
EXAMPLES SHEET, APPLICATIONS OF COMMUTATIVE
HARMONIC ANALYSIS

TOM SANDERS

Exercises with daggers (:) are harder, which is not to say that the others are not.
Answers and comments on some of the questions appear at the end.

1. : Show that Proposition 1.5 is best possible up to the implied constant. That is, show
that there is a set A Ă t1, . . . , Nu of size Ωp

?
Nq containing no additive quadruples all of

whose elements are distinct.

2. Suppose that I “ r0, 1s and S Ă p0, εq is open. Show that

}1I ˚ fS ´ 1I}L1pRq “ Opεq.

3. Show that the map

φ : RÑ R;x ÞÑ

#

expp´1{xq if x ą 0

0 otherwise.

is infinitely differentiable. Since φp1{2q ‰ 0 it follows that x ÞÑ φpxqφp1 ´ xq is a bump
function.

4. Considering 1t1,...,Nu as an element of `1pZq, write down an expression for the convolution
of functions 1t1,...,Nu ˚ 1t1,...,Nu.

5. : Considering 1t1,...,Nu as an element of `1pQą0q, show that

1t1,...,Nu ˚ 1t1,...,Nupxq “ Opxop1qq.

6. Prove the nesting of the LppXq-norms and `ppXq-norms. Show that in the first case
equality holds if and only if the function is constant, and in the latter if and only if the
function is a δ-function, meaning that it is supported on exactly one point of the domain.

7. Check that you believe the basic facts about convolution in Lemma 2.7.

8. Prove that

νptx : |fpxq| ě εuq ď ε´p}f}pLppνq,

for all f P Lppνq. (The case p “ 2 is Chebychev’s inequality.)
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9. Show that Young’s inequality, Proposition 2.12, can be improved using an example
other than (a scalar multiple of) f “ g “ 1G. Which (finite) groups is this possible for?
Give as wide a class as you can of extremal functions when the triple of indices pp, q, rq is
not internal.

10. Prove the version of Young’s inequality for measures in Proposition 2.13.

11. Suppose that p is a prime, Z{pZ is endowed with counting measure, A Ă Z{pZ and
λ1, . . . , λr P pZ{pZq˚. Show that the number of solutions to λ1x1 ` ¨ ¨ ¨ ` λrxr “ xr`1 with
x1, . . . , xr`1 P A is

x1λ1A ˚ ¨ ¨ ¨ ˚ 1λrA, 1Ay`2pZ{pZq.

What if p is not prime?

12. Suppose that A Ă t1, . . . , Nu as in Proposition 1.5. Let φ : ZÑ Z{p2N ´ 1qZ by the
usual projection. Then show that px, y, z, wq P A4 is an additive quadruple if and only if
pφpxq, φpyq, φpzq, φpwqq P φpAq4 is an additive quadruple. In light of this use convolution
of finite Abelian groups to reprove Proposition 1.5.

13. Suppose that N is a natural and Z{NZ is endowed with counting measure. Describe
the operators Mf with respect to the standard basis, that is the orthonormal basis of
functions p1tk`NZuq

N
k“1

14. Check that you believe the generalised Parseval identity, that is if te1, . . . , eNu is an
orthonormal basis for a finite dimensional Hilbert space H then

}v}2 “
N
ÿ

i“1

|xv, eiy|
2 for all v P H.

15. Verify the orthogonality relations for characters directly. That is, show that

ż

γpxqλpxqdµpxq “

#

µpGq if γ “ λ

0 otherwise

for γ, λ P pG, and
ż

γpxqγpyqdµ˚pγq “

#

µ˚p pGq if x “ y

0 otherwise

for x, y P G. By a dimension argument, or otherwise, conclude from these that | pG| ď |G|.

16. Prove the structure theorem for finite Abelian groups, that if G is such then there are
naturals d1|d2| . . . |dr such that

G – pZ{d1Zq ‘ ¨ ¨ ¨ ‘ pZ{dnZq.
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17. Show that if G “ pZ{d1Zq ‘ ¨ ¨ ¨ ‘ pZ{dnZq and r P G then

px1, . . . , xnq ÞÑ expp2πip
n
ÿ

i“1

xiri{diqq

is a well-defined character on G, and different rs determine different characters.

18. Use the previous three questions to conclude that if G is a finite Abelian group then
pG – G.

19. Derive Parseval’s theorem and the inversion formula directly from the previous results.

20. Prove that } pf}L8pµ˚q ě }f}L1pµq{
a

|G|. Can you do any better?

