EXAMPLES SHEET, APPLICATIONS OF COMMUTATIVE
HARMONIC ANALYSIS

TOM SANDERS

Exercises with daggers (f) are harder, which is not to say that the others are not.
Answers and comments on some of the questions appear at the end.

1. 7 Show that Proposition is best possible up to the implied constant. That is, show
that there is a set A = {1,..., N} of size Q(v/N) containing no additive quadruples all of
whose elements are distinct.

2. Suppose that I = [0,1] and S < (0, €) is open. Show that
Hl[ * fS — 1IHL1(R) = O(E)

3. Show that the map

6:R Rz exp(—1/z) ifz>0
' 7 0 otherwise.

is infinitely differentiable. Since ¢(1/2) # 0 it follows that z — ¢(x)¢(1 — x) is a bump
function.

,,,,,

.....

6. Prove the nesting of the LP(X)-norms and ?(X)-norms. Show that in the first case
equality holds if and only if the function is constant, and in the latter if and only if the
function is a d-function, meaning that it is supported on exactly one point of the domain.

7. Check that you believe the basic facts about convolution in Lemma 2.7

8. Prove that
v({z  [f(@)] = €}) < P f 70
for all f € LP(v). (The case p = 2 is Chebychev’s inequality.)
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9. Show that Young’s inequality, Proposition [2.12] can be improved using an example
other than (a scalar multiple of) f = g = 1g. Which (finite) groups is this possible for?
Give as wide a class as you can of extremal functions when the triple of indices (p, ¢, 7) is
not internal.

10. Prove the version of Young’s inequality for measures in Proposition [2.13]

11. Suppose that p is a prime, Z/pZ is endowed with counting measure, A ¢ Z/pZ and
Ay ..y A € (Z/pZ)*. Show that the number of solutions to A\jxy + - -+ + A&, = 2,41 with
T1,...,%.41 € AIS

Myga -+ Iaa, La)e @)
What if p is not prime?

12. Suppose that A < {1,..., N} as in Proposition [1.5] Let ¢ : Z — Z/(2N — 1)Z by the
usual projection. Then show that (z,y,z,w) € A? is an additive quadruple if and only if
(d(x), d(y), d(2), p(w)) € p(A)* is an additive quadruple. In light of this use convolution
of finite Abelian groups to reprove Proposition [I.5]

13. Suppose that N is a natural and Z/NZ is endowed with counting measure. Describe
the operators My with respect to the standard basis, that is the orthonormal basis of
functions (1{k+NZ})kN:1

14. Check that you believe the generalised Parseval identity, that is if {e1,..., ey} is an
orthonormal basis for a finite dimensional Hilbert space H then

N
[o> = > Kv, e for all v € H.

i=1

15. Verify the orthogonality relations for characters directly. That is, show that

f y(@)A(w)dp(w) = {M(G> if v = A

0 otherwise

for v, e CA?, and

o) - {7 et

for z, € G. By a dimension argument, or otherwise, conclude from these that |G| < |G|.

16. Prove the structure theorem for finite Abelian groups, that if G is such then there are
naturals d;|ds| . .. |d, such that

G=(Z/hZ)® - & (Z/dT).
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17. Show that if G = (Z/d\Z)® - -- @ (Z/d,Z) and r € G then

(T1,. .., xp) — exp(2m’(z x;1i/d;))

i=1

is a well-defined character on GG, and different rs determine different characters.

18. Use the previous three questions to conclude that if G is a finite Abelian group then
G=G.

19. Derive Parseval’s theorem and the inversion formula directly from the previous results.
20. Prove that | f] g = | f]2140/+/]G]- Can you do any better?

21. Prove the Hausdorff-Young inequality that | f]| wo(ury < | f] g for all even integers
p = 2 using Young’s inequality. Note by duality that this this is equivalent to | f| s, <

HfH 1o () for the same values of p. It turns out that both inequalities are true for every
p=2.

22. Suppose that G = (Z/2Z)*" is endowed with Haar probability measure and S < G is
the set of vectors with exactly n non-zero entries in them. Show that

)= {8 P ol

23. Suppose that G = Z/NZ is endowed with Haar counting measure and I < G is a
symmetric interval about Og of length 2M + 1. Show that
~ sin(m(2M + 1)r/N)
1;(r) = .
sin(mr/N)

where r corresponds to the character z — exp(2mwirz/N).

