
EXAMPLES SHEET, ANALYSIS OF BOOLEAN FUNCTIONS

TOM SANDERS

Throughout G := Fn2 and X is a finite set unless otherwise stated. Answers and com-
ments on some of the questions appear at the end.

1. Prove the nesting of the Lp(X)-norms and `p(X)-norms. Show that in the first case
equality holds if and only if the function is constant, and in the latter if and only if the
function is a δ-function, meaning that it is supported on exactly one point of the domain.

2. Prove Chebychev’s inequality that

µX({x : |f(x)| > ε}) 6 ε−2‖f‖2
L2(X).

Prove an Lp analogue and `p analogue.

3. Prove the instance ‖f ∗g‖L1(G) 6 ‖f‖L1(G)‖g‖L1(G) of Young’s inequality via the triangle
inequality.

4. Prove the instance ‖f ∗ g‖L∞(G) 6 ‖f‖Lp(G)‖g‖Lq(G) of Young’s inequality via the
Hölder’s inequality.

5. Prove the general instance of Young’s inequality via interpolation if you are familiar with
it. If not look up Riesz-Thorin interpolation on wikipedia and try to use it in conjunction
with the previous inequalities.

6. Prove that if V and W are (vector) subspaces of G then

dimV +W = dimV + dimW − dimV ∩W.

7. Compute the convolution 1W ∗ 1W ′ if W and W ′ are affine subspaces.

8. Compute the convolution 1A ∗ 1V if A ⊂ V has density α and V is a vector subspace
of G.

9. Show that if S ⊂ G then the map π : `2(G) → `2(G); f 7→ f |S is a projection in the
sense that it is a linear map with π2 = π. Show directly that if V is a subspace then the
map PV : L2(G) → L2(G); f 7→ f ∗ µV is also a projection. Can you show this using the
first part?

10. Make sure you believe that f ∗ g = g ∗ f and f ∗ (g ∗ h) = (f ∗ g) ∗ h.
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11. Find an upper estimate for µG({x : 1A ∗ 1A(x) > cα}). Is there an interesting lower
estimate? What if c < α? Suppose that you know ‖1A ∗ 1A‖2

L2(G) > ηα3. Does that help?

What if η > 2c?

12. Prove that if G is a finite group of exponent 2, that is a finite group in which every
element has order 2, then G is abelian. Hence, or otherwise, show that G is isomorphic to
the additive group of Fn2 for some n ∈ N0.

13. We say that f ∈ L1(G) is idempotent if f ∗ f = f . Show that if f is idempotent
then ‖f‖L1(G) = 0 or else ‖f‖L1(G) > 1. Show that if ‖f‖L1(G) = 1 then f = zµW where
|z| = 1, W is an affine subspace of G and µW is, as usual, the unique probability measure
supported on W .

14. Recall that if B is a (real, finite dimensional) Banach space then B∗ denotes its
dual space, that is the space of continuous linear functionals B → R. Prove the Riesz
representation theorem that if φ ∈ Lp(X)∗ then there is some g ∈ Lq(X) (where p−1+q−1 =
1) such that φ(f) = 〈g, f〉L2(X) for all f ∈ Lp(X). What is ‖g‖Lq(X)?

15. Suppose that X1, X2 are finite sets, (p1, q1) and (p2, q2) are conjugate pairs of in-
dices. Suppose that T is a linear operator Lp1(X1) → Lp2(X2). The adjoint operator
T ∗ : Lq1(X2) → Lq2(X1) is defined by 〈Tf, g〉L2(X2) = 〈f, T ∗g〉L2(X1) for all f ∈ Lp1(X1)
and g ∈ Lq2(X2). Check that this produces a well-defined linear operator and compute
‖T ∗‖ in terms of ‖T‖. Note that the same arguments give the same results for `p-spaces,
and for maps between Lp1 and `p2 spaces.

16. Which functions f are idempotent (see the previous question for a definition) and
have ‖f‖Lp(G) 6 1 for some p > 1? Prove ‖f‖L∞(G) 6 1 using Young’s inequality.

17. Write δx : G → C for the map taking x to
√
|G| and all other elements to 0. Prove

that (δx)x∈G forms a basis for L2(G). This is the physical space basis of δ-functions.

18. Characterise the homomorphisms G → {−1, 1}, where {−1, 1} is a group under
multiplication.

19. Suppose that f ∈ L1(G). Check that you believe that g 7→ f ∗ g is a linear operator
L2(G) → L2(G). Such operators care called convolution operators. What is the operator
norm? What is its determinant? What is its characteristic polynomial? What is its
minimal polynomial? Why is the operator diagonalisable?

20. Characterise those bases of L2(G) that simultaneously diagonalise all convolution
operators, that is identify all bases {e1, . . . , e|G|} of L2(G) such that f ∗ ei = λ(f, i)ei for
all i ∈ {1, . . . , |G|}.

21. Prove the special case ‖f̂‖`∞(G) 6 ‖f‖L1(G) of the Hausdorff-Young inequality.
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22. Prove Plancherel’s theorem that 〈f, g〉L2(G) = 〈f̂ , ĝ〉`2(Ĝ) for all f, g ∈ L2(G) using the
Fourier inversion formula.