21. Prove the Hausdorff-Young inequality that } pf}Lppµ˚q ď }f}Lp1 pµq for all even integers

p ě 2 using Young’s inequality. Note by duality that this this is equivalent to }f}Lppµq ď

} pf}Lp1 pµ˚q for the same values of p. It turns out that both inequalities are true for every
p ě 2.

22. Suppose that G “ pZ{2Zq2n is endowed with Haar probability measure and S Ă G is
the set of vectors with exactly n non-zero entries in them. Show that

p1Spγq “

#

`

n
s

˘`

2n
2s

˘´1
p´1qsPGpSq if |γ| “ 2s;

0 otherwise.

23. Suppose that G “ Z{NZ is endowed with Haar counting measure and I Ă G is a
symmetric interval about 0G of length 2M ` 1. Show that

p1Iprq “
sinpπp2M ` 1qr{Nq

sinpπr{Nq

where r corresponds to the character x ÞÑ expp2πirx{Nq.

24. Using Parseval’s theorem and the result of Exercise 23 with N “ 2p2M ` 1q or
otherwise solve the Bassel problem. That is to say prove that

8
ÿ

r“1

1

r2
“
π2

6
.

In this discrete setting the details of this are developed by Sisask in [Sis08].

25. Suppose that G “ Z{NZ is endowed with Haar probability measure and write G˚ :“
tr `NZ : pr,Nq “ 1u. By definition we have |G˚| “ φpNq; show that

y1G˚prq “
µpN{pN, rqq

φpN{pN, rqq
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where pa, bq is the highest common factor of a and b and r is the character x ÞÑ expp2πirx{Nq.

When G is endowed with Haar counting measure the sums y1G˚prq are called Ramanujan
sums and are denoted cNprq.

26. Suppose that G “ Z{NZ, I Ă G is an interval of size δN and X is chosen uniformly
at random from G˚.2 Then

PpX P Iq “ δ ` op1q.

27. If A Ă G has size δGpAq “ k, how large and small can P
pGpA

Kq possibly be in terms of
k?

28. GivenA Ă G non-empty, we write νA for the measure on pG assigning mass µpAq´1|x1Apγq|
2

to γ P pG. Show that

dpx, yq :“ }φG, pGpxq ´ φG, pGpyq}L2pνAq

is a metric on G. How are the balls tx : dpx, 1q ď εu related to the sets tx : 1A ˚ 1´Apxq ě
p1´ δqµpAqu?

29. Suppose that G is endowed with Haar probability measure and A Ă G has density
α. Find an upper estimate for PGptx : 1A ˚ 1Apxq ą cαuq. Is there an interesting lower
estimate? What if c ă α? Suppose that you know }1A ˚ 1A}

2
L2pGq ě ηα3. Does that help?

What if η ą 2c?

30. Show that if |A´ A| ă 1.5|A| then A´ A is a subgroup of G.

31. Prove that }f}ApGq :“ supt|xf, gyL2pµq| : }pg}L8pµ˚q ď 1u is an algebra norm, that is, it

is a norm such that }fg}ApGq ď }f}ApGq}g}ApGq. Show that }f}ApGq “ } pf}L1pµ˚q, and that it
is independent of the particular normalisation of Haar measure used. Show, further, that
}f}L8pGq ď }f}ApGq.

32. We say that ν PMpGq is idempotent if ν ˚ ν “ ν. Show that ν PMpGq is idempotent
if and only if pν “ 1A for some A Ă G, and note that }ν} “ }1A}ApGq.

33. Show that if ν is idempotent then ν ” 0 or else }ν} ě 1. Show that if }ν} “ 1 then

pν “ 1W where W is a coset in pG.

34. : Establish a robust version of the result in Exercise 33, i.e. show that if ν P MpGq
is idempotent and non-trivial with }ν} ď 1` η for sufficiently small η then pν “ 1W where

W is a coset in pG.

35. Give an example of an idempotent measure ν P MpGq with pν ‰ 1W for any coset W

in pG and such that }ν} ă 2.

2See Exercise 25 for a definition of G˚.



EXAMPLES SHEET, APPLICATIONS OF COMMUTATIVE HARMONIC ANALYSIS 5

36. Which functions f are idempotent (meaning f ˚f “ f) and have }f}Lppµq ď 1 for some
p ą 1? Prove }f}L8pµq ď 1 using Young’s inequality.