24. Using Parseval’s theorem and the result of Exercise with N = 2(2M + 1) or
otherwise solve the Bassel problem. That is to say prove that

i I w2

2 6

In this discrete setting the details of this are developed by Sisask in [Sis08].

25. Suppose that G = Z/N7Z is endowed with Haar probability measure and write G* :=
{r+ NZ: (r,N) = 1}. By definition we have |G*| = ¢(N); show that

1/6;(7“) _ M(N/(Nv T‘))
¢(N/(N,r))
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where (a, b) is the highest common factor of a and b and r is the character  — exp(2mwirz/N).
When G is endowed with Haar counting measure the sums 1g«(r) are called Ramanujan
sums and are denoted cy ().

26. Suppose that G = Z/NZ, I < G is an interval of size 6N and X is chosen uniformly
at random from G*[J Then

P(X eI) =6+ o(l).

27. If A G has size dg(A) = k, how large and small can Pg(A™*) possibly be in terms of
k?

28. Given A c G non-empty, we write v4 for the measure on G assigning mass M(A)_1|ﬁ(7) |2
to v € G. Show that
d(z,y) := |dg.a(®) = daa¥)r2wa)

is a metric on G. How are the balls {z : d(z,1) < €} related to the sets {x : 14+ 1_4(x) =
(1—0)u(A)}?

29. Suppose that G is endowed with Haar probability measure and A < G has density
«. Find an upper estimate for Pg({z : 14 = 1a(x) > ca}). Is there an interesting lower
estimate? What if ¢ < a? Suppose that you know |14 * 1,4”%2(@ > na®. Does that help?
What if n > 2¢7

30. Show that if |A — A|] < 1.5|A| then A — A is a subgroup of G.

31. Prove that | f|a) = sup{|{f, 9)r2(m| : |g]|ou#) < 1} is an algebra norm, that is, it

is a norm such that | fg[a) < |flalglac). Show that | flla) = [ flr1(u), and that it
is independent of the particular normalisation of Haar measure used. Show, further, that

1 fllzeey < | flla)-

32. We say that v € M(G) is idempotent if v« v = v. Show that v € M(G) is idempotent
if and only if 7 = 14 for some A c G, and note that |v| = |14 a().

33. Show that if v is idempotent then v = 0 or else |v|| = 1. Show that if |v| = 1 then
v = 1y where W is a coset in G.

34. 1 Establish a robust version of the result in Exercise i.e. show that if v € M(QG)
is idempotent and non-trivial with |v|| < 1 + 7 for sufficiently small 7 then ¥ = 1y, where

W is a coset in G.

35. Give an example of an idempotent measure v € M(G) with U # 1y for any coset W
in G and such that ||v| < 2.

2See Exercise for a definition of G*.
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36. Which functions f are idempotent (meaning f+ f = f) and have || f|zr(,) < 1 for some
p > 17 Prove | f|r»(, < 1 using Young’s inequality.

37. Prove the spectral radius formula. That is prove that

k-fold
(_J% ~
[N = 7D (]

as k — oo where v € M(G). (The limit on the right is called the spectral radius of the
operator M,,.)

38. Show that if G = Z/NZ and A = {0,1} then the associated random walk requires
Q(|G]?) steps before 7(uy, ua) < 1/10.

39. Show that if A = (Z/2Z)™ contains the identity then A has spectral gap Q(JA|™!). On
the other hand if the random walk associated to A converges to the uniform distribution
on (Z/2Z)" show that |A| = n + 1. It follows from the bound (in the notes) that if
A = {0g,e1,...,e,} where e; are the canonical basis vectors then the random walk will
have achieved ‘good convergence’ to the uniform distribution in O(n?) steps.

40. Suppose that G = (Z/2Z)" and A = {0, €1, ..., €,} as in Exercise 39 By examining

| fo = uf) — 1] 2() directly for a probability mass functions fy show that we have achieved
‘ood convergence’ to the uniform distribution in O(nlogn) steps. It turns out that this
is the correct order of magnitude.