23. Check that the map L2(G)→ `2(Ĝ); f 7→ f̂ is an isometric isomorphism. What is its
adjoint? What is its inverse?

24. Deduce Plancherel’s theorem from Parseval’s theorem. Unless your proof was very
exotic, what you have done is called de-polarisation.

25. Prove the general Hausdorff-Young inequality that ‖f̂‖`p(Ĝ) 6 ‖f‖Lp′ (G) for all p ∈
[2,∞] using interpolation or otherwise. Prove the dual version that ‖f‖Lp(G) 6 ‖f̂‖`p′ (Ĝ)

for the same range of p.

26. Suppose that G is any finite group of exponent 2. We know that there is some n

such that G is isomorphic to Fn2 and in lectures we defined Ĝ through this isomorphism. A

much better was is to let Ĝ be the set of homomorphisms G → {−1, 1} where {−1, 1} is
considered to be a group under multiplication. Show that if φ : G→ Fn2 is an isomorphism
then

{γ ◦ φ : γ : G→ {−1, 1} is a homomorphism.}

is equal to the set Ĝ as we defined it in lectures. We shall typically use the definitions
interchangeably.

27. Suppose that X is a finite set and A ⊂ P(X) is intersection closed and contains X.
Then we say that S ⊂ X generates A ∈ A if S ⊂ A and for all A′ ∈ A with S ⊂ A′ we
have A ⊂ A′. If ∅ 6= S ⊂ G, how large is the affine space generated by S compared with
the vector space?

28. If A ⊂ Ĝ has size δG(A) = k, how large and small can µG(A⊥) possibly be in terms
of k?

29. Prove that ‖f‖PM(G) := ‖f̂‖`∞(Ĝ) is a norm; it is the spectral radius – that is size

of the largest eigenvalue – of the convolution operator g 7→ f ∗ g. Prove that ‖f‖A(G) :=
sup{|〈f, g〉L2(G)| : ‖g‖PM(G) 6 1} is an algebra norm, that is, it is a norm such that

‖fg‖A(G) 6 ‖f‖A(G)‖g‖A(G). Show that ‖f‖A(G) = ‖f̂‖`1(Ĝ).

30. Prove the spectral radius formula, that is ‖f (n)‖1/n

L2(G) → ‖f̂‖`∞(Ĝ), where f ∈ L1(G)

and f (n) denotes the n-fold convolution of f with itself. How rapidly does it converge? For
which values of p ∈ [1,∞] can you replace L2(G) with Lp(G)?

31. Prove that ‖f̂‖`∞(Ĝ) > ‖f‖L1(G)/
√
|G|. Can you do any better?
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32. Show that if H is a finite dimensional Hilbert space then H is isometrically isomorphic
to `2(X) for some finite set X. On the other hand show that there are finite dimensional
Banach spaces B such that B is not isometrically isomorphic to `p(X) for any p ∈ [1,∞]
and finite set X.

33. Establish the log-convexity of the Lp-norms. That is to say show that

‖f‖Lp(G) 6 ‖f‖θLq(G)‖f‖1−θ
Lr(G) whenever

1

p
=
θ

q
+

1− θ
r

and θ ∈ [0, 1].

34. Show that if V and W are linear subspaces of G then V ∩W is a linear subspace and

codV ∩W 6 codV + codW ;

when does equality occur?

35. Prove the following law of large numbers. Suppose that A ⊂ G has density α, W is
the affine subspace of G generated by A, and V is W ’s vector subspace. If x1, . . . , x2k are
elements of A chosen independently and uniformly at random and S ⊂ G has density σ
then

P(x1 + · · ·+ x2k ∈ S) = µV (S)(1 + oα,σ;k→∞(1)).

36. Can the Parseval bound, that | Specε(f)| 6 ε−2‖f‖2
L2(G)‖f‖

−2
L1(G) for all f ∈ L2(G), be

improved?

37. Show that if A ⊂ G has density α > 0 then A+A+A contains an affine subspace of
co-dimension at most Oα(1).

38. Suppose that A ⊂ G is such that there is A′ ⊂ A with

{(x, y, z, w) ∈ (A′)4 : x+ y + z + w = 0G and x 6= y, x 6= z, z 6= w} = ∅

and µG(A \ A′) 6 ε. Show that µG(A) 6 ε + o(1), where o(1) → 0 as |G| → ∞. Can you
get a reasonable bound for the o(1) term?

39. Prove that the set of vectors in G having at least n − d ones intersects every affine
subspace x+ V where V is a linear subspace of co-dimension at most d.

40. Show that for n sufficiently large in terms of K there is a set A ⊂ G = Fn2 with
µG(A) > 1/3 such that for any X ⊂ G with |X| 6 K we have A+X 6= G.

41. Suppose that A is an independent subset of G. How large is nA in terms of n and the
size of A?
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42. (Khintchine’s inequality) Suppose that Λ ⊂ Ĝ is independent and p ∈ [1,∞). Prove
that

Ω(‖f‖`2(Λ)) = ‖
∑
γ∈Λ

f(γ)γ‖Lp(G) = O(
√
p‖f‖`2(Λ)) for all f ∈ `2(Λ).