37. Prove the spectral radius formula. That is prove that

}νpkq}1{k :“ }

k-fold
hkkkkikkkkj

ν ˚ ¨ ¨ ¨ ˚ ν }1{k Ñ }pν}`8p pGq,

as k Ñ 8 where ν P MpGq. (The limit on the right is called the spectral radius of the
operator Mν .)

38. Show that if G “ Z{NZ and A “ t0, 1u then the associated random walk requires
Ωp|G|2q steps before τpµk, µGq ď 1{10.

39. Show that if A Ă pZ{2Zqn contains the identity then A has spectral gap Ωp|A|´1q. On
the other hand if the random walk associated to A converges to the uniform distribution
on pZ{2Zqn show that |A| ě n ` 1. It follows from the bound (3.9) (in the notes) that if
A “ t0G, e1, . . . , enu where ei are the canonical basis vectors then the random walk will
have achieved ‘good convergence’ to the uniform distribution in Opn2q steps.

40. Suppose that G “ pZ{2Zqn and A “ t0G, e1, . . . , enu as in Exercise 39. By examining

}f0 ˚ µ
pkq
A ´ 1}`2pGq directly for a probability mass functions f0 show that we have achieved

‘good convergence’ to the uniform distribution in Opn log nq steps. It turns out that this
is the correct order of magnitude.

41. Explain why if A Ă Z{pZ has size 2m` 1 then
ÿ

aPA

p1´ Re expp2πia{pqq ě
ÿ

|n|ďm

p1´ Re expp2πin{pqq.

Hence, or otherwise, show that if A Ă Z{pZ contains the identity and has density α then
A has spectral gap Ωpα2q.

42. Use the ideas in Example 41 to give another proof that if G is an Abelian group and
A Ă G contains the identity then A has spectral gap Ωp|A|{|G|2q.

43. Show that if A Ă G contains 0G then A has spectral gap equal to the Rayleigh quotient

sup

"

}MµAf}L2pGq

}f}L2pGq

: xf, 1yL2pGq “ 0

*

44. Given A Ă G generating G which is endowed with counting measure, the edge isoperi-
metric number or Cheeger constant of A is defined to be

hpAq :“ min

#

x1S ˚ Ą1GzS, 1Ay`2pGq
|S|

: S Ă G, |S| ď |G|{2

+

.
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Prove that

hpAq{|A| ď min

"

|S ` A|

|S|
: S Ă G, |S| ď |G|{2

*

ď hpAq.

This relates the edge isoperimetric number to the vertex isoperimetric number.

45. Given A Ă G generating G we define λ2 :“ supγ‰0
pG

Re xµApγq. (There is no modulus

sign.) As mentioned in the notes the usual definition of spectral gap is 1´ λ2. Show that
A has spectral gap (in the sense of the lecture notes) at most 1´ λ2; give an example of a
set A (generating G and containing 0G) such that 1´λ2 “ Ωp1q and for which the spectral
gap tends to 0 as |G| Ñ 8.

46. Using the definitions of Exercises 44 and 45 prove the Cheeger-Alon-Milman inequality
for Cayley graphs on Abelian groups. That is, prove that

|A|p1´ λ2q ď hpAq ď |A|
a

2p1´ λ2q.

47. Use the probabilistic method to show that there is a set A Ă t1, . . . , Nu containing
no non-trivial three-term progressions such that |A| “ ΩpN1{2q.

48. Show that there is a set A Ă t1, . . . , Nu of size |A| “ Ωp1q such that A contains no
solutions to x` y “ z.

49. Suppose that A Ă G :“ pZ{2Zqn has density at least 1{2 ´ ε and contains no sums
x` y “ z. Show that there is some V ď G with PGpA4pGzV qq “ Opεq.

50. Show that if A Ă pZ{3Zqm and B Ă pZ{3Zqn do not contain any non-trivial three-term
arithmetic progressions then AˆB does not contain any non-trivial three-term arithmetic
progressions. Hence, or otherwise, show that there is a set A Ă pZ{3Zqn such that |A| ě 2n

not containing any non-trivial three-term arithmetic progressions.

51. Given an example of a group G and Bohr set BohrpΓ, δq of rank k such that

PGpBohrpΓ, δqq „ pδ{πqk.

52. Suppose that G “ Z{NZ and Γ “ tγ2r : 0 ď r ď k ´ 1u where γ generates pG. Show
that

PGpBohrpΓ, δqq “ Ωp2´kδq.