41. Explain why if A < Z/pZ has size 2m + 1 then
Z (1 — Reexp(2mia/p)) = Z (1 — Reexp(2min/p)).

acA [n|<m
Hence, or otherwise, show that if A ¢ Z/pZ contains the identity and has density a then
A has spectral gap Q(a?).

42. Use the ideas in Example [41] to give another proof that if G is an Abelian group and
A © G contains the identity then A has spectral gap Q(|A|/|G|?).

43. Show that if A < G contains Og then A has spectral gap equal to the Rayleigh quotient

sup { 1M, fll2e) e — O}
1122 ’

44. Given A c G generating G which is endowed with counting measure, the edge isoperi-
metric number or Cheeger constant of A is defined to be

ls * Lowg, Lade
h(A) = min{< ey ARG &g < |G|/2}.
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Prove that

1S + Al
S|

This relates the edge isoperimetric number to the vertex isoperimetric number.

h(A)/|A] < min{ .S <GS < |G|/2} < h(A).

45. Given A < G generating G we define Ay := sup, ;. Re fa(7y). (There is no modulus

sign.) As mentioned in the notes the usual definition of spectral gap is 1 — A2. Show that
A has spectral gap (in the sense of the lecture notes) at most 1 — A\y; give an example of a
set A (generating G and containing O¢) such that 1 — Xy = Q(1) and for which the spectral
gap tends to 0 as |G| — o0.

46. Using the definitions of Exercises [44] and 45 prove the Cheeger-Alon-Milman inequality
for Cayley graphs on Abelian groups. That is, prove that

IA[(1 = Ao) < h(A) < |AV2(1 = Mo).

47. Use the probabilistic method to show that there is a set A < {1,..., N} containing
no non-trivial three-term progressions such that |A| = Q(N/2).

48. Show that there is a set A < {1,..., N} of size |A| = Q(1) such that A contains no
solutions to z + y = 2.

49. Suppose that A ¢ G := (Z/2Z)" has density at least 1/2 — € and contains no sums
x +y = z. Show that there is some V < G with Pg(AA(G\V)) = O(e).

50. Show that if A < (Z/3Z)™ and B < (Z/3Z)™ do not contain any non-trivial three-term
arithmetic progressions then A x B does not contain any non-trivial three-term arithmetic
progressions. Hence, or otherwise, show that there is a set A < (Z/3Z)™ such that |A| = 2"
not containing any non-trivial three-term arithmetic progressions.

51. Given an example of a group G and Bohr set Bohr(T', §) of rank &k such that
Pe(Bohr(T, 8)) ~ (6/m)".

52. Suppose that G = Z/NZ and I = {v*" : 0 < r < k — 1} where 7 generates G. Show
that

Pq(Bohr(I, §)) = Q(27%6).

53. Show that if G = Z/pZ for some prime p and I is size k then Bohr(I",§) contains an
arithmetic progression of length dp"/*(1 — 05_0(1))/7

54. Suppose that p and ¢ are primes with p ~ ¢, N := pq, G := Z/NZ and let v(z) :=
exp(2miz/q). Show that any arithmetic progression in Bohr({7}, 1/4) has length O(v/N).
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55. Show that for G = Z/pZ for p a prime and § € (0, 1] there is a Bohr set Bohr(T',d) of
rank k such that the longest arithmetic progression in Bohr(T',d) is O(5p*/*).

56. Show that if G is endowed with Haar counting measure and A G has size elog |G|
then

sup [T4(7)| = (1 = 0mo(1))|Al-
'75‘é0@

57. Give an example of a set A < {1,..., N} of density a such that A+ A + A does not
contain an arithmetic progression of length longer than N%»—o(1),

58. Convince yourself that the proof of Theorem [4.10| can be adapted to show that if
A < (Z/3Z)" has density a then A + A + A contains an affine subspace (translate of a
subspace) of co-dimension O(a~?). The co-dimension of V' < (Z/3Z)" is n — dim V' when
V' is considered as a subspace of (Z/3Z)™ which is, in turn, considered as a vector space
over Z/3Z.

59. Use the proof of the Roth-Meshulam theorem to improve the above and show that if
A c (Z/3Z)" has density « then A+ A + A contains an affine subspace of co-dimension
O(a™).

