FINITE DIMENSIONAL NORMED SPACES

TOM SANDERS

In this course we shall study the classical theory of Banach spaces with an eye to its
quantitative aspects. The overarching structure follows that of the notes [Gar03] by Garling
entitled ‘Classical Banach Spaces’, but we also borrow heavily from the notes [NaolQ] of
Naor entitled ‘Local Theory of Banach Spaces’, and the book [Woj91] of Wojtaszczyk
entitled ‘Banach Spaces for Analysts’.

In terms of prerequisites it will be useful to have taken a basic course on Banach spaces.
In the Oxford undergraduate degree there are three particularly helpful courses:

(a) B4.1 Banach Spaces, maths.ox.ac.uk/courses/course/26298/synopsis;
(b) B4.2 Hilbert Spaces, maths.ox.ac.uk/courses/course/26299/synopsis;
(c) C4.1 Functional Analysis, maths.ox.ac.uk/courses/course/26335/synopsis.

To agree notation we shall recap the relevant material when we come to need it, and while
we shall not dwell on ideas already developed in other courses we shall try to direct the
interested reader to a suitable source. Finally, the book [Bol99] of Bollobds may also serve
as a useful companion.

The course is constructed from the perspective that examples are essential, and there will
be an examples sheet available at people.maths.ox.ac.uk/sanders/ to which problems
will be added.

1. INTRODUCTION

We start by recalling some basic definitions and examples. Suppose that F is either R
or C, and X is a vector space over F. A norm on X is a function | - | : X — R that is

(i) (Homogenous) |Az| = |A||z| for all A\ e F, z € X;
(ii) (Sub-additive) |x +y| < |z| + |ly|| for all z,y € X;
(iii) (Non-degenerate) ||| = 0 implies that z = Ox.
The pair (X, | -||) is then said to be a normed space, and F is said to be the base field
or field of scalars.
The norm || - | induces a natural metric on X defined via

d(z,y) := ||z —y for all z,y € X,

and (X, | -|) is said to be a Banach space if X is complete as a metric space with respect
to this norm. If we say X is a Banach space without mentioning the norm then the norm
will be denoted || - | x.
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1.1. Why restrict the base field to R and C? El The definition of normed space as
above is a little unsatisfactory because of the (apparently) artificial way we have restricted
attention to the fields R and C. Some of this is explained by the fact that the homogeneity
property of a norm makes reference to the absolute value defined on C.

It seems, then, that we could consider any sub-field of C, but since we are interested
in complete normed spaces, it follows that the underlying field must be complete and the
only complete sub-fields of C are R and C.

That being said, there is a more general notion of absolute value: given a field F an
absolute value on F is a map | - | : F — R such that

(i) (Multiplicative) |\||p| = [Ap| for all A, pu € FF;
(ii) (Sub-additive) |\ + p| < |A| + |p| for all A, p € TF;
(iii) (Non-degenerate) |A| = 0 with equality if and only if A\ = 0.
For example, if IF is a finite field, then there is only one absolute value on I, the trivial one,

taking each non-zero x to 1 (and taking Or to 0). There are more exotic absolute values
though: given a prime p we define

:=p " where (a,p) =1 = (b,p).
P

W
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This defines an absolute value on Q called the p-adic absolute value, and these absolute
values play an important role in number theory.

Examining the p-adic absolute values defined above more carefully one sees that they not
only satisfy the sub-additivity property, but in fact enjoy a stronger ultrametric property
ViZ.

A+ aly < maxc{[Al, ]} for all A, € Q.

We call an absolute value with this stronger property non-Archimedean, and otherwise
it is called Archimedean.

Absolute values induced metrics on fields in the same way that norms do and as before,
it is natural to ask that our field be complete with respect to this metric. Somewhat
surprisingly it turns out that any field which is complete with respect to an Archimedean
valuation is equivalent (in an appropriate sense) to R or C. For details see [Neu99, Theorem
4.2].

To summarise the discussion then, we are led to consider the case when our base field is
either R or C (the case we shall consider), or when it supports an absolute value enjoying the
ultra-metric property. Fields enjoying this latter property give rise to ‘non-Archimedean
functional analysis’ and the interested reader may wish to start with the monograph [vR7§]
(reviewed in [Tai79]).

There are many examples of Banach spaces; we start with some of the so-called ‘classical’
spaces.

IThis is off the main topic of the course, but is nonetheless a worthy question.
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Example 1.2 (¢,-spaces). Suppose that 1 < p < o0. We write ¢, for the set of F-valued
sequences & = (x1,Z2,...) such that

0 1/p
o] := (Z \mp) <.
n=1

It is easy to check that ¢, is a vector space and | - | defines a norm on ¢, so as to make it
into a Banach space.

By considering the limit as p — oo (either heuristically from the definition of the norm
or formally as a direct limit of the system in Example we are lead to Tchebychev
space, denoted /., and defined to be the space of F-valued sequences endowed with the
norm

|z] := sup{len| : n e N}.

1.3. Separability. In a certain sense the space /,, is too big, and we capture this with
the concept of separability. A Banach space X is said to be separable if it contains a
countable dense subset — we think of this set as a way in which we might ‘generate’ X.

Now, ¢y is not separable as can be seen by noting that the set of vectors £ := {14 :
A < N} is 1-separated i.e.

[v —w|e =1 for all v,w € F with v # w.

It follows that any dense subset of /., must contain at least one vector for every vector in
E; and hence be uncountable.

It is often easy to restrict attention to separable Banach spaces. Indeed, if X is a Banach
space and EF < X is countable then the closure of the vector space generated by F is a
closed and separableﬂ subspace of X.

Example 1.4 (Convergent sequence spaces: ¢y and ¢.). In ¢, (and, indeed, ¢, for 1 < p <

o) there is a natural countable set E := {ey, es,...} where
n—1 times
——
(1.1) en:=(0,...,0,1,0,...) for each n € N.

The vector space generated by F is the space of finitely (compactly) supported sequences,
denoted ¢, (or sometimes c¢gg) and its closure in £y, is denoted cq, the space of sequences
tending to 0. By construction ¢ is separable.

Given the above example we might ask what the closure of the vector space generated
by c. is in £, for 1 < p < o0. It is easy to check that this is actually the whole space ¢,
and so ¢, is separable whenever 1 < p < o0.

2The reader may wish to check this: all sums are finite, and both R and C have countable dense subsets.
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2. OPERATORS

We shall be interested in understanding relationships between Banach spaces, and these
relationships are encoded by operators. If X and Y are Banach spaces over the same base
field F then we write L(X,Y’) for the space of continuous linear operators X — Y.
This is naturally endowed with a norm called the operator norm and defined by

I T x—y = sup{[Tz]y : [o]x <1}
With this norm L(X,Y’) forms a Banach space over the base field F.

Example 2.1. Suppose that Y is a Banach space with base field F. Then there are two
natural maps

Vi L(F,Y) > Y;T—Tlyand ¢ : Y — L(F,Y);y — (X — A\y).

It is easy to check that 1) o ¢ is the identity on Y and ¢ o 1) is the identity on L(F,Y).
Moreover

[o(T)| = |T| for all T"e L(F,Y) and [¢(y)| = [y for all y € Y.
To all intents and purposes L(F,Y) and Y are ‘the same’.

This example leads us to some definitions. We say that T' € L(X,Y") is a short map if
|T| < 1; it is an isometry if

|Tz| = |z| for all x € X;

and it is an isometric isomorphism if it is a surjective isometry. Equivalently if it is
short and has a short inverse.

Sightly extending this new terminology the conclusion of Example above is sim-
ply that L(F,Y) and Y are isometrically isomorphic because there is some isometric
isomorphism between them.

Example 2.2 (Nesting of {,-spaces). Whenever 1 < ¢ < p < 0 we have
|z]e, < |z, for all z € £,.

It follows that the maps
lgosp g = Uy —> @

are short, but if ¢ < p then they are not isometries.
In fact more is true and ¢, and ¢, are not isometrically isomorphic unless p = q.

2.3. Linear functionals. Given a Banach space X over a field F, an operator in L(X,F)
has a special name — it is called a linear functional — and we call this space of linear
functionals the dual space of X and denote it X*.

It may be worth noting that X’ is sometimes used in place of X*, although more often X’
is used to mean the algebraic dual of X, that is the set of all (not necessarily continuous)
linear functionals from X to F.
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Example 2.4 (The structure of £%). Suppose that 1 < p < co and write ¢ for the conju-
gate exponent to p, that is 1/p+1/q = 1. It turns out that £3 is isometrically isomorphic
to £, as we shall now see.

If y € £, then there is a map ¢, € €5 defined by

7 6,(2) = (o,y) = Y@
=1

This is easily seen to be linear and well-defined by Hoélder’s inequality, which also tells us
that

|0y (@) < llzle,[yle, for all z € £;

thus |¢,[ < |y, In fact we have equality: consider x defined so that
e = sl and 2 = 0 when y; = 0),

which can easily be checked to lie in the unit ball of £,. On the other hand ¢,(z) = [y],
as claimed. It follows (checking linearity in y) that the map y — ¢, is a linear isometry
from £, to £}

It turns out that y — ¢, is an isometric isomorphism. To see that this map is surjective
(and hence an isometric isomorphism), suppose that ¢ € £; and let y € £y, be defined so
that y; := ¢(e;). We should like to show that y € £, and ¢ = ¢,. Consider the vector z
defined such that

iy = |yi|? and z; = 0 if y; = 0.

Write P,z for the projection of z into the first n co-ordinates and note that

P(Poz) = Z TiY; = 2 il .
i=1 i=1
On the other hand
1Paall?, = Y fol = )l 7 = 3
i=1 i=1 i=1

n 1/q
(Z Iyi\q> <ol
i=1

Taking limits we conclude that y € ¢,. It follows that ¢ and ¢, restricted to c. agree, but
then ¢, is dense in £, and so ¢ = ¢, as required.

One can show that ¢} is isometrically isomorphic to ¢, similarly. The first part also
goes through for /., so that ¢; embeds in ¢% . However, in some models of ZF, for example
those for which the Hahn-Banach theorem holds there are many more functionals in £%
than those produced by ¢;. On the other hand there are other models of ZF in which £}
is isometrically isomorphic to ¢;. (See, for example, [Vat98g].)

and hence
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2.5. Bilinear forms. Given Banach spaces X and Y over a field IF an operator in L(X, Y*)
is called a bilinear form. The reason for this name is that if 7' e L(X,Y™*) then

T(ox + o'2')(By + BY) = aBT(x)(y) + aBT(2)(y) + o' BT (') (y) + /BT () ()
forall z,2' € X, y,v € Y and «, o/, 5,5’ € F. That is to say T induces a map
X xY = F;(z,y) —» T(x)(y)

that is bilinear.

Example 2.6. Although barely warranting the status of an example it will be useful to
note that if Y = F then L(X,Y™) is isometrically isomorphic to X*.

2.7. Topologies of pointwise convergence. Given a set 7" and a vector space V of
functions T" — F the topology of pointwise convergence on V is defined to be the
weakest topology on V' such that the evaluation functions

V — F; f — f(t) are continuous for all ¢t € 7.

This topology is rather useful in practice because of the following result.

Proposition 2.8. Suppose that X and Y are separable Banach spaces. Then the topology
of pointwise convergence on K, the unit balﬁ of L(X,Y™), is metm’sableﬂ and (sequentially)
compact.

Proof. Since X and Y are separable there are sequences (x,,),, < X and (y,), < Y, dense
in X and Y respectively. We define a metric by putting
0
d(S,T):= > 2™ min{|S(m)(Yn) — T(m)(yn))], 1} for all S,T € L(X,Y™).
nm=1
First we shall show that all the maps S — d(S,T) (T € K) are continuous in the topology
of pointwise convergence. To see this note that the maps

(2.1) S — min{|S(x) (Yn) — T(xm)(yn))|, 1} for m,n e N

are continuous in the topology of pointwise convergence as they are the composition of the
maps
S = S(@m)(yn)
which are continuous by definition of the topology; and
F — R; A — min{|A — T'(z,,)(yn)]|, 1}

which are continuous by direct calculation (note that 7'(z,,)(y,) is just a constant element
of F).

On the other hand S — d(S,T) is a uniform limit of weighted sums of maps of the form

(2.1) and so is, itself, continuous. It follows that the topology of pointwise convergence is
at least as strong as the topology induced by d.

3In the operator norm.
4Meaning it is homeomorphic to a metric space.
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In the other direction we trivially have that

S S(xm)(Yn)

is continuous with respect to d for all (m,n) € N%. Since (2,,) and (y,), are dense in X
and Y respectively, it follows that for any r € X and y € Y there are sequences z,,;, — =
and y,,; — y. Now, since K is norm-bounded, we see that the functions

() (@m; ) (yn,) = (-)(z)(y) uniformly,
and hence the map
S = S5(x)(y)
is the uniform limit of continuous functions and so is continuous (with respect to d). But
x and y were arbitrary, so we conclude that the topology induced on K by d is at least as
strong as the topology of pointwise convergence.

Combining the two directions we have shown that the topology of pointwise convergence
is the same as that induced by d.

To see that K is (sequentially) compact suppose that (7}); is a sequence of operators in
K and proceed by diagonalisation. Let n,m : N — N be such that r — (n(r),m(r)) is a
bijection N — N?. Let T, be a subsequence of T} such that Tj1(Zm))(Yn(1)) converges;
T} be a subsequence of T} such that T} (2 (2)) (Yn(2)); and so on. This is possible since
the T);s are bounded and bounded subsets of F are sequentially compact.

For the diagonal subsequence (7} ;); we then have that T} ;(z,,)(y,) converges as j — oo
for every fixed m and n, and it is a simple exercise to check that since (z,),, is dense in
X, and (yy)n is dense in Y we have that 7} ;(z)(y) converges for all z € X and ye Y. O

One might suppose that the above proof also shows that the whole of L(X, Y*) is metris-
able in the topology of pointwise convergence. In fact it shows that this topology on
L(X,Y*) is a refinement of the topology induced on L(X,Y™*) by d, but it is not equal
unless the space is finite dimensional.

We also remark now that the proof above makes use of the Axiom of Dependent Choice:
we iteratively extract convergence subsequences. It follows that if one were trying to make
use of this in a finite setting it would be difficult, but then it is already difficult to make
use of sequential compactness in such a setting.

If X is a Banach space and V = X™* then the topology of pointwise convergence is called
the weak-* topology and it is particularly useful because of the following theorem which
is an immediate corollary of Proposition 2.8 with Y = F.

Theorem 2.9 (Sequential Banach-Alaoglu theorem, [Bat14l, Theorems 5.7 and 5.9]). Sup-
pose that X 1is a separable Banach space. Then the unit ball in X™* is metrisable and
(sequentially) compact.

3. SPACES OF CONTINUOUS FUNCTIONS

Spaces of continuous functions are prototypical Banach spaces. They may seem bigger
than the sequence spaces we have considered before but it actually turns out that in many
cases they are not.
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Suppose that 7" is a compact metrisable space. We write C'(T") for the space of con-
tinuous F-valued functions on 7" endowed with the norm

[£1:= sup{[f(£)] - £ € T}.

It is easy to check that this is a Banach space (the uniform limit of continuous functions is
continuous). It is also separable, as is easy to see in the explicit case when T = [0, 1] (with
the usual metric). (The details may be found in [Bell4, Example 5.4].) More generally this
is an application of the Stone-Weierstrass theorem but we do not pursue this here. (See
[Kec95l, Theorem 4.19].)

As an aside we note that it may seem a little odd to talk about homeomorphisms rather
than isometries of metric spaces. There is a parallel here with Banach spaces where we
have two notions of equivalence: spaces can be (continuously) isomorphic (which we shall
properly define later) or isometrically isomorphic. It turns out that isometry in both cases
is often too restrictive.

3.1. Embedding in C(T). One of the reasons that spaces of continuous functions are
important is that every separable Banach space with a reasonable dual can be viewed as
a subspace of a space of continuous functions on some compact metrisable space.

The argument will proceed by embedding a space into its double dual, but this can only
work if there are sufficiently many linear functionals i.e. if the dual is reasonably rich. One
way of capturing this is to ask that the map

Ox : X = X 00— (¢ — ¢(2))

be an isometry. There are a number of reasons to think that this is reasonable. The
obvious one is that the Hahn-Banach theorem (with the attendant assumption that some
fragment] of AC holds) can be used to prove it. For details see [Bell4, Theorem 7.3] and
[Bell4, Corollary 7].

While some fragment of choice is necessary in general, it is possible to show that ®x is
isometric for many spaces without any such assumption, and moreover this often yields a
way to compute the isometry. For example, in we showed in all but name that ®,, is
an isometry for any 1 < p < o0, and are given a very easy way to index the elements of £}
(at least when p > 1).

Theorem 3.2. Suppose that X is a separable Banach space. Then there is a short map
Y X — C(K) for some compact metrisable space K; if ®x is an isometry then this map
15 an isometry.

Proof. Write K for the unit ball of X* endowed with the topology of pointwise convergence.
By Theorem it is metrisable and compact. Now consider the map

v X - CK);x— (k— k(z)).

For separable Banach spaces it is possible to prove using a slight weakening of the Axiom of Dependent
Choice, and it turns out it is equivalent to this weakening in a suitable sense. (See [BS86] for details.)
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This map is well-defined since K is topologised with the topology of pointwise convergence,
and so the image of x is a bonafide continuous map on K; the map is linear since the
elements of K are linear functionals; finally, the map is isometric because

[¥(@)ew) = sup{[k(z)] - ke K} = | ®x (@) xs = |]

since @y is an isometry. U

3.3. Universality of C([0,1]). It turns out that not only can (many) separable Banach
spaces be embedded into spaces of continuous functions, but in fact they can be embed-
ded into a particular space of continuous functions. Suppose that S and T are compact
metrisable spaces and p : T — S is a continuous surjection. Then

C(S) = C(T); f—fop

is an isometric linear map.

Our task now will be to find surjections from some well-known space to an arbitrary
compact metrisable space. We do this in two steps, starting with the Cantor set or count-
ably infinite dyadic compactum. Write D, for the two point topological space with discrete

topology, and then put
[oe}
DY =] D2
i=1

considered as a space endowed with the product topology. Equivalently, D5 is the set
{0, 1} endowed with the metric

0

(3.1) d(z,y) = > 27|z — yil.

i=1
This space is called the countably infinite dyadic compactum. The Cantor set, on
the other hand, is defined to be the set

A= {22“;— ‘ze {0,1}N}
=1

endowed with the subspace topology inherited from [0,1]. It is an uncountable closed
subset of [0, 1], and there is a natural homeomorphism between the Cantor set and the
countably infinite dyadic compactum, so we shall use the two interchangeably.

Proposition 3.4. Suppose that K is a compact metrisable space. Then there is a contin-
uwous surjection f: DY — K.

Proof. Since K is metrisable we take it to be endowed with a metric d and since it is
compact we may take K, we may rescale the metric so that the closed unit ball about
some point in this metric is the whole of the space. (If zy € K is some point, then
x +— d(z, xg) is continuous and on a compact space and so it is bounded.)
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We define some sequences of closed neighbourhoodsﬂ and non-negative integers itera-
tively. The integers shall be denoted 71, jo, ... and the neighbourhoods will

(Bz)a (BXI)Xle{U,l}jl ) (BX1,-~~,Xn)X1€{0,1}jl,‘..,Xne{O,l}fn7
such that for all 0 < m < n:
(i) Bx,.. x,, is a closed neighbourhood for all X7, ..., X,;
(i) diam By,  x,, <2 ™ for all Xi,..., X;
(111) BXO,-..,Xm C BXO,.A.,Xm,l for all Xl, . ,Xm;
(iv) UXme{O,l}jn Bx,.. . xm 2 Bx,...x,,, forall Xo,..., X;_1.

Setting By := K establishes the above for n = 0. At stage n we consider the set By, . x,

for some X;,...,X,. Since Bx,  x, is closed and K is compact, the space By, . x, with
induced metric is compact. The cover
(3.2) {Bx,..x, n{re K :d(z,y) <27V} ye K}

is an open cover in the space By, . x, with induced metric and hence has a finite sub-cover
of size s(X1,...,X,). Let j,+1 be minimal such that

201 > max{s(Xy,..., X,) : X3 €{0,1}*,... {0,1}""}.

By adding in repetitions if necessary, index the sets in the finite sub-cover of (13-2) by
elements of {0, 1}7+! and label them

(BXhmaXnJrl )Xn+1€{0,1}j"+1 :

Now, for z € {0, 1} we write m () for (zy,...,2}), ma(x) for (z;,11,...,%,1j,) etc.. The
set

0

ﬂ B\ (@),..smn(@)

n=1

contains exactly one element since it is the intersection of a nested sequence of closed
non-empty sets with diameter tending to 0; we define f(z) to be that element.

