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Abstract

We show that for any sequence (fn)n≥n0 of positive integers satisfy-
ing

∑∞
n=n0

fn/2n ≤ 1/4 and fn ≤ fn+1 ≤ 2fn, there exists an infinite

antichain F of finite subsets of N such that |F ∩2[n]| ≥ fn for all n ≥ n0.
It follows that for any ε > 0 there exists an antichain F ⊆ 2N such that

lim inf
n→∞

|F ∩ 2[n]| ·
(

2n

n log1+ε n

)−1
> 0.

This resolves a problem of Sudakov, Tomon and Wagner in a strong
form, and is essentially tight.

1 Introduction

A family F of sets is an antichain if A 6⊆ B for all distinct A,B ∈ F . Sperner’s
well-known theorem [2] states that any antichain F ⊆ 2[n] has size at most(

n
bn/2c

)
, where the upper bound is achieved by the antichain consisting of all

sets of size bn/2c. Sudakov, Tomon and Wagner [3] recently studied an infinite
version of Sperner’s problem: for an (infinite) antichain F ⊆ 2N, what is the
maximum possible growth rate of |F ∩ 2[n]|?

It follows immediately from Sperner’s Theorem that |F ∩ 2[n]| ≤
(

n
bn/2c

)
=

O(2n/
√
n). However, Sudakov, Tomon and Wagner showed that for an infi-

nite antichain, |F ∩ 2[n]| must grow significantly more slowly. Using Kraft’s
inequality [1], they gave a short proof of the following.

Theorem 1 (Sudakov, Tomon and Wagner [3]). Let F ⊆ 2N be an antichain.
Then

∞∑
n=1

|F ∩ 2[n]|
2n

≤ 2. (1.1)

It follows immediately that |F ∩ 2[n]| cannot grow as quickly as 2n/n log n,
and in particular
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lim inf
n→∞

|F ∩ 2[n]| ·
(

2n

n log n

)−1
= 0. (1.2)

Turning to lower bounds, Sudakov, Tomon and Wagner constructed an
antichain with density matching (1.2) up to a polylogarithmic term.

Theorem 2 (Sudakov, Tomon and Wagner [3]). There exists an antichain
F ⊆ 2N with

lim inf
n→∞

|F ∩ 2[n]| ·
(

2n

n log46 n

)−1
> 0.

They go on to speculate that the bound in Theorem 1 is essentially correct,
and the exponent 46 in Theorem 2 could be improved to 1 + ε for any ε > 0.
We show that this is indeed the case. In fact we prove a stronger result, giving
essentially optimal bounds on the growth rate of |F ∩ 2[n]|.

Our main result is the following, which matches the form taken by the first
part of Theorem 1, namely that under natural additional assumptions any
convergence rate of the series in (1.1) is feasible.

Theorem 3. Let (fn)n≥n0 be a non-decreasing sequence of positive integers for
which

∞∑
n=n0

fn
2n
≤ 1

4

and fn
2n

is monotonically decreasing (so fn ≤ fn+1 ≤ 2fn). Then there exists
an antichain F ⊆ 2N such that

|F ∩ 2[n]| ≥ fn

for all n ≥ n0.

By taking fn to be about 2n/(n log n(log log n)2) for sufficiently large n,
the following result, answering the question of Sudakov, Tomon and Wagner,
is immediate.

Corollary 4. There exists an antichain F ⊆ 2N such that

|F ∩ 2[n]| = 2n

n log1+o(1) n
.

We use standard notation throughout. In particular, for a set X, we write
2X for the power set of X; and [n] = {1, . . . , n}. We identify infinite binary
({0, 1}-)strings with subsets of N in the usual way, that is, a string x1x2 · · ·
corresponds to the set {i ∈ N : xi = 1}.
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2 Antichain construction

In this section, we prove Theorem 3.
The elements of our antichain will each consist of two concatenated parts

where the initial segment encodes the number of 1s in the remainder of the
string. By construction, these elements (in particular the initial segments) nat-
urally occur in reverse lexicographic order and are built in blocks of elements
with the same initial segment.

The set of strings that we use as initial segments have the property that no
string is an initial segment of any other. Such a set is called a prefix code. This
condition, while being much weaker than that required for an antichain, gets
us ‘halfway’ there, as it ensures that elements with prefixes earlier in reverse
lexicographic order cannot be subsets of those with later prefixes. To obtain
our antichain, we will then append strings to each prefix in such a way that
later elements cannot be subsets of earlier ones.

Proof of Theorem 3. By assumption, all fn are positive. Let k0 be the smallest
natural number k such that fn0/2n0 ≥ 1/2k+1, and for k ≥ k0 define

`k = max
{
n : fn

2n
≥ 1

2k+1

}
.

We note that `k is well defined as fn/2n → 0 and fn ≥ 1 for n ≥ n0, which
also gives `k ≥ k + 1. Also, as fn is non-decreasing, `k+1 > `k.

Define ak = `k − k for k ≥ k0 and note that ak > 0.

Claim 1.
∑∞

k=k0
ak
2k
≤ 1.

