, 679–775, DOI 10.5802/afst.1582. MR3884609
[15] W. Fulton, Intersection Theory, 2nd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete.

3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related
Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 2, Springer-Verlag, Berlin,
1998, DOI 10.1007/978-1-4612-1700-8. MR1644323

[16] M. Golubitsky and V. Guillemin, Stable Mappings and Their Singularities, Graduate Texts
in Mathematics, Vol. 14, Springer-Verlag, New York-Heidelberg, 1973. MR341518

[17] M. Goresky and R. MacPherson, Stratified Morse Theory, Ergebnisse der Mathematik und
ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 14, Springer-
Verlag, Berlin, 1988, DOI 10.1007/978-3-642-71714-7. MR932724

[18] D. R. Grayson, M. E. Stillman, and other Macaulay2 authors, Macaulay2, a software system
for research in algebraic geometry. Available at https://www.macaulay2.com.

[19] C. Harris and M. Helmer, Segre class computation and practical applications, Math. Comp.
89 (2020), no. 321, 465–491, DOI 10.1090/mcom/3448. MR4011552

[20] K. Harris, J. D. Hauenstein, and A. Szanto, Smooth points on semi-algebraic sets, J. Symbolic
Comput. 116 (2023), 183–212, DOI 10.1016/j.jsc.2022.09.003. MR4493195

[21] J. D. Hauenstein and M. Helmer, Probabilistic saturations and Alt’s problem, Exp. Math. 31
(2022), no. 3, 975–987, DOI 10.1080/10586458.2020.1740835. MR4477417

[22] M. Helmer, WhitneyStratifications: Compute Whitney Stratifications. Version 2.23, A
Macaulay2 package. Available at https://github.com/Macaulay2/M2/tree/development/

M2/Macaulay2/packages.
[23] M. Helmer and R. Mohr, A new algorithm for whitney stratification of varieties,

arXiv:2406.17122, 2024.

[24] M. Helmer and V. Nanda, Conormal spaces and Whitney stratifications, Found. Comput.
Math. 23 (2023), no. 5, 1745–1780, DOI 10.1007/s10208-022-09574-8. MR4649433

[25] M. Helmer and V. Nanda, Complex links and Hilbert-Samuel multiplicities, SIAM J. Appl.
Algebra Geom. 7 (2023), no. 1, 29–48, DOI 10.1137/22M1475533. MR4557103

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

https://mathscinet.ams.org/mathscinet-getitem?mr=2574165
https://mathscinet.ams.org/mathscinet-getitem?mr=2396184
https://mathscinet.ams.org/mathscinet-getitem?mr=318514
https://mathscinet.ams.org/mathscinet-getitem?mr=1320312
https://mathscinet.ams.org/mathscinet-getitem?mr=3330490
https://mathscinet.ams.org/mathscinet-getitem?mr=1672046
https://mathscinet.ams.org/mathscinet-getitem?mr=4618435
https://mathscinet.ams.org/mathscinet-getitem?mr=1185582
https://mathscinet.ams.org/mathscinet-getitem?mr=3884609
https://mathscinet.ams.org/mathscinet-getitem?mr=1644323
https://mathscinet.ams.org/mathscinet-getitem?mr=341518
https://mathscinet.ams.org/mathscinet-getitem?mr=932724
https://www.macaulay2.com
https://mathscinet.ams.org/mathscinet-getitem?mr=4011552
https://mathscinet.ams.org/mathscinet-getitem?mr=4493195
https://mathscinet.ams.org/mathscinet-getitem?mr=4477417
https://github.com/Macaulay2/M2/tree/development/M2/Macaulay2/packages
https://github.com/Macaulay2/M2/tree/development/M2/Macaulay2/packages
https://arxiv.org/abs/2406.17122
https://mathscinet.ams.org/mathscinet-getitem?mr=4649433
https://mathscinet.ams.org/mathscinet-getitem?mr=4557103


30 MARTIN HELMER, ANTON LEYKIN, AND VIDIT NANDA

[26] M. Helmer and V. Nanda, Correction to: Conormal paces and Whitney stratifications, Found.
Comput. Math. 24 (2024), no. 3, 1077–1084, DOI 10.1007/s10208-022-09602-7. MR4760362

[27] M. Herrmann, S. Ikeda, and U. Orbanz, Equimultiplicity and Blowing Up, Springer-Verlag,
Berlin, 1988. An algebraic study; With an appendix by B. Moonen, DOI 10.1007/978-3-642-
61349-4. MR954831

[28] S. T. D̄inh and Z. Jelonek, Thom isotopy theorem for nonproper maps and computation
of sets of stratified generalized critical values, Discrete Comput. Geom. 65 (2021), no. 1,

279–304, DOI 10.1007/s00454-019-00087-w. MR4194445
[29] Z. Jelonek, Testing sets for properness of polynomial mappings, Math. Ann. 315 (1999),

no. 1, 1–35, DOI 10.1007/s002080050316. MR1717542
[30] Z. Jelonek, Geometry of real polynomial mappings, Math. Z. 239 (2002), no. 2, 321–333, DOI

10.1007/s002090100298. MR1888227
[31] M. Kashiwara and P. Schapira, Sheaves on Manifolds, Grundlehren der mathematischen

Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 292, Springer-Verlag,
Berlin, 1990. With a chapter in French by Christian Houzel, DOI 10.1007/978-3-662-02661-8.
MR1074006

[32] C. Le Guernic, F. Rouillier, and M. S. El Din, Computing sampling points in a semi-algebraic
set defined by non-strict inequalities, application to pattern-matching problems, In EACA,
Santander. Citeseer, 2004.

[33] M. Marshall, Positive Polynomials and sums of Squares, Mathematical Surveys and
Monographs, vol. 146, American Mathematical Society, Providence, RI, 2008, DOI
10.1090/surv/146. MR2383959

[34] J. Mather, Notes on topological stability, Bull. Amer. Math. Soc. (N.S.) 49 (2012), no. 4,
475–506, DOI 10.1090/S0273-0979-2012-01383-6. MR2958928

[35] M. Micha�lek and B. Sturmfels, Invitation to Nonlinear Algebra, Graduate Studies in Math-
ematics, vol. 211, American Mathematical Society, Providence, RI, [2021] c©2021, DOI
10.1090/gsm/211. MR4423369

[36] T. Mostowski and E. Rannou, Complexity of the computation of the canonical Whitney
stratification of an algebraic set in Cn, Applied Algebra, Algebraic Algorithms and Error-
Correcting Codes (New Orleans, LA, 1991), Lecture Notes in Comput. Sci., vol. 539, Springer,

Berlin, 1991, pp. 281–291, DOI 10.1007/3-540-54522-0 117. MR1229326
[37] D. Mumford and T. Oda, Algebraic Geometry. II, Texts and Readings in Mathematics, vol. 73,

Hindustan Book Agency, New Delhi, 2015. MR3443857
[38] R. Piene, Polar varieties revisited, Computer Algebra and Polynomials, Lecture Notes in

Comput. Sci., vol. 8942, Springer, Cham, 2015, pp. 139–150, DOI 10.1007/978-3-319-15081-
9 8. MR3335572

[39] E. Rannou, The complexity of stratification computation, Discrete Comput. Geom. 19 (1998),
no. 1, 47–78, DOI 10.1007/PL00009335. MR1486637
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