It remains to check surjectivity and continuity. Suppose that k € K, then k € By, and
by there is some X € {0, 1} such that k € By, ; then there is some X, € {0,1}72 such
that k € Bx, x,; and so on. Note that we certainly have

0
ke ﬂ BXl,...,Xn;
n=1
and so letting x be the member of {0, 1} generated by letting 7, (z) = X;, m(z) = X,
etc. we see that f(x) = k and we have proved surjectivity.
Finally, for continuity, suppose that z,, — x. Then there is some N such that for all
n > N we have d(x,,r) < 27U1+%in) where the metric here is . It follows that
7i(xy,) = mi(x) for all 1 < i < n, and hence

f(xn), f(2) € Bx,..x0-

6Recall that a closed neighbourhood is a closed set containing an open set e.g. a closed ball of
positive radius.
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Since By, . x, has diameter at most 27" we conclude that the distance between f(z,) and
f(z) in K is at most 27". Thus f(z,) — f(x) and we have established continuity. O

We are now in a position to establish the so-called universality of C([0,1]).

Corollary 3.5 (Banach-Mazur Theorem). Suppose that X is a separable Banach space
and ®x is an isometry. Then there is an isometric embedding of X into C([0,1]).

Proof. We apply Theorem to get an isometry X — C'(K) for some compact metrisable
space K. We know from the proof of Theorem that K is actually the unit ball of the
dual space and is hence convex. Now, by Proposition there is a continuous surjection
f: Dy — K, and hence a continuous surjection g : A — K. Since A is a closed subset of
[0, 1] we can define

h[0,1] = Ksz = Af(y) + (1= M) f(2)

where y :=1inf{y/ e A:x <3/} and z :=sup{z’ e A:x > 2/}, and x = Ay + (1 — \)z. This
map h is a continuous surjection and so by the remarks at the start of the result is
proved. Il

There are a number of other applications of the surjectivity of the Cantor set and the
interested reader may wish to consult [Ben9§].

3.6. The dual of C(T"). Throughout this section take 7" to be a compact metrisable space,
and if specific examples are helpful then consider the case T = [0, 1].

To understand the dual of C'(7) it will be useful to understand C(T") as a topological
vector space. A topological vector space is a vector space endowed with a topology
making vector addition and scalar multiplication continuous. Any Banach space X is an
example of a topological vector space when the underlying vector space is endowed with the
topology induced by the norm. Any topological vector space V' has a dual space, defined
to be the vector space of continuous linear functionals on V', so that if X is a Banach space
then the dual spaces of X as a topological vector space with topology induced by the norm
is the same as the dual space of X considered as a Banach space.

There are two ways in which we consider C'(T") as a topological vector space: first, with
C(T') endowed with the topology induced by the norm; secondly, with C(T") endowed the
the topology of bounded pointwise convergence i.e. we say f, — f if

(I fn])n is bounded and f,(t) — f(t) for all t € T

The space C(T') endowed with the topology of bounded pointwise convergence then has a
dual space, V', and it turns out that V' = C(T)*. It is easy to see that V < C(T)* since
if (f,)n convergence uniformly then it convergences in the bounded pointwise topology. In
the other direction this is essentially the content of the Bounded Convergence Theorem.

Theorem (Bounded Convergence Theorem). Suppose that ¢ € C(T)* and (f,)n is a se-
quence of bounded continuous functions on T with f, — 0 pointwise. Then ¢(f,) — 0 i.e.
¢ 1s continuous when C(T) is endowed with the topology of bounded pointwise convergence.
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For a nice direct proof of this for the Riemann integral on [0, 1] see [Lew80].

The vector space C(T) with the topology of bounded pointwise convergence is not,
in general, a metric space (indeed, despite being sequentially defined it is not even first
countable), but (like all topological vector spaces) it nevertheless has a notion of Cauchy
sequence. In particular, we say (f,), is a Cauchy sequence if and only if (f,), is
bounded and (f,(t)), is Cauchy for every ¢t € T. We can then talk about the sequential
completion (sometimes semi-completion) of C'(7). Forming this abstractly is a little
complicated for reasons that will become clear in a moment, but the space of all bounded
functions on 7" is sequentially complete (since F is sequentially complete) and so we can
take the sequential closure of C(7T') in this space, and we denote this closure LEMRE(T) —
the elements are the bounded Baire measurable functions.

The space LB*™E(T) is sequentially complete (since it is sequentially closed in a se-
quentially complete space) and every element of C(7)* extends to a continuous linear
functional on LEA*(T) endowed with the topology of bounded pointwise convergence i.e.
for all ¢ € C(T)* there is a linear map ¢ : LB (T') — F such that

o(f) = o(f) for all f e C(T);
and
lim ¢(f,) = ¢(f) whenever f, — f in LEM(T)

with the bounded pointwise topology.

It is worth noting that because C'(T') endowed with the topology of bounded pointwise
convergence is not first countable its completion cannot be formed by quotienting the
space of Cauchy sequences. Equivalently the set of limits of Cauchy sequences of functions
in C(T) is not sequentially closed. In fact we call this set of limits the space of Baire
one functions. When 7" = [0, 1] this contains, for example, the indicator function of the
rationals with denominator at most n. It does not, however, contain their limit — the
indicator function of the rationals. For any ordinal n the Baire n functions are those
functions obtained as limits of Cauchy sequences of Baire functions of class less than n.

The fact that every element of C'(T)* can be extended as above is really the key feature
of the dual space from our perspective. That being said, it is possible to describe these
functionals even more explicitly, and we turn to this now.

The Baire sets of T are the sets in the o-algebra generated by the elements of C(7T)
and a Baire measure is a finite measure on the o-algebra of Baire sets. If p is such then
the map

CT) > F; f— deu

is a continuous linear functional on C(7T').

It turns out that the converse of the above construction is also true. In the case of
T = [0,1] this is due to Riesz [Riel0O]; more generally the result is due to Kakutani
[Kakal].
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Theorem 3.7 (Riesz-Kakutani representation theorem). Suppose that T is a compact
metrisable space and ¢ € C(T'). Then there is a unique finite Baircﬂ measure on T such
that

o) = | fdu for alt f € C(1),

We shall not include a proof of this result in the course. This is partly because it would
take us rather far afield and partly because the key property we shall need is the exten-
sion property described above and that follows from the rather straightforward bounded
convergence theorem for continuous functions and the completion of topological vector
spaces.

3.8. Dual maps. Dual spaces give rise to dual maps. In particular, given 7': X — Y a
continuous linear map between Banach spaces X and Y, we write

T Y* > X" y* — (z— y*(Tx)).
This is easily seen to be a well-defined linear map and we have

|7 = sup{ly™(T)] - [z < Land [y < 1} < [T].

3.9. Isometries between spaces of continuous functions. We saw at the start of
that if there is a continuous surjection between two compact metrisable spaces S and T’
then there is an isometric embedding from C(T") into C'(S). Extending this a little, if there
is a homeomorphism between S and T then there is an isometric isomorphism between
C(T') and C(S). Interestingly it turns out that the converse is true as we shall now prove

following |Cam66] and [Ami65].

Theorem 3.10 (Robust Banach-Stone Theorem). Suppose that S and T are compact
metrisable spaces and ® : C(S) — C(T), and ¥ : C(T) — C(S) are continuous linear
inverses of each other with ||®||V]| < 2. Then S and T are homeomorphic.

Tt is worth noting that this is usually stated for Borel measures. The Borel o-algebra on T is the
o-algebra generated by the topology on T. The Baire g-algebra is certainly a sub-algebra of the Borel
o-algebra, but it is not, in general, equal. In our case they are equal because the spaces we consider
are second countable (meaning that the topology has a countable base) and so we shall not be overly
concerned with the distinction. The question of whether a probability measure on the Baire o-algebra
of a normal topological space X can be extended to a measure on the Borel o-algebra of X is called the
measure extension problem and a discussion may be found in [KM11]. (Here normal means that every
two disjoint closed sets have disjoint open neighbourhoods.)

One of the reasons that Baire measures are rather nice is that, unlike Borel measures, Baire probability
measures are automatically regular [Fre06, 412D]. A measure p on a topological space is regular if

w1(S) = sup{u(C) : C < S and C is closed}.

Maiik’s extension theorem [Marb7] shows that if X is countably paracompact then every Baire probability
measure on X extends to a regular Borel probability measure on X. Here countably paracompact
means that for every countable open cover U there is a open cover U’ consisting of open subsets of the
sets in U, such that every point in X has a neighbourhood intersecting finitely many elements of U’. The
general measure extension problem is still open.

There is much more to be said here which we shall not concern ourselves with, but a gentler introduction
to some of the differences between Baire and Borel measures may be found in [Arv90].
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Proof. 1t is easiest to work with the duals so that we get maps
o*: C(T)* — C(9)* and ¥* : C(9)* — C(T)*

with [|[@*|U*|| < 2.

We shall find a homeomorphism between S and T by finding maps between the ¢-
measures in C'(S)* and C(T)*. This will happen in stages: write 7" for the set of t € T for
which there is some s € S such that

[©*(0:) ({s})] > 7] /2.

Since || D*(d;)[| < [|P*][0:] = [P*|| we see that there can be at most one such s; we write

¢ :T"— S for the functionﬁ taking t € T" to this unique s € S. We will show that this map

is a continuous surjection and similarly for the equivalent map associated with U* instead

of ®*. These two functions will turn out to be mutually inverse and we shall be done.
For each t € T we let y; be a measure such that

*(0,) = gy + i where oy = O*(6;)({p(1)}),

0 pir L dpy (meaning p:({¢(t)}) = 0) and |oy| > [®*|/2, by definition of T”. These last
two facts entail

(3:3) el = 197 (00)[| = fewe] < [@7]/2,

which will be important later.
Now we turn to showing that ¢ is a continuous surjection.

Claim. ¢ s surjective.

Proof. Suppose that s € S and let (fs,), converge to 1, in the bounded pointwise topol-
ogy. First, by the Bounded Convergence Theorem,

B0 ((s}) = [ 149d0"(6) = limn [ £,.d0%(6) = lim B(,.)(0).

It follows that (®(f,s)), has a limit in the bounded pointwise topology. However, by
another application of the Bounded Convergence Theorem, we have

1=lim | fhsdés = lm | O(f,s)d¥*(0s)

n—0o0 n—o0

= | tm @0 (6) = [0 @((s)aw G0,
Now, if [0*(8,)({s})| < |®*[/2 for all £ € T then
U< (072 [ (8] < @] w7] /2 < 1

which is a contradiction. It follows that there is some t € T such that |®*(5;)({s})| >
|®*|/2, and hence ¢(t) = s as required. O

Claim. ¢ s continuous.

8At this stage for all we know the domain may be the empty set.
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Proof. By the closed graph theorem for metric spacesﬂ it suffices to show that if ¢, — ¢ in
T" and ¢(t,) — s in S, then ¢(t) = s. We exploit the definition of 7" to write

O*(0,,) = a, 0p(t,) T it
where |ay, [ > [®*[/2 and (following (3.3)) ||, [ < [®*]/2.

By passing to a subsequence if necessary we may assume that (o, ), converges to some
a. Since t,, — t and ¢(t,) — s we have &;, — &; and Jdg,) — 6, in the weak-* topologies
on C(T)* and C(S)* respectively. On the other hand & is continuous and so ®* is weak-*
to weak-* continuous and hence ®*(9;,) — ®*(¢&;) in the weak-* topology. Since (a,),, also
converges it follows that u,, — p in the weak-* topology, and we have

*(6:) = ads + p,
with |a| = ||®*||/2, ||| < ||P*||/2. Since |u| < [|[®*|/2 we can conclude that
O*(0,)({z}) < ||®*||/2 for all x # s.
However, since t € T" we also have
[2*(3) ({o()})] > @7 /2
Hence s = ¢(t) as required. O

Just as we defined 7" and the function ¢ there is a set S’ < S and a continuous surjection
¥ S — T with
U*(d,) = BsOuy(s) + Vs
where v, L 6y and B; € F has |5, > |[U*]/2.
It remains to show that ¢ and ¢ are inverses of each other. Suppose that s € S’. Then
since ¢ is surjective there is some t € T such that ¢(t) = s, and

(3.4) Q" (0) = pds + fut
where || = ||®*|/2, s L 05, and || < [®*]|/2. On the other hand
U*(05) = Bsby(s) + vs
where |3 = |[W*]|/2, vs L 6y and |vs] < [¥*]/2. Combining these we get that
6 = W (P*(61)) = uBslyp(sy + V™ (pe) + ;.
Now if ¢ (s) # t then since vs({1(s)}) = 0 we must have

U () ({(8)}) = —aulBs
and hence that

L=0:({t}) = [W* () ({t})| < 9 (ue) | = el |Bs] + laalvs]
< [EENL*/2 + el (wsll = 16s]) < [&*[[]|@*]/2 < 1.
9The closed graph theorem in this case simply says that if X is a topological space and Y is a sequentially

compact metric space, then f : X — Y is sequentially continuous if and only if its graph is sequentially
closed. This can be proved by passing to subsequences in Y.
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This contradiction ensures that ¢ (s) = ¢, and hence ¢(1(s)) = s. Similarly ¢ (¢(t)) = ¢ for
all teT’.

Finally, if ¢ € T then there is some s € S’ such that ¥(s) = ¢, but then ¢(t) = s. It
follows that the image of ¢ is S’, but we know that ¢ is surjective. We conclude that
S = S’ similarly T'= T’. The result is proved. O

For reference the Banach-Stone theorem usually means the above theorem in the case
when & (and W) are isometries. We have called the above the Robust Banach-Stone
theorem (although this is not standard) because of the wiggle room in the hypotheses.

The proof presented above essentially follows [Cam66], although there it is established
for non-compact spaces too provided we replace C(S) and C(T) by Cy(S) and Co(T), the
continuous functions vanishing at infinity. In this extended setting Cambern [CamT70] gave
an example to show that the constant 2 in Theorem is best possible.

Example 3.11. Consider S :={n"':neN}u{0}u{nt:neNlandT:={n"':ne
N} U {0} U {n : n € N} where both are endowed with the subspace topology from R. We
then define

g(0) if s=0
U(g)(s) =14 g(=n"") +g(n) ifs=n""
g(—n) = gln) if s = —n~
It can be checked that ¥ is invertible and |[U~!||¥| = 2, although S and T are not
homeomorphic.

1

4. ISOMORPHISMS AND THE STRUCTURE OF /{,, SPACES

The Banach-Stone theorem provides us with plenty of examples of spaces that are not
isometrically isomorphic, for example C([0, 1] u [2,3]) and C([0,2] U {3}). We know that
these spaces are not isometrically isomorphic because the underlying topological spaces are
not homeomorphic. On the other hand if we consider

o:C([0,1]u[2,3]) — C(]0,2] U {3})

(@) if z € [0,1]
f = =< flz+1)—f(2)+ f(1) ifze(l,2] |,
f(Q) — f(1) ifx =3

it is a continuous linear map of norm 3, and it has an inverse map

V(0,21 u{3)) — C([0,1]u[2,3])
f(x) if x € [0,1]
fo= (9”’ {f(x—1)+f(3) if 7 e [2,3]) ’
which is a continuous linear map of norm 2. We say that C'([0, 1]uU[2, 3]) and C([0,2]u{3})
are isomorphic.
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Formally, given Banach spaces X and Y we say that they are isomorphic and write
X = Y if there are continuous linear maps & : X — Y and ¥ : Y — X that are mutually
inverse — such maps are called isomorphisms.

It turns out that the above example is completely typical and while C(T") and C(S) are
only isometrically isomorphic if S and T" are homeomorphic, if S and T" are any uncountable
compact metrisable spaces then C(T) is isomorphic to C(S). This result is due to Miljutin
[IMil66]. (See [Woj91l §III.D, Theorem 19].)

Some properties of Banach spaces, e.g. separability, are preserved by isomorphism. This
tells us straight away that (. is not isomorphic to any ¢, for 1 < p < oco. Furthermore,
it X = Y then X* = Y*. From this and the work of Example we see that /; is
not isomorphic to any ¢, with 1 < p < oo since its dual is not separable. (It is also not
isomorphic to £, but that is for the reason previously mentioned.)

The question remains, what about the other ¢, spaces? It is already a useful exercise to
prove that ¢, and ¢, are not isometrically isomorphic if p # ¢, but actually more is true
and it is the purpose of this section to prove the following result.

Theorem 4.1. Suppose that 1 < p < q < . Then {, is not isomorphic to {,.

Our first attempt at an isomorphism is to take the identity map ¢, — ¢, which (as we
saw in Example is a short map. The problem is that this map is not surjective: there
are elements of /, that are not in ¢, as can be seen by considering the vector A € ¢, defined
by A, := j~%®*+9 for all j € N, which has no pre-image in under the above identity map.

The proof we shall give of Theorem will revolve around the idea that if T': ¢, — {, is
continuous then we shall be able to find subspaces X < ¢, and Y < ¢, such that T(X) =Y,
and isomorphisms ¢ : ¢, — X and ¢ : £, — Y, such that T is (almost) diagonal when
restricted to X i.e. some scalars (7;); such that

T(¢ " (e;)) = 7¢(e;) for all i € N,

This will lead to a contradiction in the essentially the same way as above.

A key step in the previous paragraph is finding the subspaces X and Y, and to do
this we need there to be a lot of subspaces of £, isomorphic to ¢,. (In fact we shall see
later in Proposition that every infinite dimensional Complementedm subspace of £, is
isomorphic to ¢,.)

We now need some notation. Define the linear maps

Py :ly — cox e (x1,...,25,0,...),

for each N € N. We think of these as linear maps rather than operators because we
shall view them as maps from (and to) many different vector subspace of ¢, (and vector
superspaces of ¢.), with different norms.

We say that (y,)s_, is a block basic sequence if there is a sequence of integers 0 =
Jo < J1 < ... such that

P; (Yyn) = yn and P;,_,(y,) = 0 for all n e N.

10T his will be defined later.
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The idea is that y, is supported on e;,_,41,...,¢;,, so that the supports of the y,s are
disjoint. We say that (y,)7_, is a normalised block basic sequence if additionally
|yn| = 1 for all n e N.

As an example, (e,,)72; is a normalised block basic sequence in ¢, for any increasing
sequence of naturals ny < ng < ....

The reason that normalised block basic sequences are useful is that they provide us with
access to a huge number of subspaces of ¢, that are isometrically isomorphic to ¢, as the
following lemma captures.

Lemma 4.2. Suppose that (y,), is a normalised block basic sequence in £, for 1 < g < co.
Then the map

0
O ly >l A= > Ay
i=1
18 an isometric linear map.

Proof. First, we need to check that the map is well-defined. Writing Sy for the partial
sums on the right i.e.

N
Sy 1= ®(PyA) = > Ay, for all N e Ny,

n=1

with the usual convention about the empty sum so that Sy = 0, we see that for naturals
N > M we have

N N N
ISx = Sullf, =1 >3 Aawml®=" D, Malloml® =D, [Aal® = |PvA— PuA[",
n=M+1 n=M+1 n=M+1

because the support of the y;s is disjoint. Hence if A € ¢, then (PyA)y is Cauchy in
l,, and so (Sy)n is Cauchy in ¢,, whence limy_,o, Sy exists in ¢, and ® is well-defined.
Furthermore, taking M = 0 the above tells us that

0
Z il
i=1

and so the map is an isometry. Finally, ® is trivially linear on the vector subspace c., and
the map is continuous (since it is an isometry), but ¢, is dense in ¢, and hence ® is linear
on 4. O

— Jim S| = lim [PwA] = |2

We shall also need a way to extract normalised block basic sequences from other se-
quences, and this lemma captures that.

Lemma 4.3. Suppose that (x,), is a sequence of unit vectors in £, (1 < q¢ < o) with
Pyx, — 0 (in {;) as n — o for all N € N. Then there is a subsequence (z,,); and a
normalised block basic sequence (y;); such that

|2, — yi| <27 for all i e N.
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Proof. We start by constructing sequences 0 =:ng <n; <ng < ... and 0 =:jo <71 < ...
iteratively such that

(4.1) |2, — (P, — Pj,_, ), <270 for all i € N.