53. Show that if G “ Z{pZ for some prime p and Γ is size k then BohrpΓ, δq contains an
arithmetic progression of length δp1{kp1´ oδÑ0p1qq{π

54. Suppose that p and q are primes with p „ q, N :“ pq, G :“ Z{NZ and let γpxq :“
expp2πix{qq. Show that any arithmetic progression in Bohrptγu, 1{4q has length Op

?
Nq.
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55. Show that for G “ Z{pZ for p a prime and δ P p0, 1s there is a Bohr set BohrpΓ, δq of
rank k such that the longest arithmetic progression in BohrpΓ, δq is Opδp1{kq.

56. Show that if G is endowed with Haar counting measure and A Ă G has size ε log |G|
then

sup
γ‰0

pG

|x1Apγq| ě p1´ oεÑ0p1qq|A|.

57. Give an example of a set A Ă t1, . . . , Nu of density α such that A` A` A does not
contain an arithmetic progression of length longer than N oαÑ0p1q.

58. Convince yourself that the proof of Theorem 4.10 can be adapted to show that if
A Ă pZ{3Zqn has density α then A ` A ` A contains an affine subspace (translate of a
subspace) of co-dimension Opα´3q. The co-dimension of V ď pZ{3Zqn is n ´ dimV when
V is considered as a subspace of pZ{3Zqn which is, in turn, considered as a vector space
over Z{3Z.

59. Use the proof of the Roth-Meshulam theorem to improve the above and show that if
A Ă pZ{3Zqn has density α then A ` A ` A contains an affine subspace of co-dimension
Opα´1q.

60. Show that if G “ Z{pZ for some prime p then Q :“ tx2 pmod pq : x P Zu has

|x1Qpγq| À
a

|Q| whenever γ is non-trivial.

61. Show that if X is a real random variable on a finite probability space then the map
X ÞÑ }X} where }X} is the smallest non-negative constant such that

EexppλXq ď expp}X}2λ2
{2q for all λ P R

is a norm.

62. Show that for random variables X1, . . . , Xn with E
ř

iXi “ 0 we have

E|
ÿ

i

Xi|
p
ď Oppqp{2np{2´1

n
ÿ

k“1

E|Xi|
p.

63. Show that if a random variable X has }X}LppPq ď C}X}L2pPq for some p ą 2 then

}X}L2pPq ď C1{pp´2q}X}L1pPq.

64. Suppose that A is an independent subset of G :“ pZ{2Zqn. How large is nA :“
ta1 ` ¨ ¨ ¨ ` an : a1, . . . , an P Au in terms of n and the size of A?
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65. Suppose that we pick x1, . . . , xk uniformly and independently at random from G. Show
that if3 k “ log3 |G| ´ ω|G|Ñ8p1q then w.h.p. tx1, . . . , xku is dissociated and if k ě log2 |G|
then w.h.p. tx1, . . . , xku is not dissociated.

66. Suppose that A Ă G is maximal dissociated. Show that the spectral gap of A
is Ωp1{|A|2q and hence that the random walk associated to A will have achieved ‘good
convergence’ to the uniform distribution on G in Oplog3

|G|q steps.

67. Suppose that k P N and S Ă G. We say that S is k-dissociated if
ÿ

sPS

εss “ 0G and ε P t´1, 0, 1uS with }ε}`1pSq ď k ñ ε ” 0,

and write
SpankpSq :“ t

ÿ

sPS

εss : ε P t´1, 0, 1uS and }ε}`1pSq ď ku.

Show that if S Ă T is maximal k-dissociated then T Ă SpankpSq.

68. Suppose that G “ pZ{2Zqn and suppose that Γ Ă pG is 2k-dissociated. Prove that

}f_}L2kpGq “ Op
?
k}f}`2pΓqq for all f P `2

pΓq.

This can be useful because begin 2k-dissociated is a weaker condition than being dissoci-
ated. The extension of this to finite Abelian groups is proved by Shkredov in [Shk08].

69. Suppose that Γ is a dissociated set of characters on G. By considering the product
ź

γPΓ

p1` Re γq

or otherwise show that for all λ P pG we have

|tε P t´1, 0, 1uΓ : }ε}`1pΓq “ r and
ÿ

γPΓ

εγγ “ λu| ď 2r.

This is a result of Rider [Rid66].

70. :: A set of characters Γ on G is said to be C-Sidon if to every ω P `8pΓq with
}ω}`8pΓq ď 1 there is some measure µω such that

xµω|Γ “ ω and }µω} ď C.