[Note that some of the inequalities and range of values follow immediately from Rudin;
some require an additional argument.]

43. Deduce Rudin’s inequality from Beckner’s inequality.

44. Show that if |A+A| 6 K|A| then A+A+A contains an affine subspace of dimension
at least log2 |A| −OK(1).

45. Show that if A ⊂ G has density α and ε ∈ (0, 1]. Then Symα/2(A) contains 1− ε of a
subspace V of co-dimension Oε,α(1).

46. Show that if Λ is a set of independent characters and A ⊂ G has density α then∑
S⊂Λ,|S|=r

|1̂A(
∑
λ∈S

λ)|2 6 O(logα−1)rα2.

47. Show that if p(x) =
∑

i<j xixj then 〈(−1)p, (−1)l〉L2(G) = o(1) for all linear polyno-

mials l. That is to say, the conclusion of the U3-inverse theorem cannot be qualitatively
strengthened.

48. Prove directly that if S ⊂ G and φ : G→ G is such that

µG2({(x, y) ∈ G2 : φ(x) + φ(y) = φ(x+ y), x, y, x+ y ∈ S}) > ε,

then there is a morphism θ such that µG({x ∈ S : φ(x) = θ(x)}) = Ωε(1).
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Comments and solutions

38. First note that the number of quadruples (x, y, z, w) ∈ A′ with x+ y + z + w = 0G is∑
x+y+z+w=0G

1A′(x)1A′(y)1A′(z)1A′(w) = |G|31A′ ∗ 1A′ ∗ 1A′ ∗ 1A′(0G)(1.1)

= |G|3〈1A′ ∗ 1A′ , 1A′ ∗ 1A′〉L2(G).

Now, if A′ has

{(x, y, z, w) ∈ A′4 : x+ y + z + w = 0G and x 6= y, x 6= z, z 6= w} = ∅
Then any quadruple (x, y, z, w) ∈ A′4 with x + y + z + w = 0G has x = y or x = z or
z = w. A’ut if x+ y + z +w = 0G and x = y then z = w; and similarly if x = z or z = w.
It follows that there are at most |G|2 such quadruples and hence the left hand side of (1.1)
is at most |G|2. Thus

|G|−1 > ‖1A′ ∗ 1A′‖2
L2(G) > ‖1A′ ∗ 1A′‖2

L1(G) = µG(A′)4

where the inequality is by Cauchy-Schwarz and µG(A′) 6 |G|−1/4.
Now, since A′ ⊂ A we have

µG(A) = µG(A \ A′) + µG(A′) 6 ε+ µG(A′) = ε+ o(1).

More than this the o(1) bound is rather good and certainly reasonable, satisfying the
demand of the second part. The point is that we do not just prove a variant of the removal
lemma.

46. The point of this question is to highlight the parallels between Beckner’s inequality
and Chang’s theorem. Write

qε(x) :=
∏
λ∈Λ

(1 + ελ(x)).

Since Λ is independent it is easy to see that if S ⊂ Λ then

q̂ε(
∑
λ∈S

λ) = ε|S|.

It follows that

‖1̂Aq̂ε‖2
`2(Ĝ)

>
∑

S⊂Λ,|S|=r

ε2|S||1̂A(
∑
λ∈S

λ)|2 = ε2r
∑

S⊂Λ,|S|=r

|1̂A(
∑
λ∈S

λ)|2.

On the other hand, qε is equal to the Beckner operator pε (on G/
⋂
λ∈Λ λ with a suitable

basis). Hence

‖1̂Aq̂ε‖2
`2(Ĝ)

= ‖1A ∗ qε‖2
L2(G) 6 ‖1A‖2

L1+ε2 (G)
= α2/(1+ε2).

Optimising as with Chang’s theorem we put ε2 = 1/(1 + logα−1) to get the result of the
question. Note that if r = 1 we can easily recover Chang’s theorem.
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48. One way to prove this is to follow the start of the proof of Lemma 7.12 in the notes.
First, if S = {0G} then we can take θ ≡ 0 and so we assume not. Define φ̃ on G to equal
φ on S and ν on Sc where ν is as in Lemma 7.11 in the notes. Then it is easy to see that

µG2({(x, y) ∈ G2 : φ̃(x) + φ̃(y) = φ̃(x+ y), x, y, x+ y ∈ S}) > ε.

Now we apply the Rough Morphism theorem to get a morphism θ̃ such that

µG(x ∈ G : θ̃(x) = φ̃(x)) > exp(−O(ε−O(1))).

Thus, either exp(−O(ε−O(1))) = 2−n.O(n2) or

µG(x ∈ S : θ̃(x) = φ̃(x)) > exp(−O(ε−O(1))).

In the first case, let x′ ∈ S have x′ 6= 0G (possible since S 6= {0G}) and let θ be a morphism

such that θ(x′) = φ(x′) and the result follows; in the second, we let θ ≡ θ̃.
The point of the question is that this result could be prove directly following the argument

for the Rough Morphism Theorem, rather than by using the above method.
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