Suppose that k € Ny and that we have chosen ny, . .., n; and jo, . .., jr such that (4.1)) holds
for 1 < < k. (Note that if £ = 0 this just means we have chosen ny = 0 and jo = 0.) By
hypothesis there is some ng, 1 > n; such that

“P]kxnk+1‘| < 2_(k+3)'
On the other hand since z,, ., € £, (and p < o) there is also some jj,1 > ji such that

HxnkJrl - ‘ij+1xnk+1” < 27(k+3)‘

It follows by the triangle inequality that

Hxnk+1 - (ij+1 )xnlﬁ—lH < 2_(k+2)7

and (4.1) holds for i« = k + 1. With this construction it is immediate that the auxiliary
sequence (z;); defined by z; := (P}, — P}, ,)xn, is a block basic sequence. By the triangle
inequality again we see that

— P

Jk

11— [z < |on, — 2] <270 for all i e N,
and we set y; := z;/| 2. The triangle inequality then once again tells us that
ln, = vill < |@n, — 2l + 2 — 3l < 27D + [z — 1] <277
as required. 0

Proof of Theorem[{.1. Suppose that T": ¢, — £, is a continuous linear map with a contin-
uous inverse. We write z, := T'e,/|Teyl|s,. (This is well-defined because T is invertible.)

Claim. For all N € N we have Pyz, — 0 (in {;) as n — .

Proof. Write e} : {, — I for the continuous linear functional defined by e} (z) = z; for each
x € {,. Then note that Pyz, — 0in ¢, as n — o for all N € N if and only if e} (z,) — 0
as n — oo for all 2 € N. We shall prove this second statement; suppose that i € N.

Since T is invertible we have

¥ (zn)l < lef (T(ea)||Tea ™ < [T | len] ™ e (T(en))] < |T7Hlef (T'(en))]-

Now x — ef(T'z) is a continuous linear functional on ¢, and so, by Example (since
q < o0), there is some w € ¢,y (where 1/p + 1/p’ = 1) such that

0
ef(Tx) = Z zjw; for all x € £,.
j=1
In particular, ef(Te,) = w,. Since p > 1 and so p’ < o0, we have that w,, — o as n — 0,
and hence |e(z,)| — 0 as n — o0 and the so-called ‘second statement’ above is proved,
establishing the claim. O
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By Lemma we conclude that there is some subsequence (z,,); and normalised block
basic sequence (y;); such that

HT(enz‘) - yZHTem

Now, suppose that A € £, and N € N. Then by Lemma (applied in ¢, to the normalised
block basic sequence (y;)2; and vector (AT (ey,)]e,)i;) we have

¢, for all i e N.

N q

N
(T 1PN, = 177179 D Il < 0 Pl T (en,)

i=1 i=1

S AT (en)

i=1

ul' =

L, Yi

Y
éq

and so by the triangle inequality we have

N
=1

However, again by Lemma (since (en,)72, is a normalised block basic sequence in ¢,,),

we also have
N N
D IAT(e =T (2 )\iem) Z A em
i=1 i=1

Combining these (and using nesting of norms between /., and Ep) we get

[PxAle, < ITNTH P A, + [Py Ale,) < 20T Pyl

N
+ 2 N2 Ten, e,

2, =1

|71 P Ale, <

<|T| = [T PxAlle, -

£y

Since p < ¢ we can choose A here to get a contradiction. Specifically, take \; := j~2/(P+4)
so that

N 1/q
WN (1 (Z s ) = [PuAle, < 2|TNT I PaAle,
N 1/p
< 2|T)|T7 (Z Badanl ) = On—oo(1).
This contradiction shows that no such 7" can exist and hence proves the theorem. Il

4.4. Products, coproducts and direct sums. It will be useful for us to be able to build
new Banach spaces from old, and decompose existing Banach spaces into simpler pieces.
To this end we shall take a moment to set out some of the basic constructions. Much of
this has been covered in detail elsewhere (e.g. [Batl4, §1.1]) so for the most part we simply
record the essentials.

Recall that in a general category a coproduct of two objects X and Y is an object
X[]JY for which there are morphisms iy, iy such that for any object Z and morphisms
f: X]]Y — Z there are maps i; and iy such that the following diagram commutes.
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X <2 XT[Y 2> Y
e
Z

Similarly a product of two objects X and Y is an object X [[Y for which there are
morphisms 7y, my such that for any object Z and morphism 7 : Z - X and my : 7 — Y
there is a morphism f : Z — X [[Y such that the following diagram commutes.

X & XTlYy =25 v
Z

The category Ban; has products and coproducts of Banach spaces over the same field and
these can be described as follows.

Lemma 4.5 (Products and coproducts in Bany). Suppose that X and Y are Banach
spaces over a field F. Then

(i) (Coproducts) X [[Y is isometrically isomorphic to the vector space direct sum
X @Y endowed with the norm |(x,y)| := ||z|x + |y|y, and the short maps x —
(ZE, OY) and Y= (OX7 y);

(i1) (Products) X [[Y is isometrically isomorphic to the vector space direct sum of
X @Y endowed with the norm |(z,y)| := max{||x|x, ||y}, and the short maps
(z,y) = @ and (z,y) — y;

(111) (Isomorphism) The map ixmx +iymy is a norm 2 continuous linear map X [[Y —
X[1Y with a norm 2 inverse.

We leave the proof of this as an exercise.

In this section we have been interested in the question of when two Banach spaces
are continuously isomorphic, rather than when they are isometrically isomorphic. This
notion of isomorphism is the categorical notion of isomorphism in TopVect the category
of topological vector spaces with continuous linear maps.

This different perspective will have us looking at normable spaces rather than normed
spaces in much the same way we looked at metrisable spaces rather than metric spaces
in earlier sections. A topological vector space X is normable if the topology on X is
induced by a norm. Many of the notions we have discussed before work well for topological
vector spaces. In particular, X is separable if it has a countable dense subset, and it is
sequentially complete if every Cauchy sequence in X converges. Here a sequence (),
is Cauchy if, given a local base B about 0, then for all V' € B there is some N € N such
that z, — x,, € V for all n,m > N.

Lemma 4.6 (Topological vector space invariants). Suppose X andY are isomorphic topo-
logical vector spaces. Then X is normable iff Y is normable; X is separable iff Y is sepa-
rable; X 1s sequentially complete iff Y 1is sequentially complete.



22 TOM SANDERS

One sometimes describes a normable, sequentially complete topological space as Ba-
nachable, although this is not a terribly attractive word.

In TopVect every product is isomorphic to a coproduct and vice-versa — we call these
objects biproducts or direct sums. Formally, given topological vector spaces X and Y over
a field F then the vector space X @Y endowed with the product topology is both a product
and a coproduct — we call it the topological direct sum or topological biproduct.

The key point for us is the following lemma.

Lemma 4.7. Suppose that X and Y are Banachable topological vector spaces over a field
F. Then there is a norm | -|| on the vector space X ®Y such that x — (x,0y), y — (0x,y),
(x,y) — x and (x,y) — y are all continuous, and any such norm induces the product
topology on X @Y. In particular, X ®Y is Banachable.

Proof. Suppose that | - ||x and | - ||y are norms inducing the topologies on X and Y
respectively. Then |(z,y)|| := |z|x + |ylly is a norm such that the maps = — (x,0y),
y— (0x,y), (z,y) — x and (z,y) — y are all continuous.

On the other hand, if | - || is a norm on X @Y such that z — (z,0y), vy — (0x,v),
(x,y) — z and (x,y) — y are continuous then

|z]x = O((z, y)]) and [ly|y = O(|[(z,y)[) whence [z]x + [y]y = O (z, y)]),

and
[(@, )| < (2, 0v)] + [(Ox, )| = O(lz]x + lylv),
and so | - | is equivalent to the norm (x,y) — ||| x + [ly]y-
Finally it is easy to check that this really is the product topology on X @Y. O

Some of the most useful Banach spaces giving rise to the topological vector space X @Y
are defined as follows. For p € [1, 0] we write X @, Y for the space X @Y endowed with
the norm

1
[z, )= (el + Jyls)"”

with the natural convention for p = c0. Note that these are norms on X @Y of the type
described in Lemma [4.7] so they induce the product topology on X @Y. In this language
Lemmatells us that X@®,Y is a coproduct of X and Y (in Ban, ), and similarly X @Y
is a product of X and Y (in Ban;). The last part of Lemma [4.5| then tells us that these
two spaces are continuously isomorphic.

Example 4.8. The space £, ®, {, is isometrically isomorphic to £,. To see this simply note
that the maps

by ®p by — Ly; (z,y) = (21,91, 22, %2, .. .)
and
Uy — U, ®p Uy x— (21,23, 25, ... ), (T2, T4, ...))

are isometric isomorphisms.
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This last construction and the ¢,-space construction (see Example can be fused.
Given a Banach space X we write £,(X) for the set of vectors (z1,2s,...) where z; € X
such that

0
2 lzillk < o,
i=1

0 1/p
[2le,x) = (Z \wi§(> :

i=1
The elements of this space are sometimes called p-summable, and it is easy to check that
they form a Banach space in much the same way one does for ¢, = £,(F). This space has
some useful properties.

endowed with the norm

Lemma 4.9. Suppose X andY are Banach spaces and p € [1,0]. Then
(1) L,(X ®,Y) is isometrically isomorphic to ,(X) @, (,(Y);
(11) X @, £,(X) is isometrically isomorphic to £,(X);
(111) if X =Y, ie. X is continuously isomorphic to'Y, then £,(X) = ,(Y).

None of these is difficult; we leave the proof as another exercise.

Example 4.10. Building on Example [£.8 we have that £,(¢,) is isometrically isomorphic
to £,. Let ¢,7¢ : N — N be such that N — N?;n — (4(n), 1 (n)) is a bijection. Then

R G G
is a well-defined isometric isomorphism.

4.11. Complemented subspaces. Suppose that X is a Banach space and Y and Z are
closed subspaces of X with Y n Z = {0}. Then we call Y + Z an internal direct sum,
because the natural map (y, z) — y + z is a continuous isomorphism from Y@ Z to Y + Z.

Given a Banach space X we say that ¥ < X is complemented in X if there is a
subspace Z < X such that Y + Z is an internal direct sum and X =Y + Z. Note that in
this case there may be many different spaces Z such that Y + 7 is direct and X =Y + Z.
Internal direct sums are closely related to projections: a projection on a Banach space
X is a continuous linear map 7 : X — X such that 7% = 7.

Lemma 4.12. Suppose that X is a Banach space and Y s a closed subspace of X. Then
Y is complemented in X if and only if there is a continuous linear projection m: X — X
with tmage Y .

Example 4.13 (Continuous linear functionals). Suppose that X is a Banach space, ¢ €
X* and y € X has ¢(y) # 0. Then, writing Y for the space generated by y, we have
X =Y + ker ¢, and the sum is direct. To see this note that the map

()

T X ->Xz—ox——=y

¢(y)
is a projection of norm at most 1+ |¢|/||y|/|¢(y)|, and Y and ker ¢ are both complemented
in X.
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Example 4.14. Given a sequence of vectors (x;); we define their span to be

Span((z;);) := {Z Nit; : AeF" ne No} ,

=1

and write Span((z;);) for the closure of this span. If (x;); is a normalised block basic
sequence in ¢, (1 < p < o) then we know from Lemmathat Span((z;);) is isometrically
isomorphic to ¢,. Furthermore, it is complemented in ¢, as we shall now see.

By Example we know that for each x; there is a short functional ¢; € £} such that
¢i(z;) = 1. We define

e R Z oi(x);
i=1

and it is easy to check that it is a short projection with image Span((z;);).

It is worth noting that not every closed subspace of a Banach space is complemented.
For example, the Phillips-Sobczyk TheoremH is the assertion that ¢y is not complemented
in £.

In the proof of Theorem we needed an abundance of subspaces of ¢, that were
isomorphic to ¢,. Of course any finite dimensionaﬂ subspace of £, will not be isomorphic
to ¢,, because it cannot be isomorphic as a vector space. Curiously, however, every infinite
dimensional subspace of ¢, contains a (complemented) copy of ¢,,.

Lemma 4.15. Suppose X is a closed infinite dimensional subspace of £, (1 < p < ).
Then there is a subspace W < X with W = (,, and W complemented in {,,.

Proof. We start by constructing a block basic sequence in a way that is not dissimilar

to that in the proof of Lemma .3 We shall construct vectors yi,ys, ..., unit vectors
Z1,To, ... and integers 0 =: jo < 71 < ... such that

Pj,_y; =0, Pjy; = y; and s — yil| < 9—(i+2)

Suppose that we have constructed yi,...,yr, 1,...,2k, and jo,...,Jr for some k € Nj.
Consider the linear map P;, : X — ¢,. The image is finite dimensional, but X is infinite
dimensional, so there is some unit vector x4 € X with Pj, x5 = 0. Since 2441 € £, and
p < oo there is some jxy1 > jr such that

| k1 — Py T | < 9~ (+2),

HThe fact that ¢ is not complemented in £, is proved by Phillips in [Phi40, 7.5], and Sobcyzk noted
in [Sob41] that this can be used to show that ¢ is not complemented in ¢y. This latter assertion is the
one often discussed because there is a short proof by Whitley [Whi66]. The details of that proof may be
found in [Batl4].

1276 be clear a Banach space X is said to be finite dimensional if the underlying vector space is finite
dimensional and we write dim X for this dimension of the underlying space.
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let yp11 := Pj,,,xk11 and we are done. Putting z; := y;/|yi| the sequence (z;); is a

normalised block basic sequence by design. We now consider the map

U : Span((z;);) — Span((z;); 2 Nizi — Z i

which is well-defined and linear.

Claim. We have .
[T (2) — 2| < §Hz|| for all z € Span((z;);).

Proof. The key to this is the following consequence of the fact that [z; — ;| < 270+ for
all i € N. If z € Span((z;);) then z = Zf\il iz for some N € Ny and scalars A\, ..., Ay € F.
But then

v <Z Aizi) - (2 Aﬂz‘) <D lllzi = 2] < SIAle < SIAe, =5
=1 =1 =

by Lemma The claim follows. O

Writing Z := Span((z;);) and W := Span((z;);), and noting that

1 3
el < ()] < 52| for all z & Span((z)s)-

by the claim, we see that ¥ extends to a continuous linear map from Z to W with a
continuous inverse — Z and W are isomorphic. By Lemma Z is isomorphic to ¢, and
the first part of the conclusion is proved since W < X.

For the second part note by Example that Z is complemented in ¢, so there is a
space V' < ¢, such that ¢, = Z + V is direct. More than this, the associated projection
7y, — Uy 2+ v — z is short i.e. ||| = 1.

The map ® : £, — {,;u — ¥(m(u)) + (u—m(u)) is a continuous linear map since ¥ and
7 are such, and

[@(w) —ul = |¥(m(u)) = m(u)]| < —HW( )< —HWHHUH 1IIU|| for all u € £,.

It follows that ||® —I| < 1/2, whence ® is invertible, and it remains to note that oo ®~!
is a continuous linear projection with image W. The result is proved. U

We are now in a position to prove the final result of this section.

Proposition 4.16. Suppose that X is an infinite dimensional complemented subspace of
l, for 1 <p <oo. Then X = {,.

Proof. We shall use Pelczynski’s method [Pel60] and the previous lemma.

By Lemma there is a subspace W < X with W complemented in ¢, and W = /,,.
Since W is complemented in £,, there is a projection 7 : ¢, — ¢, with image W. This
projection must be the identity on W and since W < X, when restricted to X it becomes



26 TOM SANDERS

a projection on X, and so W is complemented in X. It follows that there is a subspace

U < X such that X = W @ U and hence
X2WoeUz=(,eU={(,el)oU =l (,eU)=(eX.
On the other hand ¢, =~ X @V and so
by = ,(6) = 6,(X@V) = L,(X)@,(V)

= (X@)f (X)) @ 6(V)
= X0 (LX) 6L(V))
= X@KP(X@V); DY,
Of course £, ® X =~ X @ ¢, and the result is proved. U

Pelczynski’s method above is part of a family of related arguments including the Eilenberg-
Mazur swindle and the Cantor-Schroder-Bernstein Theorem; we shall prove the latter be-
low.

Theorem 4.17 (Cantor-Schroder-Bernstein Theorem). Suppose that there are injections
X —->Y andY — X, then there is a bijection between X and Y .

Proof. Instead of working in the category of ¢,-spaces we work in the category Set, where
direct sums are replaced by disjoint union and we write A =~ B to mean there is a bijection
between A and B. Write g : X — Y for the given injection and put A := Y\g(X). Then
there is a bijection

—1 .
Yo X Ay {g (v) ifyeg(x)
Y otherwise.

We write Y =~ X U A; similarly the injection ¥ — X gives rise to a set B such that
X =Y u B. It follows by associativity and commutativity of disjoint union that

X ~ X u Z where Z := Au B.

The key difference between this argument and that in Proposition is that we cannot
apply Lemma ; instead of finding a copy of ¢, in the ambient space (as in Proposition
we find a copy of a suitable infinite disjoint union of Z with itself.

Write f for the bijection X — XuZ, put W; :={x e X : xz, f(x),..., f(z) e X, fi(z) €
Zyand W = {z e X : z, f(z),--- € X}. It is easy to check that X = W u | |, W, and
f{(W;) = Z. Thus we can define the map

T fxeW

X->Wu(ZxN)z— .
( )iz {(fz(x),z) if x e W;.

This map is trivially injective on W, and if (f*(z),i) = (f?(y),j) then i = j and hence z = y
since f is a injection; we conclude that the map is injective. Moreover, if (z,i) € Z x N then
there is some = € W; such that f(z) = z and hence the map is surjective. We conclude
that X u (Z x N) =~ X
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The key point now (and also in the proof of Proposition [4.16)) is to exploit the idea
behind Hilbert’s Hotel; by that argument we have for any set C' that

Cu(CxN)~CxN.
This is captured as with the second property of Lemma [£.9} the other properties are
(CxN)u(DxN)=(CuD)xN, and if C = D then C x N= D x N,
for any sets C' and D. It follows from these (and our earlier definitions of A and B) that
(AuB)xN=x~(AxN)u (B xN)

~(Au(AxN))u (B xN)
Au((AxN)u (B xN))
Au((AuB)xN)= ((AuB)xN)u A.

lle

lle

Hence we conclude that

X=2Wu((AuB)xN)=zWu ((AuB)xN)u A)
> (Wu((AuB)xN)uA=xX A=Y,

The result is proved. U

It is natural to wonder if a result of the above type holds for Banach spaces. In particular,
if X is complemented in Y and Y is complemented in X, then is X = Y. Such a result does
not hold as was shown by Gowers in [Gow96]. (In actual fact he established the stronger
result that there is a Banach space Z such that Z = Z@ Z@ Z, but Z 2 Z® Z.)

As an aside we remark that the proof of Proposition effectively decomposes into
two parts: the first uses Lemma to show that if X is complemented in ¢, (and infinite
dimensional) then ¢, is complemented in X; secondly, that a Schroder-Bernstein result
holds for Banach spaces when one of the spaces is £,,.

5. BANACH-MAZUR DISTANCE

Associated to the notion of isomorphism is the Banach-Mazur distance defined be-
tween two spaces X and Y by

dpm(X,Y) := inf{|®[||®!| : @ : X — Y is an isomorphism.}.

This, or rather logdpy(X,Y), is a (pseudo-)metric and in this language we showed in
Theorem [4.1] that

dpm(lp, l;) =0 if 1 <p < ¢ < 0.
The Robust Banach-Stone theorem (Theorem [3.10) can also be written in this language
and it says

dpm(C(S),C(T)) < 2= S is homeomorphic to 7.
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A little care is needed here: if S and T are homeomorphic then C(S) and C(T) are
isometrically isomorphic and so dg\(C(S),C(T)) = 1. However, if dgm(X,Y) = 1 it need
not be the case that X and Y are isometricE]; we call such spaces almost isomorphic.

If X and Y are finite dimensional spaces then dgy(X,Y) is finite if and only if X and
Y have the same dimension. Moreover, we have the following lemma showing that the
infimum in the definition of dgy is achieved.

Lemma 5.1. Suppose that X andY are finite dimensional Banach spaces and dgy(X,Y) =
K < 0. Then there are mapsT : X - Y and S : Y — X such that TS = Iy and ST = Ix
and |T||S]| = K — we say that X is K-isomorphic to Y .

Proof. For every n € N there are linear maps 7, : X — Y and 5,, : Y — X such that
1,5, = Iy and S, T, = Ix, and |T,|,||S,] < VK + 1/n. Since X and Y are finite
dimensional we can pass to a subsequence such that 7,,, — T" and S,,;, — S in operator
norm. The required properties of S and T follow immediately. U

Which yields the following as an immediate corollary.

Corollary 5.2. Suppose that X is a finite dimensional Banach space and dpy(X,Y) = 1.
Then X is isometrically isomorphic to 'Y .

While two finite dimensional Banach spaces are isomorphic if and only if they have the
same dimension, the Banach-Mazur distance lets us quantify this.