Prove that dissociated sets are Op1q-Sidon. (You may wish to use the result of Exercise
69.)

71. : Show that if Γ is C-Sidon and p P r2,8q then

}f_}LppGq “ OpC
?
p}f}`2pΓqq for all f P `2

pΓq.

3Here ω|G|Ñ8p1q denotes a quantity which tends to infinity as |G| Ñ 8.
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72. Show that if Γ is C-Sidon then |Γ| “ OpC2 log |G|q.

73. Show that if A Ă G then 2A ´ 2A :“ ta0 ` a1 ´ a2 ´ a3 : a0, a1, a2, a3 P Au contains
a Bohr set of rank Opα´1 logα´1q and width ΩpαOp1qq. This result is called Bogolyubov’s
theorem.

74. Prove Chang’s theorem for functions. That is suppose that f P L2pGq and Γ is a

dissociated subset of tγ P pG : | pfpγq| ě ε}f}L1pGqu. Then

|Γ| “ Opε´2 logp}f}2L2pGq}f}
´2
L1pGqqq.

75. Use the version of Khintchine’s inequality with good constants (Theorem 5.9) to show

that if g P `2p pGq has }g}`2p pGq “ 1 then there is some h P L2pGq such that ph “ g and

}h}2L2pGq{}h}
2
L1pGq ď 2. This shows that unless }h}2L2pGq{}h}

2
L1pGq Ñ 8 we cannot expect any

additional structure in the large spectrum of L2-functions.

76. Suppose thatG is endowed with Haar counting measure andA Ă G has |A`A| ď K|A|.
By considering f “ 1A`A ˚ 1´A or otherwise show that A Ă SpanpSq for some set S with
|S| “ OpK log |A|q.

77. By using Khintchine’s inequality for p ą 4 prove the following refinement of the claim

in the proof of Theorem 5.20. Given k P `2p pGq and η P p0, 1{2s there is some choice of
signs ε on the support of k (meaning ε : supp k Ñ t´1, 1u) and a function g with

}pg ´ εk}`2p pGq ď η}k}`2p pGq and }g}L8pGq “ Op
a

log η´1}k}`2p pGqq.
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Comments and solutions

1. First it should be remarked that this question was set by mistake: the intention was for
the probabilistic method (or, equivalently, the greedy algorithm) to be used, and in that
case one gets a set A with |A| “ ΩpN1{3q.

One picks the set A by taking x P t1, . . . , Nu independently at random with probability
δ. There are OpN3q additive quadruples in t1, . . . , Nu with all entries distinct. Let B be
the set of such quadruples occurring in A, then we have

E|B| “ Opδ4N3
q and E|A| “ δN.

It follows that we can pick δ “ ΩpN2{3q such that

Ep|A| ´ 2|B|q ě δN{2.

Hence there is a choice of elements of A such that |A| ´ 2|B| ě δN{2, and so |A| ě δN{2
and |B| ď |A|{2. We let A1 be the set A with one element in each quadruple in B
removed from A. As a result of this A1 has no quadruples with all elements distinct and
|A1| ě |A|{2 ě δN{4 “ ΩpN1{3q as required.

To construct a larger set we make use of the parabola. Suppose that p is an odd prime
and put A1 :“ tpx, x2 pmod pqq : 1 ď x ď pu. We unwrap this construction into t1, ..., Nu.
Let p be an odd prime with

?
N ă 4p ď 2

?
N , which can be done by Bertrand’s postulate1

provided N is a sufficiently large (absolute) constant. Let A :“ tx ` 2py : px, yq P A1u,
which is a subset of t1, . . . , Nu since 2p2 ` p ď 4p2 ď N , and if x1, y1, z1, w1 P A then

x1 ` y1 “ z1 ` w1 ùñ x` y “ z ` w and x2
` y2

” z2
` w2

pmod pq

If z ‰ x then

x2
´ z2

” w2
´ y2

pmod pq ùñ x` z ” w ` y pmod pq on division by x´ z “ w ´ y

which in turn implies that x “ w. Hence A contains no non-degenerate additive quadruples
and |A| “ p “ ΩpNq.

This construction can be tightened up as in Singer [Sin38] but see also [HL63] for some
details.

5. This question is about proving the estimate τpxq “ Opxop1qq for the divisor function.
(Equivalently this means proving τpxq “ Oεpx

εq for all ε ą 0.) We write n “
śr

i“1 p
ei
i where

the pi are primes and the ei are naturals using the Fundamental Theorem of Arithmetic.
We divide the factors into two classes:

L :“ ti : pi ě exppε´1
qu and S :“ ti : pi ă exppε´1

qu.