60. Show that if G = Z/pZ for some prime p then Q := {z? (mod p) : z € Z} has
11o(7)| < +/|Q| whenever v is non-trivial.

61. Show that if X is a real random variable on a finite probability space then the map
X — | X where ||.X| is the smallest non-negative constant such that

Eexp(AX) < exp(|| X||*A?/2) for all A e R

1S a norm.

62. Show that for random variables X1,..., X, with E} . X; = 0 we have

B[ X" < O(p)"*n?*= Y EIX,].

k=1
63. Show that if a random variable X has |X|»p) < C|X|2py for some p > 2 then
HXHLQ(IP’) < C’l/(p72)HX||L1(IP)-

64. Suppose that A is an independent subset of G := (Z/27Z)". How large is nA :=
{a1 + -+ +a,:ay,...,a, € A} in terms of n and the size of A?
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65. Suppose that we pick xq, ..., x; uniformly and independently at random from G. Show
that iiﬂ k =logs |G| — wig|»w(1) then wh.p. {zi,..., x4} is dissociated and if k > log, |G|
then w.h.p. {x1,..., 2} is not dissociated.

66. Suppose that A < G is maximal dissociated. Show that the spectral gap of A
is Q(1/]AJ*) and hence that the random walk associated to A will have achieved ‘good
convergence’ to the uniform distribution on G in O(log® |G|) steps.

67. Suppose that ke N and S < GG. We say that S is k-dissociated if

2655 = 0g and € € {—1,0,1}" with |€|ps <k =€=0,
seS

and write
Span,,(S) := {Z €ss e {—1,0,1}% and [e]n(s) < k}-
seS

Show that if S < T is maximal k-dissociated then T' < Span,(S).

68. Suppose that G = (Z/2Z)" and suppose that I' < G is 2k-dissociated. Prove that
|V 2vc) = OWVE| fleqy) for all f e (D).

This can be useful because begin 2k-dissociated is a weaker condition than being dissoci-

ated. The extension of this to finite Abelian groups is proved by Shkredov in [ShkO0§].

69. Suppose that I' is a dissociated set of characters on G. By considering the product

H (1+ Rev)

~ell
or otherwise show that for all A e CA} we have

[{ee {-1,0,1}" : |e|oar) =7 and Z €y = A <2
~yel

This is a result of Rider [Rid66].

70. 1T A set of characters I' on G is said to be C-Sidon if to every w € ¢*(T") with
lw|[eory < 1 there is some measure i, such that
frolr = w and [p,] < C.
Prove that dissociated sets are O(1)-Sidon. (You may wish to use the result of Exercise
Gy
71. 7 Show that if I' is C-Sidon and p € [2,00) then
£ sy = O(CBl flleqry) for all f € ().

3Here W|G|—ow (1) denotes a quantity which tends to infinity as |G| — oo.
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72. Show that if I is C-Sidon then |T'| = O(C?log|G|).

73. Show that if A G then 24 — 2A := {ag + a1 — ay — a3 : ag, a1, as,a3 € A} contains
a Bohr set of rank O(a~'loga™!) and width Q(a®®). This result is called Bogolyubov’s
theorem.

74. Prove Chang’s theorem for functions. That is suppose that f € L*(G) and T is a
dissociated subset of {y e G :|f(7)| = €| f| 1)} Then

IT] = O log(If |72 | IEc))-

75. Use the version of Khintchine’s inequality with good constants (Theorem to show
that if g € (*(G) has |g].@ = 1 then there is some h € L*(G) such that h = g and
[R122(6)/IBl71 () < 2- This shows that unless |2]72)/[Al|7: () — % We cannot expect any

additional structure in the large spectrum of L2-functions.

76. Suppose that G is endowed with Haar counting measure and A < G has |A+A| < K|A].
By considering f = 1444 = 1_4 or otherwise show that A c Span(S) for some set S with
5] = O(K log |]).

77. By using Khintchine’s inequality for p > 4 prove the following refinement of the claim
in the proof of Theorem [5.200 Given k € (*(G) and n € (0,1/2] there is some choice of
signs € on the support of k£ (meaning € : suppk — {—1,1}) and a function g with

1§ = ekll oy < nllkl @) and [gli=) = O(logn |kl pe))-
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COMMENTS AND SOLUTIONS

First it should be remarked that this question was set by mistake: the intention was for
the probabilistic method (or, equivalently, the greedy algorithm) to be used, and in that
case one gets a set A with |A| = Q(N3).