Example 5.3 (¢} spaces). We write £} for the vector space F" endowed with the norm

n 1/p
|z = <Z |$i|p) :
i=1

This is evidently an n-dimensional Banach space, and

dpn (£, 4y) < ||]H€$—>EQHIHZQL—>€;~

Now if 1 < p < ¢ < o0, then by Holder’s inequality we have
11
[zley < lzllegnr™s and [[z]ey < [2]e,

and it follows that dgn (€, €)) < nr e, It turns out that when p =2 (or ¢ < 2) this is
tight.

A natural question arises as to what happens with more general spaces. In particular,
given two n-dimensional spaces X and Y, the Banach-Mazur distance between them is
certainly finite, but is there a bound uniform in the dimension? The answer follows from
the next simple proposition.

Proposition 5.4. Suppose that X is an n-dimensional Banach space. Then dgy (X, 07) <
n.

13Gee, for example, [PB79, 2.1] or the examples sheet.
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For finite dimensional spaces the dual is rather richer than we have come to expect in
our Choice-deprived world and, in particular, we have the following useful lemma.

Lemma 5.5 (Auerbach’s lemma, [Woj91], §IL.LE, Lemma 11]). Suppose that X is a finite
dimensional Banach space. Then there is a unit biorthogonal system in X x X*, meaning
there are unit vectors x1,...,x, € X and ¢1,...,¢, € X* such that

¢z($]> = 5ij f07” all 1 < ’L,j < n.

Proof. Let ef,...,eX be a basis of X*. (This is a purely algebraic fact since all linear
functions are continuous in finite dimensions, so X* = X', the algebraic dual of X.)
We define the map

U X" > F; (21, .., 2,) = det((ef(2)721)

1,j=1

which is trivially continuous. It W(zy,...,2,) = 0 then the rows of the matrix (e} (z;))7;_,
are linearly dependent and so there are scalars (\;); such that

ei( Mz + o+ Apzn) = Nief(21) + -+ Apej(zn) =0 forall 1 < j <n.

Since (e})j_, is a basis and ®y is an injection it follows that
Az + o Az, =0,
and hence zq, ..., z, are linearly dependent. Since there are subsets of n vectors in X that

are linearly independent we conclude that W is not identically 0.
We also have that ¥ is multi-linear: if we fix (z;);» then

n
l 1 *
W (21, ey Zh1s 2y Zhgly e -5 2 Z det((e] (2i))izrje1)er (2),
=1
and 80 z — W(21,...,2k-1,2, Zkt1, - - -, 2n) 1S sum of linear maps in z and hence linear.

Continuity tells us that at ¥ has a maximum modulus on B", the n-fold product of the
unit ball, B, of X (which is compact since X is finite dimensional). Multi-linearity tells us

that this is achieved for a vector (xy,...,z,) € B" with ||a;]| = 1 for all 1 <i < n. Since
U is not identitically 0 we have W (z1,...,x,) # 0 and we can define
Gi(x) = U( 21, X, T i1, )V (T, )

which is linear since ¥ is multi-linear. Since z1,...,x, have been chosen to maximise the
modulus of U over B"™ we certainly have that |¢;| = 1. As noted before ||z;|| = 1, and
finally ¢;(x;) = 1 and ¢;(x;) = 0 if ¢ # j. This last fact is because ¢;(z;) is just the
determinant of a matrix in which the 7th and jth rows are both (e} (x;), ..., ek(x;)). Thus
the rows are not linearly independent and so the determinant is 0. U

Proof of Proposition[5.4). Suppose that 1, ..., x, € X is a basis of unit vectors for X, and
consider the map

)
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This certainly has norm at most 1. The problem is that the inverse map might have very
large norm unless the z; are chosen carefully; we choose them using Auerbach’s lemma.
By biorthogonality we have

i=1 i=1 i=1
It follows that
o (Z /\ifl?z) ‘ = Z Xl <n Z Al
1=1 i=1 i=1
i.e. [®7!| < n as required. O

The triangle inequality for (the log of) the Banach-Mazur distance then tells us that for
any two n-dimensional spaces X and Y we have dgy(X,Y) < n? In fact this bound can
be reduced to n by passing through ¢ rather than ¢7. Indeed, Hilbert space (of which ¢4
is a key example) will play an important role in much of the rest of the course.

Since we have mentioned ¢4 and /7 it is rather natural to consider the other extreme:
0. Of course (£7)* is isometrically isomorphic to £, and for finite dimensional spaces we
have that X is isometrically isomorphic to X** (via ®x), and dpm(X,Y) = dpy(X*, Y*).
It follows that if X is n-dimensional then

dpm (X, 05) = dpm(X™, (61)%) = dpm(X*, €) < n

by Proposition 5.4 Estimating the worst case for this distance is an open problem due
to Pelezynski [Pel84]. According to [DLATTIO0] the best known upper bound is due to
Giannopoulos [Gia95] who showed

dBM(X, E?o) = O(n5/6);
there is also a construction of a space X due to Szarek [Sza90] such that

dpn (X, 02) = Q(n'?logn).

5.6. Near isometries. As noted above, if X is finite dimensional it is easy to check that
® is an isometric isomorphism of X. This means that we can apply Theorem to
see that X is isometrically isomorphic to a subspace of C([0,1]). The finite dimensional
analogue of C([0,1]) is £2, and while (as we shall see shortly) it is not the case the every
finite dimensional space can be isometrically embedded in ¢7, for some n, it is nearly the
case.

Proposition 5.7 ([Woj91, §IL.LE, Proposition 13]). Suppose that X is a n-dimensional

Banach space over R. Then there is an isomorphism ® : X — (N where N < e~ with
(1 —e)fz| <l|@(z)] < ] for all z € X.
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Proof. Let S be a maximal e-separated subset of K, the unit ball of X*, so that if ¢, € S
then

|¢ — 1| > € whenever ¢ # 1.

By the triangle inequality and the separation of S, none of the balls of radius €/2 centred
at the elements of S overlap and so, writing u for Lebesgue measure@ on R", we have

SI(E)(e/2)" = p(S+{re X : o] < e/2})
< e X :fa] < (1+¢/2)}) = (1+e/2)"u(K).

(Note that K is closed and bounded so has finite measure; it contains a non-empty open
neighbourhood and so the measure is positive.) A bound on S follows on rearranging.
It remains to note that putting N = |S| and

DX — 1 (Gs(7))ses

we have a ¢ with the desired properties. In particular, if x € X then there is some ¢ € X*
with [|¢| = 1 and ¢(x) = |z| (see Exercise sheet). But then there is some s € S such that
|ps— |l < e, and it follows that ||¢s(z)|—|p(2)|| < €]z and we see that |®(z)|| = (1—¢)|x|.
On the other hand all the elements ¢ are in the unit ball of the dual so we certainly have
|®(x)| < |z|| and the result is proved. O

Again, in the language of the Banach-Mazur distance, for every ¢ > 0 and n-dimensional
Banach space X there is some N < ¢~ and subspace Y < ¢Y such that

dBM(X, Y) < 1+e.

It turns out that this is essentially best possible as we shall see in the next section.

5.8. The Banach-Mazur distance between Kg and Eg. In the other direction from the
arguments above we shall show later in the course that for 1 < p < ¢ < @

n gn
dBM(gpagq) — 00 as n — 0.

1494 far we have only discussed Baire and Borel measures. There are various ways to define Lebesgue
measure, but one is as the completion of the unique translation invariant regular Borel measure on R
assigning mass 1 to [0,1]. Any translation invariant regular Borel measure on R is called a Haar measure
and it turns out that such measures (exists and) are unique up to scaling. We shall discuss Haar measures
arising from actions of groups on compact spaces in §7] and which this does not cover R acting on itself, it
is a short step to this extension.

A measure is said to be complete if the measure of every subset of a set of measure 0 has measure 0.
The Borel o-algebra on R has Borel sets having measure 0 in the Haar measure that have subsets that are
not measurable — the Haar measure is incomplete. However, given a measure p on a measure space there
is a unique minimal completion — passing to this completion is easy and will not concern us further.
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6. HILBERT SPACE

At the other end of the spectrum from the spaces of continuous functions we saw in
is Hilbert space. Recall that H is a Hilbert space if it is a Banach space with a norm
satisfying the parallelogram law i.e.

2| +2ly|* = |z —y[* + =+ y|* for all 2,y € H.
It follows from this that | - || is induced by an inner product.

Example 6.1. Hilbert spaces give rise to some surprising isometric isomorphisms. In
particular, the space ¢ is isometrically isomorphic to Ls([0, 1]) as can be shown (following
[Rad22]) with the Radamacher system of functions on [0, 1]:

rn(x) = sgnsin(2"nx) for all z € [0, 1].

It may be most helpful to simply draw these. The map

o0
(An)pey Z AnTn
n=1

is then an isometric isomorphism, and we leave the verification of this as an exercise.
In fact it turns out that any separable infinite dimensional Hilbert space is isometrically
isomorphic to /5.

Hilbert spaces, like finite dimensional Banach spaces, have a rich dual structure. For
every z € H, the map y — {(x,y) is a continuous linear map on H and it turns out (this
is the Riesz representation theorem) that these are all such maps. A key ingredient in one
proof of this is the following lemma.

Lemma 6.2. Suppose that H is a Hilbert space, x,y € H and ¢ € H* have |z|,|ly| < 1,
|6 <1 and [¢(x) —1],[6(y) — 1] < e. Then |z —y| = O(Ve).

Proof. We shall work with real Hilbert space so that ¢(z) < ||¢[|||z| = | 2| forall z € H. (The
complex case is not substantially more difficult.) By linearity and the triangle inequality
we have

[9(x +y) — 2] <[o(x) — 1] + [d(y) — 1] < 2e,
and it follows that

4220z +2lyl* = Jz+yl* + |z -yl
> ¢a+y) + v —yl* > (2 -2 + |z -y
Rearranging gives the result. U

As an immediate corollary we get the Riesz representation theorem.

Corollary 6.3 (Riesz representation theorem). Suppose that H is a Hilbert space and
¢ € H*. Then there is some x € H with ||z| = |¢| such that ¢(z) = {(x,z) for all z€ H.
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Proof. We may take |¢| = 1 and hence there is a sequence (x,), of unit elements in H
such that ¢(z,) — 1. By Lemma the sequence (z,), is Cauchy and so converges to
some z € H. It follows that |z| = 1 and ¢(x) = 1 by continuity of ¢.

Now, suppose that y € ker ¢ is a unit vector and 6 > 0. Then

l2)* + 2(a, 0y) + 0*[ly[* = = £ oy[* = é(z £ 0y)* = 1,

from which it follows that [(z,y)| < 0/2. Letting § — 0 tells us that (x,y) = 0. Hence
ker ¢ < {z}*, and so ¢(z) = (z, z) for all z € H. O

6.4. Near isometries revisited. Returning to Proposition [5.7] we are now in a position
to show that it is best possible

Proposition 6.5 ([Naol(0, Lemma 30]). Suppose that F = R and there is a linear map
O : 0y — (5 such that (1 — )|z < |®(x)|py < |@]en for all x € €5, Then N = ¢,

Proof. We write ¢; : ¢4 — R for the continuous linear functional taking x € ¢§ to the ith
coordinate of ®(x) — there are N of them — and then we define the caps

Ki:={z€ely:|z]g =1and ¢;(z) =1 —¢} for 1 <i < N.

By the first inequality in the hypothesis we have

N
Ki={ze8 |2y =1}
=1

Since |®| < 1 we see that [|¢;]| < 1 and so |¢;(z) — 1| = O(e) for all z € K;, and hence by
Lemma [6.2] there is some absolute constant C' > 0 such that

|z —y| < Cy/e for all z,y € K;;

Let z; € K; (if K; is non-empty; if it is empty ignore it) so that, writing B, for the ball in
{y of radius r, we have K; < 2; + B¢ . It follows that

N N
Bl-}-\/E\Bl—\/E c {Z € é; . HZ” = 1} + B\/g = (U Kz) + B\/g c U (ZZ + B(1+C)\/E)'

We conclude that
(L+ V)" = (L =+e)")u(B1) = p(Biyye\Bi-ye)
< Nu(Buyoye) = N((L+ C)We) u(B).

Since B is closed it is measurable, and since it contains a neighbourhood of the origin we
have u(B;) # 0. Dividing we then get the result on rearranging. U
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7. HAAR MEASURE

Measure was crucial to the arguments in Propositions and [6.5 and is available in
the finite dimensional setting because the unit ball is compact. In those propositions the
measure was Lebesgue measure on R”, the key property of which was that it is invariant
under translation. It turns out, however, that any group action on a compact space admits
an invariant measure. (Of course R" is not compact so this is not a generalisation, but
these statements are closely related.)

Suppose we have a compact metric space T with metric d, and a group G acting isomet-
rically on T so

d(gx,gy) = d(z,y) for all z,y € T and g € G.

We call a measure ;o on the Baire sets of T' a G-Haar measure if
| #gv)inte) = | s@)dutz) or a g < G

i.e. the measure is invariant under the group actionE[ i will be called a G-Haar proba-
bility measure if it is a G-Haar measure and a probability measure.

Theorem 7.1 (Haar measure, [Naol(, Theorem 3]). Suppose that G is a group acting
1sometrically on a compact metric space I’ with metric d. Then there is a G-Haar probability
measure on 1.

We shall give a proof of this result due to [Maa35]; the historical context comes from
[Jac84], and our treatment is from [Naol(]. One of Maak’s insights was that one could
make use of Hall’s marriage theorem to prove this, although he proved his own variant
with Hall’s theorem appearing a little later.

Theorem 7.2 (Hall’s marriage theorem). Suppose that G is a finite bipartite graph with
vertex sets V and W such thaf"| for any S < V we have T'(S) := {w e W : v ~ w} at least
as large as S. Then there is an injective choice function ¥ : V — W such that v ~ (v).

Proof. This appears in the course C8.3 Combinatorics as [Scold, Theorem 3] along with a
far more extensive discussion. We shall include a brief proof here for completeness.

We shall proceed by induction on the number of edges in the graph. The result is trivial
for the empty graph, and we split each step of the induction into two cases:

Case (A). There is some & # V' <V and |[T(V')| = |V/|

Note that really this the property of being Haar is a function of the action not the group. The same
group might act in completely different ways, in which case the Haar measures may be different. Consider,
for example, the space T = F2 endowed with the metric d(z,y) = 1 if and only if = # g, and the actions
of Fy on T defined by A — (z — x + (0,A)) and A — (z — = + (A, 0)). These actions are isometric and
the measure p on T defined by assigning mass 1/2 to the points (0,0) and (0,1) and mass 0 everywhere
else is a Haar probability measure with respect to the first action, but not the second.

16 is property is called the Hall property.
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We decompose into two bipartite graphs: let G; have vertex sets Vi := V' and W, :=
['(V'), and Gy have vertex sets Vo := VAV and Wy := W\I'(V’). Both of these graphs
have the Hall property: for the first one, if S < V; then I'g(S) < I'g(V4) < Wy, and hence

Te, (9)] = [Tg(S) = |5].

Now, if S < V5 then
Tg(Su V)| =[S+ V] =|5]—T(V)],
whence
T, ()] = |[Tg(S v V)| = [Wi| = [Lg(S V)| —[V]=]9],
as required. Since J # V' # V we see that both G; and Gy contain an edge and so both

contain strictly few edges than G. The inductive hypothesis applies and we get a function
Uy Vi — Wy and ¥s 0 Vo — Wa; 1) is just the combination of these functions.

Case (B). For all @ # V' <V we have |I'(V')| > |V/|.

In this case G contains an edge from an element v € V; remove it to get G'. It follows
that

[Tg (V)] = [Fg(V)] =1 = [V]
whenever V’ # V. If the set V' := V\{v} is non-empty then
Lg (V)| = [T (V) = [Tg(V)] = [V + 1 = [V,

and so G’ has the Hall property and we can apply the inductive hypothesis. The final
possibility is that V' = {v} in which case the result is trivial.
The result now follows by complete induction since the cases are exhaustive. [

Hall’s marriage theorem [Hal35] (which it turns out is a special case of a result of Konig

from [Konl6]) can be proved by induction or by duality.

Proof of Theorem [7.1 The most obvious idea is to construct a functional in the same way

one constructs the Riemann integral on [0, 1]. (Although [0, 1] is not a group, it is nearly,

and is certainly illustrative.) This is not quite possible because we have no analogue of

open interval — a sort of open set for which we can write down a ‘length’ — however, if we

only initially want to integrate continuous functions there is another way to define it.
Suppose that xi,...,z, in [0, 1] and consider the functionals

b OO0 =B foo 3 ).

Since [0, 1] is compact every function f € C([0,1]) is uniformly continuous and so once
there are sufficiently many suitably spread out x;s this will be a good approximation to the
integral of f. We might hope to use compactness (Theorem to take a limit of these
and then extract a measure by the Riesz-Kakutani representation theorem (Theorem [3.7)).

Picking the x;s is slightly delicate. We would naturally pick them independently and
uniformly at random from [0, 1], but that gets us back to where we started. There is a
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metric notion of independence here — §-separation which has a dual concept of §-covering.
We say that S < T is é-covering if

T c UB(S,(S) where B(s,d) :={t e T :d(s,t) < d}.
seS
Instead of picking a sequence xy, ..., x, in [0, 1] (or T') uniformly at random, we shall pick
it to be d-covering of mzmmunﬂ size.

We turn to the proof proper, and start with a claim which captures what we need about
coverings of minimum size.

Claim. Suppose that 6 > 0, and S and T are §-coverings of T, and S has minimum size
amongst all §-coverings. Then there is a function ¢ : S — T such that d(1(s),s) < 24.

Proof. Form a bipartite graph with (disjoint) vertex sets S and T, and connect s € S to
t € T if and only if d(s,t) < 2§. This graph has the Hall property: if S < S has [['(S)| < | S|
(where I'(S) = {t € T : d(s,t) < 2d}), then consider the set U := (S\S) u I'(S). This has

17Tt is important here that we take the minimum size rather than a minimal §-covering set. This can
be seen by considering the case T = [0, 1] again and considering ¢ := 1/4n. If xg, ..., z2, are the points

0,26,46,...,(2n — 2)8,2nd <= ;) ,(2n+2)5,..., (4n — 2)8,4nd = 1,

then they form a set that is a minimal d-covering of [0,1], in the sense that no element can be removed.
The functionals

2n
U CAO) = R f = 5 3 f()
=0

converge weakly to the usual integral on [0,1], exactly as we should like. However, if we perturb the first
half slightly by some (progressively larger multiple of a) very small amount 7 to get

21,20 + 41,46 + 61, ..., (2n — 2)d + 2nn, 2nd <— ;) ,(2n+2)4,...,(4n — 2)0,4nd = 1,

then this sequence is no longer §-covering since there are gaps
(6 + 21,0 +4n), (36 + 41,30 + 61),...,((2n — 3)0 + (2n — 2)n, (2n — 3)J + 2nn),
provided (2n —3)d +2nn < (2n—1)¢ (i.e. n < d/n). If we cover these gaps by adding in the n —1 elements
043,30 +5m,...,(2n —3)d + (2n — 1)n,

the resulting sequence which, we relabel zg, ..., z3,_1, has 3n elements and is minimal J-covering in the
sense that we cannot remove any element and still have a d-covering (again, provided 1 < d/n). Arranging
n = 0/2n, say, we then have that the functionals

3n—1

Yo 01~ B fre o D) f(a)
=0

approach
1/2

1
C(0,1]) > R; f — f f(z)dx + fz)dz.
0 0
To summarise, we have found a sequence of functionals each of which is formed by averaging over a

minimal covering set which does not converge to the usual integral — it turns out that if we use functionals
of minimum size they will.
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size strictly smaller that S. Since T is d-covering we have some 7" < T such that

| JB(s,0) = | B(t,9).

seS teT’
We may certainly take 7" < I'(.S), since for any t ¢ I'(S) we have B(t, )N, B(s,0) = .