Now,
1` ei ď exppeiq ď pεeii for all i P L,

while

1` ei ď pε{ log 2q´1
p1` εei log 2q ď pε{ log 2q´12εei ď pε{ log 2q´1pεeii for all i.

1See footnote 25 of the notes.
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It follows that

τpnq “
r
ź

i“1

p1` eiq “
ź

iPL

p1` eiq.
ź

iPS

p1` eiq

ď
ź

i

pεeii .
ź

iPS

pε{ log 2q´1

ď nεpε log 2q´ exppε´1q
“ exppexppOpε´1

qqqnε

since |S| ď exppε´1q. The required result is proved.

17. The point of this remark is not to do this question but to explicitly pick out some
particular dual groups. If G “ Z{NZ then the characters on G all have the form

x ÞÑ expp2πixr{Nq as r ranges Z{NZ.

On the other hand if G “ Fn2 then the characters are called Walsh functions and have the
form

r ÞÑ p´1qr.x where r.x “ r1x1 ` ¨ ¨ ¨ ` rnxn

and r ranges Fn2 . The quantity r.x, while not an inner product, is quite like an inner
product and algebraically it behaves in the same way.

As a final example we consider G “ Fn3 where the characters have the form

r ÞÑ ωr.x where 1` ω ` ω2
“ 0

and r ranges Fn3 .
In the first instance if N is prime then G has no non-trivial subgroups and the annihila-

tors are consequently not interesting. This is in marked contrast to Fn2 and Fn3 which both
have a rich subgroups structure.

33. (This solution is due to Ines Marus̆ić.)
Let ν P MpGq be an idempotent measure. Then either ν ” 0 or }ν} ě 1. Indeed, by

applying the algebra inequality for measures ( }ρ1 ˚ ρ2} ď }ρ1}}ρ2} for all ρ1, ρ2 P MpGq )
we get:

}ν} “ }ν ˚ ν} ď }ν}2.

Hence, if ν ı 0, then }ν} ą 0 which implies }ν} ě 1.
Given ν ı 0 there is some x P G such that |νptxuq| ą 0. Hence, if we write S for the set

tx P G : |νptxuq| ą 0u, we conclude that S is nonempty. Suppose that z P G is such that
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|νptzuq| “ maxxPG |νptxuq|. We now have:

|νptzuq| “ |ν ˚ νptzuq| “

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

xPG

νptz ´ xuqνptxuq

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

xPS

νptz ´ xuqνptxuq

ˇ

ˇ

ˇ

ˇ

ˇ

ď
ÿ

xPS

|νptzuq||νptxuq| “ |νptzuq|}ν} “ |νptzuq|.

We conclude that we must have equality in the above inequality and so νptz ´ xuqνptxuq
has the same sign and |νptz ´ xuq| “ |νptzuq| for all x P S. We shall now see that S is a
subgroup. Write

M :“ tz P S : |νptzuq| “ max
xPG

|νptxuq|u,

and note that we showed that if z PM then z´S ĂM . On the other hand M Ă S whence
M ´M “M and since it is non-empty we conclude that M is a subgroup. But z´S ĂM
and so |M | ě |S|; since S ĂM we conclude that M “ S and so S is a subgroup.

We have shown that ν “ cµS where S is a subgroup and c is a function on S of modulus
1 with cpz ´ xqcpxq constant for all x P S and given z P S. This tells us that

cpx` yqcp0Gq “ cpxqcpyq for all x, y P S,

and so cpxq “ cγpxq for some character γ and constant c. By idempotence c2 “ c and so
c “ 1 since ν ı 0 and we conclude that ν “ γµS which gives the required result on taking
the Fourier transform.