One picks the set A by taking x € {1,..., N} independently at random with probability
. There are O(N?) additive quadruples in {1,..., N} with all entries distinct. Let B be
the set of such quadruples occurring in A, then we have

E|B| = O(§*N?) and E|A| = §N.
It follows that we can pick § = Q(N?/3) such that
E(|]A| —2|B]) = dN /2.
Hence there is a choice of elements of A such that |A| — 2|B| = 6N /2, and so |A| = IN/2
and |B| < |A|/2. We let A’ be the set A with one element in each quadruple in B
removed from A. As a result of this A" has no quadruples with all elements distinct and
|A'| = |A]/2 = 0N /4 = Q(N/3) as required.

To construct a larger set we make use of the parabola. Suppose that p is an odd prime
and put A’ := {(z,2% (mod p)) : 1 < z < p}. We unwrap this construction into {1, ..., N'}.
Let p be an odd prime with /N < 4p < 2+/N, which can be done by Bertrand’s postulat
provided N is a sufficiently large (absolute) constant. Let A := {x + 2py : (z,y) € A’},
which is a subset of {1,..., N} since 2p? + p < 4p? < N, and if 2/, ¢/, 2/, w’ € A then

P +y =2+ = r+y=z+wand 2’ +y* =2+ w* (mod p)

If z # x then

2

2 — 22 =w -y

(mod p) = z+z=w+y (mod p)on division by x —z=w —y
which in turn implies that x = w. Hence A contains no non-degenerate additive quadruples
and |[A| = p = Q(N).

This construction can be tightened up as in Singer [Sin38] but see also [HL63|] for some
details.

This question is about proving the estimate 7(x) = O(2°") for the divisor function.
(Equivalently this means proving 7(z) = O.(x¢) for all € > 0.) We write n = [[;_, p{* where
the p; are primes and the e; are naturals using the Fundamental Theorem of Arithmetic.
We divide the factors into two classes:
L:={i:p;=exp(e D} and S:={i:p; <exp(c )}
Now,
1+e; <exp(e) <p;“foralliel,
while
1+e < (¢/log2) (1 + ee;log2) < (e/log2) 2% < (¢/log2) 'ps* for all i.

1See footnote of the notes.
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It follows that

<

\‘
—~
S
~—
l
—~
—_
_|._

o
~
|

H(l +62)1_[(1 —|—€i)

=1 €L €S

[T T (e/10g2)"

ieS
n(elog 2)~ P ) = exp(exp(O(e™1)))n¢

N

N

since |S| < exp(e™!). The required result is proved.

The point of this remark is not to do this question but to explicitly pick out some
particular dual groups. If G = Z/NZ then the characters on G all have the form

x +— exp(2mizr/N) as r ranges Z/NZ.

On the other hand if G = [F} then the characters are called Walsh functions and have the
form

r— (=1)"" where r.x = rzy + - + 1z,

and r ranges Fy. The quantity r.xz, while not an inner product, is quite like an inner
product and algebraically it behaves in the same way.
As a final example we consider G' = [F§ where the characters have the form

r— w® wherel +w+w?=0

and r ranges [3.

In the first instance if N is prime then G has no non-trivial subgroups and the annihila-
tors are consequently not interesting. This is in marked contrast to Fy and Fy which both
have a rich subgroups structure.

(This solution is due to Ines Marusicé.)

Let v € M(G) be an idempotent measure. Then either v = 0 or ||v|| = 1. Indeed, by
applying the algebra inequality for measures ( |p1 * p2| < |p1[p2| for all p1, p2 € M(G) )
we get:

Il =lvsvl < v
Hence, if v # 0, then || > 0 which implies [|v| > 1.

Given v # 0 there is some z € G such that |v({z})| > 0. Hence, if we write S for the set
{z € G :|v({z})| > 0}, we conclude that S is nonempty. Suppose that z € G is such that
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lv({z})| = max,eq |v({z})]. We now have:

({2 = lvsv({2)] = D v({z— x})V({ﬁ})‘
zeG
= Dov({z- x})V({fE})‘
zeS
< DlIvUDIv{ab)] = lv{DlIv] = [v({2})]-
zeS

We conclude that we must have equality in the above inequality and so v({z — z})v({z})
has the same sign and |v({z — z})| = [v({z})] for all z € S. We shall now see that S is a
subgroup. Write

M:={zeS:|v({z})| = IgfcleaGX‘V({m})’}v

and note that we showed that if z € M then z—S < M. On the other hand M < S whence
M — M = M and since it is non-empty we conclude that M is a subgroup. But z—S < M
and so | M| = |S]; since S © M we conclude that M = S and so S is a subgroup.