It follows that

|JBGs,0)= | B(t,9),

ses tel'(S)
and hence U is d-covering. Since S is of minimum size we conclude the aforementioned
graph has the Hall property. It follows that there is a map ¥ : S — 7T such that d(¢(s), s) <
20. O

Since T' is compact, the cover
{{seT:d(s,t) <1/n}:teT}

has a finite sub-cover C,,, and hence {t : {s € T : d(s,t) < 1/n} € C,} is a finite 1/n-covering
subset of T. Tt follows that there is a 1/n-covering subset of T of minimum size; let 7, be
such a set and let ¢,, be the linear functional

C(T) - m > )

teTn

The sequence (¢, ), is in the unit ball of C'(T)* and so by the sequential Banach-Alaoglu
theorem (Theorem [2.9) we see that there is a subsequence ¢,, — ¢ in the topology of
pointwise convergence. Considering the constant function 1, we see that |¢,,(1)] > 1, and
so |¢(1)| = 1. On the other hand ¢ remains in the unit ball of C(T)* and so |¢| = 1.
Similarly, if f > 0 then ¢,,(f) = 0 and so ¢(f) =0

We now turn to showing that ¢ is G-invariant. For each g € G we write 7,(f) for the
function t — f(¢g7'(t)). Fix f € C(T) and g € G; we shall show that ¢(7,(f)) = o(f).
Suppose € > 0. Since T is compact, f is uniformly continuous and there is some § > 0
such that |f(s) — f(t)| < e whenever d(s,t) < 20. Let n be such that

|0n(74(f)) = 0(7(f))] < € and [$n(f) — &(f)] <€

Now
_1 .
I = g B =g T S0

Since G acts isometrically, the set ¢g717, = {¢g~(t) : t € T,} is 1/n-covering. It also has
minimum size since it is the same size at 7,,, and so by the earlier Claim there is an injective
map v : T, — g~ T, such that d(v(t),t) < 26. Since 7T, and g7, have the same size and
1 is injective it follows that v is a bijection and hence

teTn
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By the triangle inequality and choice of € and § earlier we have

u(r(1) = 0u(1)] < 7 20 1010 = F0)] <

teTn

By the triangle again we therefore have

|6(79(f)) = S()] < [0(75(f)) = Inl(Tg (I + |0n(7(f)) = En(H)] + [0n(f) — 6(f)] < 3e.

However, e was arbitrary and hence ¢(7,(f)) = ¢(f) as required.
Finally, to extract a measure we apply the Riesz-Kakutani representation theorem (The-
orem to ¢. This gives us a Baire measure ;4 on 1" such that

) = f fdy for all f e C(T).

The measure is a probability measure since p(A) = ¢(14) = 0 for all measurable A, and
w(T) = ¢(1) = 1. The measure is G-invariant since p(gA) = ¢(7,(14)) = ¢(1a) = p(A)
for all measurable A. O

There are many examples of groups acting on compact metric spaces.

Example 7.3 (Isometries of Banach spaces). Suppose that X is an n-dimensional Banach
space. Then the group of isometries of X induces isometries of K the closed unit ball of
X. This space is compact since X is finite dimensional and so it has a Haar probability
measure.

The isometry group of every real Banach space includes +1, but it can be the case that
these are the only isometries. Indeed, Jarosz [Jar88] showed that any real Banach space
can be equipped with an equivalent norm so that the only isometries are +1. More than
this he showed that for any countable group G there is an equivalent norm on C(7T') (with
F = R) such that the group of isometries is (isomorphic to) G x {—1,1}.

At the other end of the spectrum if X = ¢ then the group of isometries of X is O,,, and
this gives rise to a rather rich group of isometries of the unit ball in Euclidean space R".

Example 7.4 (The group of isometries of a metric space). Given a compact metric space
T we put
Isom(T") :={g: T — T s.t. g is an isometry of T},

which is a group. It also easy to check that it itself becomes a metric space via
dISOM(g, h) = SUp{d(g(t), h(t)) 1 te T}

Usefully we also have the following.

Claim. (Isom(T'), dison) is a compact metric space.

Proof. We proceed as in the proof of the sequential Banach-Alaoglu theorem (Theorem
by diagonalisation. The slight difference is that we are not given that 7' is separable
(in the metric sense meaning that it has a countable dense subset), however it follows that
T is separable since it is a compact metric space (assuming countable choice, see [KT01],
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though we shall need dependent choice for the rest of the proof so this is not unreasonable).
Let (t;)72, be a countable dense subset of 7.

Suppose that (g,), is a sequence in G. We need to find a subsequence that converges
in dison. We define a pointwise convergent subsequence as follows: let g, := g, for all
n € N, and for each j € N let (g,,;)i_; be a subsequence of (g, ;_1);_, such that g, ;_1(t;)
converges (possible since T is a compact metric space). We now consider the sequence
(Gnn)s—y. This converges pointwise for every ¢;, but since the ¢;s are dense and the g, ,s
are isometries it follows that it converges pointwise for all ¢ € T'; write

(1) = lim g, (1)
Note that for all n € N we have

d(g(t),9(s)) —d(t,s)| < d(g(t), gnn())
+d(gnn (1), Gnn(s)) — d(t, 5)| + d(gnn(s), 9(s))
= d(g(t), gnn(t)) + d(gn.n(s), 9(s))

since gn,n is an isometry. The right hand side now tends to 0 as n — oo, and it follows
that g is an isometry. Furthermore, g, , — g in dison. To see this, suppose € > 0. Then
by compactness of 7" and density of (¢;); there is some J € N such that {B(t;,¢€) : j < J}
is an open cover of 7. Let N € N be such that d(g,,(t;),g(t;)) <eforall 1 < j < J and
n = N. Hence, for all t € T" there is some j < J with ¢ € B(t;, €) and hence

d(Gnn(t),9(t) < d(Gnn(t); Gnn(ts)) + d(gnn(ts), g(t;)) + d(g(t;), 9(t)) < 3e.

We conclude that g, , — g in dison as required. O

If any group induces a transitive action of isometries on a space then the group of
isometries of that space is evidently transitive. Although this is a rare property it gives
rise to a rather useful uniqueness result for Haar measure.

Theorem 7.5 (Uniqueness of Haar measure). Suppose that T is a compact metric space,
G acts transitively and isometrically on T', and p and v are G-Haar probability measures
onT. Then = v.

Proof. By quotienting we may suppose that the kernel of G is trivial, and hence we view
G as a subgroup of Isom(7"). We write G for the closur of G in Isom(7"). Since Isom(7’)

181t is not completely trivial to think of an example of a transitive faithful action of a group G on a
compact metric space T where G is not a compact subspace of Isom(7T"). One way to arrive at such an
example from the classical groups is to consider actions on the complex sphere CS™ ! := {z € C" : ||z o=
1}.

The group U(n) acts isometrically on CS" ™! via (U, z) — Uxz. (It is not the whole group of isometries,
because CS"™! can be embedded isometrically into R?”. It is then isometric to the sphere S2*~!, whose
group of isometries is (isometrically isomorphic to) Os,. This is a (é")—dimensional sub-manifold of R4"2,
whereas U(n), considered as a sub-manifold of R*"", is only n2-dimensional.)

The group U(n) is also a closed subgroup of the group of all isometries, but if it were not we would
be done because it turns out it acts transitively. In fact it has a subgroup SU(n), the kernel of the group
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is compact, G is also compact and the group G acts on the compact metric space G by
GxG—Gi(g.0) — g(¢) :=pog .
This action is isometric since
dison(9(9), 9(¥)) = sup{d(d(g~"(1)), (g7 (1)) : t € T}
= sup{d(¢(t), (1) : t € T} = dison(, ),
and it follows from Theorem that there is a probability measure x on G such that

ff(g(as»dfe(as) - f £(&)d(9) for all f € C(G) and g € G.

Suppose that p is a G-Haar probability measure on 7.

Claim. p is also a G-Haar probability measure on T i.e.

f F(g(t))du(t) = j F()dult) for all f € O(T) and g € G.

Proof. Suppose that f € C(T'). Then f is uniformly continuous and so for all € > 0 there
is some 0 > 0 such that |f(z) — f(y)| < € whenever d(z,y) < §. Given g € G there is some

U(n) under the determinant map, which acts transitively on CS" ™! for n > 1. It will be enough to have
the following claim (although the extension to all n > 1 is not much harder).

Claim. SU(2) acts transitively on CS'.

Proof. To see this, suppose that = € CS', and write z = (1, 22) € C? where |z;|? + |22|?> = 1. Then the

matrix
T —T2
X9 T1

takes (1,0) to « and is an element of SU(2). Since SU(2) is a group it follows that we can take any = € CS*
to any y € CS™! via (1,0). The claim is proved. O

Putting A := {exp(27iq)I : ¢ € Q}, where I is the identity matrix, we see that
A = {exp(27mi0)I : 6 € R},

and both A and A are subgroups commuting with SU(n). Hence, letting H,, be the subgroup generated
by A and SU(n), we have that

H,, = ASU(n) and H,, = ASU(n).

Since A n SU(n) = {I} we conclude that H, # H, and hence H,, is not compact. However, Hy acts
transitively on CS' by the Claim since it contains SU(2) and this shows H is a construction of the desired
type.
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¢’ € G such that dison(g,9’) < d. Hence

[ statopaut - [ srance] < |[ staonanto - [ st enante)
| [ taepante) - [ st

- \ [ oo - f<g'<t>>>du<t>] <e

Since € > 0 was arbitrary the claim follows. U

By the G-invariance of T we have

| sin=wicy | sin - L | fautasta)
- L | fo@yautvnto)

The function G x T — F; (g,t) — f(g(t)) is continuous since f is continuous and

d(gn(tn),g(t)) < d(gn(tn),g(tn)) +d(g(tn), g(t))
< dison(gn, 9) + d(g(tn), 9(1)),

so the right hand side tends to 0 as n — 0. B
Since G is closed, it is compact and hence so is G x T and so (g,t) — f(g(t)) is a
continuous function on a compact space. It follows from Fubini’s theoremﬂ that

[ [ seorantorinto) = [ [ sto@rantoranto

Let s € T be a fixed element By transitivity of G we see that for every ¢ € T there is some
h € G such that h;(s) = t. It follows that

f Fl9(t))dn(g) = Lfmt(g)(t))dn(g) - Lf(g(s))dﬁ(m

19We have in mind here the Fubini theorem of Bourbaki [Bou52], an easier reference for which may be
the paper [LW12] the purpose of which is a wide generalisation of Fubini’s theorem. In our language the
theorem is as follows.

Theorem ([LW12, 1.1]). Suppose that S and T are compact Hausdor[f spaces and u is a Baire measure
on S and v is a Baire measure on T'. Then there is a Baire measure k on S x T such that

ff@td,u 8)dv(t) ffstd/ist ffstdy()du()forallfeC(SxT)

There is a slight subtlety here that we do not see because the spaces we are considering are compact. In
general the product of two Baire o-algebras is not the Baire o-algebra of the product, and so the product
measure k above is not in general just the product p x v. Of course it does correspond to a tensor product
of the appropriate spaces of functionals and this is what the Theorem is capturing.
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by G-invariance of k. Hence

L fd = j Lf(g(S))d%(g)du(t) - Lf<g<s>>d/~e<g>.

The right hand side is independent of i, and hence y = v U

Example 7.6 (Surface measure on the sphere). The (n — 1)-sphere is defined to be
SPhi={z e ly: |zlp =1},

so it is an (n —1)-dimensional surface in n-dimensional space. It naturally inherits a metric
from the norm on ¢4, and with this metric becomes a compact metric space. (The map
x — ||7||7, is continuous and so S™! is closed. It is also bounded in a finite dimensional
space and so is compact.)

The group Aut(¢y) of automorphisms of ¢4 (that is linear isometries of £5) has a natural
action on S" ! via

Aut(£y) x 8" — S (¢, 2) — é(1).

This is an isometric action by definition of the metric on S"~! and it is transitive. Tran-
sitivity follows since if ey, fi € S"~! then we can extend (by the Gramm-Schmidt process)
e1 to an orthonormal basis ey, ..., e, of £} and f; to an orthonormal basis fi,..., f, of 3.
Then there is a well-defined linear isometry

¢ ly — 53;2)\1'62‘ — Z)\ifiv
i=1 i=1

which has ¢(e1) = f1.
Since the action is transitive it follows from Theorems [7.1] and [7.5] that there is a unique
Aut(¢3)-Haar probability measure on S"~!; we denote this o,,_;.

Example 7.7 (Random automorphisms of £). The group of automorphisms from Example
is a compact metric space in its own right. Indeed, we can view it as a subset of L(¢3, (%),
and so endow it with a metric via

d(p,¥) := ¢ — ¢,

where the norm is the operator norm. Since ¢4 is finite dimensional, L(¢y, (%) is finite
dimensional, and hence the unit ball is compact. On the other hand Aut(¢}) is a closed
subset’] of the unit ball. Indeed, if ¢, — ¢ then [¢,(z)| — |¢(z)| for all z € £5, but
|dn(x)| = ||z and hence ||¢p(x)| = |z|. It follows that (Aut(¢y),d) is a compact metric
space.

Now Aut(¢}) acts on itself isometrically via

Aut(6g) x (Aut(6g),d) — (Aut(65),d); (6,) = 6 0 ¥,

20Note that it is not equal to the unit sphere in L(¢3,0%) equipped with the operator norm, since there
are certainly norm 1 maps ¢ — ¢ that are not invertible.
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since

[v(¢— ¢ = sup{lv(o — ¢)(2)] : || < 1}
= sup{[(¢ — &) ()] : |z < 1} = [¢ — |
for all ¢,¢" € L(¢3,03). More over every action of a group on itself by multiplication

is transitive and so by Theorems and there is a unique Aut(¢y)-Haar probability
measure on Aut(¢y); we denote it j,.

When a group G is a compact metric group then it can be seen as acting isometrically
on itself by multiplication and the G-Haar measure on G is just called the Haar measure
on (G. In fact more generally we can consider any group endowed with a locally compact
Hausdorff topology that it compatible with its group structure. Such a group acts on itself
and supports an invariant measure, called a Haar measure (see e.g. [Alf63]), although there
there is not (in general) a natural normalisation.

Example 7.8. The multiplicative group GL,(R) of invertible n x n real matrices can be
considered as a topological subspace of R™. This topology is locally compact and Hausdorff
and it is easy to check that the group operations are continuous. It follows that with this
topology GL,(R) becomes a locally compact Hausdorff group and it turns out that Haar
measure exists on GL,(R) via

1
— A —
5= ) Y ap

where A" is Lebesgue measure on R™. To see that this is left invariant note that if B = C'A
then the Jacobian J = C'® I where [ is the identity in GL,(R), indeed

AN (A)

. 0B;;
B;j = ];CikAkj, and hence /Aka = Cidj1.
Thus the Jacobian determinant is det J = (det C')", and by the usual rule of substitution
in integration (see, e.g. [Rud87, Theorem 7.26]) that

1 P | .

LLn( D qer (™ = JGL”( B a4
1
(

2

_ LLR( 1) o )

as claimed.

8. CONCENTRATION INEQUALITIES

Concentration of measure and concentration inequalities are incredibly powerful tools in
mathematics. There are a lot of references, but we shall start with some ideas of Kahane
[Kah60]; see [BKOQ, §1.1] or [Verl2l §5.2.3] for a modern presentation.

Given a probability space (£2,P), we shall seek to understand it through its spaces of
real-valued random variables — that is measurable functions {2 — R where R is thought of
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as endowed with the Lebesgue o-algebra. One particularly nice type of random variables
present in some spaces are Gaussians. We say that X is Gaussian with mean p and
variance ¢? and write X ~ N(u,o?) if

P(X >1t) — 1)?/20%)dx

e

Gaussians are enormously important in many different ways, but for us now we shall be
interested in their tails which are very sparse. In particular, if X ~ N(0,1) then we have
the following related facts:

(i) (Tail estimates) we have the estimate®}
P(|X| = t) < exp(—t?/2) for all t = 0;

(ii) (Bounded moment growth) the moments of Gaussian’s can be computed explicitly
(see [GRO0]) wherd™ we have

1/p
| Xz, @) = V2 (W) whenever p > 1.

These can be estimated using the fact that I'(z) = (x — 1)['(x — 1) giving

1X |z, = O(y/p) whenever p > 1;

21To check this just note that for y,¢ = 0 we have (y +1)% =y +t? and so

P(IX|>t) = rf exp(—x?/2)dx
- m j exp(—(y + 1)2/2)dy
< Vor L exp(—(y* + t%)/2)dy

— exp(—r2)- f exp(—y2/2)dy = exp(—12/2)

whenever ¢ = 0.
22Here T’ denotes Euler’s gamma function defined by

0
L(t) = J 22~ exp(—x)dx for all A € R.
0
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(iii) (Moment generating function) the moment generating function of X can also be
explicitly compute
Eexp(AX) = exp(A\?/2) for all A € R.

The first of these properties is very useful — it tells us that the tail of X is rather sparse —
and it turns out that all of these properties are, in a certain sense, equivalent. That being
said many spaces do not support Gaussian random variables and we should like a rough
cousin that nevertheless reflects these features. To this end we shall say that a random
variable X having EX = 0 is sub-Gaussian if there is some ¢ > 0 such that

Eexp(AX) < exp(c?A\?/2) for all A € R,

and Writdﬂ Sub(Q2) for the set of random variables on 2 that are sub-Gaussian. Allied to
this we define the following quantity on sub-Gaussian random variables

Xlsub — inf{c > 0 : Eexp(AX) < exp(c*)\?/2) for all A € R},
(@)

so that
Sub(Q) = {X : Q2 - R s.t. X is measurable and | X |gun) < %0}.

Example 8.1. Suppose that X is a random variable on the probability space €2 such that
X ~ N(0,0). Then X € Sub(€) and | X |sun) = 0. To see this note that if X ~ N(0,0?)
then

Eexp(A\X) = fexp()\x)exp(—xQ/QaQ)dx

= exp(\0?/2) Jexp(—(x — Ao?)?/20%dr = exp(N\?0?/2).

It follows that | X |sun) =
Given the notation it should not be a surprise that | - |sup(o) is a norm.

Lemma 8.2 (Sub-Gaussian norm). The set Sub(2) is a vector space over R and || - |sub(o)
defines a (semi-)norn{™| on the space.

Proof. First, if | X |sup@) = 0 then for each n > 0 we have
Eexp(AX) < exp(n®\?/2) for all A € R.
For each A € R we can take the limit as 7 — 0 and conclude that

Eexp(AX) <1 for all A e R.

2We have
Eexp(AX) = \/%J exp(\z) exp(—z?/2)dx
= L exp(A?/2) Jw exp(—(z — N)?/2)dx = exp(\?/2)
\% 2 —0
for all A e R.

24This is not standard notation.
Z5What we mean here is that | X |sub(y = 0 implies that X = 0 almost everywhere.
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Now, suppose that € > 0. Then
P(X > €) < Eexp(A(X —¢€)) = exp(—eA)Eexp(AX) < exp(—el).

Since € > 0 the right hand side tends to 0 as A — 0. We conclude that P(X > ¢) = 0 and
similarly that P(X <€) = 0. Hence

P(X # 0) (U {w: ]| X (w)] > 1/n}>

by continuity of probability measures. It follows that X = 0 almost everywhere as claimed.
(Conversely if X = 0 almost everywhere then clearly | X||sub@) = 0.)

The rest of the lemma will follow if we can show that whenever X, Y € Sub(2) we have
X +Y e Sub(Q) and | X + Ysuw) < [ X|[sun@) + [Ylsub), and whenever X e Sub()
and a € R we have aX € Sub(2) and |aX |sun@) = ||| X | sube)

First, suppose that X,Y € Sub(€2). Then for any ox > | X|sup) and oy > [|Y|sub(o)
we have

Eexp(AX) < exp(032\?/2) and Eexp(\Y) < exp(o3-\?/2)

for all A € R.
By Holder’s inequality applied with conjugate exponents p and ¢ we then have

Eexp(A(X +Y)) < (Eexp(pAX))"? (Eexp(qAY))"*
< (exp(okr*N/2)" (ep(ot N /2)) !
— exp((po} + 0P)N/2)
Taking p = (ox + oy)/ox and ¢ = (0x + oy)/oy we get that
Eexp(A(X +Y)) < exp((ox + oy)*A\?/2),

and it follows that X + Y € Sub(2) and |X + Y|sup) < ox + oy. Taking infima over
admissible ox, oys gives the triangle inequality.
Finally, homogeneity is pretty straight forward since if &« € R and ox > | X||sup() then

Eexp(AX) < exp(ox\?/2) for all X € R,

and so
Eexp(A(aX)) = Eexp(AaX) < exp(o5a®A?),

and hence [aX||sub) < |afox, and aX € Sub(f2). Taking infima over admissible oxs it
follows that ||aX|suw@) < |a|[| X |sub). Since X and o were arbitrary and we now know
aX € Sub(Q) we also have | X [sub) < || |aX |sub) and so [aX [su@) = ]| X |sun@)-
The Lemma is proved. O

In fact it turns out that Sub(€2) is a Banach space as we shall see shortly. First, however,
we look at another example.
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Example 8.3. Suppose that X € L,(P) and EX = 0. Then |X|sw@) < |X|i,@
To see this note first that since || - |sup() is homogenous it suffices to consider the case
when | X| ., @ = 1 (the case X = 0 almost everywhere being trivial). Now, exp(Ay) <
cosh A + ysinh A for all A e R and —1 < y < 1. Hence

Eexp(AX) < E(cosh(A) + X sinh(A)) = cosh A < exp(A\?/2)
for all A € R, and so || X |sup) < 1. The claim is proved.