34. We start by using Exercise 32 and let A be such that 1A “ pν. We now think of f defined

by fpxq :“ νptxuq as being a function in `1pGq so that pν “ pf and }f}`1pGq “ }ν} ď 1 ` η.
Then

P
pGpAq “ EγP pG|1Apγq|

2
“

ÿ

xPG

|fpxq|2 ď

˜

ÿ

xPG

|fpxq|4

¸1{3 ˜
ÿ

xPG

|fpxq|

¸2{3

by Hölder’s inequality. It follows that

PGpAq3{p1` ηq2 ď }f}4`4pGq “ E1A ˚ 1´Apxq
2

where the last equality is Parseval’s theorem and the fact that y|f |2 “ pf ˚ pf “ 1A ˚ 1´A.
Now follow the argument from (3.6) of the notes to conclude that there is some coset of a
subgroup H such that

PGpA4pγ `Hqq “ Opη1{2PGpAqq.
We separate the `1-mass of f into two parts:

}f}`1pGq “
ÿ

xPHK

|fpxq| `
ÿ

xRHK

|fpxq|.
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Of course,
ÿ

xPHK

|fpxq| “
ÿ

xPG

|fpxq1HKpxq| “ }1A ˚ µH}ApGq ě }1A ˚ µH}`8pGq ě p1´Opη
1{2
q;

and
ÿ

xRHK

|fpxq| “
ÿ

xPG

|fpxqp1´ 1HKqpxq| “ }1A ´ 1A ˚ µH}ApGq ě }1A ´ 1A ˚ µH}`8pGq.

We conclude that

}1A ´ 1A ˚ µH}`8pGq ď 1` η ´ p1´Opη1{2
qq “ Opη1{2

q.

Thus, if γ1 P γ`H we conclude γ1 P A and conversely, so that A “ γ`H and we are done.
The point about this question is that idempotence is very rigid: there is a genuine step

in the norm of idempotent measures between 1 and 1`Ωp1q. This is a consequence of this

result and the fact that }γµHK} “ 1 for any γ P pG and H ď pG.

35. The idea here was to consider ν “ δ0G ´µV where V ď G is a subgroup of size greater
than 2. Then pν “ 1

pG ´ 1V K which is an indicator function of a set and hence idempotent.
Moreover,

}ν} “ 1´
1

|V |
` p|V | ´ 1q

1

|V |
“ 2´

2

|V |
ă 2.

On the other hand 1
pGzV K ‰ 1W for any coset W in pG since | pG| ą | pGzV K| ą | pG|p1´1{2q and

so | pGzV K| does not divide pG and so is not a coset of a subgroup by Lagrange’s theorem.

(Note that if |V | has size 2 then pGzV K is a coset of a subgroup, it is the ‘other’ coset of
V K.)

46. The usual lower bound is half of that given and follows from noting that

hpAq ě
|G|

2
min

#

x1S ˚ Ą1GzS, 1Ay`2pGq
|S||GzS|

: S Ă G

+

.

In our simpler setting the stronger bound given also holds.
The upper bound is rather harder than the lower bound. To get some intuition it may

be helpful to first consider a weaker argument. One can begin by supposing that γ is such
that Re xµApγq “ λ2 “: 1´ ε and let

S :“ tx P G : |γpxq ´ 1| ď
?

2u and I :“ tx P G : |γpxq ´ 1| ă δu

for some δ to be optimised later. Then

µApAzIqδ
2
{2 ď

ż

Rep1´ γpxqqdµApxq “ ε.

On the other hand by construction we have

1S ˚ 1Spxq ě p1´Opδqq|S| for all x P I,
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and we conclude that

x1S ˚ 1S, 1Ay ě p1´Opδqq|S|p1´Opεδ
´2
qq|A|.

Optimising by taking δ “ ε1{3 tells us that

x1S ˚ 1S, 1Ay ě p1´Opε
1{3
qq|A||S|

and, of course, |S| ď |G|{2. It follows that hpAq “ Opε1{3q. The weakness with this
argument is that while the map x ÞÑ γpxq is measure preserving, the map x ÞÑ Re γpxq is
not measure preserving. (At least this is true with the obvious measures on S1 and r´1, 1s
respectively.) To get the actual inequality which says that hpAq ď

?
2ε we have to remedy

this problem.
It may be helpful to first prove that

ÿ

x,y

|Re γpxq ´ Re γpyq|1Apx´ yq ď |G|

b

2|A|p|A| ´x1Apγqq,

and then find a lower bound for

B :“
ÿ

x,y

|Re γpxq ´ Re γpyq|1Apx´ yq.

To do this is not trivial because of the modulus signs. It may be helpful to start by writing
1 “ c0 ě c1 ě . . . ě cR for the values taken by Re γpxq and Si :“ tx P G : Re γpxq ě ciu,
so that

Re γpxq “
ÿ

i

p1Sipxq ´ 1Si´1
pxqqci “

ÿ

i

1Sipxqpci ´ ci`1q.