We have shown that v = cug where S'is a subgroup and c is a function on S of modulus
1 with ¢(z — z)c(z) constant for all z € S and given z € S. This tells us that

c(x +y)c(0g) = c(z)c(y) for all z,y € S,

and so c(z) = cy(x) for some character v and constant c¢. By idempotence ¢? = ¢ and so
¢ = 1 since v # 0 and we conclude that v = yug which gives the required result on taking
the Fourier transform.

We start by using Exercise[32and let A be such that 14 = U. We now think of f defined
by f(z) := v({z}) as being a function in ¢'(G) so that U = f and | f|loa@) = || <1+7.
Then

1/3 2/3
Pa(A) = E alla(n)P = ). (@) < (Z If(fv)!4> (Z |f(93)!)

zeG zeG zeG

by Holder’s inequality. It follows that
Pa(A)°/(1+n)* < | flise) = Ela = 1a(2)?

where the last equality is Parseval’s theorem and the fact that E‘P = f s f = 1a%1_4.
Now follow the argument from (3.6]) of the notes to conclude that there is some coset of a
subgroup H such that

Po(AA(y + H)) = O(n"*Pa(A)).
We separate the /!-mass of f into two parts:

1fla@ = D5 @I+ X 1f@).

xeHL x¢HL
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Of course,
D@ = D @) g @)] = [1a* pallae = 11 * palles@ = (1 - 00
xeHL zeG

and

D@ = D1 @) = 1) (@)] = [1a = La* parla) = [1a = 1a* = -

x¢HL zelG
We conclude that
114 = 1a* prrllen(ey < 1+ 71— (1= 0(n'?)) = O(n*'?).

Thus, if 7' € v+ H we conclude 7' € A and conversely, so that A = v+ H and we are done.
The point about this question is that idempotence is very rigid: there is a genuine step
in the norm of idempotent measures between 1 and 1+ €(1). This is a consequence of this

result and the fact that ||yuge|| = 1 for any v € G and H<G.

35 The idea here was to consider v = dy, — py where V' < G is a subgroup of size greater
G
than 2. Then = 15 — 1,1 which is an indicator function of a set and hence idempotent.

Moreover,
1 1 2
vl=1-—=+(V|-1)m5=2—— < 2.
V] V] V]
On the other hand 14, # 1w for any coset IV in @G since |G| > |G\V*] > |G|(1—1/2) and
SO |@\Vi] does not divide G and so is not a coset of a subgroup by Lagrange’s theorem.

(Note that if [V| has size 2 then G\V* is a coset of a subgroup, it is the ‘other’ coset of
V4L

The usual lower bound is half of that given and follows from noting that

Gl . (s 1las 1ae
h(A) = — ; .
(A) min G| Scd

In our simpler setting the stronger bound given also holds.

The upper bound is rather harder than the lower bound. To get some intuition it may
be helpful to first consider a weaker argument. One can begin by supposing that ~ is such
that Reia(y) = A2 =: 1 — € and let

S:={zeG:|y(x)-1<V2}and I := {z e G : |y(z) — 1| < &}
for some 0 to be optimised later. Then
pA(AD/2 < | Re(l = 5(a))duala) =