What makes the sub-Gaussian norm so powerful is the way that it interacts with inde-
pendence, and to that end we have the following lemma which is sometimes described as
rotation invariance.

Lemma 8.4. Suppose that X, Y € Sub(Q)) are independent. Then

X + Ylisusey < 4/IX By + 1Y ooy

Proof. Suppose that ox > 0 and oy > 0 are such that for all A € R we have
Eexp(AX) < exp(c3A?/2) and Eexp(\Y) < exp(o3-A?/2).
Then by independence we have
Eexp(A(X +Y)) = Eexp(AX)Eexp(A\Y) < exp((0% + 03 )A\?/2)

for all A € R. It follows that | X 4+ Y |sup@) < A/0% + 03 and taking infima over admissible
ox,0ys gives the result. O

This lemma is hugely powerful. Consider a two point space = {—1,1} with measure
assigning equal mass to each point (and o-algebra the power-set of ). The space Q" does
not support a Gaussian because it is finite, but it does support a lot of bounded random
variables. In particular, consider the coordinate functions X; : " — R;x — z;. These are
random variables with

]EXz = 0 and ||Xl”Loo(P) =1 fOI‘ all 1 < 7 < n.
It follows from the triangle inequality that

[ ZXi”Sub(Q) < Z | Xillsub) < n
i=1 i=1
but because all of these random variables are independent Lemma tells us that

n n 1/2
H Z Xi”Sub(Q) < (Z Xi|%ub(ﬂ)> <n'
=1 i=1

Of course, this leaves the question of what we do with this. The norm |- |sun) was defined
to copy the moment generating function of random variables having a normal distribution.
As we saw at the start of the section those random variables also have good tail estimates
and it is this consequence of small sub-Gaussian norm that we are most interested in. The
next lemma collects this idea.
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Lemma 8.5. Suppose that X € Sub(Q). Then the following are equivalent in the sense
that each implies the other with K; = O(K;).

(1) (Bounded Log-norm growth)
| X[ £y py < KiVE for all k € N;
(11) (Bounded L,-norm growth)
| X |z, < Kon/p for allp =1
(111) (Bounded exponential mean)
Eexp(X?/2K3) < 2;
(iv) (Chernoff tail estimate)
P(|X| > tK,) < 2exp(—t?/2) for all t > 0;
(v) (Moment generating function)
| X sune) < Ks.

Proof. Of course (fif) implies with Ky < K, and conversely implies (i) with K; <
V2Ks,.

We shall now show that (f) implies (i) implies (iv]) implies (i), and () implies (v]) implies
v|) implies ({ij) and we shall be done.

Claim. (i) implies for some K3 < O(K7).
Proof. We choose K3 = O(K,) (e.g. K3 =+/2exp(1)K,) such that
. exp(1) Ky ‘
% (V)
Since k! > k* exp(—k) for all k e N we have
Z Z 1 K2k i <exp(1)K1)2k
k! sz% W 2FK3F — \ V2K;

Taking polynomial approximations to exp(X 2/2K2) we can apply the Monotone Conver-
gence Theorem [Rud87, 1.26] to get

510X\ 1
2 /0 702) _ 2k _
Eexp(X2/2K2) = E(EO - (ﬂ 3> ) E k:' S B < 2
it follows that ({ii) holds for some K3 = O(K;) as requlred. O

Claim. (.) implies (i) for some K, < Ks.
Proof. For any t > 0 we have
P(|X| > tK3)exp(t?/2) < exp(t?/2)Eexp((|X|* — t?°K3)/2K3)
= Eexp(X?/2K3) <2,
from which follows for some K, < Kj. O
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Claim. implies (i) for some K; = O(Ky).
Proof. We have

o0
e = | 2k B(X] > s)ds
0

0 0
= KX J ks IP(|X| > sKy)ds < 2K2* f 2ks? 1 exp(—s?/2)dt
0 0

The integral now just corresponds to moments of a normal distribution with mean 0 and
variance 1, and because they are integral moments they are easy to compute by parts. For
r > 1 we have

JOO s exp(—s°/2)ds = [-s"" exp(—s2/2)]zo + foo (r —1)s" 2 exp(—s/2)ds

0 0

= (r—1) JOO s" 2 exp(—s*/2)ds

0

hence by induction we have | X7 5 = O(K7k)*. Thus, we have that (i) holds for some
K1 = O(Ky).

Claim. (3) implies () for some K5 = O(K).

Proof. For any A\ € R we have
1 xp(2) N2 K? g
exp(O(N°K7)) = <e 2 1)

k=0 4
i <exp(2))\2K12 ) g
= 4k

i exp(2k)AFE| X |2 - 2 AR X2

(2k)2k A (2k)

\Y

=

k=0
and hence, by the Monotone Convergence Theorem again [Rud87, 1.26], we have

/\X 2k

Ecosh(AX) EZ < exp(O(N2K?)).

Of course 2coshy +y — 1 = exp(y) for all y € R and so, since EAX = 0, we have
Eexp(AX) < 2Ecosh(AX) — 1 < 2exp(O(A*K7})) — 1 = exp(O(N*K7})).
It follows that (v]) holds for some K5 = O(K;). O
Claim. (@ implies (w for some Ky < K.
Proof. For every ox > K3 we have (for A > 0) that
P(X >tox) < Eexp(AM(X —tox))
= exp(—tAoy)Eexp(AX)
< exp(—thoy + oxA\/2) = exp(—t?/2) exp(—(Aox —1)?/2).
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Optimising by taking A = t/ox (which is positive) gives
P(X > toy) < exp(—t?/2).
A similar argument tells us that
P(X < —tox) < exp(—t%/2),

and hence
P(|X| > tox) < 2exp(—t?/2).

Letting E, := {w : | X| > t(K5 + 1/n)} we see that | J)_, F,, = {w : |X| > tK5} and so by
continuity of probability we have

n

P(|X| > tK;5) = lim P(| ] E,) = lim P(E,) < 2exp(—°/2),
n—0oo mel n—0oo

and we have for some K, < K. O

In light of the above it is natural to define another norm on Sub(2) by

1 X s = SUP{P_I/ZHXHL;,(P) ip =1},

and it turns out this is an equivalent norm. One of the advantages of this definition is that
it can be more easily extended to random variables without mean 0. This is not essentially
more general but can be more convenient.

Lemma 8.6. The space Sub(Q2) equipped with the norm | - |sub) is complete — it is a
Banach space.

Proof. Suppose that (X,,), is a Cauchy sequence in | - |sub). By the triangle inequality
it follows that ([|X,|sub())n is Cauchy in the reals, and hence converges and is bounded
above by some constant S i.e. S is such that | X, |sub) < S for all n e N.

Lemma 8.5 part (i) tells us that |- ||z, is dominated by |- |sub(e)- It follows that (X;,),
converges to some X in Ly, and hence it converges almost everywhere and | X (w)| < oo
almost everywhere.

We now fix A € R. Since z — exp(Az) is continuous we conclude that exp(AX,,) converges
to exp(AX) almost everywhere, and exp(AX) is finite almost everywhere.

The collection (exp(AX,,)), is uniformly integrable. To see this write Y,, := exp(AX,,),
which is a non-negative random variable, and note that

EY, 1y, =y < KT'E[Y,)? = K 'Eexp(20X,,)
< Kt eXp(HXnH%ub(Q)AQ/Z) < K texp(S2)\?/2).

It follows that for K sufficiently large as a function of S and A, the left hand side is less
than any given e. Thus (Y},), = (exp(AX,,)), is uniformly integrable as claimed.
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It follows by the Uniform Integrability Theorem (see e.g. [Wil91, Theorem 13.7] and,
if necessary, [Wil91l, Lemma 13.5] to pass from almost sure convergence to convergence in
probability) that exp(AX,,) — exp(AX) in L;(P) and hence

Eexp(AX) = lim Eexp(AX,) < lim exp()\2||XnH§ub(Q)/2)
n—0oo n—0oo

2
= exp <>\2 (ggrolo ||XnHSub(Q)> /2)

by continuity of x — exp(A?2?/2). Since lim,_» | X, [sub(e) is independent of A, and A was
arbitrary we conclude that X € Sub(€2) and | X||sub) < limp—o0 | X0 [sub(e)- O

One application of the above is the following so-called Chernoff-type result.

Proposition 8.7 (Chernoff-Hoeffding bound). Suppose that Xi,..., X, are independent
random variables with mean p and | X;||r ) < 1. Then

P(| ZX@- — un| = ep) < 2exp(—€*/8)
i=1

Proof. By nesting of norms we have |u| < 1 and so || X; — pfz, @ < 2, and hence |X; —
1] sub() < 2 by Example[8.3] Since (X;);, is an independent sequence of random variables,
we conclude that (X; — p); is an independent sequence of random variables and hence by
Lemma [8.4 we have

Z | X — HHSub < 2Vn.

— 2 (X; —
i=1 Sub(f)

By Lemma (in fact the proof of the claim implies ) we have for all ¢ > 0 that

Sub(2)

P(| ), Xi — pin| = 12v/n) < exp(—£7/2),

Taking t = e4/n/2 the result follows. O

Moment generating functions were a key tool in the above arguments, and we can only
really hope to extend them to functions for which these exist, at least somewhere. Much
as with power series, when mgfs exist for some values, it follows that they exist for many
values.

Lemma 8.8. Suppose that X is a random variable with mean 0 and variance o, and there
are some A\ < 0 < Ay such that Eexp(\;X) < 00. Then Eexp(AX) is a real analytzc power
series with radius of convergence at least min{|\|, |\2|} and

Eexp(AX) = exp(aQ)\Q/Q + 0)\1,/\2;/\—>0()\3)),

in that region.
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Proof. Note that for A in the given range we have
exp(AX) < exp(A1X) + exp(AeX)

almost everywhere, and so by dominated convergence (see e.g. [Wil91, Theorem 5.9]) we
conclude that Eexp(AX) exists.
Now for the estimate at the origin. For || < Ay we have

NNk Xk
2, !

k=0

N )\k| ’k

<)

k=0

< exp(A1X) + exp(Aa X)),

and hence by dominated convergence

S ANEXE
E[X[* = Ox, 5, (12| k1) and Eexp(AX) = »} =7

k=0

Given the bound on the growth of the moments it follows that the convergence on the right
is locally uniform whenever |A| < Ao, and hence the right hand function is real analytic in
|A| < Ao. Evaluating the first few terms of the power series we get

2
Eexp(AX) = 1+ AEX + %EXQ + Ox 0 (A?)
= exp(0°A?/2 + Oy, puins0(X%),

since 1 + z = exp(z + O,_0(2?)). The second conclusion follows. O

In light of this lemma we make the following definition. We say that a random variable
X with EX = 0 is (02, b)-sub-exponential if

Eexp(AX) < exp(A\?0?/2) whenever |\| < 1/b

with the obvious convention for b = 0 (which corresponds to the case of sub-Gaussian
random variables). Lemma tells us that if X has an mgf at a positive and negative
value then it is (02, b)-sub-exponential for some parameters o and b, although we should
be clear that this o need not be the variance of X.

As a side remark it may be worth explaining that the name comes from the fact that if
the tail of a distribution decays exponentially, meaning there are constants ¢, C' > 0 such
that

P(|X| > t) < exp(—ct) for all t > C,
then it can be shown that X has a moment generating function for |A\| < ¢. Indeed,
it is possible to prove an analogue of Lemma [8.5| showing that a distribution being sub-
exponential is essentially equivalent to it having an exponentially decaying tail (for ¢ large),
and also equivalent to having the moment condition

|1 X1 z,@ = O(p) for all p > 1.

In this regime moments determine the distribution of a random variable (see The-
orem 30.1]), whereas more generally they do not (see [Bil95, Example 30.2]).

There are two key analogues of our work on sub-Gaussian random variables which will
be useful. The first is a version of Lemma [8.4]
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Lemma 8.9. Suppose that X1, Xy are independent sub-exponential random variables with
parameters (o%,by) and (03,bs) respectively. Then X, + X, is sub-exponential with param-
eters (o2 + o2, max{by, by }).

Proof. Simply note that
Eexp(A(X] + X)) = Eexp(AX])Eexp(AX3) < exp(A20?/2) exp(\205/2)
whenever |A| < 1/b; and |A| < 1/by. The result follows. O

We then have a crucial concentration result which takes into account the heavier tail
admissible in sub-exponential distributions.
Proposition 8.10. Suppose that X is a (02, b)-sub-exponential random variable. Then
exp(—t?/2) whenever 0 <t < o/b
exp(—to/2b)  whenevert > o /b

P(X > to) < {

Proof. The proof is just the proof of the claim (v]) implies in Lemma[8.5] Specifically,
for 0 < A < 1/b we have

P(X > to) < Eexp(A(X —to)) = exp(—Ato)Eexp(AX)
exp(—Ato) exp(A\2o?/2)
= exp(—t*/2 + (Ao — 1)?/2).

If t < o/b then we can take A = t/o and we get the first case. Otherwise, take A = 1/b and
we have

N

P(X > to) < exp(o/b(c/2b —t)) < exp(—to/2b)
since t = o /b and so (0/2b —t) < —t/2. The result is proved. O
Corollary 8.11. Suppose that X is a (02,b)-sub-exponential random variable. Then
P(|X| > to) < 2max{exp(—t?/2), exp(—to/2b)}.
Proof. This is immediate from the triangle inequality and Proposition applied to X
and —X (the latter is easily seen to be (02, b)-sub-exponential). O

It will now be useful for us to record some rather important examples of sub-exponential
random variables that are not Gaussian.

Example 8.12 (y?-distributions). Suppose X is a random variable with X ~ N(0,1).
Then Y := X? — 1 has mean 0 and is (4, 4)-sub-exponential. To see this simply note that

Eexp(AY) = exp(— )\)Eexp(/\Xg)

= exp(— exp(Az?) exp(—2?/2)dx

ff
~ ep(-Ae?) J exp(—2%(1 — 2))/2)dx
exp())

NG 1—2>\f exp(—u’/2)du = T

= exp(—
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provided X < 1/2. But exp(—\)/v/1 — 2\ < exp(2)?) whenever |\| < 1/4 and we have the

claim.

This example is important because it will let us establish a concentration result for the
standard Gaussian. We define the standard centred Gaussian on /4 to be the measure
™ determined by

| rerar) W | rta exp<—%\w\§g>dxforaufeLEOAIREwS),

and dx is the usual measure on ¢4 i.e. Lebesgue measure on R" restricted to Baire sets.
It may be worth noting here that we have only defined Baire sets for compact metric
spaces. They can also be defined for locally compact Hausdorff spaces: the Baire o-algebra
is minimal o-algebra such that all the continuous functions having compact support are
measurable. It is a sub-algebra of the Lebesgue o-algebra; we choose to restrict to it to make
it compatible with our work so far. As with compact spaces, by definition the continuous
functions of compact support are then dense in LB*™ in the topology of bounded pointwise
convergence. Of course technically The notation of 4™ should be suggestive of the idea that
it arises as a product.

The vast majority of the measure 4" is concentrated on the sphere \/nS™!, i.e. the
sphere in n-dimensions of radius 4/n.

Proposition 8.13 (Concentration of Gaussian measure). For € € (0,1] we have
V({z e @ : ol — nl > en}) < 2exp(—e*n/8)

Proof. The space ¢} as a probability space when endowed with the measure ", and the co-
ordinate projection maps X, : /4 — R; x — z; are mutually independent random variables
with X; ~ N(0,1). It follows from Example[8.12]that X2 — 1 is (4, 4)-sub-exponential, and
so by Lemma [8.9| that = — ||$H§; —n is (4n, 4)-sub-exponential. Corollary then gives
us that

P21 — | > £2v/) < 2max{exp(—1/2), exp(—ty/n/4)}
for any ¢ > 0 and the result follows on setting ¢t = €4/n/2. O
In fact the constant in the exponent can be improved (see [Bar05, Corollary 2.3]) but
we shall not pursue this here.

We shall use the above to help us push results for Gaussians onto results for spheres.
The key example of this will be with projections. As before we write

Py 05 — 03 (x1,...,2,) — (21, ..., 2x,0,...,0).

A question which we shall be interested in is what happens to the norm of elements x € S™~!
under projection by Py. Since the measure of 4" is concentrated on /nS" ! we expect x
picked with 4" to have |z||*> ~ n. On the other hand

| ra @y = [ st
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for all suitable f, where the inverted commas reflect the fact P, maps ¢ — ¢ rather than
(3 — (5. Thus we might expect Py to be concentrated on v/kS*~! so that |Pz|? ~ k.
To summarise, then, we expect that if z € S"~! then ||Pyz| ~ vkn.

To capture the inverted comma part of this argument we have the following corollary.

Corollary 8.14. For e € (0,1] we have
V'({x e by - || Przliy — k| > ek}) < 2exp(—€'k/8).
Proof. We have
V' ({z e by ||Pexlfy — k| > ek}) =" ({w e 65+ ||lo]fy — k| > €k}) < 2exp(—€*k/8)
by Proposition [8.13 Il

To capture the push forward from Gaussian concentration to the sphere involves our
work on Haar measure.

Proposition 8.15. For all € € (0, 1] we have the estimate
S, In
On—1 ({x e St ‘EHkaH?g - 1) > (—:}) < 2(exp(—€°k/T2) + exp(—€°n/72)).

Proof. We shall define a measure 7 on S™ ! as a pushforward of the standard centred
Gaussian. We then establish this concentration result for this measure 7, before showing
that it is invariant under the action of Aut(¢}). By uniqueness of Haar measure this will
force T to be o,,_;1.

Claim. There is a Baire probability measure T on S such that

(8.1) f fdr = f f(x/|2])dy" (@) for all f & LB4" (5™,
£5\{0}

Proof. First we check that the right hand side of the above is well-defined. For each m € N
and f e LBARE(S™1) define

kn(F): 63 — Riz > (1— gu(2))f (

i
[zl +1/m

) (),

where (g,)m is a sequence of continuous non-negative functions mapping into [0, 1] and
tending pointwise to 1gm (o}, and (¢m)m is a sequence of continuous non-negative functions
of compact support mapping into [0, 1] and tending pointwise to L. If g € C(S™") has
lg| < 1 then k,,(g) € C.(¢%) and ||k, (g)| < 1, and hence if f e LBM(S"1) has | f|| < 1
then we have k,,(f) € LB (1) and |k, (f)] < 1, since LEA®E(S™71) is the closure of
C(S™ 1) in the topology of bounded pointwise convergence, and similarly for LBARE((7).

On the other hand the integrand in is the point-wise limit of functions k,,(f), and
hence is itself an element of LBARE((2). 4™ is a finite Baire measure and hence the integral
is well defined. It follows that

O(f) = L }f(x/HfUHegL)dW"(fv) for all f e LG (S"7)

m
2
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is a well-defined linear functional on LEBMRE(Sm=1)" By the Riesz-Kakutani Theorem
applied to @ restricted to C'(S™" 1) there is a finite Baire measure 7 on S™~! such that

O(f) = deT for all fe C(S"1).

Since the closure of C'(S™!) in the topology of bounded pointwise convergence is LEARE(Sn=1),
the bounded domination theorem gives the equality of the claim. Finally, it is immediate
that 7 is a non-negative measure because the functional is non-negative. Similarly if f is
identically 1 then ®(f) = 1 whence it is a probability measure. O

We write F' for the indicator function of the set we are interested in i.e.

poor e (1 e 1]
0 otherwise.

which is Baire-measurable since x +— HPk:rH%g is continuous. By the claim defining 7 we
T

have
JFdT ({xeﬂ”\{O} ” ” > e})

= 7 ({o e m\i0} : | IRl — laly| > el })
W n
= 7 ({zet: |21l - loly| > ezl })
since v*({0}) = 0. Now, by the triangle inequality
n
ZIPely = n| + [l —n
so if the left hand side is at least eH:cHﬁg then either

2
-1

z’ﬂ

Y

n
|ZIPel? - ol <

n €
2Pl = n| > Sl

€
Il = n| > Slal; or |7

Since the first possibility implies

ol = n| > 5=—n>In

& 2+e¢ 3

we conclude that either this holds, or else
n € e(1—%) €
ZIPalEy —n| > Sl > =20 > <o,

It follows that

JFdT <A " ({x ely: ||z|* —n| > %n}) + 4" <{$ ey : ‘Hszszg - k:‘ > gk}) :

The required estimate now follows from Proposition and Corollary
To complete the proposition we now establish invariance of 7
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Claim. The measure T is invariant under the action of Aut({y) i.e.
ff(aﬁ(ﬂf))dT(ﬂ?) = ff(ﬂ?)dT(ﬂ?) for all f € L™(S"™1), ¢ € Aut(£3).