Then

B “ 2
ÿ

x,y:Re γpxqěRe γpyq

|Re γpxq ´ Re γpyq|1Apx´ yq

ě 2
ÿ

i

ÿ

x,y

pci ´ ci`1q1Sipxq1GzSipyq1Apx´ yq

ě 2hpAq

¨

˝

ÿ

i:|Si|ď|G|{2

pci ´ ci`1q|Si| `
ÿ

i:|Si|ą|G|{2

pci ´ ci`1qp|G| ´ |Si|q

˛

‚.

From here the result is fairly straightforward.

49. The important point here is that the density is very large indeed. We write α for the
density of A and note that by hypothesis

0 “ x1A ˚ 1A, 1AyL2pGq “
ÿ

γP pG

x1Apγq
3.

Since G “ pZ{2Zqn all the characters are real and so x1A is real. Moreover x1Ap0 pGq “ α as
usual and so

´α3
“

ÿ

γ‰0
pG

x1Apγq
3.



EXAMPLES SHEET, APPLICATIONS OF COMMUTATIVE HARMONIC ANALYSIS 15

It follows that there is some γ ‰ 0
pG such that

x1Apγq ă 0 and |x1Apγq| ě α3
{p

ÿ

γ‰0
pG

|x1Apγq|
2
q ě α3

{pα ´ α2
q´ “ αp1´Opεqq,

since α “ 1{2´ ε. On the other hand

x1Apγq “
|AX ker γ|

|G|
´
|AX pGz ker γq|

|G|
,

and so

|AX ker γ| ´ |AX pGz ker γq| ď ´|A|p1´Opεqq.

Of course

|AX ker γ| ` |AX pGz ker γq| “ |A|,

and so the result follows on setting V :“ ker γ.

54. The point of this exercise is that the power of p in Lemma 4.9 cannot be improved
for general cyclic groups. This is to be compared with Exercise 53 which gives a stronger
bound than Lemma 4.9 using a simplification of that argument; this stronger bound does
not extend to general cyclic groups.

55. The basic idea is to find a Bohr set whose size roughly matches the lower bound of
Lemma 4.8, in particular such that for some η “ Ωpp1{kq we have BohrpΓ, ηq “ t0Gu. Given
such a Bohr set suppose that we have an arithmetic progression of length L in BohrpΓ, δq.
Then there is a centred progression of length L in BohrpΓ, 2δq by the triangle inequality.
Say this progression has common difference d ‰ 0G, and note that

|γipkdq ´ 1| ď 2δ for all |k| ď L{2 and i P t1, . . . , ku.

If δ is smaller than some absolute constant this implies that

|γipdq ´ 1| “ Opδ{Lq for all i P t1, . . . , ku,

and so d P BohrpΓ, Opδ{Lqq. We can pick L “ Opδp1{kq large enough that this forces a
contradiction and the result is proved.

It remains to find a Bohr set of the right size. To do this pick γ1, . . . , γk independently

and uniformly at random from pG and put Γ :“ tγ1, . . . , γku. Then

EPGpBohrpΓ, ηqq “
1

|G|
` EExPG1Gzt0Gupxq

k
ź

i“1

1tz:|1´γipzq|ďηupxq

“
1

|G|
` ExPG

k
ź

i“1

pOpηq `Op1{pqq

We can pick η “ Ωpp1{kq such that this mean is strictly less than 2{p, hence there is a
choice of characters with the required property.
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66. The reader may wish to compare this exercise with Exercise 39. First note that if A Ă G
is maximal dissociated then G Ă SpanpAq by Lemma 5.12. It follows that 3|A| ě |G| and
so |A| ě log3 |G|. On the other hand since A is dissociated we have 2|A| ď |G| and so
|A| “ Θplog |G|q.

We now examine a Bohr set in pG using Pontryagin duality:

BohrpA, 1{10|A|q “ tγ P pG : |γpxq ´ 1| ď 1{10|A|u.

Since G Ă SpanpAq we see by the triangle inequality that if γ P BohrpA, 1{10|A|q then
|1´ γpyq| ď 1{10 for all y P G. It follows that γ “ 0

pG. We conclude that for all γ ‰ 0
pG we

have
|x1Apγq ´ |A|| ě sup

xPA
|γpxq ´ 1| ě 1{10|A|,

from which the claimed bound follows.
Combining the above with our earlier result (3.9) we see that for every initial distribu-

tion µ0 on G the random walk associated to A will have achieved ‘good convergence’ to
the uniform distribution on G in Oplog3

|G|q steps which is much faster than the trivial
estimates.
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