On the other hand by construction we have

lg*1g(z) = (1 —0(0))]S| for all x € I,
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and we conclude that
(s * s, 1a) = (1= 0(0))IS|(1 — O(ed~*))| Al.
Optimising by taking § = €'/? tells us that
(s * 15, 1) = (1= O(¢7))|A|lS]

and, of course, |S| < |G|/2. It follows that h(A) = O(¢'/3). The weakness with this
argument is that while the map x — v(x) is measure preserving, the map xz — Re~vy(z) is
not measure preserving. (At least this is true with the obvious measures on S! and [—1, 1]
respectively.) To get the actual inequality which says that h(A) < v/2¢ we have to remedy

this problem.
It may be helpful to first prove that

S [Rey(x) — Rey(y)l1a(z — y) < [GI/24](14] — Ta(+),

and then find a lower bound for
B:=) |Rey(x) — Rev(y)|la(z —y).
.y

To do this is not trivial because of the modulus signs. It may be helpful to start by writing
1 =cy>=c =... = cg for the values taken by Re~y(z) and S; := {x € G : Revy(x) = ¢},

so that
RG’Y(JT) = Z (151(37) - 15'1'71 ([L’))Cl = Z 1S1(I)(C'L - Ci+1)'

Then
B = 2 > | Revy(z) — Rey(y)|1a(z — y)

z,y:Rey(z)=Re(y)

> 2) 3 (e = cinn)ls, (2)lavs, () Lale — y)

i T,y

> 2(A) | ), (a—anllSil+ Y (@ —an)(Gl S

| Si|<|G/2 i:|Ss|>|G|/2

From here the result is fairly straightforward.

The important point here is that the density is very large indeed. We write a for the
density of A and note that by hypothesis

0=CAa*1a,1a)12c) = Z Ta(y)®.
e

Since G = (Z/2Z)™ all the characters are real and so 1, is real. Moreover Q(O@) = « as

usual and so .
—a® = Z 1a(7)?.
'Y#Oé
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It follows that there is some v # Oé such that

14(7) <0 and |[TA(y Y TaM)P) = 0¥ /(a = a?)— = a(1 = Ofe)),
7#0¢4

since @ = 1/2 — €. On the other hand

—~ |Ankery| |An (G\kerv)|

1A Y) = - )

e c
and so
|A nkervy| — |A n (G\kery)| < —]A|(1 — O(e)).

Of course

|A nkery| +|An (G\kery)| = |A],

and so the result follows on setting V' := ker~.

The point of this exercise is that the power of p in Lemma cannot be improved
for general cyclic groups. This is to be compared with Exercise [53| which gives a stronger
bound than Lemma using a simplification of that argument; this stronger bound does
not extend to general cyclic groups.

The basic idea is to find a Bohr set whose size roughly matches the lower bound of
Lemma , in particular such that for some 1 = Q(p'/*) we have Bohr(I',n) = {0g}. Given
such a Bohr set suppose that we have an arithmetic progression of length L in Bohr(T', §).
Then there is a centred progression of length L in Bohr(I',20) by the triangle inequality.
Say this progression has common difference d # Og, and note that

i (kd) — 1| <26 for all |k| < L/2 and i € {1,...,k}.
If 0 is smaller than some absolute constant this implies that
|vi(d) — 1] = O(§/L) for all i € {1,... k},

and so d € Bohr(T', O(§/L)). We can pick L = O(6p'/*) large enough that this forces a
contradiction and the result is proved.

It remains to find a Bohr set of the right size. To do this pick 74, ..., independently
and uniformly at random from G and put I :={71,...,7}. Then

1
EP¢(Bohr(I',n)) = il + EE e lofoq) (7 Hl{z\l —i(2)|<n} ()

@ + E%G]_[ ) +O(1/p))

We can pick = Q(p'/*) such that this mean is strictly less than 2/p, hence there is a
choice of characters with the required property.
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The reader may wish to compare this exercise with Exercise[39] First note that if A ¢ G
is maximal dissociated then G' = Span(A) by Lemma . It follows that 314! > |G| and
so |A| = logy|G|. On the other hand since A is dissociated we have 24l < |G| and so
Al = ©(log |G)).

We now examine a Bohr set in G using Pontryagin duality:
Bohr(A, 1/10|A]) = {y € G |v(z) — 1] < 1/10]A]}.

Since G < Span(A) we see by the triangle inequality that if v € Bohr(A, 1/10|A|) then
11 —~(y)| <1/10 for all y € G. Tt follows that v = 05. We conclude that for all v # 05 we
have .

T20) = 141l > sup (@) — 1] > 1/10]],

from which the claimed bound follows.

Combining the above with our earlier result we see that for every initial distribu-
tion py on G the random walk associated to A will have achieved ‘good convergence’ to
the uniform distribution on G in O(log® |G|) steps which is much faster than the trivial
estimates.
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