Proof. First it is intuitively obvious (and not too difficult to prove) that 4™ is invariant
under the action of Aut(¢}).

Sub-claim. For all ¢ € Aut(¢y) we have
Jf(aﬁ(x))dvn(fﬂ) = ff(l’)dvn(fc) for all f e L3 (£y).

Proof. Consider the change of variables y = ¢(x). We have

= Z (e;, P(ex)yxr, and hence ——— = €5, 9(ex)),
k=1

thus the Jacobian determinant is det({e;, ¢(ex)))i; = det(gb). Of course | det ¢|* = det(¢*p) =
det s = 1. Moreover, since ¢ € Aut(¢3) we have ||¢~'y|lim = [y, and by the usual rule of
substitution in integration [Rud87, Theorem 7.26] (which applies since ¢ is one-to-one and
differentiable) we have

[ st - [ rtees (<3l ) o

= [ e (<3l ) ety

= ff(y) exp (_%W?g) dy = ff(y)dvn(y),

and the sub-claim is proved. O

Now, if ¢ € Aut(¢3) then the claim defining 7 and the previous sub-claim tells us that

f £ - [ re@hire

23\(0)
= [ 1o (6l F(6() I6(@) iy ()
= [ 1oy @)@/l (@)

— [ s2)ar().

J

[

We conclude that 7 is invariant under the action of Aut(¢3) on S™ ! completing the proof
of the claim. U

By Theorem and the definition of 0,_; in Example we have that 7 = 0,,_; and
the result is proved. [l
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With these results in hand we now turn to the Johnson-Lindenstrauss theorem [JL84].

Theorem 8.16 (Johnson-Lindenstrauss Theorem). Suppose that xy,...,x, are elements
of a Hilbert space H. Then for all € € (0, 1] there is an orthogonal projection m : H — H
such dimIm7 = O(e"2logn) and

(= s = < o) = ()] < (0 + s =] for a5

Proof. There are many approaches to this result but they all revolve around the same set
of ideas; we shall follow [Bar05]. The plan is to take a random projection of H onto an
O(e?logn)-dimensional subspace and show that with high probability the norms of any
set of n? elements on the unit sphere are just scaled by a factor of almost exactly \/% .
These elements will be the pairs x; — x; and this will give us the result.

There are two key observations: first, we can pick a random element of the sphere by
picking a random automorphism of ¢ and applying it to a fixed element of the sphere (we
shall prove this rigorously in the claim below); secondly, we can pick a random projection,
by picking a random automorphism of ¢5 and composing it with a fixed projection.

By restricting to the space generated by x4, . .., x,, we may certainly assume that dim H <
n. On the other hand any m-dimensional Hilbert space is isometric to ¢5* (just take an
orthonormal basis of the space and map it to the canonical basis of £5*), and ¢ embeds
isometrically into £3.

Recall that i, is the Aut(¢5)-Haar probability measure on Aut(¢3) defined in Example
i)

Claim. For all x € S™' we have
Jf ))dpn(¢) = Jf(y)danl(y) for all f e LEA™=(5m1),

Proof. We consider the functional

o - LBAIRE(Sn 1) R f — ff dﬂn(¢)

First, to see that it is well-defined we note that ¢ — ¢(z) is continuous and so if f :
S"~! — R is continuous the ¢ — f(¢(x)) is continuous. Hence @ is defined on C(S™™1)
and by the definition of Baire sets and the bounded domination theorem we see that ® is
a well-defined linear functional on LB (S"~1). Tt is continuous and of norm 1 and so by
the Riesz-Kakutani theorem (Theorem [3.7) we see that there is a finite Baire measure 7
on S"! such that

O(f) = deT for all fe C(S™™1).

It is a probability measure since f > 0 implies ®(f) = 0 and ®(1) = 1. More than this by
the definition of Baire sets and the bounded domination theorem we see that

Jf )dr(y Jf ))dpn(¢) for all LEARE(S™1),
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Finally for all 1 € Aut(¢3) and f € LEBMRE(S"~1) we have

| rwtnar) = | rwota)deo
= ff ) dpin (¢ ff ))dpin( )ZJf(y)dT(y)

It follows that 7 is a Aut({})-Haar probability measure on S"'. By Theorem [7.5| ﬂ and
Example it then follows that T = 0,_1 as claimed. O

For each pair (i, j) € [n]? let

Biyi= {0 Aut(eg) (1= s~ < \[F1 P — )] < (14 Ol =}

so that writing v, ; := (z; — x;)/||z; — z;|| we have

) = o ({0 Aut(e5) 5 (1= sl <\ FIP)] < (14 sl })

1= ({0 € Aut(6) : | 1P )P — loes | > elvnsl?})
= 1 ({0 e Au@) : [TIP()I* — 10(wi)I?] > clotue)I*})

_ n
= 1= ({we s | IR = | > clyl?})
by the claim. By Proposition .15/ we get
pin(Eij) 21— 2(exp(—€*k/T2) + exp(—€’n/72)),

WV

and hence

L ( ﬂ E”> > 1 —n?(exp(—€*k/72) + exp(—€*n/T72))
I1<i<j<n
by the union bound. It follows that there is some k& = O(¢~%logn) such that with positive
probability all of the events E; ; occur, and hence, taking 7 := Pj¢, a suitable projection
exists. 0

The bound here was shown to be tight up to a logarithmic factor by Alon [Alo03].

9. KHINTCHINE’S INEQUALITY

As immediate corollary of Example [8.3] Lemma and Lemma from §8 we have
Khitnchine’s inequality.

Proposition 9.1 (Khintchine’s inequality). Suppose that p € [2,0) and X,..., X, are
random variables with P(X; = a;) = P(X; = —a;) = 1/2. Then

1/2
I3 Xl = O (VP (Z |Xi||%z<P>>

i
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This can be bootstrapped to the following.

Theorem 9.2 (Marcinkiewicz-Zygmund inequality). Suppose that p € [2,00) and we are
given independent random variables Xy, ..., X, € L,(P) with EY , X; = 0. Then

1/2
125 Xilzyiey = (f I 25151, m)

Proof. For complex random variables the result follows from the real case by taking real
and imaginary parts and applying the triangle inequality.

We now proceed in two parts. First we prove the inequality with the X;s assumed
symmetric (that is when X; ~ —X;). We partition €2 according to the multi-index k €
({—o0} U Z)" so that

Q= {weQ: 2" <|X;| <25 for all 1 <4 < n},
with the convention that X; = 0 if k; = —oo. The sets 0, are measurable since the X;s
are measurable and if P(€) # 0 we write Py for the probability measure induced on
by P ie. Pr(A) = P(A)/P(Q) for every measurable A < €, and write X, = Xi|q,.

Since X; € L,(IP) we get X, € L,(Px) and hence, by nesting of norms, that EX;; exists.
Symmetry and the definition of €2, then tell us that

1
EX; = X,;dP
* P(%) Jo

1
- X;dP + f XidIP’)
P(ka) (JZki+1<Xi<2ki 2ki < X; <2kit+1

1
= — (- —X,dIPHLJ XidIED> =0,
P(Qk)< Lkiin<2ki+1 2ki < X;<2kit!
since Xz ~ —XZ

By Example we have || X k[sub(,) < 2¥*!, and so by Lemma we have

| Z Xiklsuby) < Z 22(ki+1)
< 2inf{ Z | X p(w)]? :we Qu}
p/2

p/2
HZXM:HL () = inf 0<pZXi,k(w)y2) Lwe <JO(pZ|Xi7k|2> dPy..

It follows from Lemma R.5] that
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Since L,(P) is a normed space we have ). X; € L,(P) and by the Dominated Convergence
theorem we have

H Z Xi”ip([@) = Z H Z XZ‘Qk H:Zp(lP)

ke({—0}uzZ)™ i

= > I Xoall o P(S%)

ke({—0}uZ)™:P(Qr)#0

/2
_ Z O( p/2]P> Qk f <Z ‘sz’ ) dPy,

ke({—00}uZ)™:P(2)#0
_ /2 p/2
= OPPIE X

The claimed bound follows for the case of symmetric random variables.

Now we suppose that the variables Xi,..., X, are given as in the hypotheses of the
proposition. We let Y7,...,Y, be such that X; ~ Y; and Xy,...,X,,Y;,....Y, are in-
dependent i.e. we consider the probability space (P?,Q?). We now apply the symmetric
result to the variables X; — Y; to get that

1/2
I (X0 = Y)liyeary = (erX Vi Li/m]p>

2111/2
(f MNP, >)

But then it follows from nesting of norms and the fact that EY . Y; = 0 that

;Xz-\w = ;Xi—E;YiLm
_ (Ew 2 Xi(w) — wazi Yi(w') p) "
= (E E. (Z X(w) — Z n(d)) ) "
< (EE Z Xi(w) — Z Yi(w) ) "

= D (X = YD), exm)s
and the result is proved. [l

For random variables satisfying the hypotheses of Khintchine’s inequality the L,-
norm on the right is an L;-norm, and there is something close to this true for variables
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in the generality considered above called Rosenthal’s inequality. Indeed, suppose that
Xi,..., X, € L,(P) are independent and EY . X; = 0. Then

1/p
00 X Xiliyw =0 | b max (ZXIL,,@»> N X Xl oo

For p large the second term in the max takes over and we recover a strengthening of
Khintchine’s inequality. Of course, precisely when this takes over depends on the specific
variables X; and how large their L, mass is compared to their L, mass — that is how often
they take very large Values

The p dependence in is best possible (up to the precise constant; see [JSZ85, [Ute85,
FHJT97] for details), and 1t is weaker than that for the Marcinkiewicz-Zygmund inequality.
This fits with the fact that the critical distributions for Rosenthal’s inequality are Poisson
whereas for the Marcinkiewicz-Zygmund inequality they are Gaussians.

There are so called vector valued or Banach space valued variants of the above inequal-
ities. These start with Kahane’s proof [Kah64] of a vector-valued version of Khintchine’s
inequality. A vector-valued version of Rosenthal’s inequality was proved by Talagrand in
[Tal89], with a subsequent neater proof in [KS91]. We shall follow some of the ideas in this
latter paper to give a proof of Kahane’s result.

Extending Example[d.§] given a Banach space Z we write L,(P; Z) for the set of Z-valued
measurable functions such that

”fHLp(P;z) = (EmeQHf(x)Hg)l/p < o

the function | - ||z, ;z) is a (semi-)norm. The integral here is called the Bochner integral
and enjoys many of the properties one might expect. It is worth noting that there is some
choice here regarding what we regard as the o-algebra on Z. We could simply take the
Borel g-algebra on Z induced by the norm-topology on Z. More natural for us is to take
the Baire o-algebra, which is, of course, the minimal o-algebra such that every continuous
f :Z — R is measurable.

Suppose that £ is a category in which each object is an L,(IP)-space for some probability
space (€2, P), though not necessarily all L,-spaces are in the category, and the morphisms
are short maps. Suppose further that ® : £ x L — L is a tensor product (with unit
L,(6), where § is a -measure — this an L,-space with a one-point probability space) on £
making it monoidal. (See the classic [Kel64] for the various coherence conditions required,

r [ML9§| for a book covering the topic.) This can just be thought of as the usual tensor
product here, so

Lp(P1) @ Ly(Py) := Ly(Py x Py),

which satisfies all the necessary coherence axioms. This could be slightly subtler for reasons
we have mentioned before: suppose that £ contained spaces all of which are of the form
L,(11) where p is some Baire, not necessarily probability measure. There are examples of
Baire measures p and v where p x v is not Baire, and so the tensor product could not be
defined as above. That being said there is a tensor product on this category and hopefully
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that goes some way to explain why it is the notion of tensor product which we are focusing
on.
We now have a map

+: L x Bany — Bany; (L,(P), Z) — L,(P; Z)

which is an action of the monoidal category £ on Ban because we have a natural isomor-
phism with components the isometric isomorphisms

AL, #).LyF2).2 * (Lp(P1) ® Ly(P2)) « Z — Ly(P1) * (Lp(P2) + Z)
((z,y) = flz,y) — (2= (y— fl2,9))),
and another natural isomorphism with components the isometric isomorphisms
Az Lp(0) « Z — Z; f = f(w),
where w is ‘the’ point in the probability space on which ¢ is defined. The coherence

requirements for this can be found in [JK02, 1.1-1.3].
We have the following extension of Proposition [9.1

Theorem 9.3 (Khintchine-Kahane inequality). Suppose that p € [2,00) and X1, ..., X, are
random variables taking values in a Banach space Z with P(X; = a;) = P(X; = —a;) = 1/2.

Then
||2Xi||Lp(IP’;Z) =0 (\/23|2Xi||L2(P;Z)> :

The key point here is that the dependence in the big-O does not depend on the dimension
of the space generated by the a;s; if we allow that dependence then the above follows from
Khintchine’s inequality [9.1]

It may be slightly surprising that the sum on the right is not (3, ||Xz|\2Z)1/ ? however
it cannot be. Consider the example when Z := ¢,,({0,1}") and let a; : {—1,1}" — R be
the vector with a;(z) = 1 if z; = 1 and a;(x) = —1 if z; = —1. Then |ja;|z = 1 and if
x € {—1,1}" then

n n
n= | foiain > inai(a:) =n.
i=1 -1

It follows that if the X;s are are in Theorem [9.3] then

1/p
1> Xilz, @z = (E”ZXi”Z) -

while (>, HXZHQZ)l/ > = /n. Tt follows that if we wanted this quantity on the right we would
not be able to have a constant independent of n.

For the proof we shall work from the notes [Verl0, Chapter 2] and |Gar03]. The key
tool there (and in [KS91]) is an inequality due to Bonami [Bon70, Chaptaire III, Lemme
3, p378] (our Lemma [9.4). This was also proved by Beckner in [Bec75, Lemma 1], who
seems to have been unaware of the work of Bonami. Both Bonami and Beckner then note
that the inequality tensorises well in [Bon7(), Chaptaire III, Lemme 1, p375] and [Bec75,
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Lemma 2] respectively; Beckner describes his Lemma 2 as a generalisation of an important
lemma of Nelson and Segal.

We shall start by proving, in the language of Beckner [Bec75|, the two-point inequality
below. While the proof is rather careful, it is straightforward to prove something of this

type.

Lemma 9.4 (The ‘two-point’ inequality). Suppose that 2 < p < 0. Then for all0 <y <z
we have

(x + 0,y)* + (z — O,y)P lp _ (x+y)?+ (z—y)? 1/2
2 = 2
where 0, := (p — 1)71/2.

Proof. Since x > 0 we can divide out by x, and the inequality will follow if we can prove
it for z = 1.

Before we go about the calculation proper it is worth noting that there is certainly some
choice of § = Q, ,,,(p~'/?) such that

<(1 + Oy)” ; (1- Gy)p)l/p 3 ((1 +y)? ; (1— y)2)1/2

whenever 0 < y < 1. Indeed, put 6 = ¢/,/p for some small (but absolute) ¢ > 0 then

<(1 + 0y + (1 - 9y)p) e <exp(93ﬁ?) + exp(—éyp))l/p

~

2 2
= (cosh(0yp))"? < exp(0°y?p/2)) = 1 + Opacn(c*y?).

A sufficiently small choice of ¢ will give the claim.
The proof of the actual inequality is not much harder than the above — it is just more
careful. First note that the inequality is equivalent to

(14 2P+ (1—2)?
(5

1p
) < /14 (p—1)z2 whenever 0 < z < 6,

which will be easier to handle using calculus because we shall require fewer applications of
the Chain Rule. We put

o)1= S 1og (“ Fre s Z)p) ~Slog (14 (p— 1)),

and shall show that ¢(z) < 0 for 0 < z < 6,. First
(A+zp ==z  (p—1)z
(1+2)P+(1—2)p 14+ (p—1)22

L+21—(p—1)z) - (1—2)""'(1+ (p—1)2)
(142 + (1 =271+ (p—1)z7)

¢'(z) =
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Write ¢(2) for the numerator of the last expression. Then

V(z) = (=11 +2)P?1-(p—1)2)—(p—1)(1 +2)""
+p—1DA =21+ (p-1)2)— (p— 1)1 —2)P"
= —plp—Dz((1+ 2P = (1—2)?).

It follows that ¢'(z) < 0 for 0 < z < 6,. On the other hand ¢(0) = 0, and so by the
Fundamental Theorem of Calculus we have ¢(z) < 0 for 0 < z < 6,. It follows that
¢'(z) <0for 0 < z < 6,, and since ¢(0) = 0 we conclude that ¢(z) < 0 for 0 < z < 6, and
the result is proved on exponentiating. O

The key fact we use is that Lemma can be tensored with any Banach space Z.

Lemma 9.5. Suppose 2 < p < o0 and X is a random variable with EX = 0 and taking
values in {—1,1}. Then for all z,w € Z we have

|z + QPXwHLp(IP’;Z) < |z + Xwl,p.z
where 6, := (p — 1)71/2.

Proof. First, unpacking the notation we have

|2 + Bpw]” + |2 = pw]P\ *
|z + QprHLp(HD;Z) = ( 5

and

/2
2+ wl? + 12— 02’
o+ Xl = el

By replacing w by —w if necessary we may assume |z + w| = |z — w||. Moreover, since
both sides are continuous in w, it suffices to prove the inequality for w # z. Thus we may
choose z > y > 0 such that

r+y=|z+w|and z —y = |z —w].

Then
z+0pw=H1+9p(z+w)+1_9p(z~w)'< R I S
and
zpr=H1+9p(z~w)+1_9p(z+w)'< 129 (xy)+1_29p(x+y)=x0py.
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These inequalities and Lemma [0.4] then give

R L 22 L A C ) L et %) A
2 N 2

_ (@t + @y \”
- 2
_ (el o\
— : .

The result is proved. O

Suppose that X;,...,X,, is a finite collection of independent random variables with

expectation 0 and taking values in {1, —1}. We write
Xg:= [ [ X for all S < [n]
€S
with the usual convention for the empty product — it is the constant function equal to 1.
Note that the variables (Xg)sc[n] are then orthonormal:

1 if S=T;

0 otherwise.

(Xs, Xr)r,m) = {

These random variables generate a (Hilbert) subspace of Lo(P):

Span((Xs)scm)) = Z 256X : 25 € F for all S < [n]
Sc[n]

We shall be interested in the subspace of Ly(P;Z) generated by letting the zgs range
over element of some Banach space. Note that in this neither Ls(P; Z) nor the span are
necessarily Hilbert spaces.

Proposition 9.6. Suppose that X1, ..., X, are independent random variables with EX; =
0 and taking values in {—1,1}, (25)sc[n] 95 a vector of elements of a Banach space Z, and
2<p<ow. Then

Z QI‘DS|X52’S < Z XSZS
Scn]

S<ln] Lp(Pyx- xPp;Z) Lo(Pyx - xPp;Z)

where 0, := (p— 1)71/2.
Proof. We proceed by induction on n; for n = 0 the result is vacuous. Suppose we have
proved the result for some n and any Banach space W. Suppose that Xi,..., X, are

independent random variables with EX; = 0 and taking values in {—1,1} and (2g)scn+1]
is a vector of elements of Z, and put

wg 1= 25 + OpXni1250 41y for all S < [n].
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By the inductive hypothesis we have

2 ZSQLS|XS = Z wSHLS‘XS

Scn+1] Sc[n]

Lp(Pyx--xPp;Z Lp(Pyx-xPp;Z
P P

N

Z ’lUSXS
Sc[n]

LQ(]P’l ><~~~><]P)n;Z)

= Z 25Xs +0Xp 1 Z 250{n+1} X8
Scn] Scn]

LQ(PIX"‘XPH;Z)

By Lemmal9.5|applied with the random variable X,,,1, the Banach space Ly(Py x- - - xPy,; Z)
and vectors

zZ = Z z¢Xg and w := Z 250{n+1}X5,

Scln] Sc[n]
we get
» 1/p
Egn Z 25 Xg + 9Xn+1 Z ZSU{”+1}XS
SC[TZ] Sc[n] LQ(P1><"'><Pn§Z)
) 1/2
< Eﬂn Z 25 Xs + Xni1 Z ZSu{n+1}XS
Sc[n] Sc[n] La(Py x--xPp;Z)
) 1/2

JODL zsXs = D zsXs

Scn+1] Lo (P1 x-xPniZ) Scn+1]

LQ(Pl Xoeee X]P’n XPn+1;Z)
Combining this with what we showed earlier the result is proved since

» 1/p

Egn Z zSHZ‘)S‘XS = Z zSQILS'XS

Sc[n+1] Scn+1]

Ly(Pyx--xPp;Z Lp(Pyx---xPpy1;Z
p ’ P +

U

Inequalities of the type in Proposition are sometimes called Hypercontractive inequal-
ities following Nelson [Nel73] who proved an analogue for the Banach space Z = R in one
dimension with X ~ N(0,1) with an optimal constant. The names Bonami’s inequality
and Beckner’s inequality are also used to describe results like Proposition in various
degrees of generality.