Proof. We note that for any k ≥ k0 by definition of `k and by monotonicity of
(fn/2n)n≥n0 , we have fn

2n
≥ 2−(k+1) for all n ∈ (`k−1, `k]. Setting `k0−1 = 0 we

thus get

`k − `k−1
2k+1

≤
`k∑

n=`k−1+1

fn
2n

.

Now as ∑
k≥k0

`k − `k−1
2k+1

=
(1

2
− 1

4

)∑
k≥k0

`k
2k

,

we have ∑
k≥k0

ak
2k
≤
∑
k≥k0

`k
2k
≤ 4

∑
n≥n0

fn
2n
≤ 1.

We construct a prefix code (ck,i)k≥k0,i∈[ak] consisting of ak many strings of
length k with the property that the elements are lexicographically decreasing
when ordered so that their indices (k, i) are lexicographically increasing. Such
a sequence is given by setting ck,i to be the string of length k with digits
ck,i(1), . . . , ck,i(k) defined by

k∑
j=1

ck,i(j)

2j
= 1− sk−1 −

i

2k
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where sk =
∑k

i=k0
ai/2i. That is, we take ck,i to be the first k binary digits

of the binary representation of the fraction 1− sk−1 − i
2k

, which is guaranteed
to be positive since

∑∞
k=k0

ak/2k ≤ 1. Equivalently, this sequence may be
described by starting with the string of length k0 consisting of all 1s, and then
each string of length k ≥ k0 is obtained by subtracting 1/2k from the previous
string considered as a binary expansion of a fraction. For example, if k0 = 2,
a2 = 1, and a3 = 2 then the first three strings would be c2,1 = 11, c3,1 = 101,
and c3,2 = 100.

It is not hard to see that for two distinct strings in the sequence (ck,i), at
the first position where they differ the earlier string has a 1 and the later one
a 0. It follows that the ck,i indeed form a lexicographically decreasing prefix
code.

Now given a particular string ck,i of length k, let Fk,i be the set of all binary
strings of length `k satisfying the following conditions:

(1) The first k digits are precisely ck,i.

(2) There are precisely i many 1s after the kth digit.

(3) If k > k0, there is at least one 1 after the `k−1th digit.

We then define the family

F :=
⋃

k≥k0,
i∈[ak]

Fk,i

and view this as a subset of 2N by filling out the strings with 0s in the usual
way.

Claim 2. F is an antichain.

Proof. Take any distinct x = x1x2x3 . . . , y = y1y2y3 . . . ∈ F , say with x ∈ Fk,i

and y ∈ Fk′,i′ . If k = k′ and i = i′, then x and y have the same number of 1s
after the kth digit. Since x and y are distinct but agree on the first k digits,
this means we find j and j′ such that xj = 0, yj = 1, xj′ = 1 and yj′ = 0.
Hence we may assume that k ≤ k′, and if k = k′ then i < i′.

By construction, we have that ck,i appears earlier than ck′,i′ in reverse
lexicographic order. It follows that xj = 1 and yj = 0 where j is the first
position at which x and y differ, and moreover this must occur at some j ≤ k
as the ck,i form a prefix code. In addition, if k < k′, then by Condition (3)
there is some position j > `k′−1 for which yj = 1. But all 1s in x occur within
the first `k ≤ `k′−1 places, so xj = 0. Otherwise, if k = k′ and i < i′ then by
Condition (2) this means that x has fewer 1s after digit k than y does, so there
is necessarily some position j for which xj = 0 and yj = 1. Thus, x is neither
a subset nor superset of y.

Claim 3. For each k ≥ k0 and n ∈ (`k−1, `k] there are at least 2n−k−1 strings
in F ∩ 2[n].

4



Proof. We proceed by induction on k. For k = k0, Condition (3) is void. Thus
we have 2n−k0 − 1 choices of binary strings b between positions k0 + 1 and n
that have at least one 1. Denoting concatenation of strings by multiplication,
for each b there is precisely one corresponding string in F agreeing with b in
these positions, namely ck0,ib where i is the number of 1s in b. Note that, since
ak = `k − k for all k ≥ k0 by definition, the number of 1s in b does not exceed
ak which ensures that ck0,ib can be found in F .

Now suppose k > k0. Applying the induction hypothesis for k − 1 and
n′ = `k−1 we see we have at least 2`k−1−(k−1) − 1 strings that have no 1 after
`k−1, that is, |F ∩2[`k−1]| ≥ 2`k−1−(k−1)−1. Now consider the number of strings
that have at least one 1 after `k−1. We have 2n−k − 2`k−1−k choices of binary
strings b between positions k + 1 and n such that b has at least one 1 after
`k−1, and, as above, for each b there is precisely one corresponding string ck,ib
in F agreeing with b in these positions. Since `k > `k−1, this makes a total of
at least

2n−k − 2`k−1−k + 2`k−1−(k−1) − 1 ≥ 2n−k − 1

strings in F ∩ 2[n].

Finally, for n ∈ (`k−1, `k] we have fn/2n < 2−k by definition of `k−1. Hence
2n−k > fn so we have constructed an antichain F that contains at least 2n−k−
1 ≥ fn strings in F ∩ 2[n]. This concludes the proof of Theorem 3.
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