The Khintchine-Kahane inequality is now a trivial corollary.
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Theorem (Khintchine-Kahane inequality, Theorem . Suppose that p € [2,00) and
Yi,..., Y, are random variables taking values in a Banach space Z with P(Y; = a;) =
P(Y; = —a;) = 1/2. Then

H 2 Y;HLP(IP’;Z) < \/Ile Z Y;HLz(lP’;Z)'

Proof. Apply Proposition with 2 = a; and zg = 0 for all S < [n] with S| # 1. This

tells us that
Z eriai Z Xiai
i Ly(P;2) i Lo(P;Z)

The result follows on dividing through by 6. O

<

The constants here are good, although they are not the best. The best constants for
Khintchine’s inequality when Z = R has received considerable attention and [Haa81] con-
tains the state of the art. The question of the optimal constants in the vector valued
case has received less attention although there is a rather nice paper [LO94| of Latata and
Oleszkiewicz which addresses an important case.

10. TENSOR PRODUCTS AND (GROTHENDIECK’S INEQUALITY

In this last section of the course we are going to deal with tensor products and Grothendieck’s
inequality. This is a very important result in the are, and the interested readers are di-
rected to the survey of Pisier [Pis12], the book [Rya02] of Ryan, or the series of survey
articles [DFS02d, IDES02al [DFS02b, DES02d].

To understand tensor products on Ban; we shall view it as a multicategory (also known
as a coloured operad or pseudo tensor category). The reader may wish to consult [Lei04]
Chapter 2] for some discussion of classical multicategories. Tensor products are primarily
familiar from the (multi-)category of vector spaces (over a fixed field). Given two vector
spaces V and W over a field K their algebraic tensor product is defined to be the

VW = {Zvi(@wi v e V,w; € W} :
i=1
with the natural vector space operations. This makes Vectk into a monoidal category.
The tensor product itself has a universal property: for every vector space Z and bilinear
map ¢ : V x W — Z there is a linear map ¢ : V ® W — Z such that the diagram

VxW =S VW
xlw
Z

commutes, where ¢ : V x W — V@ W; (v,w) — v ® w, where ® between vectors is the
exterior product.

To extend this notion to Ban; we have to decide what our ‘bilinear maps’ are — the
multimorphisms of Ban; when we extend it to be a multicategory. Different choices for
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the multimorphisms will give rise to different tensor products. The obvious choice is for
them to be short bilinear maps meaning ¢ : X x Y — Z is bilinear and

(10.1) [,z < lalxlyly forall o e X,y e Y.

Given Banach spaces X and Y we define their projective tensor product, denoted
X®Y, to be the completion of X ® Y with respect to the norm (and one should check that
this is a bonafide norm)

|ul| := inf {Z || x il y = w = sz ®y,} forallue X ®Y.
i=1 i=1

With this definition this projective tensor product has the required universal property:
indeed, suppose that ¢ : X xY — Z is a short bilinear map. Since % is, in particular,
bilinear there is a linear map ¢ : X ® Y — Z such that ¢(x ® y) = ¥(z,y) for all z € X

yeY. For each ue X x Y define @(u) := ¢(u) so that if u =}, z; ®y; then

Z%@yi

From the definition of the projective norm it follows that ¢ is a short map from X ® Y
endowed with |- |, to Z. On the other hand X ® Y is dense in X®Y  in this norm and so
¢ extends to a short linear map QZ - X®Y — Z as required.

If we work with Ban where the morphisms are all continuous linear maps then the
hom-sets — the set L(X,Y) — are themselves Banach spaces, and there is an internal hom
functor

low)lz =

7 7

< D le@ @)z = D Il y)lz < Y laillxyily-
z %

Ban® x Ban — Ban; (X,Y) — L(X,Y);

see the functor in [Manl2, Definition 2.1 for more details.
The map

L(X®Y.Z) - LY. L(X,Z));T = (y = (z = T(z ®Y)))

is an isometric isomorphism and is natural in Y and Z. The fact that it is a bijection
means that Y — X®Y is a left adjoint for Z — L(X, Z), and makes X®Y into the tensor
product so defined.

We have already seen an example of a projective tensor product, we just gave it a
different name in that case.

Proposition 10.1 ([DFS02d, Theorem 1.10]; originally [Gro53, Theorem 3|). Suppose that
X is a Banach space. Then we have an isometric isomorphism from L (P)®X to L, (P; X).

Proof. We consider the bilinear map
¥ Li(P) x X — Ly(P; X); (f, 2) = (w = flw)z)
which has

[9(f, 2)i ey = f!f(w)Hlﬂindw = | fllz.@ |zl x for all f e Ly(P) and z € X,
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so that ((10.1)) holds. It follows that there is a short map
b L (P)®X — Ly (P; X)

such that ~
V(f®2)(w) = f(w)x for all we Q.

We need to show that the map 1 is an isometry. We do this by showing that H@(u) Iz x) =
|ul| . for a suitable set of us. The obvious vectors to choose are

Uzzn:lEi(@%u

i=1
where the F;s are disjoint measurable sets. By the Monotone Convergence Theorem the
span of the indicator functions 1p, are dense in L;(P). On the other hand

2 pa| = | D leilxlad? = Y5 @l > ul,.
i=1 =1

The result is proved. O

[9(w) | 2y@x)

In §2.5] we recorded the definition of bilinear forms. We can now understand these as
the projective tensor product.

Lemma 10.2 ([DES02d, Corollary 1.9]; originally [Grob3]). Suppose that X and Y are
Banach spaces. Then there is an isometric isomorphism between L(X,Y*)* and XR®Y.

Proof. Consider the bilinear map ¢ : X x Y — L(X,Y*)*;(x,y) — (T — T(x)(y)). The
argument is now an exercise using the universal properties of the tensor product. ]

On the face of it we might draw a line here: we have made a natural choice of short
bilinear map which we can add into Ban; as multi-morphisms to make it into a multi-
category. In this multi-category we have a notion of tensor product, and this tensor product
extends to Ban where it coincides with the tensor product defined as a result of the hom-
sets being internal.

Despite how natural the above is there are other ways of endowing Ban; with a tensor
product. Indeed, in the discussion before Theorem [0.3]we discussed natural tensor products
on L,-spaces — sub-categories of Ban;. Those tensor products were discussed in the context
of monoidal categories and it is worth clarifying that endowing a category with a product
in such a way as to make it monoidal is equivalent to endowing it with multimorphisms
as above to make it into a multicategory. This equivalence is discussed in some detail in
[Lei04] §3.3].

The Banch-Mazur theorem (or really Theorem told us that a large class of Banach
spaces arise as closed subspaces of C([0,1]), and in fact in the presence of the Axiom of
Choice, for every Banach space X there is a compact Hausdorff space T' such that X is a
closed subspace of C(T'). The sub-Category of Ban; in which all the objects are of the
form C(T) can be made into a monoidal category in a rather natural way:

C(S)RC(T) := C(S x T).
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A natural question now presents itself: is this tensor product the same as C(S)®C(T), and
it turns out, in general, it is not. Roughly speaking & is an example of a different tensor
product corresponding to a reduced collection of ‘allowable’ bilinear maps. Concretely it
is an example of something called the injective tensor product, a general construction we
shall now turn to.

The injective tensor product of Banach spaces X and Y is denoted X®Y and defined
to be the completion of X ® Y under the injective norm

Jull, == sup{la* @ y*(w)] : |2 x= < L, Jy*lve < 1}
for all u e X ® Y. Notice here that

r* ®y*( Zx x;)y* (y;) whenever u —sz@)yl,

and this is well-defined by the universal property of the algebraic tensor product X ® Y.
(The map (z,y) — x*(x)y*(y) is bilinear and so gives rise to a linear map X ® Y — F
by the universal property.) We should also note that the injective tensor product is not a
norm unless X and Y support sufficient linear functionals — for us it will be sufficient to
regard them as closed subspaces of some spaces of continuous functions.

As with the projective tensor product the injective tensor product has a universal prop-
erty but for a smaller class of bilinear maps, specifically those ¢ for which

(10.2) H@Z)(U)H < ul, forallue X ®Y

where @ is the algebraic extension of ¢ to X ® Y. Notice that since we are assuming P yx
and Py to be isometric, any such ¢ has

()] = szxx@y)H < sup{|z* @y* (@@ y)| : |*xw < 1, Iy*lvs < 1} = lalxlyly,

and so satisfies , but the converse does not hold. The universal property for the
1nJectlve tensor product says that given ¢ : X x Y — Z such that (10.2) holds there is

some w X®Y — Z such that 1 factors through @/)
We turn to an example: given a Banach space X and compact metrisable space T" we
write

C(T;X):={f:T — X s.t. fis continuous.}
endowed with the norm

|1 := sup{[lf(t)[x - € T}
If X = C(S) where S is compact and metrisable then the map

C(T;C(S)) = C(T x S); f = ((t,s) = f(t)(s))
is an isometric isomorphism.

Proposition 10.3 ([DFS02d, Theorem 1.10]; originally [Gro53, Theorem 3]). Suppose that
X is a Banach space. Then we have an isometric isomorphism from C(T)®X to C(T; X).
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Proof. Consider the bilinear map
) O(T) x X = C(T5 X); (f, 2) = (L= f(t)z).
We check that this map satisfies (10.2): if u = )., fiz; then

V() |erx)y = sup{ Zfi(t)mi ‘te T}
@ X

= sup{ x* (Z fz(t)a:z>

= sup { 20" ()

= sup {|p@a*(u)| : [l <1, [2*]| <1} = [ul,,
and so by the universal property of the injective tensor product there is a short map
Y C(TRX — CO(T; X).

It remains for us to show that the image is dense. Of course, this is straightforward:
suppose that f : T' — X is continuous then by compactness of T', for all ¢ > 0 there is
a cover of open sets (U;); such that f varies by at most € on each U;. Let fi,..., f, be a
continuous

teT,|z¥] < 1}

Hleas < 127 < 1}

Zfl(t) =1 for all t € T’; for all i we have f; : T — [0, 1],

and
|f(x) — f(y)| < € whenever x,y € U; for some 1.

Let t; be some element of U; for each i. Suppose that z € U; then || f(¢;) — f(x)|| < ¢, and
it follows that

<€+ = €.

Hf(iU) - Efz(x)f(tz) f(z) — Z fi(x) f(z)

Thus there is some u = Y, f; ® f(t;) € C(T) ® X such that

and hence the image of ¢ is dense in C(T; X). O

lu) - fHC(T;X) S6

The projective and injective tensor products are dual in the sense that i~f ue X®Y and
t € X*® Y™ then t is naturally bilinear on X x Y and hence extends to ¢t on X ® Y. We
have
()] < Jul e -
More generally, given a norm || - | on X ® Y we define a norm || - |« on X* ® Y* by

[t]s = supf{[E(u)] : ul < 1}.
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This duality was first discussed by Schatten in [Sch50] and used by Grothendieck to great
effect.

We have already seen a couple of possible tensor product norms which, as it happens,
represent the most ‘extreme’ examples. We say a norm | - | on X ® Y is a reasonable
cross-norm if

lz @yl < lz|xlyly and [+* @y« < 2™ xx]y™ v+

forallx € X,y e Y,z* € X* y* € Y*. It may be worth noting that it is an easy consequence
of what follows (but see [Rya02, Proposition 6.1, (b)] if necessary) that for any reasonable
cross-norm (on closed subspaces of C'(T")) we have equality above.

Proposition 10.4 ([Rya02, Proposition 6.1, (a)]). Suppose that X and Y are Banach
spaces and | - || is a norm on X ® Y. Then | - | is a reasonable cross-norm on X ® Y if
and only if ||ul, < |u| < |ul|x foralue X®Y.

Proof. In one direct note that if ue X ® Y then u =" | x; ® y; and

Z x; ® Y
=1

n

n
<Nz@ul <X laidxlyly-
=1 =

i=1

Jul =

It follows that

Jul < inf {Z il x Jyilly = w = ®yz} :
i=1 i=1
On the other hand
Julv = sup {lz* @y (w)] : |27 x+ < T and [y*|y+ <1} < ul.
In the other direction if |u| < |u|, then [z ®y| < |z ®y|[. < ||=[x]y]|y, and
2% @y (w)] < Jlullv ™ [exly™ly+ < lullla™ sy v«
It follows that
l2* @ y* |« < 2™ sy v+
U

One other tensor product norm we shall consider is the following

1/2 1/2
|ull := inf { sup <Z!x*(a¢¢)!2) <Z\y*(yi)y2> et gt <1 piu=DY 2@y ¢

we leave it to the reader to check that this is a norm, and remark that it is trivial that
Julg < fuf A

Theorem 10.5 (Grothendieck’s Little Inequality). Suppose that S and T are compact
metrisable spaces. Then if 1 : C(S) x C(T) — F is of the form (f,g) — (U f,Vg) for short
maps U : C(S) — H and V : C(T) — H, then

()] < kelullu for allue C(S)®C(T)
where kg = /2 if F =R, and kg = 4/7 if F = C.
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Proof. Notice that in this setting we have

2 il

1/2 1/2

|ul|z = inf Z |gi]? tu = Zfigi

a(s) a(T)

Since

@(u) = Z<Ufi, Vg;) where u = Z$Z ® v,

we have by the Cauchy-Schwarz inequality that the result is equivalent to the special case
U =V i.e. it suffices to show that

QAP m<% Z\f#l
(o) v (z)

for all functions fi,..., f, € C(9).

It is possible to show that the result follows by an approximation argument from the
case when S is finite. We shall not do this here, but from now on we take S to have size
N so that C(S) = (5.

Writing h; = U f; we have

(10.3) DMUFIP = YU fihiy = DU h(f).

/2

()

The map U* takes H (since it is self-dual) to M (S). Writing p for counting measure on
S, since S is finite all the measures in M (S) are absolutely continuous with respect to
counting measure meaning that for any v € M(S) there is a unique function f € Lq(u)
such that

Jgdl/ = Jgfdu for all g € Ly (v).

We write g—: for f — it is called the Radon-Nikodym derivative. With this in mind we

define a map
dU*h
dup -’
which has |W| = |U*| = ||[U|| = 1. Given the definition of W and we have (by
Fubini’s theorem and the Cauchy-Schwarz inequality) that

SWAE = [ S aeWhi(s)us)

W:H— Li(u);h—

1/2

1/2
| (ZIﬁ(s)F) <Z|Wm<s>|2) )

)

A

N

c(9) Li(p)



FINITE DIMENSIONAL NORMED SPACES 75

Now, suppose that Xi,..., X, are independent N (0, 1) distributed random variables, and
write X for any instance of X;. Then

1/2
IMMm<ZWWﬁ>

Li(Pxp)

flr(zese)

Li(p)

dP(w)

Li(p)

dP(w)

N
=

1/2

r

dP(w)

N
=

me@)

1/2
=HW\ZMf>-

As noted earlier we have |W| = 1 and combining everything we have shown so far we have

1/2 1/2
MIUAI? < (Z |fi|2> 1 X1z (Z h@-n?)
7 7 o(s) 7

The definition of the h;s gives the result on computing | X||z, @) (which is different depend-
ing on whether F = R or F = C). O

It is not too difficult to show that the constants above are best possible and the interested
reader may with to consult [Pis12) Theorem 5.1].

In the proof above we focused on the finite dimensional case essentially looking at the
norm | - ||z on €& ® (. Algebraically the space £ ® (X can be identified with My (F) —
the space of N x N matrices over F. In this language we have that

1M1 = inf {0l gy IV ey = M = UV}
Writing || - | g for the dual norm of | - ||y i.e.
| M| g :=sup {tr MB* : |B|g < 1},
we have
| M| g = sup {Z M;i{fi,g;) : fi.g; € L have | f;|.|lg;| <1;Lis Hilbert.} :
.3
and what Grothendieck’s Little Inequality says in this language is that
| Mg < ka|M|a.
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It is elementary that | M| g < |M| g .

It turns out that there is a stronger inequality here, relating not just the H-norm, but in
fact the injective tensor norm — in this language the operator norm of M. We concentrate
on the case of F = R. Suppose that M is an n x n matrix such that

(10.4) M|y = [Mleg—ep <1 ice Sup{

EMijfigi S fils lgg) < 1} <1,
ij

then we shall look at | M| g. Writing Lo(X) for Lo(ux) where px is counting measure on
X and X is a finite set of size d, it will be enough to consider expressions of the form

(105) S Mg = | 3 Mifla)gy@)dix(@)

The Cauchy-Schwarz inequality tells us that

(10.6) | £lpwx) < V| flaex) for all f e Ly(X),
so we get that
Y Ml fir g5 1a00] < dsup | £l oo 19 2o
ij Y

from the hypothesis (10.4]). It follows that we can write K, for the smallest constant such
that for all n x n matrices M satisfying ((10.4)) and all d-dimensional real Hilbert spaces H
we have

> M fis 9501000 < Kasup | fill Lo 951 2ax)-
ij ”

Note that if we restrict to the (Hilbert) subspace generated by (f;);, (g;);, then none of the
quantities of concern change and so we have K; < Ko,.

In this notation our previous argument showed that K, < d, whence Ky < min{d, 2n},
and Grothendieck’s inequality tells us that K, is bounded by an absolute constant. We
give a proof following Blei [Ble&7].

Theorem 10.6 (Grothendieck’s Inequality). We have that K4 = O(1).

Proof. We pick a unit vector v € H uniformly at random so for f,g e H with | f]| = ||| =1
we have

<f7 g> = dEv<f7 U><U7 g>

E Z |<f7 €k>|2 < dC°E (Z |<f7 ek>|4>

kI frerd|>C/Vd
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and so

Ky = Z M;i{ fi, g;)|

= Z ZMij<fi,€k><ek7gj>’

k=1 ij

Z Z Ml]<f17 ek><€k> g]>’

k=1

d
> sup [(fi, exysup [Cex, gl
k=1 J

N

VAN

(2

We continue to assume, as we may, that H = Lo(X). In general we cannot do better
than (|10.6). However, if the large values of the vectors f; and g; have small Ly-mass then
we can. Let f; and g; be such that

Kq = |, Mijlfi, 90 rac) | and | filo(x), 1950 2oy < 1.
i

Decompose the f;s and g;s into their large and small parts: f; = fL+ 5 and g; = gjL + g]S
where

/i 0 otherwise. 0 otherwise.

F(x) = {fi(x) iAol =K g5 (x) = {gj(x) if g (@)l = K

Then
Y M fi g0l < 1D MilES g na)l

+| Z Mij<fiL7 gj>L2(X)| + ’Z Mij<f7"3’ gjL>L2(X)|
ij ij
< K*+ Ky max HfiLHLz(X) + Kg mj‘@X HQJ‘LHLz(X)'

Since the left hand side is just Ky, we are done if we can show that the two maxima on the
right are small for some K = O(1). Of course this is not true, but we can use Khintchine’s
inequality to give us an isometric embedding to a space where it is.

Specifically, let Q = {0,1}? endowed with uniform probability measure P, and (Z,)cx
be a set of d independent +1-valued random variables on €2 each having mean 0, and put

~ 1 ~ 1
fi= %;{fmzw and §; 1= Tg;{gj<x)zx.

It is easy to check that
<fi7g~j>L2(P) = <fiygj>L2(X)-
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~ ~L ~S
Now, writing f; = fi + f; and g; = gNjL + gNjS in the same way as before, we see that

7o~ 2 ¥L ~L
(10.7) | D Myl fis Gorae)| < K+ Ko max [ fi |lLae) + Kza max |57 o).
ij
On the other hand, by Khintchine’s inequality for p = 4 we have that
~L ~L ~
K| fi Izae) = J|fi PK?dP < | filz,@) = Ol filLox)) = O1),

and similarly for §;*. It follows that there is a choice of K = O(1) such that the maxima
in ((10.7) are each at most 1/4, and hence
. 1
Kq= > Mylfi,giorae| < O(1) + CRC
ij

Finally Ky« < 2n for all d whence

1 1 1 1
for all [. Letting [ tend to infinity completes the proof. O
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